1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/stat.h> 12 #include <linux/sched/task.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/sched/cputime.h> 15 #include <linux/interrupt.h> 16 #include <linux/module.h> 17 #include <linux/capability.h> 18 #include <linux/completion.h> 19 #include <linux/personality.h> 20 #include <linux/tty.h> 21 #include <linux/iocontext.h> 22 #include <linux/key.h> 23 #include <linux/cpu.h> 24 #include <linux/acct.h> 25 #include <linux/tsacct_kern.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/blkdev.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/tracehook.h> 53 #include <linux/fs_struct.h> 54 #include <linux/userfaultfd_k.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/unistd.h> 68 #include <asm/pgtable.h> 69 #include <asm/mmu_context.h> 70 71 static void __unhash_process(struct task_struct *p, bool group_dead) 72 { 73 nr_threads--; 74 detach_pid(p, PIDTYPE_PID); 75 if (group_dead) { 76 detach_pid(p, PIDTYPE_PGID); 77 detach_pid(p, PIDTYPE_SID); 78 79 list_del_rcu(&p->tasks); 80 list_del_init(&p->sibling); 81 __this_cpu_dec(process_counts); 82 } 83 list_del_rcu(&p->thread_group); 84 list_del_rcu(&p->thread_node); 85 } 86 87 /* 88 * This function expects the tasklist_lock write-locked. 89 */ 90 static void __exit_signal(struct task_struct *tsk) 91 { 92 struct signal_struct *sig = tsk->signal; 93 bool group_dead = thread_group_leader(tsk); 94 struct sighand_struct *sighand; 95 struct tty_struct *uninitialized_var(tty); 96 u64 utime, stime; 97 98 sighand = rcu_dereference_check(tsk->sighand, 99 lockdep_tasklist_lock_is_held()); 100 spin_lock(&sighand->siglock); 101 102 #ifdef CONFIG_POSIX_TIMERS 103 posix_cpu_timers_exit(tsk); 104 if (group_dead) { 105 posix_cpu_timers_exit_group(tsk); 106 } else { 107 /* 108 * This can only happen if the caller is de_thread(). 109 * FIXME: this is the temporary hack, we should teach 110 * posix-cpu-timers to handle this case correctly. 111 */ 112 if (unlikely(has_group_leader_pid(tsk))) 113 posix_cpu_timers_exit_group(tsk); 114 } 115 #endif 116 117 if (group_dead) { 118 tty = sig->tty; 119 sig->tty = NULL; 120 } else { 121 /* 122 * If there is any task waiting for the group exit 123 * then notify it: 124 */ 125 if (sig->notify_count > 0 && !--sig->notify_count) 126 wake_up_process(sig->group_exit_task); 127 128 if (tsk == sig->curr_target) 129 sig->curr_target = next_thread(tsk); 130 } 131 132 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 133 sizeof(unsigned long long)); 134 135 /* 136 * Accumulate here the counters for all threads as they die. We could 137 * skip the group leader because it is the last user of signal_struct, 138 * but we want to avoid the race with thread_group_cputime() which can 139 * see the empty ->thread_head list. 140 */ 141 task_cputime(tsk, &utime, &stime); 142 write_seqlock(&sig->stats_lock); 143 sig->utime += utime; 144 sig->stime += stime; 145 sig->gtime += task_gtime(tsk); 146 sig->min_flt += tsk->min_flt; 147 sig->maj_flt += tsk->maj_flt; 148 sig->nvcsw += tsk->nvcsw; 149 sig->nivcsw += tsk->nivcsw; 150 sig->inblock += task_io_get_inblock(tsk); 151 sig->oublock += task_io_get_oublock(tsk); 152 task_io_accounting_add(&sig->ioac, &tsk->ioac); 153 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 154 sig->nr_threads--; 155 __unhash_process(tsk, group_dead); 156 write_sequnlock(&sig->stats_lock); 157 158 /* 159 * Do this under ->siglock, we can race with another thread 160 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 161 */ 162 flush_sigqueue(&tsk->pending); 163 tsk->sighand = NULL; 164 spin_unlock(&sighand->siglock); 165 166 __cleanup_sighand(sighand); 167 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 168 if (group_dead) { 169 flush_sigqueue(&sig->shared_pending); 170 tty_kref_put(tty); 171 } 172 } 173 174 static void delayed_put_task_struct(struct rcu_head *rhp) 175 { 176 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 177 178 perf_event_delayed_put(tsk); 179 trace_sched_process_free(tsk); 180 put_task_struct(tsk); 181 } 182 183 184 void release_task(struct task_struct *p) 185 { 186 struct task_struct *leader; 187 int zap_leader; 188 repeat: 189 /* don't need to get the RCU readlock here - the process is dead and 190 * can't be modifying its own credentials. But shut RCU-lockdep up */ 191 rcu_read_lock(); 192 atomic_dec(&__task_cred(p)->user->processes); 193 rcu_read_unlock(); 194 195 proc_flush_task(p); 196 197 write_lock_irq(&tasklist_lock); 198 ptrace_release_task(p); 199 __exit_signal(p); 200 201 /* 202 * If we are the last non-leader member of the thread 203 * group, and the leader is zombie, then notify the 204 * group leader's parent process. (if it wants notification.) 205 */ 206 zap_leader = 0; 207 leader = p->group_leader; 208 if (leader != p && thread_group_empty(leader) 209 && leader->exit_state == EXIT_ZOMBIE) { 210 /* 211 * If we were the last child thread and the leader has 212 * exited already, and the leader's parent ignores SIGCHLD, 213 * then we are the one who should release the leader. 214 */ 215 zap_leader = do_notify_parent(leader, leader->exit_signal); 216 if (zap_leader) 217 leader->exit_state = EXIT_DEAD; 218 } 219 220 write_unlock_irq(&tasklist_lock); 221 release_thread(p); 222 call_rcu(&p->rcu, delayed_put_task_struct); 223 224 p = leader; 225 if (unlikely(zap_leader)) 226 goto repeat; 227 } 228 229 /* 230 * Note that if this function returns a valid task_struct pointer (!NULL) 231 * task->usage must remain >0 for the duration of the RCU critical section. 232 */ 233 struct task_struct *task_rcu_dereference(struct task_struct **ptask) 234 { 235 struct sighand_struct *sighand; 236 struct task_struct *task; 237 238 /* 239 * We need to verify that release_task() was not called and thus 240 * delayed_put_task_struct() can't run and drop the last reference 241 * before rcu_read_unlock(). We check task->sighand != NULL, 242 * but we can read the already freed and reused memory. 243 */ 244 retry: 245 task = rcu_dereference(*ptask); 246 if (!task) 247 return NULL; 248 249 probe_kernel_address(&task->sighand, sighand); 250 251 /* 252 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task 253 * was already freed we can not miss the preceding update of this 254 * pointer. 255 */ 256 smp_rmb(); 257 if (unlikely(task != READ_ONCE(*ptask))) 258 goto retry; 259 260 /* 261 * We've re-checked that "task == *ptask", now we have two different 262 * cases: 263 * 264 * 1. This is actually the same task/task_struct. In this case 265 * sighand != NULL tells us it is still alive. 266 * 267 * 2. This is another task which got the same memory for task_struct. 268 * We can't know this of course, and we can not trust 269 * sighand != NULL. 270 * 271 * In this case we actually return a random value, but this is 272 * correct. 273 * 274 * If we return NULL - we can pretend that we actually noticed that 275 * *ptask was updated when the previous task has exited. Or pretend 276 * that probe_slab_address(&sighand) reads NULL. 277 * 278 * If we return the new task (because sighand is not NULL for any 279 * reason) - this is fine too. This (new) task can't go away before 280 * another gp pass. 281 * 282 * And note: We could even eliminate the false positive if re-read 283 * task->sighand once again to avoid the falsely NULL. But this case 284 * is very unlikely so we don't care. 285 */ 286 if (!sighand) 287 return NULL; 288 289 return task; 290 } 291 292 void rcuwait_wake_up(struct rcuwait *w) 293 { 294 struct task_struct *task; 295 296 rcu_read_lock(); 297 298 /* 299 * Order condition vs @task, such that everything prior to the load 300 * of @task is visible. This is the condition as to why the user called 301 * rcuwait_trywake() in the first place. Pairs with set_current_state() 302 * barrier (A) in rcuwait_wait_event(). 303 * 304 * WAIT WAKE 305 * [S] tsk = current [S] cond = true 306 * MB (A) MB (B) 307 * [L] cond [L] tsk 308 */ 309 smp_rmb(); /* (B) */ 310 311 /* 312 * Avoid using task_rcu_dereference() magic as long as we are careful, 313 * see comment in rcuwait_wait_event() regarding ->exit_state. 314 */ 315 task = rcu_dereference(w->task); 316 if (task) 317 wake_up_process(task); 318 rcu_read_unlock(); 319 } 320 321 struct task_struct *try_get_task_struct(struct task_struct **ptask) 322 { 323 struct task_struct *task; 324 325 rcu_read_lock(); 326 task = task_rcu_dereference(ptask); 327 if (task) 328 get_task_struct(task); 329 rcu_read_unlock(); 330 331 return task; 332 } 333 334 /* 335 * Determine if a process group is "orphaned", according to the POSIX 336 * definition in 2.2.2.52. Orphaned process groups are not to be affected 337 * by terminal-generated stop signals. Newly orphaned process groups are 338 * to receive a SIGHUP and a SIGCONT. 339 * 340 * "I ask you, have you ever known what it is to be an orphan?" 341 */ 342 static int will_become_orphaned_pgrp(struct pid *pgrp, 343 struct task_struct *ignored_task) 344 { 345 struct task_struct *p; 346 347 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 348 if ((p == ignored_task) || 349 (p->exit_state && thread_group_empty(p)) || 350 is_global_init(p->real_parent)) 351 continue; 352 353 if (task_pgrp(p->real_parent) != pgrp && 354 task_session(p->real_parent) == task_session(p)) 355 return 0; 356 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 357 358 return 1; 359 } 360 361 int is_current_pgrp_orphaned(void) 362 { 363 int retval; 364 365 read_lock(&tasklist_lock); 366 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 367 read_unlock(&tasklist_lock); 368 369 return retval; 370 } 371 372 static bool has_stopped_jobs(struct pid *pgrp) 373 { 374 struct task_struct *p; 375 376 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 377 if (p->signal->flags & SIGNAL_STOP_STOPPED) 378 return true; 379 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 380 381 return false; 382 } 383 384 /* 385 * Check to see if any process groups have become orphaned as 386 * a result of our exiting, and if they have any stopped jobs, 387 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 388 */ 389 static void 390 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 391 { 392 struct pid *pgrp = task_pgrp(tsk); 393 struct task_struct *ignored_task = tsk; 394 395 if (!parent) 396 /* exit: our father is in a different pgrp than 397 * we are and we were the only connection outside. 398 */ 399 parent = tsk->real_parent; 400 else 401 /* reparent: our child is in a different pgrp than 402 * we are, and it was the only connection outside. 403 */ 404 ignored_task = NULL; 405 406 if (task_pgrp(parent) != pgrp && 407 task_session(parent) == task_session(tsk) && 408 will_become_orphaned_pgrp(pgrp, ignored_task) && 409 has_stopped_jobs(pgrp)) { 410 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 411 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 412 } 413 } 414 415 #ifdef CONFIG_MEMCG 416 /* 417 * A task is exiting. If it owned this mm, find a new owner for the mm. 418 */ 419 void mm_update_next_owner(struct mm_struct *mm) 420 { 421 struct task_struct *c, *g, *p = current; 422 423 retry: 424 /* 425 * If the exiting or execing task is not the owner, it's 426 * someone else's problem. 427 */ 428 if (mm->owner != p) 429 return; 430 /* 431 * The current owner is exiting/execing and there are no other 432 * candidates. Do not leave the mm pointing to a possibly 433 * freed task structure. 434 */ 435 if (atomic_read(&mm->mm_users) <= 1) { 436 mm->owner = NULL; 437 return; 438 } 439 440 read_lock(&tasklist_lock); 441 /* 442 * Search in the children 443 */ 444 list_for_each_entry(c, &p->children, sibling) { 445 if (c->mm == mm) 446 goto assign_new_owner; 447 } 448 449 /* 450 * Search in the siblings 451 */ 452 list_for_each_entry(c, &p->real_parent->children, sibling) { 453 if (c->mm == mm) 454 goto assign_new_owner; 455 } 456 457 /* 458 * Search through everything else, we should not get here often. 459 */ 460 for_each_process(g) { 461 if (g->flags & PF_KTHREAD) 462 continue; 463 for_each_thread(g, c) { 464 if (c->mm == mm) 465 goto assign_new_owner; 466 if (c->mm) 467 break; 468 } 469 } 470 read_unlock(&tasklist_lock); 471 /* 472 * We found no owner yet mm_users > 1: this implies that we are 473 * most likely racing with swapoff (try_to_unuse()) or /proc or 474 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 475 */ 476 mm->owner = NULL; 477 return; 478 479 assign_new_owner: 480 BUG_ON(c == p); 481 get_task_struct(c); 482 /* 483 * The task_lock protects c->mm from changing. 484 * We always want mm->owner->mm == mm 485 */ 486 task_lock(c); 487 /* 488 * Delay read_unlock() till we have the task_lock() 489 * to ensure that c does not slip away underneath us 490 */ 491 read_unlock(&tasklist_lock); 492 if (c->mm != mm) { 493 task_unlock(c); 494 put_task_struct(c); 495 goto retry; 496 } 497 mm->owner = c; 498 task_unlock(c); 499 put_task_struct(c); 500 } 501 #endif /* CONFIG_MEMCG */ 502 503 /* 504 * Turn us into a lazy TLB process if we 505 * aren't already.. 506 */ 507 static void exit_mm(void) 508 { 509 struct mm_struct *mm = current->mm; 510 struct core_state *core_state; 511 512 mm_release(current, mm); 513 if (!mm) 514 return; 515 sync_mm_rss(mm); 516 /* 517 * Serialize with any possible pending coredump. 518 * We must hold mmap_sem around checking core_state 519 * and clearing tsk->mm. The core-inducing thread 520 * will increment ->nr_threads for each thread in the 521 * group with ->mm != NULL. 522 */ 523 down_read(&mm->mmap_sem); 524 core_state = mm->core_state; 525 if (core_state) { 526 struct core_thread self; 527 528 up_read(&mm->mmap_sem); 529 530 self.task = current; 531 self.next = xchg(&core_state->dumper.next, &self); 532 /* 533 * Implies mb(), the result of xchg() must be visible 534 * to core_state->dumper. 535 */ 536 if (atomic_dec_and_test(&core_state->nr_threads)) 537 complete(&core_state->startup); 538 539 for (;;) { 540 set_current_state(TASK_UNINTERRUPTIBLE); 541 if (!self.task) /* see coredump_finish() */ 542 break; 543 freezable_schedule(); 544 } 545 __set_current_state(TASK_RUNNING); 546 down_read(&mm->mmap_sem); 547 } 548 mmgrab(mm); 549 BUG_ON(mm != current->active_mm); 550 /* more a memory barrier than a real lock */ 551 task_lock(current); 552 current->mm = NULL; 553 up_read(&mm->mmap_sem); 554 enter_lazy_tlb(mm, current); 555 task_unlock(current); 556 mm_update_next_owner(mm); 557 userfaultfd_exit(mm); 558 mmput(mm); 559 if (test_thread_flag(TIF_MEMDIE)) 560 exit_oom_victim(); 561 } 562 563 static struct task_struct *find_alive_thread(struct task_struct *p) 564 { 565 struct task_struct *t; 566 567 for_each_thread(p, t) { 568 if (!(t->flags & PF_EXITING)) 569 return t; 570 } 571 return NULL; 572 } 573 574 static struct task_struct *find_child_reaper(struct task_struct *father) 575 __releases(&tasklist_lock) 576 __acquires(&tasklist_lock) 577 { 578 struct pid_namespace *pid_ns = task_active_pid_ns(father); 579 struct task_struct *reaper = pid_ns->child_reaper; 580 581 if (likely(reaper != father)) 582 return reaper; 583 584 reaper = find_alive_thread(father); 585 if (reaper) { 586 pid_ns->child_reaper = reaper; 587 return reaper; 588 } 589 590 write_unlock_irq(&tasklist_lock); 591 if (unlikely(pid_ns == &init_pid_ns)) { 592 panic("Attempted to kill init! exitcode=0x%08x\n", 593 father->signal->group_exit_code ?: father->exit_code); 594 } 595 zap_pid_ns_processes(pid_ns); 596 write_lock_irq(&tasklist_lock); 597 598 return father; 599 } 600 601 /* 602 * When we die, we re-parent all our children, and try to: 603 * 1. give them to another thread in our thread group, if such a member exists 604 * 2. give it to the first ancestor process which prctl'd itself as a 605 * child_subreaper for its children (like a service manager) 606 * 3. give it to the init process (PID 1) in our pid namespace 607 */ 608 static struct task_struct *find_new_reaper(struct task_struct *father, 609 struct task_struct *child_reaper) 610 { 611 struct task_struct *thread, *reaper; 612 613 thread = find_alive_thread(father); 614 if (thread) 615 return thread; 616 617 if (father->signal->has_child_subreaper) { 618 unsigned int ns_level = task_pid(father)->level; 619 /* 620 * Find the first ->is_child_subreaper ancestor in our pid_ns. 621 * We can't check reaper != child_reaper to ensure we do not 622 * cross the namespaces, the exiting parent could be injected 623 * by setns() + fork(). 624 * We check pid->level, this is slightly more efficient than 625 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 626 */ 627 for (reaper = father->real_parent; 628 task_pid(reaper)->level == ns_level; 629 reaper = reaper->real_parent) { 630 if (reaper == &init_task) 631 break; 632 if (!reaper->signal->is_child_subreaper) 633 continue; 634 thread = find_alive_thread(reaper); 635 if (thread) 636 return thread; 637 } 638 } 639 640 return child_reaper; 641 } 642 643 /* 644 * Any that need to be release_task'd are put on the @dead list. 645 */ 646 static void reparent_leader(struct task_struct *father, struct task_struct *p, 647 struct list_head *dead) 648 { 649 if (unlikely(p->exit_state == EXIT_DEAD)) 650 return; 651 652 /* We don't want people slaying init. */ 653 p->exit_signal = SIGCHLD; 654 655 /* If it has exited notify the new parent about this child's death. */ 656 if (!p->ptrace && 657 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 658 if (do_notify_parent(p, p->exit_signal)) { 659 p->exit_state = EXIT_DEAD; 660 list_add(&p->ptrace_entry, dead); 661 } 662 } 663 664 kill_orphaned_pgrp(p, father); 665 } 666 667 /* 668 * This does two things: 669 * 670 * A. Make init inherit all the child processes 671 * B. Check to see if any process groups have become orphaned 672 * as a result of our exiting, and if they have any stopped 673 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 674 */ 675 static void forget_original_parent(struct task_struct *father, 676 struct list_head *dead) 677 { 678 struct task_struct *p, *t, *reaper; 679 680 if (unlikely(!list_empty(&father->ptraced))) 681 exit_ptrace(father, dead); 682 683 /* Can drop and reacquire tasklist_lock */ 684 reaper = find_child_reaper(father); 685 if (list_empty(&father->children)) 686 return; 687 688 reaper = find_new_reaper(father, reaper); 689 list_for_each_entry(p, &father->children, sibling) { 690 for_each_thread(p, t) { 691 t->real_parent = reaper; 692 BUG_ON((!t->ptrace) != (t->parent == father)); 693 if (likely(!t->ptrace)) 694 t->parent = t->real_parent; 695 if (t->pdeath_signal) 696 group_send_sig_info(t->pdeath_signal, 697 SEND_SIG_NOINFO, t); 698 } 699 /* 700 * If this is a threaded reparent there is no need to 701 * notify anyone anything has happened. 702 */ 703 if (!same_thread_group(reaper, father)) 704 reparent_leader(father, p, dead); 705 } 706 list_splice_tail_init(&father->children, &reaper->children); 707 } 708 709 /* 710 * Send signals to all our closest relatives so that they know 711 * to properly mourn us.. 712 */ 713 static void exit_notify(struct task_struct *tsk, int group_dead) 714 { 715 bool autoreap; 716 struct task_struct *p, *n; 717 LIST_HEAD(dead); 718 719 write_lock_irq(&tasklist_lock); 720 forget_original_parent(tsk, &dead); 721 722 if (group_dead) 723 kill_orphaned_pgrp(tsk->group_leader, NULL); 724 725 if (unlikely(tsk->ptrace)) { 726 int sig = thread_group_leader(tsk) && 727 thread_group_empty(tsk) && 728 !ptrace_reparented(tsk) ? 729 tsk->exit_signal : SIGCHLD; 730 autoreap = do_notify_parent(tsk, sig); 731 } else if (thread_group_leader(tsk)) { 732 autoreap = thread_group_empty(tsk) && 733 do_notify_parent(tsk, tsk->exit_signal); 734 } else { 735 autoreap = true; 736 } 737 738 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 739 if (tsk->exit_state == EXIT_DEAD) 740 list_add(&tsk->ptrace_entry, &dead); 741 742 /* mt-exec, de_thread() is waiting for group leader */ 743 if (unlikely(tsk->signal->notify_count < 0)) 744 wake_up_process(tsk->signal->group_exit_task); 745 write_unlock_irq(&tasklist_lock); 746 747 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 748 list_del_init(&p->ptrace_entry); 749 release_task(p); 750 } 751 } 752 753 #ifdef CONFIG_DEBUG_STACK_USAGE 754 static void check_stack_usage(void) 755 { 756 static DEFINE_SPINLOCK(low_water_lock); 757 static int lowest_to_date = THREAD_SIZE; 758 unsigned long free; 759 760 free = stack_not_used(current); 761 762 if (free >= lowest_to_date) 763 return; 764 765 spin_lock(&low_water_lock); 766 if (free < lowest_to_date) { 767 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 768 current->comm, task_pid_nr(current), free); 769 lowest_to_date = free; 770 } 771 spin_unlock(&low_water_lock); 772 } 773 #else 774 static inline void check_stack_usage(void) {} 775 #endif 776 777 void __noreturn do_exit(long code) 778 { 779 struct task_struct *tsk = current; 780 int group_dead; 781 TASKS_RCU(int tasks_rcu_i); 782 783 profile_task_exit(tsk); 784 kcov_task_exit(tsk); 785 786 WARN_ON(blk_needs_flush_plug(tsk)); 787 788 if (unlikely(in_interrupt())) 789 panic("Aiee, killing interrupt handler!"); 790 if (unlikely(!tsk->pid)) 791 panic("Attempted to kill the idle task!"); 792 793 /* 794 * If do_exit is called because this processes oopsed, it's possible 795 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 796 * continuing. Amongst other possible reasons, this is to prevent 797 * mm_release()->clear_child_tid() from writing to a user-controlled 798 * kernel address. 799 */ 800 set_fs(USER_DS); 801 802 ptrace_event(PTRACE_EVENT_EXIT, code); 803 804 validate_creds_for_do_exit(tsk); 805 806 /* 807 * We're taking recursive faults here in do_exit. Safest is to just 808 * leave this task alone and wait for reboot. 809 */ 810 if (unlikely(tsk->flags & PF_EXITING)) { 811 pr_alert("Fixing recursive fault but reboot is needed!\n"); 812 /* 813 * We can do this unlocked here. The futex code uses 814 * this flag just to verify whether the pi state 815 * cleanup has been done or not. In the worst case it 816 * loops once more. We pretend that the cleanup was 817 * done as there is no way to return. Either the 818 * OWNER_DIED bit is set by now or we push the blocked 819 * task into the wait for ever nirwana as well. 820 */ 821 tsk->flags |= PF_EXITPIDONE; 822 set_current_state(TASK_UNINTERRUPTIBLE); 823 schedule(); 824 } 825 826 exit_signals(tsk); /* sets PF_EXITING */ 827 /* 828 * Ensure that all new tsk->pi_lock acquisitions must observe 829 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner(). 830 */ 831 smp_mb(); 832 /* 833 * Ensure that we must observe the pi_state in exit_mm() -> 834 * mm_release() -> exit_pi_state_list(). 835 */ 836 raw_spin_unlock_wait(&tsk->pi_lock); 837 838 if (unlikely(in_atomic())) { 839 pr_info("note: %s[%d] exited with preempt_count %d\n", 840 current->comm, task_pid_nr(current), 841 preempt_count()); 842 preempt_count_set(PREEMPT_ENABLED); 843 } 844 845 /* sync mm's RSS info before statistics gathering */ 846 if (tsk->mm) 847 sync_mm_rss(tsk->mm); 848 acct_update_integrals(tsk); 849 group_dead = atomic_dec_and_test(&tsk->signal->live); 850 if (group_dead) { 851 #ifdef CONFIG_POSIX_TIMERS 852 hrtimer_cancel(&tsk->signal->real_timer); 853 exit_itimers(tsk->signal); 854 #endif 855 if (tsk->mm) 856 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 857 } 858 acct_collect(code, group_dead); 859 if (group_dead) 860 tty_audit_exit(); 861 audit_free(tsk); 862 863 tsk->exit_code = code; 864 taskstats_exit(tsk, group_dead); 865 866 exit_mm(); 867 868 if (group_dead) 869 acct_process(); 870 trace_sched_process_exit(tsk); 871 872 exit_sem(tsk); 873 exit_shm(tsk); 874 exit_files(tsk); 875 exit_fs(tsk); 876 if (group_dead) 877 disassociate_ctty(1); 878 exit_task_namespaces(tsk); 879 exit_task_work(tsk); 880 exit_thread(tsk); 881 882 /* 883 * Flush inherited counters to the parent - before the parent 884 * gets woken up by child-exit notifications. 885 * 886 * because of cgroup mode, must be called before cgroup_exit() 887 */ 888 perf_event_exit_task(tsk); 889 890 sched_autogroup_exit_task(tsk); 891 cgroup_exit(tsk); 892 893 /* 894 * FIXME: do that only when needed, using sched_exit tracepoint 895 */ 896 flush_ptrace_hw_breakpoint(tsk); 897 898 TASKS_RCU(preempt_disable()); 899 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 900 TASKS_RCU(preempt_enable()); 901 exit_notify(tsk, group_dead); 902 proc_exit_connector(tsk); 903 mpol_put_task_policy(tsk); 904 #ifdef CONFIG_FUTEX 905 if (unlikely(current->pi_state_cache)) 906 kfree(current->pi_state_cache); 907 #endif 908 /* 909 * Make sure we are holding no locks: 910 */ 911 debug_check_no_locks_held(); 912 /* 913 * We can do this unlocked here. The futex code uses this flag 914 * just to verify whether the pi state cleanup has been done 915 * or not. In the worst case it loops once more. 916 */ 917 tsk->flags |= PF_EXITPIDONE; 918 919 if (tsk->io_context) 920 exit_io_context(tsk); 921 922 if (tsk->splice_pipe) 923 free_pipe_info(tsk->splice_pipe); 924 925 if (tsk->task_frag.page) 926 put_page(tsk->task_frag.page); 927 928 validate_creds_for_do_exit(tsk); 929 930 check_stack_usage(); 931 preempt_disable(); 932 if (tsk->nr_dirtied) 933 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 934 exit_rcu(); 935 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 936 937 do_task_dead(); 938 } 939 EXPORT_SYMBOL_GPL(do_exit); 940 941 void complete_and_exit(struct completion *comp, long code) 942 { 943 if (comp) 944 complete(comp); 945 946 do_exit(code); 947 } 948 EXPORT_SYMBOL(complete_and_exit); 949 950 SYSCALL_DEFINE1(exit, int, error_code) 951 { 952 do_exit((error_code&0xff)<<8); 953 } 954 955 /* 956 * Take down every thread in the group. This is called by fatal signals 957 * as well as by sys_exit_group (below). 958 */ 959 void 960 do_group_exit(int exit_code) 961 { 962 struct signal_struct *sig = current->signal; 963 964 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 965 966 if (signal_group_exit(sig)) 967 exit_code = sig->group_exit_code; 968 else if (!thread_group_empty(current)) { 969 struct sighand_struct *const sighand = current->sighand; 970 971 spin_lock_irq(&sighand->siglock); 972 if (signal_group_exit(sig)) 973 /* Another thread got here before we took the lock. */ 974 exit_code = sig->group_exit_code; 975 else { 976 sig->group_exit_code = exit_code; 977 sig->flags = SIGNAL_GROUP_EXIT; 978 zap_other_threads(current); 979 } 980 spin_unlock_irq(&sighand->siglock); 981 } 982 983 do_exit(exit_code); 984 /* NOTREACHED */ 985 } 986 987 /* 988 * this kills every thread in the thread group. Note that any externally 989 * wait4()-ing process will get the correct exit code - even if this 990 * thread is not the thread group leader. 991 */ 992 SYSCALL_DEFINE1(exit_group, int, error_code) 993 { 994 do_group_exit((error_code & 0xff) << 8); 995 /* NOTREACHED */ 996 return 0; 997 } 998 999 struct wait_opts { 1000 enum pid_type wo_type; 1001 int wo_flags; 1002 struct pid *wo_pid; 1003 1004 struct siginfo __user *wo_info; 1005 int __user *wo_stat; 1006 struct rusage __user *wo_rusage; 1007 1008 wait_queue_t child_wait; 1009 int notask_error; 1010 }; 1011 1012 static inline 1013 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1014 { 1015 if (type != PIDTYPE_PID) 1016 task = task->group_leader; 1017 return task->pids[type].pid; 1018 } 1019 1020 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1021 { 1022 return wo->wo_type == PIDTYPE_MAX || 1023 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1024 } 1025 1026 static int 1027 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1028 { 1029 if (!eligible_pid(wo, p)) 1030 return 0; 1031 1032 /* 1033 * Wait for all children (clone and not) if __WALL is set or 1034 * if it is traced by us. 1035 */ 1036 if (ptrace || (wo->wo_flags & __WALL)) 1037 return 1; 1038 1039 /* 1040 * Otherwise, wait for clone children *only* if __WCLONE is set; 1041 * otherwise, wait for non-clone children *only*. 1042 * 1043 * Note: a "clone" child here is one that reports to its parent 1044 * using a signal other than SIGCHLD, or a non-leader thread which 1045 * we can only see if it is traced by us. 1046 */ 1047 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1048 return 0; 1049 1050 return 1; 1051 } 1052 1053 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1054 pid_t pid, uid_t uid, int why, int status) 1055 { 1056 struct siginfo __user *infop; 1057 int retval = wo->wo_rusage 1058 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1059 1060 put_task_struct(p); 1061 infop = wo->wo_info; 1062 if (infop) { 1063 if (!retval) 1064 retval = put_user(SIGCHLD, &infop->si_signo); 1065 if (!retval) 1066 retval = put_user(0, &infop->si_errno); 1067 if (!retval) 1068 retval = put_user((short)why, &infop->si_code); 1069 if (!retval) 1070 retval = put_user(pid, &infop->si_pid); 1071 if (!retval) 1072 retval = put_user(uid, &infop->si_uid); 1073 if (!retval) 1074 retval = put_user(status, &infop->si_status); 1075 } 1076 if (!retval) 1077 retval = pid; 1078 return retval; 1079 } 1080 1081 /* 1082 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1083 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1084 * the lock and this task is uninteresting. If we return nonzero, we have 1085 * released the lock and the system call should return. 1086 */ 1087 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1088 { 1089 int state, retval, status; 1090 pid_t pid = task_pid_vnr(p); 1091 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1092 struct siginfo __user *infop; 1093 1094 if (!likely(wo->wo_flags & WEXITED)) 1095 return 0; 1096 1097 if (unlikely(wo->wo_flags & WNOWAIT)) { 1098 int exit_code = p->exit_code; 1099 int why; 1100 1101 get_task_struct(p); 1102 read_unlock(&tasklist_lock); 1103 sched_annotate_sleep(); 1104 1105 if ((exit_code & 0x7f) == 0) { 1106 why = CLD_EXITED; 1107 status = exit_code >> 8; 1108 } else { 1109 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1110 status = exit_code & 0x7f; 1111 } 1112 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1113 } 1114 /* 1115 * Move the task's state to DEAD/TRACE, only one thread can do this. 1116 */ 1117 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1118 EXIT_TRACE : EXIT_DEAD; 1119 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1120 return 0; 1121 /* 1122 * We own this thread, nobody else can reap it. 1123 */ 1124 read_unlock(&tasklist_lock); 1125 sched_annotate_sleep(); 1126 1127 /* 1128 * Check thread_group_leader() to exclude the traced sub-threads. 1129 */ 1130 if (state == EXIT_DEAD && thread_group_leader(p)) { 1131 struct signal_struct *sig = p->signal; 1132 struct signal_struct *psig = current->signal; 1133 unsigned long maxrss; 1134 u64 tgutime, tgstime; 1135 1136 /* 1137 * The resource counters for the group leader are in its 1138 * own task_struct. Those for dead threads in the group 1139 * are in its signal_struct, as are those for the child 1140 * processes it has previously reaped. All these 1141 * accumulate in the parent's signal_struct c* fields. 1142 * 1143 * We don't bother to take a lock here to protect these 1144 * p->signal fields because the whole thread group is dead 1145 * and nobody can change them. 1146 * 1147 * psig->stats_lock also protects us from our sub-theads 1148 * which can reap other children at the same time. Until 1149 * we change k_getrusage()-like users to rely on this lock 1150 * we have to take ->siglock as well. 1151 * 1152 * We use thread_group_cputime_adjusted() to get times for 1153 * the thread group, which consolidates times for all threads 1154 * in the group including the group leader. 1155 */ 1156 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1157 spin_lock_irq(¤t->sighand->siglock); 1158 write_seqlock(&psig->stats_lock); 1159 psig->cutime += tgutime + sig->cutime; 1160 psig->cstime += tgstime + sig->cstime; 1161 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1162 psig->cmin_flt += 1163 p->min_flt + sig->min_flt + sig->cmin_flt; 1164 psig->cmaj_flt += 1165 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1166 psig->cnvcsw += 1167 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1168 psig->cnivcsw += 1169 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1170 psig->cinblock += 1171 task_io_get_inblock(p) + 1172 sig->inblock + sig->cinblock; 1173 psig->coublock += 1174 task_io_get_oublock(p) + 1175 sig->oublock + sig->coublock; 1176 maxrss = max(sig->maxrss, sig->cmaxrss); 1177 if (psig->cmaxrss < maxrss) 1178 psig->cmaxrss = maxrss; 1179 task_io_accounting_add(&psig->ioac, &p->ioac); 1180 task_io_accounting_add(&psig->ioac, &sig->ioac); 1181 write_sequnlock(&psig->stats_lock); 1182 spin_unlock_irq(¤t->sighand->siglock); 1183 } 1184 1185 retval = wo->wo_rusage 1186 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1187 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1188 ? p->signal->group_exit_code : p->exit_code; 1189 if (!retval && wo->wo_stat) 1190 retval = put_user(status, wo->wo_stat); 1191 1192 infop = wo->wo_info; 1193 if (!retval && infop) 1194 retval = put_user(SIGCHLD, &infop->si_signo); 1195 if (!retval && infop) 1196 retval = put_user(0, &infop->si_errno); 1197 if (!retval && infop) { 1198 int why; 1199 1200 if ((status & 0x7f) == 0) { 1201 why = CLD_EXITED; 1202 status >>= 8; 1203 } else { 1204 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1205 status &= 0x7f; 1206 } 1207 retval = put_user((short)why, &infop->si_code); 1208 if (!retval) 1209 retval = put_user(status, &infop->si_status); 1210 } 1211 if (!retval && infop) 1212 retval = put_user(pid, &infop->si_pid); 1213 if (!retval && infop) 1214 retval = put_user(uid, &infop->si_uid); 1215 if (!retval) 1216 retval = pid; 1217 1218 if (state == EXIT_TRACE) { 1219 write_lock_irq(&tasklist_lock); 1220 /* We dropped tasklist, ptracer could die and untrace */ 1221 ptrace_unlink(p); 1222 1223 /* If parent wants a zombie, don't release it now */ 1224 state = EXIT_ZOMBIE; 1225 if (do_notify_parent(p, p->exit_signal)) 1226 state = EXIT_DEAD; 1227 p->exit_state = state; 1228 write_unlock_irq(&tasklist_lock); 1229 } 1230 if (state == EXIT_DEAD) 1231 release_task(p); 1232 1233 return retval; 1234 } 1235 1236 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1237 { 1238 if (ptrace) { 1239 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1240 return &p->exit_code; 1241 } else { 1242 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1243 return &p->signal->group_exit_code; 1244 } 1245 return NULL; 1246 } 1247 1248 /** 1249 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1250 * @wo: wait options 1251 * @ptrace: is the wait for ptrace 1252 * @p: task to wait for 1253 * 1254 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1255 * 1256 * CONTEXT: 1257 * read_lock(&tasklist_lock), which is released if return value is 1258 * non-zero. Also, grabs and releases @p->sighand->siglock. 1259 * 1260 * RETURNS: 1261 * 0 if wait condition didn't exist and search for other wait conditions 1262 * should continue. Non-zero return, -errno on failure and @p's pid on 1263 * success, implies that tasklist_lock is released and wait condition 1264 * search should terminate. 1265 */ 1266 static int wait_task_stopped(struct wait_opts *wo, 1267 int ptrace, struct task_struct *p) 1268 { 1269 struct siginfo __user *infop; 1270 int retval, exit_code, *p_code, why; 1271 uid_t uid = 0; /* unneeded, required by compiler */ 1272 pid_t pid; 1273 1274 /* 1275 * Traditionally we see ptrace'd stopped tasks regardless of options. 1276 */ 1277 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1278 return 0; 1279 1280 if (!task_stopped_code(p, ptrace)) 1281 return 0; 1282 1283 exit_code = 0; 1284 spin_lock_irq(&p->sighand->siglock); 1285 1286 p_code = task_stopped_code(p, ptrace); 1287 if (unlikely(!p_code)) 1288 goto unlock_sig; 1289 1290 exit_code = *p_code; 1291 if (!exit_code) 1292 goto unlock_sig; 1293 1294 if (!unlikely(wo->wo_flags & WNOWAIT)) 1295 *p_code = 0; 1296 1297 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1298 unlock_sig: 1299 spin_unlock_irq(&p->sighand->siglock); 1300 if (!exit_code) 1301 return 0; 1302 1303 /* 1304 * Now we are pretty sure this task is interesting. 1305 * Make sure it doesn't get reaped out from under us while we 1306 * give up the lock and then examine it below. We don't want to 1307 * keep holding onto the tasklist_lock while we call getrusage and 1308 * possibly take page faults for user memory. 1309 */ 1310 get_task_struct(p); 1311 pid = task_pid_vnr(p); 1312 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1313 read_unlock(&tasklist_lock); 1314 sched_annotate_sleep(); 1315 1316 if (unlikely(wo->wo_flags & WNOWAIT)) 1317 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1318 1319 retval = wo->wo_rusage 1320 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1321 if (!retval && wo->wo_stat) 1322 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1323 1324 infop = wo->wo_info; 1325 if (!retval && infop) 1326 retval = put_user(SIGCHLD, &infop->si_signo); 1327 if (!retval && infop) 1328 retval = put_user(0, &infop->si_errno); 1329 if (!retval && infop) 1330 retval = put_user((short)why, &infop->si_code); 1331 if (!retval && infop) 1332 retval = put_user(exit_code, &infop->si_status); 1333 if (!retval && infop) 1334 retval = put_user(pid, &infop->si_pid); 1335 if (!retval && infop) 1336 retval = put_user(uid, &infop->si_uid); 1337 if (!retval) 1338 retval = pid; 1339 put_task_struct(p); 1340 1341 BUG_ON(!retval); 1342 return retval; 1343 } 1344 1345 /* 1346 * Handle do_wait work for one task in a live, non-stopped state. 1347 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1348 * the lock and this task is uninteresting. If we return nonzero, we have 1349 * released the lock and the system call should return. 1350 */ 1351 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1352 { 1353 int retval; 1354 pid_t pid; 1355 uid_t uid; 1356 1357 if (!unlikely(wo->wo_flags & WCONTINUED)) 1358 return 0; 1359 1360 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1361 return 0; 1362 1363 spin_lock_irq(&p->sighand->siglock); 1364 /* Re-check with the lock held. */ 1365 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1366 spin_unlock_irq(&p->sighand->siglock); 1367 return 0; 1368 } 1369 if (!unlikely(wo->wo_flags & WNOWAIT)) 1370 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1371 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1372 spin_unlock_irq(&p->sighand->siglock); 1373 1374 pid = task_pid_vnr(p); 1375 get_task_struct(p); 1376 read_unlock(&tasklist_lock); 1377 sched_annotate_sleep(); 1378 1379 if (!wo->wo_info) { 1380 retval = wo->wo_rusage 1381 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1382 put_task_struct(p); 1383 if (!retval && wo->wo_stat) 1384 retval = put_user(0xffff, wo->wo_stat); 1385 if (!retval) 1386 retval = pid; 1387 } else { 1388 retval = wait_noreap_copyout(wo, p, pid, uid, 1389 CLD_CONTINUED, SIGCONT); 1390 BUG_ON(retval == 0); 1391 } 1392 1393 return retval; 1394 } 1395 1396 /* 1397 * Consider @p for a wait by @parent. 1398 * 1399 * -ECHILD should be in ->notask_error before the first call. 1400 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1401 * Returns zero if the search for a child should continue; 1402 * then ->notask_error is 0 if @p is an eligible child, 1403 * or still -ECHILD. 1404 */ 1405 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1406 struct task_struct *p) 1407 { 1408 /* 1409 * We can race with wait_task_zombie() from another thread. 1410 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1411 * can't confuse the checks below. 1412 */ 1413 int exit_state = ACCESS_ONCE(p->exit_state); 1414 int ret; 1415 1416 if (unlikely(exit_state == EXIT_DEAD)) 1417 return 0; 1418 1419 ret = eligible_child(wo, ptrace, p); 1420 if (!ret) 1421 return ret; 1422 1423 if (unlikely(exit_state == EXIT_TRACE)) { 1424 /* 1425 * ptrace == 0 means we are the natural parent. In this case 1426 * we should clear notask_error, debugger will notify us. 1427 */ 1428 if (likely(!ptrace)) 1429 wo->notask_error = 0; 1430 return 0; 1431 } 1432 1433 if (likely(!ptrace) && unlikely(p->ptrace)) { 1434 /* 1435 * If it is traced by its real parent's group, just pretend 1436 * the caller is ptrace_do_wait() and reap this child if it 1437 * is zombie. 1438 * 1439 * This also hides group stop state from real parent; otherwise 1440 * a single stop can be reported twice as group and ptrace stop. 1441 * If a ptracer wants to distinguish these two events for its 1442 * own children it should create a separate process which takes 1443 * the role of real parent. 1444 */ 1445 if (!ptrace_reparented(p)) 1446 ptrace = 1; 1447 } 1448 1449 /* slay zombie? */ 1450 if (exit_state == EXIT_ZOMBIE) { 1451 /* we don't reap group leaders with subthreads */ 1452 if (!delay_group_leader(p)) { 1453 /* 1454 * A zombie ptracee is only visible to its ptracer. 1455 * Notification and reaping will be cascaded to the 1456 * real parent when the ptracer detaches. 1457 */ 1458 if (unlikely(ptrace) || likely(!p->ptrace)) 1459 return wait_task_zombie(wo, p); 1460 } 1461 1462 /* 1463 * Allow access to stopped/continued state via zombie by 1464 * falling through. Clearing of notask_error is complex. 1465 * 1466 * When !@ptrace: 1467 * 1468 * If WEXITED is set, notask_error should naturally be 1469 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1470 * so, if there are live subthreads, there are events to 1471 * wait for. If all subthreads are dead, it's still safe 1472 * to clear - this function will be called again in finite 1473 * amount time once all the subthreads are released and 1474 * will then return without clearing. 1475 * 1476 * When @ptrace: 1477 * 1478 * Stopped state is per-task and thus can't change once the 1479 * target task dies. Only continued and exited can happen. 1480 * Clear notask_error if WCONTINUED | WEXITED. 1481 */ 1482 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1483 wo->notask_error = 0; 1484 } else { 1485 /* 1486 * @p is alive and it's gonna stop, continue or exit, so 1487 * there always is something to wait for. 1488 */ 1489 wo->notask_error = 0; 1490 } 1491 1492 /* 1493 * Wait for stopped. Depending on @ptrace, different stopped state 1494 * is used and the two don't interact with each other. 1495 */ 1496 ret = wait_task_stopped(wo, ptrace, p); 1497 if (ret) 1498 return ret; 1499 1500 /* 1501 * Wait for continued. There's only one continued state and the 1502 * ptracer can consume it which can confuse the real parent. Don't 1503 * use WCONTINUED from ptracer. You don't need or want it. 1504 */ 1505 return wait_task_continued(wo, p); 1506 } 1507 1508 /* 1509 * Do the work of do_wait() for one thread in the group, @tsk. 1510 * 1511 * -ECHILD should be in ->notask_error before the first call. 1512 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1513 * Returns zero if the search for a child should continue; then 1514 * ->notask_error is 0 if there were any eligible children, 1515 * or still -ECHILD. 1516 */ 1517 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1518 { 1519 struct task_struct *p; 1520 1521 list_for_each_entry(p, &tsk->children, sibling) { 1522 int ret = wait_consider_task(wo, 0, p); 1523 1524 if (ret) 1525 return ret; 1526 } 1527 1528 return 0; 1529 } 1530 1531 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1532 { 1533 struct task_struct *p; 1534 1535 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1536 int ret = wait_consider_task(wo, 1, p); 1537 1538 if (ret) 1539 return ret; 1540 } 1541 1542 return 0; 1543 } 1544 1545 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1546 int sync, void *key) 1547 { 1548 struct wait_opts *wo = container_of(wait, struct wait_opts, 1549 child_wait); 1550 struct task_struct *p = key; 1551 1552 if (!eligible_pid(wo, p)) 1553 return 0; 1554 1555 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1556 return 0; 1557 1558 return default_wake_function(wait, mode, sync, key); 1559 } 1560 1561 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1562 { 1563 __wake_up_sync_key(&parent->signal->wait_chldexit, 1564 TASK_INTERRUPTIBLE, 1, p); 1565 } 1566 1567 static long do_wait(struct wait_opts *wo) 1568 { 1569 struct task_struct *tsk; 1570 int retval; 1571 1572 trace_sched_process_wait(wo->wo_pid); 1573 1574 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1575 wo->child_wait.private = current; 1576 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1577 repeat: 1578 /* 1579 * If there is nothing that can match our criteria, just get out. 1580 * We will clear ->notask_error to zero if we see any child that 1581 * might later match our criteria, even if we are not able to reap 1582 * it yet. 1583 */ 1584 wo->notask_error = -ECHILD; 1585 if ((wo->wo_type < PIDTYPE_MAX) && 1586 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1587 goto notask; 1588 1589 set_current_state(TASK_INTERRUPTIBLE); 1590 read_lock(&tasklist_lock); 1591 tsk = current; 1592 do { 1593 retval = do_wait_thread(wo, tsk); 1594 if (retval) 1595 goto end; 1596 1597 retval = ptrace_do_wait(wo, tsk); 1598 if (retval) 1599 goto end; 1600 1601 if (wo->wo_flags & __WNOTHREAD) 1602 break; 1603 } while_each_thread(current, tsk); 1604 read_unlock(&tasklist_lock); 1605 1606 notask: 1607 retval = wo->notask_error; 1608 if (!retval && !(wo->wo_flags & WNOHANG)) { 1609 retval = -ERESTARTSYS; 1610 if (!signal_pending(current)) { 1611 schedule(); 1612 goto repeat; 1613 } 1614 } 1615 end: 1616 __set_current_state(TASK_RUNNING); 1617 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1618 return retval; 1619 } 1620 1621 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1622 infop, int, options, struct rusage __user *, ru) 1623 { 1624 struct wait_opts wo; 1625 struct pid *pid = NULL; 1626 enum pid_type type; 1627 long ret; 1628 1629 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1630 __WNOTHREAD|__WCLONE|__WALL)) 1631 return -EINVAL; 1632 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1633 return -EINVAL; 1634 1635 switch (which) { 1636 case P_ALL: 1637 type = PIDTYPE_MAX; 1638 break; 1639 case P_PID: 1640 type = PIDTYPE_PID; 1641 if (upid <= 0) 1642 return -EINVAL; 1643 break; 1644 case P_PGID: 1645 type = PIDTYPE_PGID; 1646 if (upid <= 0) 1647 return -EINVAL; 1648 break; 1649 default: 1650 return -EINVAL; 1651 } 1652 1653 if (type < PIDTYPE_MAX) 1654 pid = find_get_pid(upid); 1655 1656 wo.wo_type = type; 1657 wo.wo_pid = pid; 1658 wo.wo_flags = options; 1659 wo.wo_info = infop; 1660 wo.wo_stat = NULL; 1661 wo.wo_rusage = ru; 1662 ret = do_wait(&wo); 1663 1664 if (ret > 0) { 1665 ret = 0; 1666 } else if (infop) { 1667 /* 1668 * For a WNOHANG return, clear out all the fields 1669 * we would set so the user can easily tell the 1670 * difference. 1671 */ 1672 if (!ret) 1673 ret = put_user(0, &infop->si_signo); 1674 if (!ret) 1675 ret = put_user(0, &infop->si_errno); 1676 if (!ret) 1677 ret = put_user(0, &infop->si_code); 1678 if (!ret) 1679 ret = put_user(0, &infop->si_pid); 1680 if (!ret) 1681 ret = put_user(0, &infop->si_uid); 1682 if (!ret) 1683 ret = put_user(0, &infop->si_status); 1684 } 1685 1686 put_pid(pid); 1687 return ret; 1688 } 1689 1690 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1691 int, options, struct rusage __user *, ru) 1692 { 1693 struct wait_opts wo; 1694 struct pid *pid = NULL; 1695 enum pid_type type; 1696 long ret; 1697 1698 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1699 __WNOTHREAD|__WCLONE|__WALL)) 1700 return -EINVAL; 1701 1702 if (upid == -1) 1703 type = PIDTYPE_MAX; 1704 else if (upid < 0) { 1705 type = PIDTYPE_PGID; 1706 pid = find_get_pid(-upid); 1707 } else if (upid == 0) { 1708 type = PIDTYPE_PGID; 1709 pid = get_task_pid(current, PIDTYPE_PGID); 1710 } else /* upid > 0 */ { 1711 type = PIDTYPE_PID; 1712 pid = find_get_pid(upid); 1713 } 1714 1715 wo.wo_type = type; 1716 wo.wo_pid = pid; 1717 wo.wo_flags = options | WEXITED; 1718 wo.wo_info = NULL; 1719 wo.wo_stat = stat_addr; 1720 wo.wo_rusage = ru; 1721 ret = do_wait(&wo); 1722 put_pid(pid); 1723 1724 return ret; 1725 } 1726 1727 #ifdef __ARCH_WANT_SYS_WAITPID 1728 1729 /* 1730 * sys_waitpid() remains for compatibility. waitpid() should be 1731 * implemented by calling sys_wait4() from libc.a. 1732 */ 1733 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1734 { 1735 return sys_wait4(pid, stat_addr, options, NULL); 1736 } 1737 1738 #endif 1739