xref: /openbmc/linux/kernel/exit.c (revision a3b91d8b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71 
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *uninitialized_var(tty);
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead)
107 		posix_cpu_timers_exit_group(tsk);
108 #endif
109 
110 	if (group_dead) {
111 		tty = sig->tty;
112 		sig->tty = NULL;
113 	} else {
114 		/*
115 		 * If there is any task waiting for the group exit
116 		 * then notify it:
117 		 */
118 		if (sig->notify_count > 0 && !--sig->notify_count)
119 			wake_up_process(sig->group_exit_task);
120 
121 		if (tsk == sig->curr_target)
122 			sig->curr_target = next_thread(tsk);
123 	}
124 
125 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 			      sizeof(unsigned long long));
127 
128 	/*
129 	 * Accumulate here the counters for all threads as they die. We could
130 	 * skip the group leader because it is the last user of signal_struct,
131 	 * but we want to avoid the race with thread_group_cputime() which can
132 	 * see the empty ->thread_head list.
133 	 */
134 	task_cputime(tsk, &utime, &stime);
135 	write_seqlock(&sig->stats_lock);
136 	sig->utime += utime;
137 	sig->stime += stime;
138 	sig->gtime += task_gtime(tsk);
139 	sig->min_flt += tsk->min_flt;
140 	sig->maj_flt += tsk->maj_flt;
141 	sig->nvcsw += tsk->nvcsw;
142 	sig->nivcsw += tsk->nivcsw;
143 	sig->inblock += task_io_get_inblock(tsk);
144 	sig->oublock += task_io_get_oublock(tsk);
145 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 	sig->nr_threads--;
148 	__unhash_process(tsk, group_dead);
149 	write_sequnlock(&sig->stats_lock);
150 
151 	/*
152 	 * Do this under ->siglock, we can race with another thread
153 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 	 */
155 	flush_sigqueue(&tsk->pending);
156 	tsk->sighand = NULL;
157 	spin_unlock(&sighand->siglock);
158 
159 	__cleanup_sighand(sighand);
160 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 	if (group_dead) {
162 		flush_sigqueue(&sig->shared_pending);
163 		tty_kref_put(tty);
164 	}
165 }
166 
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170 
171 	perf_event_delayed_put(tsk);
172 	trace_sched_process_free(tsk);
173 	put_task_struct(tsk);
174 }
175 
176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178 	if (refcount_dec_and_test(&task->rcu_users))
179 		call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181 
182 void release_task(struct task_struct *p)
183 {
184 	struct task_struct *leader;
185 	struct pid *thread_pid;
186 	int zap_leader;
187 repeat:
188 	/* don't need to get the RCU readlock here - the process is dead and
189 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
190 	rcu_read_lock();
191 	atomic_dec(&__task_cred(p)->user->processes);
192 	rcu_read_unlock();
193 
194 	cgroup_release(p);
195 
196 	write_lock_irq(&tasklist_lock);
197 	ptrace_release_task(p);
198 	thread_pid = get_pid(p->thread_pid);
199 	__exit_signal(p);
200 
201 	/*
202 	 * If we are the last non-leader member of the thread
203 	 * group, and the leader is zombie, then notify the
204 	 * group leader's parent process. (if it wants notification.)
205 	 */
206 	zap_leader = 0;
207 	leader = p->group_leader;
208 	if (leader != p && thread_group_empty(leader)
209 			&& leader->exit_state == EXIT_ZOMBIE) {
210 		/*
211 		 * If we were the last child thread and the leader has
212 		 * exited already, and the leader's parent ignores SIGCHLD,
213 		 * then we are the one who should release the leader.
214 		 */
215 		zap_leader = do_notify_parent(leader, leader->exit_signal);
216 		if (zap_leader)
217 			leader->exit_state = EXIT_DEAD;
218 	}
219 
220 	write_unlock_irq(&tasklist_lock);
221 	proc_flush_pid(thread_pid);
222 	release_thread(p);
223 	put_task_struct_rcu_user(p);
224 
225 	p = leader;
226 	if (unlikely(zap_leader))
227 		goto repeat;
228 }
229 
230 void rcuwait_wake_up(struct rcuwait *w)
231 {
232 	struct task_struct *task;
233 
234 	rcu_read_lock();
235 
236 	/*
237 	 * Order condition vs @task, such that everything prior to the load
238 	 * of @task is visible. This is the condition as to why the user called
239 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
240 	 * barrier (A) in rcuwait_wait_event().
241 	 *
242 	 *    WAIT                WAKE
243 	 *    [S] tsk = current	  [S] cond = true
244 	 *        MB (A)	      MB (B)
245 	 *    [L] cond		  [L] tsk
246 	 */
247 	smp_mb(); /* (B) */
248 
249 	task = rcu_dereference(w->task);
250 	if (task)
251 		wake_up_process(task);
252 	rcu_read_unlock();
253 }
254 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
255 
256 /*
257  * Determine if a process group is "orphaned", according to the POSIX
258  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
259  * by terminal-generated stop signals.  Newly orphaned process groups are
260  * to receive a SIGHUP and a SIGCONT.
261  *
262  * "I ask you, have you ever known what it is to be an orphan?"
263  */
264 static int will_become_orphaned_pgrp(struct pid *pgrp,
265 					struct task_struct *ignored_task)
266 {
267 	struct task_struct *p;
268 
269 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
270 		if ((p == ignored_task) ||
271 		    (p->exit_state && thread_group_empty(p)) ||
272 		    is_global_init(p->real_parent))
273 			continue;
274 
275 		if (task_pgrp(p->real_parent) != pgrp &&
276 		    task_session(p->real_parent) == task_session(p))
277 			return 0;
278 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
279 
280 	return 1;
281 }
282 
283 int is_current_pgrp_orphaned(void)
284 {
285 	int retval;
286 
287 	read_lock(&tasklist_lock);
288 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
289 	read_unlock(&tasklist_lock);
290 
291 	return retval;
292 }
293 
294 static bool has_stopped_jobs(struct pid *pgrp)
295 {
296 	struct task_struct *p;
297 
298 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
299 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
300 			return true;
301 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
302 
303 	return false;
304 }
305 
306 /*
307  * Check to see if any process groups have become orphaned as
308  * a result of our exiting, and if they have any stopped jobs,
309  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
310  */
311 static void
312 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
313 {
314 	struct pid *pgrp = task_pgrp(tsk);
315 	struct task_struct *ignored_task = tsk;
316 
317 	if (!parent)
318 		/* exit: our father is in a different pgrp than
319 		 * we are and we were the only connection outside.
320 		 */
321 		parent = tsk->real_parent;
322 	else
323 		/* reparent: our child is in a different pgrp than
324 		 * we are, and it was the only connection outside.
325 		 */
326 		ignored_task = NULL;
327 
328 	if (task_pgrp(parent) != pgrp &&
329 	    task_session(parent) == task_session(tsk) &&
330 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
331 	    has_stopped_jobs(pgrp)) {
332 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
333 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
334 	}
335 }
336 
337 #ifdef CONFIG_MEMCG
338 /*
339  * A task is exiting.   If it owned this mm, find a new owner for the mm.
340  */
341 void mm_update_next_owner(struct mm_struct *mm)
342 {
343 	struct task_struct *c, *g, *p = current;
344 
345 retry:
346 	/*
347 	 * If the exiting or execing task is not the owner, it's
348 	 * someone else's problem.
349 	 */
350 	if (mm->owner != p)
351 		return;
352 	/*
353 	 * The current owner is exiting/execing and there are no other
354 	 * candidates.  Do not leave the mm pointing to a possibly
355 	 * freed task structure.
356 	 */
357 	if (atomic_read(&mm->mm_users) <= 1) {
358 		WRITE_ONCE(mm->owner, NULL);
359 		return;
360 	}
361 
362 	read_lock(&tasklist_lock);
363 	/*
364 	 * Search in the children
365 	 */
366 	list_for_each_entry(c, &p->children, sibling) {
367 		if (c->mm == mm)
368 			goto assign_new_owner;
369 	}
370 
371 	/*
372 	 * Search in the siblings
373 	 */
374 	list_for_each_entry(c, &p->real_parent->children, sibling) {
375 		if (c->mm == mm)
376 			goto assign_new_owner;
377 	}
378 
379 	/*
380 	 * Search through everything else, we should not get here often.
381 	 */
382 	for_each_process(g) {
383 		if (g->flags & PF_KTHREAD)
384 			continue;
385 		for_each_thread(g, c) {
386 			if (c->mm == mm)
387 				goto assign_new_owner;
388 			if (c->mm)
389 				break;
390 		}
391 	}
392 	read_unlock(&tasklist_lock);
393 	/*
394 	 * We found no owner yet mm_users > 1: this implies that we are
395 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
396 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
397 	 */
398 	WRITE_ONCE(mm->owner, NULL);
399 	return;
400 
401 assign_new_owner:
402 	BUG_ON(c == p);
403 	get_task_struct(c);
404 	/*
405 	 * The task_lock protects c->mm from changing.
406 	 * We always want mm->owner->mm == mm
407 	 */
408 	task_lock(c);
409 	/*
410 	 * Delay read_unlock() till we have the task_lock()
411 	 * to ensure that c does not slip away underneath us
412 	 */
413 	read_unlock(&tasklist_lock);
414 	if (c->mm != mm) {
415 		task_unlock(c);
416 		put_task_struct(c);
417 		goto retry;
418 	}
419 	WRITE_ONCE(mm->owner, c);
420 	task_unlock(c);
421 	put_task_struct(c);
422 }
423 #endif /* CONFIG_MEMCG */
424 
425 /*
426  * Turn us into a lazy TLB process if we
427  * aren't already..
428  */
429 static void exit_mm(void)
430 {
431 	struct mm_struct *mm = current->mm;
432 	struct core_state *core_state;
433 
434 	exit_mm_release(current, mm);
435 	if (!mm)
436 		return;
437 	sync_mm_rss(mm);
438 	/*
439 	 * Serialize with any possible pending coredump.
440 	 * We must hold mmap_sem around checking core_state
441 	 * and clearing tsk->mm.  The core-inducing thread
442 	 * will increment ->nr_threads for each thread in the
443 	 * group with ->mm != NULL.
444 	 */
445 	down_read(&mm->mmap_sem);
446 	core_state = mm->core_state;
447 	if (core_state) {
448 		struct core_thread self;
449 
450 		up_read(&mm->mmap_sem);
451 
452 		self.task = current;
453 		self.next = xchg(&core_state->dumper.next, &self);
454 		/*
455 		 * Implies mb(), the result of xchg() must be visible
456 		 * to core_state->dumper.
457 		 */
458 		if (atomic_dec_and_test(&core_state->nr_threads))
459 			complete(&core_state->startup);
460 
461 		for (;;) {
462 			set_current_state(TASK_UNINTERRUPTIBLE);
463 			if (!self.task) /* see coredump_finish() */
464 				break;
465 			freezable_schedule();
466 		}
467 		__set_current_state(TASK_RUNNING);
468 		down_read(&mm->mmap_sem);
469 	}
470 	mmgrab(mm);
471 	BUG_ON(mm != current->active_mm);
472 	/* more a memory barrier than a real lock */
473 	task_lock(current);
474 	current->mm = NULL;
475 	up_read(&mm->mmap_sem);
476 	enter_lazy_tlb(mm, current);
477 	task_unlock(current);
478 	mm_update_next_owner(mm);
479 	mmput(mm);
480 	if (test_thread_flag(TIF_MEMDIE))
481 		exit_oom_victim();
482 }
483 
484 static struct task_struct *find_alive_thread(struct task_struct *p)
485 {
486 	struct task_struct *t;
487 
488 	for_each_thread(p, t) {
489 		if (!(t->flags & PF_EXITING))
490 			return t;
491 	}
492 	return NULL;
493 }
494 
495 static struct task_struct *find_child_reaper(struct task_struct *father,
496 						struct list_head *dead)
497 	__releases(&tasklist_lock)
498 	__acquires(&tasklist_lock)
499 {
500 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
501 	struct task_struct *reaper = pid_ns->child_reaper;
502 	struct task_struct *p, *n;
503 
504 	if (likely(reaper != father))
505 		return reaper;
506 
507 	reaper = find_alive_thread(father);
508 	if (reaper) {
509 		pid_ns->child_reaper = reaper;
510 		return reaper;
511 	}
512 
513 	write_unlock_irq(&tasklist_lock);
514 
515 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
516 		list_del_init(&p->ptrace_entry);
517 		release_task(p);
518 	}
519 
520 	zap_pid_ns_processes(pid_ns);
521 	write_lock_irq(&tasklist_lock);
522 
523 	return father;
524 }
525 
526 /*
527  * When we die, we re-parent all our children, and try to:
528  * 1. give them to another thread in our thread group, if such a member exists
529  * 2. give it to the first ancestor process which prctl'd itself as a
530  *    child_subreaper for its children (like a service manager)
531  * 3. give it to the init process (PID 1) in our pid namespace
532  */
533 static struct task_struct *find_new_reaper(struct task_struct *father,
534 					   struct task_struct *child_reaper)
535 {
536 	struct task_struct *thread, *reaper;
537 
538 	thread = find_alive_thread(father);
539 	if (thread)
540 		return thread;
541 
542 	if (father->signal->has_child_subreaper) {
543 		unsigned int ns_level = task_pid(father)->level;
544 		/*
545 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
546 		 * We can't check reaper != child_reaper to ensure we do not
547 		 * cross the namespaces, the exiting parent could be injected
548 		 * by setns() + fork().
549 		 * We check pid->level, this is slightly more efficient than
550 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
551 		 */
552 		for (reaper = father->real_parent;
553 		     task_pid(reaper)->level == ns_level;
554 		     reaper = reaper->real_parent) {
555 			if (reaper == &init_task)
556 				break;
557 			if (!reaper->signal->is_child_subreaper)
558 				continue;
559 			thread = find_alive_thread(reaper);
560 			if (thread)
561 				return thread;
562 		}
563 	}
564 
565 	return child_reaper;
566 }
567 
568 /*
569 * Any that need to be release_task'd are put on the @dead list.
570  */
571 static void reparent_leader(struct task_struct *father, struct task_struct *p,
572 				struct list_head *dead)
573 {
574 	if (unlikely(p->exit_state == EXIT_DEAD))
575 		return;
576 
577 	/* We don't want people slaying init. */
578 	p->exit_signal = SIGCHLD;
579 
580 	/* If it has exited notify the new parent about this child's death. */
581 	if (!p->ptrace &&
582 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
583 		if (do_notify_parent(p, p->exit_signal)) {
584 			p->exit_state = EXIT_DEAD;
585 			list_add(&p->ptrace_entry, dead);
586 		}
587 	}
588 
589 	kill_orphaned_pgrp(p, father);
590 }
591 
592 /*
593  * This does two things:
594  *
595  * A.  Make init inherit all the child processes
596  * B.  Check to see if any process groups have become orphaned
597  *	as a result of our exiting, and if they have any stopped
598  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
599  */
600 static void forget_original_parent(struct task_struct *father,
601 					struct list_head *dead)
602 {
603 	struct task_struct *p, *t, *reaper;
604 
605 	if (unlikely(!list_empty(&father->ptraced)))
606 		exit_ptrace(father, dead);
607 
608 	/* Can drop and reacquire tasklist_lock */
609 	reaper = find_child_reaper(father, dead);
610 	if (list_empty(&father->children))
611 		return;
612 
613 	reaper = find_new_reaper(father, reaper);
614 	list_for_each_entry(p, &father->children, sibling) {
615 		for_each_thread(p, t) {
616 			RCU_INIT_POINTER(t->real_parent, reaper);
617 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
618 			if (likely(!t->ptrace))
619 				t->parent = t->real_parent;
620 			if (t->pdeath_signal)
621 				group_send_sig_info(t->pdeath_signal,
622 						    SEND_SIG_NOINFO, t,
623 						    PIDTYPE_TGID);
624 		}
625 		/*
626 		 * If this is a threaded reparent there is no need to
627 		 * notify anyone anything has happened.
628 		 */
629 		if (!same_thread_group(reaper, father))
630 			reparent_leader(father, p, dead);
631 	}
632 	list_splice_tail_init(&father->children, &reaper->children);
633 }
634 
635 /*
636  * Send signals to all our closest relatives so that they know
637  * to properly mourn us..
638  */
639 static void exit_notify(struct task_struct *tsk, int group_dead)
640 {
641 	bool autoreap;
642 	struct task_struct *p, *n;
643 	LIST_HEAD(dead);
644 
645 	write_lock_irq(&tasklist_lock);
646 	forget_original_parent(tsk, &dead);
647 
648 	if (group_dead)
649 		kill_orphaned_pgrp(tsk->group_leader, NULL);
650 
651 	tsk->exit_state = EXIT_ZOMBIE;
652 	if (unlikely(tsk->ptrace)) {
653 		int sig = thread_group_leader(tsk) &&
654 				thread_group_empty(tsk) &&
655 				!ptrace_reparented(tsk) ?
656 			tsk->exit_signal : SIGCHLD;
657 		autoreap = do_notify_parent(tsk, sig);
658 	} else if (thread_group_leader(tsk)) {
659 		autoreap = thread_group_empty(tsk) &&
660 			do_notify_parent(tsk, tsk->exit_signal);
661 	} else {
662 		autoreap = true;
663 	}
664 
665 	if (autoreap) {
666 		tsk->exit_state = EXIT_DEAD;
667 		list_add(&tsk->ptrace_entry, &dead);
668 	}
669 
670 	/* mt-exec, de_thread() is waiting for group leader */
671 	if (unlikely(tsk->signal->notify_count < 0))
672 		wake_up_process(tsk->signal->group_exit_task);
673 	write_unlock_irq(&tasklist_lock);
674 
675 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
676 		list_del_init(&p->ptrace_entry);
677 		release_task(p);
678 	}
679 }
680 
681 #ifdef CONFIG_DEBUG_STACK_USAGE
682 static void check_stack_usage(void)
683 {
684 	static DEFINE_SPINLOCK(low_water_lock);
685 	static int lowest_to_date = THREAD_SIZE;
686 	unsigned long free;
687 
688 	free = stack_not_used(current);
689 
690 	if (free >= lowest_to_date)
691 		return;
692 
693 	spin_lock(&low_water_lock);
694 	if (free < lowest_to_date) {
695 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
696 			current->comm, task_pid_nr(current), free);
697 		lowest_to_date = free;
698 	}
699 	spin_unlock(&low_water_lock);
700 }
701 #else
702 static inline void check_stack_usage(void) {}
703 #endif
704 
705 void __noreturn do_exit(long code)
706 {
707 	struct task_struct *tsk = current;
708 	int group_dead;
709 
710 	profile_task_exit(tsk);
711 	kcov_task_exit(tsk);
712 
713 	WARN_ON(blk_needs_flush_plug(tsk));
714 
715 	if (unlikely(in_interrupt()))
716 		panic("Aiee, killing interrupt handler!");
717 	if (unlikely(!tsk->pid))
718 		panic("Attempted to kill the idle task!");
719 
720 	/*
721 	 * If do_exit is called because this processes oopsed, it's possible
722 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
723 	 * continuing. Amongst other possible reasons, this is to prevent
724 	 * mm_release()->clear_child_tid() from writing to a user-controlled
725 	 * kernel address.
726 	 */
727 	set_fs(USER_DS);
728 
729 	ptrace_event(PTRACE_EVENT_EXIT, code);
730 
731 	validate_creds_for_do_exit(tsk);
732 
733 	/*
734 	 * We're taking recursive faults here in do_exit. Safest is to just
735 	 * leave this task alone and wait for reboot.
736 	 */
737 	if (unlikely(tsk->flags & PF_EXITING)) {
738 		pr_alert("Fixing recursive fault but reboot is needed!\n");
739 		futex_exit_recursive(tsk);
740 		set_current_state(TASK_UNINTERRUPTIBLE);
741 		schedule();
742 	}
743 
744 	exit_signals(tsk);  /* sets PF_EXITING */
745 
746 	if (unlikely(in_atomic())) {
747 		pr_info("note: %s[%d] exited with preempt_count %d\n",
748 			current->comm, task_pid_nr(current),
749 			preempt_count());
750 		preempt_count_set(PREEMPT_ENABLED);
751 	}
752 
753 	/* sync mm's RSS info before statistics gathering */
754 	if (tsk->mm)
755 		sync_mm_rss(tsk->mm);
756 	acct_update_integrals(tsk);
757 	group_dead = atomic_dec_and_test(&tsk->signal->live);
758 	if (group_dead) {
759 		/*
760 		 * If the last thread of global init has exited, panic
761 		 * immediately to get a useable coredump.
762 		 */
763 		if (unlikely(is_global_init(tsk)))
764 			panic("Attempted to kill init! exitcode=0x%08x\n",
765 				tsk->signal->group_exit_code ?: (int)code);
766 
767 #ifdef CONFIG_POSIX_TIMERS
768 		hrtimer_cancel(&tsk->signal->real_timer);
769 		exit_itimers(tsk->signal);
770 #endif
771 		if (tsk->mm)
772 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
773 	}
774 	acct_collect(code, group_dead);
775 	if (group_dead)
776 		tty_audit_exit();
777 	audit_free(tsk);
778 
779 	tsk->exit_code = code;
780 	taskstats_exit(tsk, group_dead);
781 
782 	exit_mm();
783 
784 	if (group_dead)
785 		acct_process();
786 	trace_sched_process_exit(tsk);
787 
788 	exit_sem(tsk);
789 	exit_shm(tsk);
790 	exit_files(tsk);
791 	exit_fs(tsk);
792 	if (group_dead)
793 		disassociate_ctty(1);
794 	exit_task_namespaces(tsk);
795 	exit_task_work(tsk);
796 	exit_thread(tsk);
797 	exit_umh(tsk);
798 
799 	/*
800 	 * Flush inherited counters to the parent - before the parent
801 	 * gets woken up by child-exit notifications.
802 	 *
803 	 * because of cgroup mode, must be called before cgroup_exit()
804 	 */
805 	perf_event_exit_task(tsk);
806 
807 	sched_autogroup_exit_task(tsk);
808 	cgroup_exit(tsk);
809 
810 	/*
811 	 * FIXME: do that only when needed, using sched_exit tracepoint
812 	 */
813 	flush_ptrace_hw_breakpoint(tsk);
814 
815 	exit_tasks_rcu_start();
816 	exit_notify(tsk, group_dead);
817 	proc_exit_connector(tsk);
818 	mpol_put_task_policy(tsk);
819 #ifdef CONFIG_FUTEX
820 	if (unlikely(current->pi_state_cache))
821 		kfree(current->pi_state_cache);
822 #endif
823 	/*
824 	 * Make sure we are holding no locks:
825 	 */
826 	debug_check_no_locks_held();
827 
828 	if (tsk->io_context)
829 		exit_io_context(tsk);
830 
831 	if (tsk->splice_pipe)
832 		free_pipe_info(tsk->splice_pipe);
833 
834 	if (tsk->task_frag.page)
835 		put_page(tsk->task_frag.page);
836 
837 	validate_creds_for_do_exit(tsk);
838 
839 	check_stack_usage();
840 	preempt_disable();
841 	if (tsk->nr_dirtied)
842 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
843 	exit_rcu();
844 	exit_tasks_rcu_finish();
845 
846 	lockdep_free_task(tsk);
847 	do_task_dead();
848 }
849 EXPORT_SYMBOL_GPL(do_exit);
850 
851 void complete_and_exit(struct completion *comp, long code)
852 {
853 	if (comp)
854 		complete(comp);
855 
856 	do_exit(code);
857 }
858 EXPORT_SYMBOL(complete_and_exit);
859 
860 SYSCALL_DEFINE1(exit, int, error_code)
861 {
862 	do_exit((error_code&0xff)<<8);
863 }
864 
865 /*
866  * Take down every thread in the group.  This is called by fatal signals
867  * as well as by sys_exit_group (below).
868  */
869 void
870 do_group_exit(int exit_code)
871 {
872 	struct signal_struct *sig = current->signal;
873 
874 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
875 
876 	if (signal_group_exit(sig))
877 		exit_code = sig->group_exit_code;
878 	else if (!thread_group_empty(current)) {
879 		struct sighand_struct *const sighand = current->sighand;
880 
881 		spin_lock_irq(&sighand->siglock);
882 		if (signal_group_exit(sig))
883 			/* Another thread got here before we took the lock.  */
884 			exit_code = sig->group_exit_code;
885 		else {
886 			sig->group_exit_code = exit_code;
887 			sig->flags = SIGNAL_GROUP_EXIT;
888 			zap_other_threads(current);
889 		}
890 		spin_unlock_irq(&sighand->siglock);
891 	}
892 
893 	do_exit(exit_code);
894 	/* NOTREACHED */
895 }
896 
897 /*
898  * this kills every thread in the thread group. Note that any externally
899  * wait4()-ing process will get the correct exit code - even if this
900  * thread is not the thread group leader.
901  */
902 SYSCALL_DEFINE1(exit_group, int, error_code)
903 {
904 	do_group_exit((error_code & 0xff) << 8);
905 	/* NOTREACHED */
906 	return 0;
907 }
908 
909 struct waitid_info {
910 	pid_t pid;
911 	uid_t uid;
912 	int status;
913 	int cause;
914 };
915 
916 struct wait_opts {
917 	enum pid_type		wo_type;
918 	int			wo_flags;
919 	struct pid		*wo_pid;
920 
921 	struct waitid_info	*wo_info;
922 	int			wo_stat;
923 	struct rusage		*wo_rusage;
924 
925 	wait_queue_entry_t		child_wait;
926 	int			notask_error;
927 };
928 
929 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
930 {
931 	return	wo->wo_type == PIDTYPE_MAX ||
932 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
933 }
934 
935 static int
936 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
937 {
938 	if (!eligible_pid(wo, p))
939 		return 0;
940 
941 	/*
942 	 * Wait for all children (clone and not) if __WALL is set or
943 	 * if it is traced by us.
944 	 */
945 	if (ptrace || (wo->wo_flags & __WALL))
946 		return 1;
947 
948 	/*
949 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
950 	 * otherwise, wait for non-clone children *only*.
951 	 *
952 	 * Note: a "clone" child here is one that reports to its parent
953 	 * using a signal other than SIGCHLD, or a non-leader thread which
954 	 * we can only see if it is traced by us.
955 	 */
956 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
957 		return 0;
958 
959 	return 1;
960 }
961 
962 /*
963  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
964  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
965  * the lock and this task is uninteresting.  If we return nonzero, we have
966  * released the lock and the system call should return.
967  */
968 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
969 {
970 	int state, status;
971 	pid_t pid = task_pid_vnr(p);
972 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
973 	struct waitid_info *infop;
974 
975 	if (!likely(wo->wo_flags & WEXITED))
976 		return 0;
977 
978 	if (unlikely(wo->wo_flags & WNOWAIT)) {
979 		status = p->exit_code;
980 		get_task_struct(p);
981 		read_unlock(&tasklist_lock);
982 		sched_annotate_sleep();
983 		if (wo->wo_rusage)
984 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
985 		put_task_struct(p);
986 		goto out_info;
987 	}
988 	/*
989 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
990 	 */
991 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
992 		EXIT_TRACE : EXIT_DEAD;
993 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
994 		return 0;
995 	/*
996 	 * We own this thread, nobody else can reap it.
997 	 */
998 	read_unlock(&tasklist_lock);
999 	sched_annotate_sleep();
1000 
1001 	/*
1002 	 * Check thread_group_leader() to exclude the traced sub-threads.
1003 	 */
1004 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1005 		struct signal_struct *sig = p->signal;
1006 		struct signal_struct *psig = current->signal;
1007 		unsigned long maxrss;
1008 		u64 tgutime, tgstime;
1009 
1010 		/*
1011 		 * The resource counters for the group leader are in its
1012 		 * own task_struct.  Those for dead threads in the group
1013 		 * are in its signal_struct, as are those for the child
1014 		 * processes it has previously reaped.  All these
1015 		 * accumulate in the parent's signal_struct c* fields.
1016 		 *
1017 		 * We don't bother to take a lock here to protect these
1018 		 * p->signal fields because the whole thread group is dead
1019 		 * and nobody can change them.
1020 		 *
1021 		 * psig->stats_lock also protects us from our sub-theads
1022 		 * which can reap other children at the same time. Until
1023 		 * we change k_getrusage()-like users to rely on this lock
1024 		 * we have to take ->siglock as well.
1025 		 *
1026 		 * We use thread_group_cputime_adjusted() to get times for
1027 		 * the thread group, which consolidates times for all threads
1028 		 * in the group including the group leader.
1029 		 */
1030 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1031 		spin_lock_irq(&current->sighand->siglock);
1032 		write_seqlock(&psig->stats_lock);
1033 		psig->cutime += tgutime + sig->cutime;
1034 		psig->cstime += tgstime + sig->cstime;
1035 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1036 		psig->cmin_flt +=
1037 			p->min_flt + sig->min_flt + sig->cmin_flt;
1038 		psig->cmaj_flt +=
1039 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1040 		psig->cnvcsw +=
1041 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1042 		psig->cnivcsw +=
1043 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1044 		psig->cinblock +=
1045 			task_io_get_inblock(p) +
1046 			sig->inblock + sig->cinblock;
1047 		psig->coublock +=
1048 			task_io_get_oublock(p) +
1049 			sig->oublock + sig->coublock;
1050 		maxrss = max(sig->maxrss, sig->cmaxrss);
1051 		if (psig->cmaxrss < maxrss)
1052 			psig->cmaxrss = maxrss;
1053 		task_io_accounting_add(&psig->ioac, &p->ioac);
1054 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1055 		write_sequnlock(&psig->stats_lock);
1056 		spin_unlock_irq(&current->sighand->siglock);
1057 	}
1058 
1059 	if (wo->wo_rusage)
1060 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1061 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1062 		? p->signal->group_exit_code : p->exit_code;
1063 	wo->wo_stat = status;
1064 
1065 	if (state == EXIT_TRACE) {
1066 		write_lock_irq(&tasklist_lock);
1067 		/* We dropped tasklist, ptracer could die and untrace */
1068 		ptrace_unlink(p);
1069 
1070 		/* If parent wants a zombie, don't release it now */
1071 		state = EXIT_ZOMBIE;
1072 		if (do_notify_parent(p, p->exit_signal))
1073 			state = EXIT_DEAD;
1074 		p->exit_state = state;
1075 		write_unlock_irq(&tasklist_lock);
1076 	}
1077 	if (state == EXIT_DEAD)
1078 		release_task(p);
1079 
1080 out_info:
1081 	infop = wo->wo_info;
1082 	if (infop) {
1083 		if ((status & 0x7f) == 0) {
1084 			infop->cause = CLD_EXITED;
1085 			infop->status = status >> 8;
1086 		} else {
1087 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1088 			infop->status = status & 0x7f;
1089 		}
1090 		infop->pid = pid;
1091 		infop->uid = uid;
1092 	}
1093 
1094 	return pid;
1095 }
1096 
1097 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1098 {
1099 	if (ptrace) {
1100 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1101 			return &p->exit_code;
1102 	} else {
1103 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1104 			return &p->signal->group_exit_code;
1105 	}
1106 	return NULL;
1107 }
1108 
1109 /**
1110  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1111  * @wo: wait options
1112  * @ptrace: is the wait for ptrace
1113  * @p: task to wait for
1114  *
1115  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1116  *
1117  * CONTEXT:
1118  * read_lock(&tasklist_lock), which is released if return value is
1119  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1120  *
1121  * RETURNS:
1122  * 0 if wait condition didn't exist and search for other wait conditions
1123  * should continue.  Non-zero return, -errno on failure and @p's pid on
1124  * success, implies that tasklist_lock is released and wait condition
1125  * search should terminate.
1126  */
1127 static int wait_task_stopped(struct wait_opts *wo,
1128 				int ptrace, struct task_struct *p)
1129 {
1130 	struct waitid_info *infop;
1131 	int exit_code, *p_code, why;
1132 	uid_t uid = 0; /* unneeded, required by compiler */
1133 	pid_t pid;
1134 
1135 	/*
1136 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1137 	 */
1138 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1139 		return 0;
1140 
1141 	if (!task_stopped_code(p, ptrace))
1142 		return 0;
1143 
1144 	exit_code = 0;
1145 	spin_lock_irq(&p->sighand->siglock);
1146 
1147 	p_code = task_stopped_code(p, ptrace);
1148 	if (unlikely(!p_code))
1149 		goto unlock_sig;
1150 
1151 	exit_code = *p_code;
1152 	if (!exit_code)
1153 		goto unlock_sig;
1154 
1155 	if (!unlikely(wo->wo_flags & WNOWAIT))
1156 		*p_code = 0;
1157 
1158 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1159 unlock_sig:
1160 	spin_unlock_irq(&p->sighand->siglock);
1161 	if (!exit_code)
1162 		return 0;
1163 
1164 	/*
1165 	 * Now we are pretty sure this task is interesting.
1166 	 * Make sure it doesn't get reaped out from under us while we
1167 	 * give up the lock and then examine it below.  We don't want to
1168 	 * keep holding onto the tasklist_lock while we call getrusage and
1169 	 * possibly take page faults for user memory.
1170 	 */
1171 	get_task_struct(p);
1172 	pid = task_pid_vnr(p);
1173 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1174 	read_unlock(&tasklist_lock);
1175 	sched_annotate_sleep();
1176 	if (wo->wo_rusage)
1177 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1178 	put_task_struct(p);
1179 
1180 	if (likely(!(wo->wo_flags & WNOWAIT)))
1181 		wo->wo_stat = (exit_code << 8) | 0x7f;
1182 
1183 	infop = wo->wo_info;
1184 	if (infop) {
1185 		infop->cause = why;
1186 		infop->status = exit_code;
1187 		infop->pid = pid;
1188 		infop->uid = uid;
1189 	}
1190 	return pid;
1191 }
1192 
1193 /*
1194  * Handle do_wait work for one task in a live, non-stopped state.
1195  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1196  * the lock and this task is uninteresting.  If we return nonzero, we have
1197  * released the lock and the system call should return.
1198  */
1199 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1200 {
1201 	struct waitid_info *infop;
1202 	pid_t pid;
1203 	uid_t uid;
1204 
1205 	if (!unlikely(wo->wo_flags & WCONTINUED))
1206 		return 0;
1207 
1208 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1209 		return 0;
1210 
1211 	spin_lock_irq(&p->sighand->siglock);
1212 	/* Re-check with the lock held.  */
1213 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1214 		spin_unlock_irq(&p->sighand->siglock);
1215 		return 0;
1216 	}
1217 	if (!unlikely(wo->wo_flags & WNOWAIT))
1218 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1219 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1220 	spin_unlock_irq(&p->sighand->siglock);
1221 
1222 	pid = task_pid_vnr(p);
1223 	get_task_struct(p);
1224 	read_unlock(&tasklist_lock);
1225 	sched_annotate_sleep();
1226 	if (wo->wo_rusage)
1227 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1228 	put_task_struct(p);
1229 
1230 	infop = wo->wo_info;
1231 	if (!infop) {
1232 		wo->wo_stat = 0xffff;
1233 	} else {
1234 		infop->cause = CLD_CONTINUED;
1235 		infop->pid = pid;
1236 		infop->uid = uid;
1237 		infop->status = SIGCONT;
1238 	}
1239 	return pid;
1240 }
1241 
1242 /*
1243  * Consider @p for a wait by @parent.
1244  *
1245  * -ECHILD should be in ->notask_error before the first call.
1246  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1247  * Returns zero if the search for a child should continue;
1248  * then ->notask_error is 0 if @p is an eligible child,
1249  * or still -ECHILD.
1250  */
1251 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1252 				struct task_struct *p)
1253 {
1254 	/*
1255 	 * We can race with wait_task_zombie() from another thread.
1256 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1257 	 * can't confuse the checks below.
1258 	 */
1259 	int exit_state = READ_ONCE(p->exit_state);
1260 	int ret;
1261 
1262 	if (unlikely(exit_state == EXIT_DEAD))
1263 		return 0;
1264 
1265 	ret = eligible_child(wo, ptrace, p);
1266 	if (!ret)
1267 		return ret;
1268 
1269 	if (unlikely(exit_state == EXIT_TRACE)) {
1270 		/*
1271 		 * ptrace == 0 means we are the natural parent. In this case
1272 		 * we should clear notask_error, debugger will notify us.
1273 		 */
1274 		if (likely(!ptrace))
1275 			wo->notask_error = 0;
1276 		return 0;
1277 	}
1278 
1279 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1280 		/*
1281 		 * If it is traced by its real parent's group, just pretend
1282 		 * the caller is ptrace_do_wait() and reap this child if it
1283 		 * is zombie.
1284 		 *
1285 		 * This also hides group stop state from real parent; otherwise
1286 		 * a single stop can be reported twice as group and ptrace stop.
1287 		 * If a ptracer wants to distinguish these two events for its
1288 		 * own children it should create a separate process which takes
1289 		 * the role of real parent.
1290 		 */
1291 		if (!ptrace_reparented(p))
1292 			ptrace = 1;
1293 	}
1294 
1295 	/* slay zombie? */
1296 	if (exit_state == EXIT_ZOMBIE) {
1297 		/* we don't reap group leaders with subthreads */
1298 		if (!delay_group_leader(p)) {
1299 			/*
1300 			 * A zombie ptracee is only visible to its ptracer.
1301 			 * Notification and reaping will be cascaded to the
1302 			 * real parent when the ptracer detaches.
1303 			 */
1304 			if (unlikely(ptrace) || likely(!p->ptrace))
1305 				return wait_task_zombie(wo, p);
1306 		}
1307 
1308 		/*
1309 		 * Allow access to stopped/continued state via zombie by
1310 		 * falling through.  Clearing of notask_error is complex.
1311 		 *
1312 		 * When !@ptrace:
1313 		 *
1314 		 * If WEXITED is set, notask_error should naturally be
1315 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1316 		 * so, if there are live subthreads, there are events to
1317 		 * wait for.  If all subthreads are dead, it's still safe
1318 		 * to clear - this function will be called again in finite
1319 		 * amount time once all the subthreads are released and
1320 		 * will then return without clearing.
1321 		 *
1322 		 * When @ptrace:
1323 		 *
1324 		 * Stopped state is per-task and thus can't change once the
1325 		 * target task dies.  Only continued and exited can happen.
1326 		 * Clear notask_error if WCONTINUED | WEXITED.
1327 		 */
1328 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1329 			wo->notask_error = 0;
1330 	} else {
1331 		/*
1332 		 * @p is alive and it's gonna stop, continue or exit, so
1333 		 * there always is something to wait for.
1334 		 */
1335 		wo->notask_error = 0;
1336 	}
1337 
1338 	/*
1339 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1340 	 * is used and the two don't interact with each other.
1341 	 */
1342 	ret = wait_task_stopped(wo, ptrace, p);
1343 	if (ret)
1344 		return ret;
1345 
1346 	/*
1347 	 * Wait for continued.  There's only one continued state and the
1348 	 * ptracer can consume it which can confuse the real parent.  Don't
1349 	 * use WCONTINUED from ptracer.  You don't need or want it.
1350 	 */
1351 	return wait_task_continued(wo, p);
1352 }
1353 
1354 /*
1355  * Do the work of do_wait() for one thread in the group, @tsk.
1356  *
1357  * -ECHILD should be in ->notask_error before the first call.
1358  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1359  * Returns zero if the search for a child should continue; then
1360  * ->notask_error is 0 if there were any eligible children,
1361  * or still -ECHILD.
1362  */
1363 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1364 {
1365 	struct task_struct *p;
1366 
1367 	list_for_each_entry(p, &tsk->children, sibling) {
1368 		int ret = wait_consider_task(wo, 0, p);
1369 
1370 		if (ret)
1371 			return ret;
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1378 {
1379 	struct task_struct *p;
1380 
1381 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1382 		int ret = wait_consider_task(wo, 1, p);
1383 
1384 		if (ret)
1385 			return ret;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1392 				int sync, void *key)
1393 {
1394 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1395 						child_wait);
1396 	struct task_struct *p = key;
1397 
1398 	if (!eligible_pid(wo, p))
1399 		return 0;
1400 
1401 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1402 		return 0;
1403 
1404 	return default_wake_function(wait, mode, sync, key);
1405 }
1406 
1407 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1408 {
1409 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1410 			   TASK_INTERRUPTIBLE, p);
1411 }
1412 
1413 static long do_wait(struct wait_opts *wo)
1414 {
1415 	struct task_struct *tsk;
1416 	int retval;
1417 
1418 	trace_sched_process_wait(wo->wo_pid);
1419 
1420 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1421 	wo->child_wait.private = current;
1422 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1423 repeat:
1424 	/*
1425 	 * If there is nothing that can match our criteria, just get out.
1426 	 * We will clear ->notask_error to zero if we see any child that
1427 	 * might later match our criteria, even if we are not able to reap
1428 	 * it yet.
1429 	 */
1430 	wo->notask_error = -ECHILD;
1431 	if ((wo->wo_type < PIDTYPE_MAX) &&
1432 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1433 		goto notask;
1434 
1435 	set_current_state(TASK_INTERRUPTIBLE);
1436 	read_lock(&tasklist_lock);
1437 	tsk = current;
1438 	do {
1439 		retval = do_wait_thread(wo, tsk);
1440 		if (retval)
1441 			goto end;
1442 
1443 		retval = ptrace_do_wait(wo, tsk);
1444 		if (retval)
1445 			goto end;
1446 
1447 		if (wo->wo_flags & __WNOTHREAD)
1448 			break;
1449 	} while_each_thread(current, tsk);
1450 	read_unlock(&tasklist_lock);
1451 
1452 notask:
1453 	retval = wo->notask_error;
1454 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1455 		retval = -ERESTARTSYS;
1456 		if (!signal_pending(current)) {
1457 			schedule();
1458 			goto repeat;
1459 		}
1460 	}
1461 end:
1462 	__set_current_state(TASK_RUNNING);
1463 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1464 	return retval;
1465 }
1466 
1467 static struct pid *pidfd_get_pid(unsigned int fd)
1468 {
1469 	struct fd f;
1470 	struct pid *pid;
1471 
1472 	f = fdget(fd);
1473 	if (!f.file)
1474 		return ERR_PTR(-EBADF);
1475 
1476 	pid = pidfd_pid(f.file);
1477 	if (!IS_ERR(pid))
1478 		get_pid(pid);
1479 
1480 	fdput(f);
1481 	return pid;
1482 }
1483 
1484 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1485 			  int options, struct rusage *ru)
1486 {
1487 	struct wait_opts wo;
1488 	struct pid *pid = NULL;
1489 	enum pid_type type;
1490 	long ret;
1491 
1492 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1493 			__WNOTHREAD|__WCLONE|__WALL))
1494 		return -EINVAL;
1495 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1496 		return -EINVAL;
1497 
1498 	switch (which) {
1499 	case P_ALL:
1500 		type = PIDTYPE_MAX;
1501 		break;
1502 	case P_PID:
1503 		type = PIDTYPE_PID;
1504 		if (upid <= 0)
1505 			return -EINVAL;
1506 
1507 		pid = find_get_pid(upid);
1508 		break;
1509 	case P_PGID:
1510 		type = PIDTYPE_PGID;
1511 		if (upid < 0)
1512 			return -EINVAL;
1513 
1514 		if (upid)
1515 			pid = find_get_pid(upid);
1516 		else
1517 			pid = get_task_pid(current, PIDTYPE_PGID);
1518 		break;
1519 	case P_PIDFD:
1520 		type = PIDTYPE_PID;
1521 		if (upid < 0)
1522 			return -EINVAL;
1523 
1524 		pid = pidfd_get_pid(upid);
1525 		if (IS_ERR(pid))
1526 			return PTR_ERR(pid);
1527 		break;
1528 	default:
1529 		return -EINVAL;
1530 	}
1531 
1532 	wo.wo_type	= type;
1533 	wo.wo_pid	= pid;
1534 	wo.wo_flags	= options;
1535 	wo.wo_info	= infop;
1536 	wo.wo_rusage	= ru;
1537 	ret = do_wait(&wo);
1538 
1539 	put_pid(pid);
1540 	return ret;
1541 }
1542 
1543 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1544 		infop, int, options, struct rusage __user *, ru)
1545 {
1546 	struct rusage r;
1547 	struct waitid_info info = {.status = 0};
1548 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1549 	int signo = 0;
1550 
1551 	if (err > 0) {
1552 		signo = SIGCHLD;
1553 		err = 0;
1554 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1555 			return -EFAULT;
1556 	}
1557 	if (!infop)
1558 		return err;
1559 
1560 	if (!user_access_begin(infop, sizeof(*infop)))
1561 		return -EFAULT;
1562 
1563 	unsafe_put_user(signo, &infop->si_signo, Efault);
1564 	unsafe_put_user(0, &infop->si_errno, Efault);
1565 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1566 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1567 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1568 	unsafe_put_user(info.status, &infop->si_status, Efault);
1569 	user_access_end();
1570 	return err;
1571 Efault:
1572 	user_access_end();
1573 	return -EFAULT;
1574 }
1575 
1576 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1577 		  struct rusage *ru)
1578 {
1579 	struct wait_opts wo;
1580 	struct pid *pid = NULL;
1581 	enum pid_type type;
1582 	long ret;
1583 
1584 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1585 			__WNOTHREAD|__WCLONE|__WALL))
1586 		return -EINVAL;
1587 
1588 	/* -INT_MIN is not defined */
1589 	if (upid == INT_MIN)
1590 		return -ESRCH;
1591 
1592 	if (upid == -1)
1593 		type = PIDTYPE_MAX;
1594 	else if (upid < 0) {
1595 		type = PIDTYPE_PGID;
1596 		pid = find_get_pid(-upid);
1597 	} else if (upid == 0) {
1598 		type = PIDTYPE_PGID;
1599 		pid = get_task_pid(current, PIDTYPE_PGID);
1600 	} else /* upid > 0 */ {
1601 		type = PIDTYPE_PID;
1602 		pid = find_get_pid(upid);
1603 	}
1604 
1605 	wo.wo_type	= type;
1606 	wo.wo_pid	= pid;
1607 	wo.wo_flags	= options | WEXITED;
1608 	wo.wo_info	= NULL;
1609 	wo.wo_stat	= 0;
1610 	wo.wo_rusage	= ru;
1611 	ret = do_wait(&wo);
1612 	put_pid(pid);
1613 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1614 		ret = -EFAULT;
1615 
1616 	return ret;
1617 }
1618 
1619 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1620 		int, options, struct rusage __user *, ru)
1621 {
1622 	struct rusage r;
1623 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1624 
1625 	if (err > 0) {
1626 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1627 			return -EFAULT;
1628 	}
1629 	return err;
1630 }
1631 
1632 #ifdef __ARCH_WANT_SYS_WAITPID
1633 
1634 /*
1635  * sys_waitpid() remains for compatibility. waitpid() should be
1636  * implemented by calling sys_wait4() from libc.a.
1637  */
1638 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1639 {
1640 	return kernel_wait4(pid, stat_addr, options, NULL);
1641 }
1642 
1643 #endif
1644 
1645 #ifdef CONFIG_COMPAT
1646 COMPAT_SYSCALL_DEFINE4(wait4,
1647 	compat_pid_t, pid,
1648 	compat_uint_t __user *, stat_addr,
1649 	int, options,
1650 	struct compat_rusage __user *, ru)
1651 {
1652 	struct rusage r;
1653 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1654 	if (err > 0) {
1655 		if (ru && put_compat_rusage(&r, ru))
1656 			return -EFAULT;
1657 	}
1658 	return err;
1659 }
1660 
1661 COMPAT_SYSCALL_DEFINE5(waitid,
1662 		int, which, compat_pid_t, pid,
1663 		struct compat_siginfo __user *, infop, int, options,
1664 		struct compat_rusage __user *, uru)
1665 {
1666 	struct rusage ru;
1667 	struct waitid_info info = {.status = 0};
1668 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1669 	int signo = 0;
1670 	if (err > 0) {
1671 		signo = SIGCHLD;
1672 		err = 0;
1673 		if (uru) {
1674 			/* kernel_waitid() overwrites everything in ru */
1675 			if (COMPAT_USE_64BIT_TIME)
1676 				err = copy_to_user(uru, &ru, sizeof(ru));
1677 			else
1678 				err = put_compat_rusage(&ru, uru);
1679 			if (err)
1680 				return -EFAULT;
1681 		}
1682 	}
1683 
1684 	if (!infop)
1685 		return err;
1686 
1687 	if (!user_access_begin(infop, sizeof(*infop)))
1688 		return -EFAULT;
1689 
1690 	unsafe_put_user(signo, &infop->si_signo, Efault);
1691 	unsafe_put_user(0, &infop->si_errno, Efault);
1692 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1693 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1694 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1695 	unsafe_put_user(info.status, &infop->si_status, Efault);
1696 	user_access_end();
1697 	return err;
1698 Efault:
1699 	user_access_end();
1700 	return -EFAULT;
1701 }
1702 #endif
1703 
1704 __weak void abort(void)
1705 {
1706 	BUG();
1707 
1708 	/* if that doesn't kill us, halt */
1709 	panic("Oops failed to kill thread");
1710 }
1711 EXPORT_SYMBOL(abort);
1712