xref: /openbmc/linux/kernel/exit.c (revision aeefc1a0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/mmu_context.h>
70 
71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 	nr_threads--;
74 	detach_pid(p, PIDTYPE_PID);
75 	if (group_dead) {
76 		detach_pid(p, PIDTYPE_TGID);
77 		detach_pid(p, PIDTYPE_PGID);
78 		detach_pid(p, PIDTYPE_SID);
79 
80 		list_del_rcu(&p->tasks);
81 		list_del_init(&p->sibling);
82 		__this_cpu_dec(process_counts);
83 	}
84 	list_del_rcu(&p->thread_group);
85 	list_del_rcu(&p->thread_node);
86 }
87 
88 /*
89  * This function expects the tasklist_lock write-locked.
90  */
91 static void __exit_signal(struct task_struct *tsk)
92 {
93 	struct signal_struct *sig = tsk->signal;
94 	bool group_dead = thread_group_leader(tsk);
95 	struct sighand_struct *sighand;
96 	struct tty_struct *tty;
97 	u64 utime, stime;
98 
99 	sighand = rcu_dereference_check(tsk->sighand,
100 					lockdep_tasklist_lock_is_held());
101 	spin_lock(&sighand->siglock);
102 
103 #ifdef CONFIG_POSIX_TIMERS
104 	posix_cpu_timers_exit(tsk);
105 	if (group_dead)
106 		posix_cpu_timers_exit_group(tsk);
107 #endif
108 
109 	if (group_dead) {
110 		tty = sig->tty;
111 		sig->tty = NULL;
112 	} else {
113 		/*
114 		 * If there is any task waiting for the group exit
115 		 * then notify it:
116 		 */
117 		if (sig->notify_count > 0 && !--sig->notify_count)
118 			wake_up_process(sig->group_exit_task);
119 
120 		if (tsk == sig->curr_target)
121 			sig->curr_target = next_thread(tsk);
122 	}
123 
124 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
125 			      sizeof(unsigned long long));
126 
127 	/*
128 	 * Accumulate here the counters for all threads as they die. We could
129 	 * skip the group leader because it is the last user of signal_struct,
130 	 * but we want to avoid the race with thread_group_cputime() which can
131 	 * see the empty ->thread_head list.
132 	 */
133 	task_cputime(tsk, &utime, &stime);
134 	write_seqlock(&sig->stats_lock);
135 	sig->utime += utime;
136 	sig->stime += stime;
137 	sig->gtime += task_gtime(tsk);
138 	sig->min_flt += tsk->min_flt;
139 	sig->maj_flt += tsk->maj_flt;
140 	sig->nvcsw += tsk->nvcsw;
141 	sig->nivcsw += tsk->nivcsw;
142 	sig->inblock += task_io_get_inblock(tsk);
143 	sig->oublock += task_io_get_oublock(tsk);
144 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
145 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
146 	sig->nr_threads--;
147 	__unhash_process(tsk, group_dead);
148 	write_sequnlock(&sig->stats_lock);
149 
150 	/*
151 	 * Do this under ->siglock, we can race with another thread
152 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
153 	 */
154 	flush_sigqueue(&tsk->pending);
155 	tsk->sighand = NULL;
156 	spin_unlock(&sighand->siglock);
157 
158 	__cleanup_sighand(sighand);
159 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
160 	if (group_dead) {
161 		flush_sigqueue(&sig->shared_pending);
162 		tty_kref_put(tty);
163 	}
164 }
165 
166 static void delayed_put_task_struct(struct rcu_head *rhp)
167 {
168 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
169 
170 	perf_event_delayed_put(tsk);
171 	trace_sched_process_free(tsk);
172 	put_task_struct(tsk);
173 }
174 
175 void put_task_struct_rcu_user(struct task_struct *task)
176 {
177 	if (refcount_dec_and_test(&task->rcu_users))
178 		call_rcu(&task->rcu, delayed_put_task_struct);
179 }
180 
181 void release_task(struct task_struct *p)
182 {
183 	struct task_struct *leader;
184 	struct pid *thread_pid;
185 	int zap_leader;
186 repeat:
187 	/* don't need to get the RCU readlock here - the process is dead and
188 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
189 	rcu_read_lock();
190 	atomic_dec(&__task_cred(p)->user->processes);
191 	rcu_read_unlock();
192 
193 	cgroup_release(p);
194 
195 	write_lock_irq(&tasklist_lock);
196 	ptrace_release_task(p);
197 	thread_pid = get_pid(p->thread_pid);
198 	__exit_signal(p);
199 
200 	/*
201 	 * If we are the last non-leader member of the thread
202 	 * group, and the leader is zombie, then notify the
203 	 * group leader's parent process. (if it wants notification.)
204 	 */
205 	zap_leader = 0;
206 	leader = p->group_leader;
207 	if (leader != p && thread_group_empty(leader)
208 			&& leader->exit_state == EXIT_ZOMBIE) {
209 		/*
210 		 * If we were the last child thread and the leader has
211 		 * exited already, and the leader's parent ignores SIGCHLD,
212 		 * then we are the one who should release the leader.
213 		 */
214 		zap_leader = do_notify_parent(leader, leader->exit_signal);
215 		if (zap_leader)
216 			leader->exit_state = EXIT_DEAD;
217 	}
218 
219 	write_unlock_irq(&tasklist_lock);
220 	seccomp_filter_release(p);
221 	proc_flush_pid(thread_pid);
222 	put_pid(thread_pid);
223 	release_thread(p);
224 	put_task_struct_rcu_user(p);
225 
226 	p = leader;
227 	if (unlikely(zap_leader))
228 		goto repeat;
229 }
230 
231 int rcuwait_wake_up(struct rcuwait *w)
232 {
233 	int ret = 0;
234 	struct task_struct *task;
235 
236 	rcu_read_lock();
237 
238 	/*
239 	 * Order condition vs @task, such that everything prior to the load
240 	 * of @task is visible. This is the condition as to why the user called
241 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
242 	 * barrier (A) in rcuwait_wait_event().
243 	 *
244 	 *    WAIT                WAKE
245 	 *    [S] tsk = current	  [S] cond = true
246 	 *        MB (A)	      MB (B)
247 	 *    [L] cond		  [L] tsk
248 	 */
249 	smp_mb(); /* (B) */
250 
251 	task = rcu_dereference(w->task);
252 	if (task)
253 		ret = wake_up_process(task);
254 	rcu_read_unlock();
255 
256 	return ret;
257 }
258 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
259 
260 /*
261  * Determine if a process group is "orphaned", according to the POSIX
262  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
263  * by terminal-generated stop signals.  Newly orphaned process groups are
264  * to receive a SIGHUP and a SIGCONT.
265  *
266  * "I ask you, have you ever known what it is to be an orphan?"
267  */
268 static int will_become_orphaned_pgrp(struct pid *pgrp,
269 					struct task_struct *ignored_task)
270 {
271 	struct task_struct *p;
272 
273 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
274 		if ((p == ignored_task) ||
275 		    (p->exit_state && thread_group_empty(p)) ||
276 		    is_global_init(p->real_parent))
277 			continue;
278 
279 		if (task_pgrp(p->real_parent) != pgrp &&
280 		    task_session(p->real_parent) == task_session(p))
281 			return 0;
282 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
283 
284 	return 1;
285 }
286 
287 int is_current_pgrp_orphaned(void)
288 {
289 	int retval;
290 
291 	read_lock(&tasklist_lock);
292 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
293 	read_unlock(&tasklist_lock);
294 
295 	return retval;
296 }
297 
298 static bool has_stopped_jobs(struct pid *pgrp)
299 {
300 	struct task_struct *p;
301 
302 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
303 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
304 			return true;
305 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
306 
307 	return false;
308 }
309 
310 /*
311  * Check to see if any process groups have become orphaned as
312  * a result of our exiting, and if they have any stopped jobs,
313  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
314  */
315 static void
316 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
317 {
318 	struct pid *pgrp = task_pgrp(tsk);
319 	struct task_struct *ignored_task = tsk;
320 
321 	if (!parent)
322 		/* exit: our father is in a different pgrp than
323 		 * we are and we were the only connection outside.
324 		 */
325 		parent = tsk->real_parent;
326 	else
327 		/* reparent: our child is in a different pgrp than
328 		 * we are, and it was the only connection outside.
329 		 */
330 		ignored_task = NULL;
331 
332 	if (task_pgrp(parent) != pgrp &&
333 	    task_session(parent) == task_session(tsk) &&
334 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
335 	    has_stopped_jobs(pgrp)) {
336 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
337 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
338 	}
339 }
340 
341 #ifdef CONFIG_MEMCG
342 /*
343  * A task is exiting.   If it owned this mm, find a new owner for the mm.
344  */
345 void mm_update_next_owner(struct mm_struct *mm)
346 {
347 	struct task_struct *c, *g, *p = current;
348 
349 retry:
350 	/*
351 	 * If the exiting or execing task is not the owner, it's
352 	 * someone else's problem.
353 	 */
354 	if (mm->owner != p)
355 		return;
356 	/*
357 	 * The current owner is exiting/execing and there are no other
358 	 * candidates.  Do not leave the mm pointing to a possibly
359 	 * freed task structure.
360 	 */
361 	if (atomic_read(&mm->mm_users) <= 1) {
362 		WRITE_ONCE(mm->owner, NULL);
363 		return;
364 	}
365 
366 	read_lock(&tasklist_lock);
367 	/*
368 	 * Search in the children
369 	 */
370 	list_for_each_entry(c, &p->children, sibling) {
371 		if (c->mm == mm)
372 			goto assign_new_owner;
373 	}
374 
375 	/*
376 	 * Search in the siblings
377 	 */
378 	list_for_each_entry(c, &p->real_parent->children, sibling) {
379 		if (c->mm == mm)
380 			goto assign_new_owner;
381 	}
382 
383 	/*
384 	 * Search through everything else, we should not get here often.
385 	 */
386 	for_each_process(g) {
387 		if (g->flags & PF_KTHREAD)
388 			continue;
389 		for_each_thread(g, c) {
390 			if (c->mm == mm)
391 				goto assign_new_owner;
392 			if (c->mm)
393 				break;
394 		}
395 	}
396 	read_unlock(&tasklist_lock);
397 	/*
398 	 * We found no owner yet mm_users > 1: this implies that we are
399 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
400 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
401 	 */
402 	WRITE_ONCE(mm->owner, NULL);
403 	return;
404 
405 assign_new_owner:
406 	BUG_ON(c == p);
407 	get_task_struct(c);
408 	/*
409 	 * The task_lock protects c->mm from changing.
410 	 * We always want mm->owner->mm == mm
411 	 */
412 	task_lock(c);
413 	/*
414 	 * Delay read_unlock() till we have the task_lock()
415 	 * to ensure that c does not slip away underneath us
416 	 */
417 	read_unlock(&tasklist_lock);
418 	if (c->mm != mm) {
419 		task_unlock(c);
420 		put_task_struct(c);
421 		goto retry;
422 	}
423 	WRITE_ONCE(mm->owner, c);
424 	task_unlock(c);
425 	put_task_struct(c);
426 }
427 #endif /* CONFIG_MEMCG */
428 
429 /*
430  * Turn us into a lazy TLB process if we
431  * aren't already..
432  */
433 static void exit_mm(void)
434 {
435 	struct mm_struct *mm = current->mm;
436 	struct core_state *core_state;
437 
438 	exit_mm_release(current, mm);
439 	if (!mm)
440 		return;
441 	sync_mm_rss(mm);
442 	/*
443 	 * Serialize with any possible pending coredump.
444 	 * We must hold mmap_lock around checking core_state
445 	 * and clearing tsk->mm.  The core-inducing thread
446 	 * will increment ->nr_threads for each thread in the
447 	 * group with ->mm != NULL.
448 	 */
449 	mmap_read_lock(mm);
450 	core_state = mm->core_state;
451 	if (core_state) {
452 		struct core_thread self;
453 
454 		mmap_read_unlock(mm);
455 
456 		self.task = current;
457 		if (self.task->flags & PF_SIGNALED)
458 			self.next = xchg(&core_state->dumper.next, &self);
459 		else
460 			self.task = NULL;
461 		/*
462 		 * Implies mb(), the result of xchg() must be visible
463 		 * to core_state->dumper.
464 		 */
465 		if (atomic_dec_and_test(&core_state->nr_threads))
466 			complete(&core_state->startup);
467 
468 		for (;;) {
469 			set_current_state(TASK_UNINTERRUPTIBLE);
470 			if (!self.task) /* see coredump_finish() */
471 				break;
472 			freezable_schedule();
473 		}
474 		__set_current_state(TASK_RUNNING);
475 		mmap_read_lock(mm);
476 	}
477 	mmgrab(mm);
478 	BUG_ON(mm != current->active_mm);
479 	/* more a memory barrier than a real lock */
480 	task_lock(current);
481 	/*
482 	 * When a thread stops operating on an address space, the loop
483 	 * in membarrier_private_expedited() may not observe that
484 	 * tsk->mm, and the loop in membarrier_global_expedited() may
485 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
486 	 * rq->membarrier_state, so those would not issue an IPI.
487 	 * Membarrier requires a memory barrier after accessing
488 	 * user-space memory, before clearing tsk->mm or the
489 	 * rq->membarrier_state.
490 	 */
491 	smp_mb__after_spinlock();
492 	local_irq_disable();
493 	current->mm = NULL;
494 	membarrier_update_current_mm(NULL);
495 	enter_lazy_tlb(mm, current);
496 	local_irq_enable();
497 	task_unlock(current);
498 	mmap_read_unlock(mm);
499 	mm_update_next_owner(mm);
500 	mmput(mm);
501 	if (test_thread_flag(TIF_MEMDIE))
502 		exit_oom_victim();
503 }
504 
505 static struct task_struct *find_alive_thread(struct task_struct *p)
506 {
507 	struct task_struct *t;
508 
509 	for_each_thread(p, t) {
510 		if (!(t->flags & PF_EXITING))
511 			return t;
512 	}
513 	return NULL;
514 }
515 
516 static struct task_struct *find_child_reaper(struct task_struct *father,
517 						struct list_head *dead)
518 	__releases(&tasklist_lock)
519 	__acquires(&tasklist_lock)
520 {
521 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
522 	struct task_struct *reaper = pid_ns->child_reaper;
523 	struct task_struct *p, *n;
524 
525 	if (likely(reaper != father))
526 		return reaper;
527 
528 	reaper = find_alive_thread(father);
529 	if (reaper) {
530 		pid_ns->child_reaper = reaper;
531 		return reaper;
532 	}
533 
534 	write_unlock_irq(&tasklist_lock);
535 
536 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
537 		list_del_init(&p->ptrace_entry);
538 		release_task(p);
539 	}
540 
541 	zap_pid_ns_processes(pid_ns);
542 	write_lock_irq(&tasklist_lock);
543 
544 	return father;
545 }
546 
547 /*
548  * When we die, we re-parent all our children, and try to:
549  * 1. give them to another thread in our thread group, if such a member exists
550  * 2. give it to the first ancestor process which prctl'd itself as a
551  *    child_subreaper for its children (like a service manager)
552  * 3. give it to the init process (PID 1) in our pid namespace
553  */
554 static struct task_struct *find_new_reaper(struct task_struct *father,
555 					   struct task_struct *child_reaper)
556 {
557 	struct task_struct *thread, *reaper;
558 
559 	thread = find_alive_thread(father);
560 	if (thread)
561 		return thread;
562 
563 	if (father->signal->has_child_subreaper) {
564 		unsigned int ns_level = task_pid(father)->level;
565 		/*
566 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
567 		 * We can't check reaper != child_reaper to ensure we do not
568 		 * cross the namespaces, the exiting parent could be injected
569 		 * by setns() + fork().
570 		 * We check pid->level, this is slightly more efficient than
571 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
572 		 */
573 		for (reaper = father->real_parent;
574 		     task_pid(reaper)->level == ns_level;
575 		     reaper = reaper->real_parent) {
576 			if (reaper == &init_task)
577 				break;
578 			if (!reaper->signal->is_child_subreaper)
579 				continue;
580 			thread = find_alive_thread(reaper);
581 			if (thread)
582 				return thread;
583 		}
584 	}
585 
586 	return child_reaper;
587 }
588 
589 /*
590 * Any that need to be release_task'd are put on the @dead list.
591  */
592 static void reparent_leader(struct task_struct *father, struct task_struct *p,
593 				struct list_head *dead)
594 {
595 	if (unlikely(p->exit_state == EXIT_DEAD))
596 		return;
597 
598 	/* We don't want people slaying init. */
599 	p->exit_signal = SIGCHLD;
600 
601 	/* If it has exited notify the new parent about this child's death. */
602 	if (!p->ptrace &&
603 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
604 		if (do_notify_parent(p, p->exit_signal)) {
605 			p->exit_state = EXIT_DEAD;
606 			list_add(&p->ptrace_entry, dead);
607 		}
608 	}
609 
610 	kill_orphaned_pgrp(p, father);
611 }
612 
613 /*
614  * This does two things:
615  *
616  * A.  Make init inherit all the child processes
617  * B.  Check to see if any process groups have become orphaned
618  *	as a result of our exiting, and if they have any stopped
619  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
620  */
621 static void forget_original_parent(struct task_struct *father,
622 					struct list_head *dead)
623 {
624 	struct task_struct *p, *t, *reaper;
625 
626 	if (unlikely(!list_empty(&father->ptraced)))
627 		exit_ptrace(father, dead);
628 
629 	/* Can drop and reacquire tasklist_lock */
630 	reaper = find_child_reaper(father, dead);
631 	if (list_empty(&father->children))
632 		return;
633 
634 	reaper = find_new_reaper(father, reaper);
635 	list_for_each_entry(p, &father->children, sibling) {
636 		for_each_thread(p, t) {
637 			RCU_INIT_POINTER(t->real_parent, reaper);
638 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
639 			if (likely(!t->ptrace))
640 				t->parent = t->real_parent;
641 			if (t->pdeath_signal)
642 				group_send_sig_info(t->pdeath_signal,
643 						    SEND_SIG_NOINFO, t,
644 						    PIDTYPE_TGID);
645 		}
646 		/*
647 		 * If this is a threaded reparent there is no need to
648 		 * notify anyone anything has happened.
649 		 */
650 		if (!same_thread_group(reaper, father))
651 			reparent_leader(father, p, dead);
652 	}
653 	list_splice_tail_init(&father->children, &reaper->children);
654 }
655 
656 /*
657  * Send signals to all our closest relatives so that they know
658  * to properly mourn us..
659  */
660 static void exit_notify(struct task_struct *tsk, int group_dead)
661 {
662 	bool autoreap;
663 	struct task_struct *p, *n;
664 	LIST_HEAD(dead);
665 
666 	write_lock_irq(&tasklist_lock);
667 	forget_original_parent(tsk, &dead);
668 
669 	if (group_dead)
670 		kill_orphaned_pgrp(tsk->group_leader, NULL);
671 
672 	tsk->exit_state = EXIT_ZOMBIE;
673 	if (unlikely(tsk->ptrace)) {
674 		int sig = thread_group_leader(tsk) &&
675 				thread_group_empty(tsk) &&
676 				!ptrace_reparented(tsk) ?
677 			tsk->exit_signal : SIGCHLD;
678 		autoreap = do_notify_parent(tsk, sig);
679 	} else if (thread_group_leader(tsk)) {
680 		autoreap = thread_group_empty(tsk) &&
681 			do_notify_parent(tsk, tsk->exit_signal);
682 	} else {
683 		autoreap = true;
684 	}
685 
686 	if (autoreap) {
687 		tsk->exit_state = EXIT_DEAD;
688 		list_add(&tsk->ptrace_entry, &dead);
689 	}
690 
691 	/* mt-exec, de_thread() is waiting for group leader */
692 	if (unlikely(tsk->signal->notify_count < 0))
693 		wake_up_process(tsk->signal->group_exit_task);
694 	write_unlock_irq(&tasklist_lock);
695 
696 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
697 		list_del_init(&p->ptrace_entry);
698 		release_task(p);
699 	}
700 }
701 
702 #ifdef CONFIG_DEBUG_STACK_USAGE
703 static void check_stack_usage(void)
704 {
705 	static DEFINE_SPINLOCK(low_water_lock);
706 	static int lowest_to_date = THREAD_SIZE;
707 	unsigned long free;
708 
709 	free = stack_not_used(current);
710 
711 	if (free >= lowest_to_date)
712 		return;
713 
714 	spin_lock(&low_water_lock);
715 	if (free < lowest_to_date) {
716 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
717 			current->comm, task_pid_nr(current), free);
718 		lowest_to_date = free;
719 	}
720 	spin_unlock(&low_water_lock);
721 }
722 #else
723 static inline void check_stack_usage(void) {}
724 #endif
725 
726 void __noreturn do_exit(long code)
727 {
728 	struct task_struct *tsk = current;
729 	int group_dead;
730 
731 	/*
732 	 * We can get here from a kernel oops, sometimes with preemption off.
733 	 * Start by checking for critical errors.
734 	 * Then fix up important state like USER_DS and preemption.
735 	 * Then do everything else.
736 	 */
737 
738 	WARN_ON(blk_needs_flush_plug(tsk));
739 
740 	if (unlikely(in_interrupt()))
741 		panic("Aiee, killing interrupt handler!");
742 	if (unlikely(!tsk->pid))
743 		panic("Attempted to kill the idle task!");
744 
745 	/*
746 	 * If do_exit is called because this processes oopsed, it's possible
747 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
748 	 * continuing. Amongst other possible reasons, this is to prevent
749 	 * mm_release()->clear_child_tid() from writing to a user-controlled
750 	 * kernel address.
751 	 */
752 	force_uaccess_begin();
753 
754 	if (unlikely(in_atomic())) {
755 		pr_info("note: %s[%d] exited with preempt_count %d\n",
756 			current->comm, task_pid_nr(current),
757 			preempt_count());
758 		preempt_count_set(PREEMPT_ENABLED);
759 	}
760 
761 	profile_task_exit(tsk);
762 	kcov_task_exit(tsk);
763 
764 	ptrace_event(PTRACE_EVENT_EXIT, code);
765 
766 	validate_creds_for_do_exit(tsk);
767 
768 	/*
769 	 * We're taking recursive faults here in do_exit. Safest is to just
770 	 * leave this task alone and wait for reboot.
771 	 */
772 	if (unlikely(tsk->flags & PF_EXITING)) {
773 		pr_alert("Fixing recursive fault but reboot is needed!\n");
774 		futex_exit_recursive(tsk);
775 		set_current_state(TASK_UNINTERRUPTIBLE);
776 		schedule();
777 	}
778 
779 	exit_signals(tsk);  /* sets PF_EXITING */
780 
781 	/* sync mm's RSS info before statistics gathering */
782 	if (tsk->mm)
783 		sync_mm_rss(tsk->mm);
784 	acct_update_integrals(tsk);
785 	group_dead = atomic_dec_and_test(&tsk->signal->live);
786 	if (group_dead) {
787 		/*
788 		 * If the last thread of global init has exited, panic
789 		 * immediately to get a useable coredump.
790 		 */
791 		if (unlikely(is_global_init(tsk)))
792 			panic("Attempted to kill init! exitcode=0x%08x\n",
793 				tsk->signal->group_exit_code ?: (int)code);
794 
795 #ifdef CONFIG_POSIX_TIMERS
796 		hrtimer_cancel(&tsk->signal->real_timer);
797 		exit_itimers(tsk->signal);
798 #endif
799 		if (tsk->mm)
800 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
801 	}
802 	acct_collect(code, group_dead);
803 	if (group_dead)
804 		tty_audit_exit();
805 	audit_free(tsk);
806 
807 	tsk->exit_code = code;
808 	taskstats_exit(tsk, group_dead);
809 
810 	exit_mm();
811 
812 	if (group_dead)
813 		acct_process();
814 	trace_sched_process_exit(tsk);
815 
816 	exit_sem(tsk);
817 	exit_shm(tsk);
818 	exit_files(tsk);
819 	exit_fs(tsk);
820 	if (group_dead)
821 		disassociate_ctty(1);
822 	exit_task_namespaces(tsk);
823 	exit_task_work(tsk);
824 	exit_thread(tsk);
825 
826 	/*
827 	 * Flush inherited counters to the parent - before the parent
828 	 * gets woken up by child-exit notifications.
829 	 *
830 	 * because of cgroup mode, must be called before cgroup_exit()
831 	 */
832 	perf_event_exit_task(tsk);
833 
834 	sched_autogroup_exit_task(tsk);
835 	cgroup_exit(tsk);
836 
837 	/*
838 	 * FIXME: do that only when needed, using sched_exit tracepoint
839 	 */
840 	flush_ptrace_hw_breakpoint(tsk);
841 
842 	exit_tasks_rcu_start();
843 	exit_notify(tsk, group_dead);
844 	proc_exit_connector(tsk);
845 	mpol_put_task_policy(tsk);
846 #ifdef CONFIG_FUTEX
847 	if (unlikely(current->pi_state_cache))
848 		kfree(current->pi_state_cache);
849 #endif
850 	/*
851 	 * Make sure we are holding no locks:
852 	 */
853 	debug_check_no_locks_held();
854 
855 	if (tsk->io_context)
856 		exit_io_context(tsk);
857 
858 	if (tsk->splice_pipe)
859 		free_pipe_info(tsk->splice_pipe);
860 
861 	if (tsk->task_frag.page)
862 		put_page(tsk->task_frag.page);
863 
864 	validate_creds_for_do_exit(tsk);
865 
866 	check_stack_usage();
867 	preempt_disable();
868 	if (tsk->nr_dirtied)
869 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
870 	exit_rcu();
871 	exit_tasks_rcu_finish();
872 
873 	lockdep_free_task(tsk);
874 	do_task_dead();
875 }
876 EXPORT_SYMBOL_GPL(do_exit);
877 
878 void complete_and_exit(struct completion *comp, long code)
879 {
880 	if (comp)
881 		complete(comp);
882 
883 	do_exit(code);
884 }
885 EXPORT_SYMBOL(complete_and_exit);
886 
887 SYSCALL_DEFINE1(exit, int, error_code)
888 {
889 	do_exit((error_code&0xff)<<8);
890 }
891 
892 /*
893  * Take down every thread in the group.  This is called by fatal signals
894  * as well as by sys_exit_group (below).
895  */
896 void
897 do_group_exit(int exit_code)
898 {
899 	struct signal_struct *sig = current->signal;
900 
901 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
902 
903 	if (signal_group_exit(sig))
904 		exit_code = sig->group_exit_code;
905 	else if (!thread_group_empty(current)) {
906 		struct sighand_struct *const sighand = current->sighand;
907 
908 		spin_lock_irq(&sighand->siglock);
909 		if (signal_group_exit(sig))
910 			/* Another thread got here before we took the lock.  */
911 			exit_code = sig->group_exit_code;
912 		else {
913 			sig->group_exit_code = exit_code;
914 			sig->flags = SIGNAL_GROUP_EXIT;
915 			zap_other_threads(current);
916 		}
917 		spin_unlock_irq(&sighand->siglock);
918 	}
919 
920 	do_exit(exit_code);
921 	/* NOTREACHED */
922 }
923 
924 /*
925  * this kills every thread in the thread group. Note that any externally
926  * wait4()-ing process will get the correct exit code - even if this
927  * thread is not the thread group leader.
928  */
929 SYSCALL_DEFINE1(exit_group, int, error_code)
930 {
931 	do_group_exit((error_code & 0xff) << 8);
932 	/* NOTREACHED */
933 	return 0;
934 }
935 
936 struct waitid_info {
937 	pid_t pid;
938 	uid_t uid;
939 	int status;
940 	int cause;
941 };
942 
943 struct wait_opts {
944 	enum pid_type		wo_type;
945 	int			wo_flags;
946 	struct pid		*wo_pid;
947 
948 	struct waitid_info	*wo_info;
949 	int			wo_stat;
950 	struct rusage		*wo_rusage;
951 
952 	wait_queue_entry_t		child_wait;
953 	int			notask_error;
954 };
955 
956 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
957 {
958 	return	wo->wo_type == PIDTYPE_MAX ||
959 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
960 }
961 
962 static int
963 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
964 {
965 	if (!eligible_pid(wo, p))
966 		return 0;
967 
968 	/*
969 	 * Wait for all children (clone and not) if __WALL is set or
970 	 * if it is traced by us.
971 	 */
972 	if (ptrace || (wo->wo_flags & __WALL))
973 		return 1;
974 
975 	/*
976 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
977 	 * otherwise, wait for non-clone children *only*.
978 	 *
979 	 * Note: a "clone" child here is one that reports to its parent
980 	 * using a signal other than SIGCHLD, or a non-leader thread which
981 	 * we can only see if it is traced by us.
982 	 */
983 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
984 		return 0;
985 
986 	return 1;
987 }
988 
989 /*
990  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
991  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
992  * the lock and this task is uninteresting.  If we return nonzero, we have
993  * released the lock and the system call should return.
994  */
995 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
996 {
997 	int state, status;
998 	pid_t pid = task_pid_vnr(p);
999 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1000 	struct waitid_info *infop;
1001 
1002 	if (!likely(wo->wo_flags & WEXITED))
1003 		return 0;
1004 
1005 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1006 		status = p->exit_code;
1007 		get_task_struct(p);
1008 		read_unlock(&tasklist_lock);
1009 		sched_annotate_sleep();
1010 		if (wo->wo_rusage)
1011 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1012 		put_task_struct(p);
1013 		goto out_info;
1014 	}
1015 	/*
1016 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1017 	 */
1018 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1019 		EXIT_TRACE : EXIT_DEAD;
1020 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1021 		return 0;
1022 	/*
1023 	 * We own this thread, nobody else can reap it.
1024 	 */
1025 	read_unlock(&tasklist_lock);
1026 	sched_annotate_sleep();
1027 
1028 	/*
1029 	 * Check thread_group_leader() to exclude the traced sub-threads.
1030 	 */
1031 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1032 		struct signal_struct *sig = p->signal;
1033 		struct signal_struct *psig = current->signal;
1034 		unsigned long maxrss;
1035 		u64 tgutime, tgstime;
1036 
1037 		/*
1038 		 * The resource counters for the group leader are in its
1039 		 * own task_struct.  Those for dead threads in the group
1040 		 * are in its signal_struct, as are those for the child
1041 		 * processes it has previously reaped.  All these
1042 		 * accumulate in the parent's signal_struct c* fields.
1043 		 *
1044 		 * We don't bother to take a lock here to protect these
1045 		 * p->signal fields because the whole thread group is dead
1046 		 * and nobody can change them.
1047 		 *
1048 		 * psig->stats_lock also protects us from our sub-theads
1049 		 * which can reap other children at the same time. Until
1050 		 * we change k_getrusage()-like users to rely on this lock
1051 		 * we have to take ->siglock as well.
1052 		 *
1053 		 * We use thread_group_cputime_adjusted() to get times for
1054 		 * the thread group, which consolidates times for all threads
1055 		 * in the group including the group leader.
1056 		 */
1057 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1058 		spin_lock_irq(&current->sighand->siglock);
1059 		write_seqlock(&psig->stats_lock);
1060 		psig->cutime += tgutime + sig->cutime;
1061 		psig->cstime += tgstime + sig->cstime;
1062 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1063 		psig->cmin_flt +=
1064 			p->min_flt + sig->min_flt + sig->cmin_flt;
1065 		psig->cmaj_flt +=
1066 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1067 		psig->cnvcsw +=
1068 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1069 		psig->cnivcsw +=
1070 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1071 		psig->cinblock +=
1072 			task_io_get_inblock(p) +
1073 			sig->inblock + sig->cinblock;
1074 		psig->coublock +=
1075 			task_io_get_oublock(p) +
1076 			sig->oublock + sig->coublock;
1077 		maxrss = max(sig->maxrss, sig->cmaxrss);
1078 		if (psig->cmaxrss < maxrss)
1079 			psig->cmaxrss = maxrss;
1080 		task_io_accounting_add(&psig->ioac, &p->ioac);
1081 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1082 		write_sequnlock(&psig->stats_lock);
1083 		spin_unlock_irq(&current->sighand->siglock);
1084 	}
1085 
1086 	if (wo->wo_rusage)
1087 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1088 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1089 		? p->signal->group_exit_code : p->exit_code;
1090 	wo->wo_stat = status;
1091 
1092 	if (state == EXIT_TRACE) {
1093 		write_lock_irq(&tasklist_lock);
1094 		/* We dropped tasklist, ptracer could die and untrace */
1095 		ptrace_unlink(p);
1096 
1097 		/* If parent wants a zombie, don't release it now */
1098 		state = EXIT_ZOMBIE;
1099 		if (do_notify_parent(p, p->exit_signal))
1100 			state = EXIT_DEAD;
1101 		p->exit_state = state;
1102 		write_unlock_irq(&tasklist_lock);
1103 	}
1104 	if (state == EXIT_DEAD)
1105 		release_task(p);
1106 
1107 out_info:
1108 	infop = wo->wo_info;
1109 	if (infop) {
1110 		if ((status & 0x7f) == 0) {
1111 			infop->cause = CLD_EXITED;
1112 			infop->status = status >> 8;
1113 		} else {
1114 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1115 			infop->status = status & 0x7f;
1116 		}
1117 		infop->pid = pid;
1118 		infop->uid = uid;
1119 	}
1120 
1121 	return pid;
1122 }
1123 
1124 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1125 {
1126 	if (ptrace) {
1127 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1128 			return &p->exit_code;
1129 	} else {
1130 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1131 			return &p->signal->group_exit_code;
1132 	}
1133 	return NULL;
1134 }
1135 
1136 /**
1137  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1138  * @wo: wait options
1139  * @ptrace: is the wait for ptrace
1140  * @p: task to wait for
1141  *
1142  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1143  *
1144  * CONTEXT:
1145  * read_lock(&tasklist_lock), which is released if return value is
1146  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1147  *
1148  * RETURNS:
1149  * 0 if wait condition didn't exist and search for other wait conditions
1150  * should continue.  Non-zero return, -errno on failure and @p's pid on
1151  * success, implies that tasklist_lock is released and wait condition
1152  * search should terminate.
1153  */
1154 static int wait_task_stopped(struct wait_opts *wo,
1155 				int ptrace, struct task_struct *p)
1156 {
1157 	struct waitid_info *infop;
1158 	int exit_code, *p_code, why;
1159 	uid_t uid = 0; /* unneeded, required by compiler */
1160 	pid_t pid;
1161 
1162 	/*
1163 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1164 	 */
1165 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1166 		return 0;
1167 
1168 	if (!task_stopped_code(p, ptrace))
1169 		return 0;
1170 
1171 	exit_code = 0;
1172 	spin_lock_irq(&p->sighand->siglock);
1173 
1174 	p_code = task_stopped_code(p, ptrace);
1175 	if (unlikely(!p_code))
1176 		goto unlock_sig;
1177 
1178 	exit_code = *p_code;
1179 	if (!exit_code)
1180 		goto unlock_sig;
1181 
1182 	if (!unlikely(wo->wo_flags & WNOWAIT))
1183 		*p_code = 0;
1184 
1185 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1186 unlock_sig:
1187 	spin_unlock_irq(&p->sighand->siglock);
1188 	if (!exit_code)
1189 		return 0;
1190 
1191 	/*
1192 	 * Now we are pretty sure this task is interesting.
1193 	 * Make sure it doesn't get reaped out from under us while we
1194 	 * give up the lock and then examine it below.  We don't want to
1195 	 * keep holding onto the tasklist_lock while we call getrusage and
1196 	 * possibly take page faults for user memory.
1197 	 */
1198 	get_task_struct(p);
1199 	pid = task_pid_vnr(p);
1200 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1201 	read_unlock(&tasklist_lock);
1202 	sched_annotate_sleep();
1203 	if (wo->wo_rusage)
1204 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1205 	put_task_struct(p);
1206 
1207 	if (likely(!(wo->wo_flags & WNOWAIT)))
1208 		wo->wo_stat = (exit_code << 8) | 0x7f;
1209 
1210 	infop = wo->wo_info;
1211 	if (infop) {
1212 		infop->cause = why;
1213 		infop->status = exit_code;
1214 		infop->pid = pid;
1215 		infop->uid = uid;
1216 	}
1217 	return pid;
1218 }
1219 
1220 /*
1221  * Handle do_wait work for one task in a live, non-stopped state.
1222  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1223  * the lock and this task is uninteresting.  If we return nonzero, we have
1224  * released the lock and the system call should return.
1225  */
1226 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1227 {
1228 	struct waitid_info *infop;
1229 	pid_t pid;
1230 	uid_t uid;
1231 
1232 	if (!unlikely(wo->wo_flags & WCONTINUED))
1233 		return 0;
1234 
1235 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1236 		return 0;
1237 
1238 	spin_lock_irq(&p->sighand->siglock);
1239 	/* Re-check with the lock held.  */
1240 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1241 		spin_unlock_irq(&p->sighand->siglock);
1242 		return 0;
1243 	}
1244 	if (!unlikely(wo->wo_flags & WNOWAIT))
1245 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1246 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1247 	spin_unlock_irq(&p->sighand->siglock);
1248 
1249 	pid = task_pid_vnr(p);
1250 	get_task_struct(p);
1251 	read_unlock(&tasklist_lock);
1252 	sched_annotate_sleep();
1253 	if (wo->wo_rusage)
1254 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1255 	put_task_struct(p);
1256 
1257 	infop = wo->wo_info;
1258 	if (!infop) {
1259 		wo->wo_stat = 0xffff;
1260 	} else {
1261 		infop->cause = CLD_CONTINUED;
1262 		infop->pid = pid;
1263 		infop->uid = uid;
1264 		infop->status = SIGCONT;
1265 	}
1266 	return pid;
1267 }
1268 
1269 /*
1270  * Consider @p for a wait by @parent.
1271  *
1272  * -ECHILD should be in ->notask_error before the first call.
1273  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1274  * Returns zero if the search for a child should continue;
1275  * then ->notask_error is 0 if @p is an eligible child,
1276  * or still -ECHILD.
1277  */
1278 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1279 				struct task_struct *p)
1280 {
1281 	/*
1282 	 * We can race with wait_task_zombie() from another thread.
1283 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1284 	 * can't confuse the checks below.
1285 	 */
1286 	int exit_state = READ_ONCE(p->exit_state);
1287 	int ret;
1288 
1289 	if (unlikely(exit_state == EXIT_DEAD))
1290 		return 0;
1291 
1292 	ret = eligible_child(wo, ptrace, p);
1293 	if (!ret)
1294 		return ret;
1295 
1296 	if (unlikely(exit_state == EXIT_TRACE)) {
1297 		/*
1298 		 * ptrace == 0 means we are the natural parent. In this case
1299 		 * we should clear notask_error, debugger will notify us.
1300 		 */
1301 		if (likely(!ptrace))
1302 			wo->notask_error = 0;
1303 		return 0;
1304 	}
1305 
1306 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1307 		/*
1308 		 * If it is traced by its real parent's group, just pretend
1309 		 * the caller is ptrace_do_wait() and reap this child if it
1310 		 * is zombie.
1311 		 *
1312 		 * This also hides group stop state from real parent; otherwise
1313 		 * a single stop can be reported twice as group and ptrace stop.
1314 		 * If a ptracer wants to distinguish these two events for its
1315 		 * own children it should create a separate process which takes
1316 		 * the role of real parent.
1317 		 */
1318 		if (!ptrace_reparented(p))
1319 			ptrace = 1;
1320 	}
1321 
1322 	/* slay zombie? */
1323 	if (exit_state == EXIT_ZOMBIE) {
1324 		/* we don't reap group leaders with subthreads */
1325 		if (!delay_group_leader(p)) {
1326 			/*
1327 			 * A zombie ptracee is only visible to its ptracer.
1328 			 * Notification and reaping will be cascaded to the
1329 			 * real parent when the ptracer detaches.
1330 			 */
1331 			if (unlikely(ptrace) || likely(!p->ptrace))
1332 				return wait_task_zombie(wo, p);
1333 		}
1334 
1335 		/*
1336 		 * Allow access to stopped/continued state via zombie by
1337 		 * falling through.  Clearing of notask_error is complex.
1338 		 *
1339 		 * When !@ptrace:
1340 		 *
1341 		 * If WEXITED is set, notask_error should naturally be
1342 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1343 		 * so, if there are live subthreads, there are events to
1344 		 * wait for.  If all subthreads are dead, it's still safe
1345 		 * to clear - this function will be called again in finite
1346 		 * amount time once all the subthreads are released and
1347 		 * will then return without clearing.
1348 		 *
1349 		 * When @ptrace:
1350 		 *
1351 		 * Stopped state is per-task and thus can't change once the
1352 		 * target task dies.  Only continued and exited can happen.
1353 		 * Clear notask_error if WCONTINUED | WEXITED.
1354 		 */
1355 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1356 			wo->notask_error = 0;
1357 	} else {
1358 		/*
1359 		 * @p is alive and it's gonna stop, continue or exit, so
1360 		 * there always is something to wait for.
1361 		 */
1362 		wo->notask_error = 0;
1363 	}
1364 
1365 	/*
1366 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1367 	 * is used and the two don't interact with each other.
1368 	 */
1369 	ret = wait_task_stopped(wo, ptrace, p);
1370 	if (ret)
1371 		return ret;
1372 
1373 	/*
1374 	 * Wait for continued.  There's only one continued state and the
1375 	 * ptracer can consume it which can confuse the real parent.  Don't
1376 	 * use WCONTINUED from ptracer.  You don't need or want it.
1377 	 */
1378 	return wait_task_continued(wo, p);
1379 }
1380 
1381 /*
1382  * Do the work of do_wait() for one thread in the group, @tsk.
1383  *
1384  * -ECHILD should be in ->notask_error before the first call.
1385  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1386  * Returns zero if the search for a child should continue; then
1387  * ->notask_error is 0 if there were any eligible children,
1388  * or still -ECHILD.
1389  */
1390 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1391 {
1392 	struct task_struct *p;
1393 
1394 	list_for_each_entry(p, &tsk->children, sibling) {
1395 		int ret = wait_consider_task(wo, 0, p);
1396 
1397 		if (ret)
1398 			return ret;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1405 {
1406 	struct task_struct *p;
1407 
1408 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1409 		int ret = wait_consider_task(wo, 1, p);
1410 
1411 		if (ret)
1412 			return ret;
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1419 				int sync, void *key)
1420 {
1421 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1422 						child_wait);
1423 	struct task_struct *p = key;
1424 
1425 	if (!eligible_pid(wo, p))
1426 		return 0;
1427 
1428 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1429 		return 0;
1430 
1431 	return default_wake_function(wait, mode, sync, key);
1432 }
1433 
1434 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1435 {
1436 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1437 			   TASK_INTERRUPTIBLE, p);
1438 }
1439 
1440 static long do_wait(struct wait_opts *wo)
1441 {
1442 	struct task_struct *tsk;
1443 	int retval;
1444 
1445 	trace_sched_process_wait(wo->wo_pid);
1446 
1447 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1448 	wo->child_wait.private = current;
1449 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1450 repeat:
1451 	/*
1452 	 * If there is nothing that can match our criteria, just get out.
1453 	 * We will clear ->notask_error to zero if we see any child that
1454 	 * might later match our criteria, even if we are not able to reap
1455 	 * it yet.
1456 	 */
1457 	wo->notask_error = -ECHILD;
1458 	if ((wo->wo_type < PIDTYPE_MAX) &&
1459 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1460 		goto notask;
1461 
1462 	set_current_state(TASK_INTERRUPTIBLE);
1463 	read_lock(&tasklist_lock);
1464 	tsk = current;
1465 	do {
1466 		retval = do_wait_thread(wo, tsk);
1467 		if (retval)
1468 			goto end;
1469 
1470 		retval = ptrace_do_wait(wo, tsk);
1471 		if (retval)
1472 			goto end;
1473 
1474 		if (wo->wo_flags & __WNOTHREAD)
1475 			break;
1476 	} while_each_thread(current, tsk);
1477 	read_unlock(&tasklist_lock);
1478 
1479 notask:
1480 	retval = wo->notask_error;
1481 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1482 		retval = -ERESTARTSYS;
1483 		if (!signal_pending(current)) {
1484 			schedule();
1485 			goto repeat;
1486 		}
1487 	}
1488 end:
1489 	__set_current_state(TASK_RUNNING);
1490 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1491 	return retval;
1492 }
1493 
1494 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1495 			  int options, struct rusage *ru)
1496 {
1497 	struct wait_opts wo;
1498 	struct pid *pid = NULL;
1499 	enum pid_type type;
1500 	long ret;
1501 	unsigned int f_flags = 0;
1502 
1503 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1504 			__WNOTHREAD|__WCLONE|__WALL))
1505 		return -EINVAL;
1506 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1507 		return -EINVAL;
1508 
1509 	switch (which) {
1510 	case P_ALL:
1511 		type = PIDTYPE_MAX;
1512 		break;
1513 	case P_PID:
1514 		type = PIDTYPE_PID;
1515 		if (upid <= 0)
1516 			return -EINVAL;
1517 
1518 		pid = find_get_pid(upid);
1519 		break;
1520 	case P_PGID:
1521 		type = PIDTYPE_PGID;
1522 		if (upid < 0)
1523 			return -EINVAL;
1524 
1525 		if (upid)
1526 			pid = find_get_pid(upid);
1527 		else
1528 			pid = get_task_pid(current, PIDTYPE_PGID);
1529 		break;
1530 	case P_PIDFD:
1531 		type = PIDTYPE_PID;
1532 		if (upid < 0)
1533 			return -EINVAL;
1534 
1535 		pid = pidfd_get_pid(upid, &f_flags);
1536 		if (IS_ERR(pid))
1537 			return PTR_ERR(pid);
1538 
1539 		break;
1540 	default:
1541 		return -EINVAL;
1542 	}
1543 
1544 	wo.wo_type	= type;
1545 	wo.wo_pid	= pid;
1546 	wo.wo_flags	= options;
1547 	wo.wo_info	= infop;
1548 	wo.wo_rusage	= ru;
1549 	if (f_flags & O_NONBLOCK)
1550 		wo.wo_flags |= WNOHANG;
1551 
1552 	ret = do_wait(&wo);
1553 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1554 		ret = -EAGAIN;
1555 
1556 	put_pid(pid);
1557 	return ret;
1558 }
1559 
1560 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1561 		infop, int, options, struct rusage __user *, ru)
1562 {
1563 	struct rusage r;
1564 	struct waitid_info info = {.status = 0};
1565 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1566 	int signo = 0;
1567 
1568 	if (err > 0) {
1569 		signo = SIGCHLD;
1570 		err = 0;
1571 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1572 			return -EFAULT;
1573 	}
1574 	if (!infop)
1575 		return err;
1576 
1577 	if (!user_write_access_begin(infop, sizeof(*infop)))
1578 		return -EFAULT;
1579 
1580 	unsafe_put_user(signo, &infop->si_signo, Efault);
1581 	unsafe_put_user(0, &infop->si_errno, Efault);
1582 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1583 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1584 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1585 	unsafe_put_user(info.status, &infop->si_status, Efault);
1586 	user_write_access_end();
1587 	return err;
1588 Efault:
1589 	user_write_access_end();
1590 	return -EFAULT;
1591 }
1592 
1593 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1594 		  struct rusage *ru)
1595 {
1596 	struct wait_opts wo;
1597 	struct pid *pid = NULL;
1598 	enum pid_type type;
1599 	long ret;
1600 
1601 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1602 			__WNOTHREAD|__WCLONE|__WALL))
1603 		return -EINVAL;
1604 
1605 	/* -INT_MIN is not defined */
1606 	if (upid == INT_MIN)
1607 		return -ESRCH;
1608 
1609 	if (upid == -1)
1610 		type = PIDTYPE_MAX;
1611 	else if (upid < 0) {
1612 		type = PIDTYPE_PGID;
1613 		pid = find_get_pid(-upid);
1614 	} else if (upid == 0) {
1615 		type = PIDTYPE_PGID;
1616 		pid = get_task_pid(current, PIDTYPE_PGID);
1617 	} else /* upid > 0 */ {
1618 		type = PIDTYPE_PID;
1619 		pid = find_get_pid(upid);
1620 	}
1621 
1622 	wo.wo_type	= type;
1623 	wo.wo_pid	= pid;
1624 	wo.wo_flags	= options | WEXITED;
1625 	wo.wo_info	= NULL;
1626 	wo.wo_stat	= 0;
1627 	wo.wo_rusage	= ru;
1628 	ret = do_wait(&wo);
1629 	put_pid(pid);
1630 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1631 		ret = -EFAULT;
1632 
1633 	return ret;
1634 }
1635 
1636 int kernel_wait(pid_t pid, int *stat)
1637 {
1638 	struct wait_opts wo = {
1639 		.wo_type	= PIDTYPE_PID,
1640 		.wo_pid		= find_get_pid(pid),
1641 		.wo_flags	= WEXITED,
1642 	};
1643 	int ret;
1644 
1645 	ret = do_wait(&wo);
1646 	if (ret > 0 && wo.wo_stat)
1647 		*stat = wo.wo_stat;
1648 	put_pid(wo.wo_pid);
1649 	return ret;
1650 }
1651 
1652 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1653 		int, options, struct rusage __user *, ru)
1654 {
1655 	struct rusage r;
1656 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1657 
1658 	if (err > 0) {
1659 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1660 			return -EFAULT;
1661 	}
1662 	return err;
1663 }
1664 
1665 #ifdef __ARCH_WANT_SYS_WAITPID
1666 
1667 /*
1668  * sys_waitpid() remains for compatibility. waitpid() should be
1669  * implemented by calling sys_wait4() from libc.a.
1670  */
1671 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1672 {
1673 	return kernel_wait4(pid, stat_addr, options, NULL);
1674 }
1675 
1676 #endif
1677 
1678 #ifdef CONFIG_COMPAT
1679 COMPAT_SYSCALL_DEFINE4(wait4,
1680 	compat_pid_t, pid,
1681 	compat_uint_t __user *, stat_addr,
1682 	int, options,
1683 	struct compat_rusage __user *, ru)
1684 {
1685 	struct rusage r;
1686 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1687 	if (err > 0) {
1688 		if (ru && put_compat_rusage(&r, ru))
1689 			return -EFAULT;
1690 	}
1691 	return err;
1692 }
1693 
1694 COMPAT_SYSCALL_DEFINE5(waitid,
1695 		int, which, compat_pid_t, pid,
1696 		struct compat_siginfo __user *, infop, int, options,
1697 		struct compat_rusage __user *, uru)
1698 {
1699 	struct rusage ru;
1700 	struct waitid_info info = {.status = 0};
1701 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1702 	int signo = 0;
1703 	if (err > 0) {
1704 		signo = SIGCHLD;
1705 		err = 0;
1706 		if (uru) {
1707 			/* kernel_waitid() overwrites everything in ru */
1708 			if (COMPAT_USE_64BIT_TIME)
1709 				err = copy_to_user(uru, &ru, sizeof(ru));
1710 			else
1711 				err = put_compat_rusage(&ru, uru);
1712 			if (err)
1713 				return -EFAULT;
1714 		}
1715 	}
1716 
1717 	if (!infop)
1718 		return err;
1719 
1720 	if (!user_write_access_begin(infop, sizeof(*infop)))
1721 		return -EFAULT;
1722 
1723 	unsafe_put_user(signo, &infop->si_signo, Efault);
1724 	unsafe_put_user(0, &infop->si_errno, Efault);
1725 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1726 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1727 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1728 	unsafe_put_user(info.status, &infop->si_status, Efault);
1729 	user_write_access_end();
1730 	return err;
1731 Efault:
1732 	user_write_access_end();
1733 	return -EFAULT;
1734 }
1735 #endif
1736 
1737 /**
1738  * thread_group_exited - check that a thread group has exited
1739  * @pid: tgid of thread group to be checked.
1740  *
1741  * Test if the thread group represented by tgid has exited (all
1742  * threads are zombies, dead or completely gone).
1743  *
1744  * Return: true if the thread group has exited. false otherwise.
1745  */
1746 bool thread_group_exited(struct pid *pid)
1747 {
1748 	struct task_struct *task;
1749 	bool exited;
1750 
1751 	rcu_read_lock();
1752 	task = pid_task(pid, PIDTYPE_PID);
1753 	exited = !task ||
1754 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1755 	rcu_read_unlock();
1756 
1757 	return exited;
1758 }
1759 EXPORT_SYMBOL(thread_group_exited);
1760 
1761 __weak void abort(void)
1762 {
1763 	BUG();
1764 
1765 	/* if that doesn't kill us, halt */
1766 	panic("Oops failed to kill thread");
1767 }
1768 EXPORT_SYMBOL(abort);
1769