1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void exit_mm(struct task_struct * tsk); 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 } 76 list_del_rcu(&p->thread_group); 77 } 78 79 /* 80 * This function expects the tasklist_lock write-locked. 81 */ 82 static void __exit_signal(struct task_struct *tsk) 83 { 84 struct signal_struct *sig = tsk->signal; 85 bool group_dead = thread_group_leader(tsk); 86 struct sighand_struct *sighand; 87 struct tty_struct *uninitialized_var(tty); 88 cputime_t utime, stime; 89 90 sighand = rcu_dereference_check(tsk->sighand, 91 lockdep_tasklist_lock_is_held()); 92 spin_lock(&sighand->siglock); 93 94 posix_cpu_timers_exit(tsk); 95 if (group_dead) { 96 posix_cpu_timers_exit_group(tsk); 97 tty = sig->tty; 98 sig->tty = NULL; 99 } else { 100 /* 101 * This can only happen if the caller is de_thread(). 102 * FIXME: this is the temporary hack, we should teach 103 * posix-cpu-timers to handle this case correctly. 104 */ 105 if (unlikely(has_group_leader_pid(tsk))) 106 posix_cpu_timers_exit_group(tsk); 107 108 /* 109 * If there is any task waiting for the group exit 110 * then notify it: 111 */ 112 if (sig->notify_count > 0 && !--sig->notify_count) 113 wake_up_process(sig->group_exit_task); 114 115 if (tsk == sig->curr_target) 116 sig->curr_target = next_thread(tsk); 117 /* 118 * Accumulate here the counters for all threads but the 119 * group leader as they die, so they can be added into 120 * the process-wide totals when those are taken. 121 * The group leader stays around as a zombie as long 122 * as there are other threads. When it gets reaped, 123 * the exit.c code will add its counts into these totals. 124 * We won't ever get here for the group leader, since it 125 * will have been the last reference on the signal_struct. 126 */ 127 task_cputime(tsk, &utime, &stime); 128 sig->utime += utime; 129 sig->stime += stime; 130 sig->gtime += task_gtime(tsk); 131 sig->min_flt += tsk->min_flt; 132 sig->maj_flt += tsk->maj_flt; 133 sig->nvcsw += tsk->nvcsw; 134 sig->nivcsw += tsk->nivcsw; 135 sig->inblock += task_io_get_inblock(tsk); 136 sig->oublock += task_io_get_oublock(tsk); 137 task_io_accounting_add(&sig->ioac, &tsk->ioac); 138 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 139 } 140 141 sig->nr_threads--; 142 __unhash_process(tsk, group_dead); 143 144 /* 145 * Do this under ->siglock, we can race with another thread 146 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 147 */ 148 flush_sigqueue(&tsk->pending); 149 tsk->sighand = NULL; 150 spin_unlock(&sighand->siglock); 151 152 __cleanup_sighand(sighand); 153 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 154 if (group_dead) { 155 flush_sigqueue(&sig->shared_pending); 156 tty_kref_put(tty); 157 } 158 } 159 160 static void delayed_put_task_struct(struct rcu_head *rhp) 161 { 162 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 163 164 perf_event_delayed_put(tsk); 165 trace_sched_process_free(tsk); 166 put_task_struct(tsk); 167 } 168 169 170 void release_task(struct task_struct * p) 171 { 172 struct task_struct *leader; 173 int zap_leader; 174 repeat: 175 /* don't need to get the RCU readlock here - the process is dead and 176 * can't be modifying its own credentials. But shut RCU-lockdep up */ 177 rcu_read_lock(); 178 atomic_dec(&__task_cred(p)->user->processes); 179 rcu_read_unlock(); 180 181 proc_flush_task(p); 182 183 write_lock_irq(&tasklist_lock); 184 ptrace_release_task(p); 185 __exit_signal(p); 186 187 /* 188 * If we are the last non-leader member of the thread 189 * group, and the leader is zombie, then notify the 190 * group leader's parent process. (if it wants notification.) 191 */ 192 zap_leader = 0; 193 leader = p->group_leader; 194 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 195 /* 196 * If we were the last child thread and the leader has 197 * exited already, and the leader's parent ignores SIGCHLD, 198 * then we are the one who should release the leader. 199 */ 200 zap_leader = do_notify_parent(leader, leader->exit_signal); 201 if (zap_leader) 202 leader->exit_state = EXIT_DEAD; 203 } 204 205 write_unlock_irq(&tasklist_lock); 206 release_thread(p); 207 call_rcu(&p->rcu, delayed_put_task_struct); 208 209 p = leader; 210 if (unlikely(zap_leader)) 211 goto repeat; 212 } 213 214 /* 215 * This checks not only the pgrp, but falls back on the pid if no 216 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 217 * without this... 218 * 219 * The caller must hold rcu lock or the tasklist lock. 220 */ 221 struct pid *session_of_pgrp(struct pid *pgrp) 222 { 223 struct task_struct *p; 224 struct pid *sid = NULL; 225 226 p = pid_task(pgrp, PIDTYPE_PGID); 227 if (p == NULL) 228 p = pid_task(pgrp, PIDTYPE_PID); 229 if (p != NULL) 230 sid = task_session(p); 231 232 return sid; 233 } 234 235 /* 236 * Determine if a process group is "orphaned", according to the POSIX 237 * definition in 2.2.2.52. Orphaned process groups are not to be affected 238 * by terminal-generated stop signals. Newly orphaned process groups are 239 * to receive a SIGHUP and a SIGCONT. 240 * 241 * "I ask you, have you ever known what it is to be an orphan?" 242 */ 243 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 244 { 245 struct task_struct *p; 246 247 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 248 if ((p == ignored_task) || 249 (p->exit_state && thread_group_empty(p)) || 250 is_global_init(p->real_parent)) 251 continue; 252 253 if (task_pgrp(p->real_parent) != pgrp && 254 task_session(p->real_parent) == task_session(p)) 255 return 0; 256 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 257 258 return 1; 259 } 260 261 int is_current_pgrp_orphaned(void) 262 { 263 int retval; 264 265 read_lock(&tasklist_lock); 266 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 267 read_unlock(&tasklist_lock); 268 269 return retval; 270 } 271 272 static bool has_stopped_jobs(struct pid *pgrp) 273 { 274 struct task_struct *p; 275 276 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 277 if (p->signal->flags & SIGNAL_STOP_STOPPED) 278 return true; 279 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 280 281 return false; 282 } 283 284 /* 285 * Check to see if any process groups have become orphaned as 286 * a result of our exiting, and if they have any stopped jobs, 287 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 288 */ 289 static void 290 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 291 { 292 struct pid *pgrp = task_pgrp(tsk); 293 struct task_struct *ignored_task = tsk; 294 295 if (!parent) 296 /* exit: our father is in a different pgrp than 297 * we are and we were the only connection outside. 298 */ 299 parent = tsk->real_parent; 300 else 301 /* reparent: our child is in a different pgrp than 302 * we are, and it was the only connection outside. 303 */ 304 ignored_task = NULL; 305 306 if (task_pgrp(parent) != pgrp && 307 task_session(parent) == task_session(tsk) && 308 will_become_orphaned_pgrp(pgrp, ignored_task) && 309 has_stopped_jobs(pgrp)) { 310 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 311 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 312 } 313 } 314 315 void __set_special_pids(struct pid *pid) 316 { 317 struct task_struct *curr = current->group_leader; 318 319 if (task_session(curr) != pid) 320 change_pid(curr, PIDTYPE_SID, pid); 321 322 if (task_pgrp(curr) != pid) 323 change_pid(curr, PIDTYPE_PGID, pid); 324 } 325 326 /* 327 * Let kernel threads use this to say that they allow a certain signal. 328 * Must not be used if kthread was cloned with CLONE_SIGHAND. 329 */ 330 int allow_signal(int sig) 331 { 332 if (!valid_signal(sig) || sig < 1) 333 return -EINVAL; 334 335 spin_lock_irq(¤t->sighand->siglock); 336 /* This is only needed for daemonize()'ed kthreads */ 337 sigdelset(¤t->blocked, sig); 338 /* 339 * Kernel threads handle their own signals. Let the signal code 340 * know it'll be handled, so that they don't get converted to 341 * SIGKILL or just silently dropped. 342 */ 343 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 344 recalc_sigpending(); 345 spin_unlock_irq(¤t->sighand->siglock); 346 return 0; 347 } 348 349 EXPORT_SYMBOL(allow_signal); 350 351 int disallow_signal(int sig) 352 { 353 if (!valid_signal(sig) || sig < 1) 354 return -EINVAL; 355 356 spin_lock_irq(¤t->sighand->siglock); 357 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 358 recalc_sigpending(); 359 spin_unlock_irq(¤t->sighand->siglock); 360 return 0; 361 } 362 363 EXPORT_SYMBOL(disallow_signal); 364 365 #ifdef CONFIG_MM_OWNER 366 /* 367 * A task is exiting. If it owned this mm, find a new owner for the mm. 368 */ 369 void mm_update_next_owner(struct mm_struct *mm) 370 { 371 struct task_struct *c, *g, *p = current; 372 373 retry: 374 /* 375 * If the exiting or execing task is not the owner, it's 376 * someone else's problem. 377 */ 378 if (mm->owner != p) 379 return; 380 /* 381 * The current owner is exiting/execing and there are no other 382 * candidates. Do not leave the mm pointing to a possibly 383 * freed task structure. 384 */ 385 if (atomic_read(&mm->mm_users) <= 1) { 386 mm->owner = NULL; 387 return; 388 } 389 390 read_lock(&tasklist_lock); 391 /* 392 * Search in the children 393 */ 394 list_for_each_entry(c, &p->children, sibling) { 395 if (c->mm == mm) 396 goto assign_new_owner; 397 } 398 399 /* 400 * Search in the siblings 401 */ 402 list_for_each_entry(c, &p->real_parent->children, sibling) { 403 if (c->mm == mm) 404 goto assign_new_owner; 405 } 406 407 /* 408 * Search through everything else. We should not get 409 * here often 410 */ 411 do_each_thread(g, c) { 412 if (c->mm == mm) 413 goto assign_new_owner; 414 } while_each_thread(g, c); 415 416 read_unlock(&tasklist_lock); 417 /* 418 * We found no owner yet mm_users > 1: this implies that we are 419 * most likely racing with swapoff (try_to_unuse()) or /proc or 420 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 421 */ 422 mm->owner = NULL; 423 return; 424 425 assign_new_owner: 426 BUG_ON(c == p); 427 get_task_struct(c); 428 /* 429 * The task_lock protects c->mm from changing. 430 * We always want mm->owner->mm == mm 431 */ 432 task_lock(c); 433 /* 434 * Delay read_unlock() till we have the task_lock() 435 * to ensure that c does not slip away underneath us 436 */ 437 read_unlock(&tasklist_lock); 438 if (c->mm != mm) { 439 task_unlock(c); 440 put_task_struct(c); 441 goto retry; 442 } 443 mm->owner = c; 444 task_unlock(c); 445 put_task_struct(c); 446 } 447 #endif /* CONFIG_MM_OWNER */ 448 449 /* 450 * Turn us into a lazy TLB process if we 451 * aren't already.. 452 */ 453 static void exit_mm(struct task_struct * tsk) 454 { 455 struct mm_struct *mm = tsk->mm; 456 struct core_state *core_state; 457 458 mm_release(tsk, mm); 459 if (!mm) 460 return; 461 sync_mm_rss(mm); 462 /* 463 * Serialize with any possible pending coredump. 464 * We must hold mmap_sem around checking core_state 465 * and clearing tsk->mm. The core-inducing thread 466 * will increment ->nr_threads for each thread in the 467 * group with ->mm != NULL. 468 */ 469 down_read(&mm->mmap_sem); 470 core_state = mm->core_state; 471 if (core_state) { 472 struct core_thread self; 473 up_read(&mm->mmap_sem); 474 475 self.task = tsk; 476 self.next = xchg(&core_state->dumper.next, &self); 477 /* 478 * Implies mb(), the result of xchg() must be visible 479 * to core_state->dumper. 480 */ 481 if (atomic_dec_and_test(&core_state->nr_threads)) 482 complete(&core_state->startup); 483 484 for (;;) { 485 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 486 if (!self.task) /* see coredump_finish() */ 487 break; 488 freezable_schedule(); 489 } 490 __set_task_state(tsk, TASK_RUNNING); 491 down_read(&mm->mmap_sem); 492 } 493 atomic_inc(&mm->mm_count); 494 BUG_ON(mm != tsk->active_mm); 495 /* more a memory barrier than a real lock */ 496 task_lock(tsk); 497 tsk->mm = NULL; 498 up_read(&mm->mmap_sem); 499 enter_lazy_tlb(mm, current); 500 task_unlock(tsk); 501 mm_update_next_owner(mm); 502 mmput(mm); 503 } 504 505 /* 506 * When we die, we re-parent all our children, and try to: 507 * 1. give them to another thread in our thread group, if such a member exists 508 * 2. give it to the first ancestor process which prctl'd itself as a 509 * child_subreaper for its children (like a service manager) 510 * 3. give it to the init process (PID 1) in our pid namespace 511 */ 512 static struct task_struct *find_new_reaper(struct task_struct *father) 513 __releases(&tasklist_lock) 514 __acquires(&tasklist_lock) 515 { 516 struct pid_namespace *pid_ns = task_active_pid_ns(father); 517 struct task_struct *thread; 518 519 thread = father; 520 while_each_thread(father, thread) { 521 if (thread->flags & PF_EXITING) 522 continue; 523 if (unlikely(pid_ns->child_reaper == father)) 524 pid_ns->child_reaper = thread; 525 return thread; 526 } 527 528 if (unlikely(pid_ns->child_reaper == father)) { 529 write_unlock_irq(&tasklist_lock); 530 if (unlikely(pid_ns == &init_pid_ns)) { 531 panic("Attempted to kill init! exitcode=0x%08x\n", 532 father->signal->group_exit_code ?: 533 father->exit_code); 534 } 535 536 zap_pid_ns_processes(pid_ns); 537 write_lock_irq(&tasklist_lock); 538 } else if (father->signal->has_child_subreaper) { 539 struct task_struct *reaper; 540 541 /* 542 * Find the first ancestor marked as child_subreaper. 543 * Note that the code below checks same_thread_group(reaper, 544 * pid_ns->child_reaper). This is what we need to DTRT in a 545 * PID namespace. However we still need the check above, see 546 * http://marc.info/?l=linux-kernel&m=131385460420380 547 */ 548 for (reaper = father->real_parent; 549 reaper != &init_task; 550 reaper = reaper->real_parent) { 551 if (same_thread_group(reaper, pid_ns->child_reaper)) 552 break; 553 if (!reaper->signal->is_child_subreaper) 554 continue; 555 thread = reaper; 556 do { 557 if (!(thread->flags & PF_EXITING)) 558 return reaper; 559 } while_each_thread(reaper, thread); 560 } 561 } 562 563 return pid_ns->child_reaper; 564 } 565 566 /* 567 * Any that need to be release_task'd are put on the @dead list. 568 */ 569 static void reparent_leader(struct task_struct *father, struct task_struct *p, 570 struct list_head *dead) 571 { 572 list_move_tail(&p->sibling, &p->real_parent->children); 573 574 if (p->exit_state == EXIT_DEAD) 575 return; 576 /* 577 * If this is a threaded reparent there is no need to 578 * notify anyone anything has happened. 579 */ 580 if (same_thread_group(p->real_parent, father)) 581 return; 582 583 /* We don't want people slaying init. */ 584 p->exit_signal = SIGCHLD; 585 586 /* If it has exited notify the new parent about this child's death. */ 587 if (!p->ptrace && 588 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 589 if (do_notify_parent(p, p->exit_signal)) { 590 p->exit_state = EXIT_DEAD; 591 list_move_tail(&p->sibling, dead); 592 } 593 } 594 595 kill_orphaned_pgrp(p, father); 596 } 597 598 static void forget_original_parent(struct task_struct *father) 599 { 600 struct task_struct *p, *n, *reaper; 601 LIST_HEAD(dead_children); 602 603 write_lock_irq(&tasklist_lock); 604 /* 605 * Note that exit_ptrace() and find_new_reaper() might 606 * drop tasklist_lock and reacquire it. 607 */ 608 exit_ptrace(father); 609 reaper = find_new_reaper(father); 610 611 list_for_each_entry_safe(p, n, &father->children, sibling) { 612 struct task_struct *t = p; 613 do { 614 t->real_parent = reaper; 615 if (t->parent == father) { 616 BUG_ON(t->ptrace); 617 t->parent = t->real_parent; 618 } 619 if (t->pdeath_signal) 620 group_send_sig_info(t->pdeath_signal, 621 SEND_SIG_NOINFO, t); 622 } while_each_thread(p, t); 623 reparent_leader(father, p, &dead_children); 624 } 625 write_unlock_irq(&tasklist_lock); 626 627 BUG_ON(!list_empty(&father->children)); 628 629 list_for_each_entry_safe(p, n, &dead_children, sibling) { 630 list_del_init(&p->sibling); 631 release_task(p); 632 } 633 } 634 635 /* 636 * Send signals to all our closest relatives so that they know 637 * to properly mourn us.. 638 */ 639 static void exit_notify(struct task_struct *tsk, int group_dead) 640 { 641 bool autoreap; 642 643 /* 644 * This does two things: 645 * 646 * A. Make init inherit all the child processes 647 * B. Check to see if any process groups have become orphaned 648 * as a result of our exiting, and if they have any stopped 649 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 650 */ 651 forget_original_parent(tsk); 652 exit_task_namespaces(tsk); 653 654 write_lock_irq(&tasklist_lock); 655 if (group_dead) 656 kill_orphaned_pgrp(tsk->group_leader, NULL); 657 658 if (unlikely(tsk->ptrace)) { 659 int sig = thread_group_leader(tsk) && 660 thread_group_empty(tsk) && 661 !ptrace_reparented(tsk) ? 662 tsk->exit_signal : SIGCHLD; 663 autoreap = do_notify_parent(tsk, sig); 664 } else if (thread_group_leader(tsk)) { 665 autoreap = thread_group_empty(tsk) && 666 do_notify_parent(tsk, tsk->exit_signal); 667 } else { 668 autoreap = true; 669 } 670 671 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 672 673 /* mt-exec, de_thread() is waiting for group leader */ 674 if (unlikely(tsk->signal->notify_count < 0)) 675 wake_up_process(tsk->signal->group_exit_task); 676 write_unlock_irq(&tasklist_lock); 677 678 /* If the process is dead, release it - nobody will wait for it */ 679 if (autoreap) 680 release_task(tsk); 681 } 682 683 #ifdef CONFIG_DEBUG_STACK_USAGE 684 static void check_stack_usage(void) 685 { 686 static DEFINE_SPINLOCK(low_water_lock); 687 static int lowest_to_date = THREAD_SIZE; 688 unsigned long free; 689 690 free = stack_not_used(current); 691 692 if (free >= lowest_to_date) 693 return; 694 695 spin_lock(&low_water_lock); 696 if (free < lowest_to_date) { 697 printk(KERN_WARNING "%s (%d) used greatest stack depth: " 698 "%lu bytes left\n", 699 current->comm, task_pid_nr(current), free); 700 lowest_to_date = free; 701 } 702 spin_unlock(&low_water_lock); 703 } 704 #else 705 static inline void check_stack_usage(void) {} 706 #endif 707 708 void do_exit(long code) 709 { 710 struct task_struct *tsk = current; 711 int group_dead; 712 713 profile_task_exit(tsk); 714 715 WARN_ON(blk_needs_flush_plug(tsk)); 716 717 if (unlikely(in_interrupt())) 718 panic("Aiee, killing interrupt handler!"); 719 if (unlikely(!tsk->pid)) 720 panic("Attempted to kill the idle task!"); 721 722 /* 723 * If do_exit is called because this processes oopsed, it's possible 724 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 725 * continuing. Amongst other possible reasons, this is to prevent 726 * mm_release()->clear_child_tid() from writing to a user-controlled 727 * kernel address. 728 */ 729 set_fs(USER_DS); 730 731 ptrace_event(PTRACE_EVENT_EXIT, code); 732 733 validate_creds_for_do_exit(tsk); 734 735 /* 736 * We're taking recursive faults here in do_exit. Safest is to just 737 * leave this task alone and wait for reboot. 738 */ 739 if (unlikely(tsk->flags & PF_EXITING)) { 740 printk(KERN_ALERT 741 "Fixing recursive fault but reboot is needed!\n"); 742 /* 743 * We can do this unlocked here. The futex code uses 744 * this flag just to verify whether the pi state 745 * cleanup has been done or not. In the worst case it 746 * loops once more. We pretend that the cleanup was 747 * done as there is no way to return. Either the 748 * OWNER_DIED bit is set by now or we push the blocked 749 * task into the wait for ever nirwana as well. 750 */ 751 tsk->flags |= PF_EXITPIDONE; 752 set_current_state(TASK_UNINTERRUPTIBLE); 753 schedule(); 754 } 755 756 exit_signals(tsk); /* sets PF_EXITING */ 757 /* 758 * tsk->flags are checked in the futex code to protect against 759 * an exiting task cleaning up the robust pi futexes. 760 */ 761 smp_mb(); 762 raw_spin_unlock_wait(&tsk->pi_lock); 763 764 if (unlikely(in_atomic())) 765 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 766 current->comm, task_pid_nr(current), 767 preempt_count()); 768 769 acct_update_integrals(tsk); 770 /* sync mm's RSS info before statistics gathering */ 771 if (tsk->mm) 772 sync_mm_rss(tsk->mm); 773 group_dead = atomic_dec_and_test(&tsk->signal->live); 774 if (group_dead) { 775 hrtimer_cancel(&tsk->signal->real_timer); 776 exit_itimers(tsk->signal); 777 if (tsk->mm) 778 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 779 } 780 acct_collect(code, group_dead); 781 if (group_dead) 782 tty_audit_exit(); 783 audit_free(tsk); 784 785 tsk->exit_code = code; 786 taskstats_exit(tsk, group_dead); 787 788 exit_mm(tsk); 789 790 if (group_dead) 791 acct_process(); 792 trace_sched_process_exit(tsk); 793 794 exit_sem(tsk); 795 exit_shm(tsk); 796 exit_files(tsk); 797 exit_fs(tsk); 798 exit_task_work(tsk); 799 check_stack_usage(); 800 exit_thread(); 801 802 /* 803 * Flush inherited counters to the parent - before the parent 804 * gets woken up by child-exit notifications. 805 * 806 * because of cgroup mode, must be called before cgroup_exit() 807 */ 808 perf_event_exit_task(tsk); 809 810 cgroup_exit(tsk, 1); 811 812 if (group_dead) 813 disassociate_ctty(1); 814 815 module_put(task_thread_info(tsk)->exec_domain->module); 816 817 proc_exit_connector(tsk); 818 819 /* 820 * FIXME: do that only when needed, using sched_exit tracepoint 821 */ 822 ptrace_put_breakpoints(tsk); 823 824 exit_notify(tsk, group_dead); 825 #ifdef CONFIG_NUMA 826 task_lock(tsk); 827 mpol_put(tsk->mempolicy); 828 tsk->mempolicy = NULL; 829 task_unlock(tsk); 830 #endif 831 #ifdef CONFIG_FUTEX 832 if (unlikely(current->pi_state_cache)) 833 kfree(current->pi_state_cache); 834 #endif 835 /* 836 * Make sure we are holding no locks: 837 */ 838 debug_check_no_locks_held(); 839 /* 840 * We can do this unlocked here. The futex code uses this flag 841 * just to verify whether the pi state cleanup has been done 842 * or not. In the worst case it loops once more. 843 */ 844 tsk->flags |= PF_EXITPIDONE; 845 846 if (tsk->io_context) 847 exit_io_context(tsk); 848 849 if (tsk->splice_pipe) 850 __free_pipe_info(tsk->splice_pipe); 851 852 if (tsk->task_frag.page) 853 put_page(tsk->task_frag.page); 854 855 validate_creds_for_do_exit(tsk); 856 857 preempt_disable(); 858 if (tsk->nr_dirtied) 859 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 860 exit_rcu(); 861 862 /* 863 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 864 * when the following two conditions become true. 865 * - There is race condition of mmap_sem (It is acquired by 866 * exit_mm()), and 867 * - SMI occurs before setting TASK_RUNINNG. 868 * (or hypervisor of virtual machine switches to other guest) 869 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 870 * 871 * To avoid it, we have to wait for releasing tsk->pi_lock which 872 * is held by try_to_wake_up() 873 */ 874 smp_mb(); 875 raw_spin_unlock_wait(&tsk->pi_lock); 876 877 /* causes final put_task_struct in finish_task_switch(). */ 878 tsk->state = TASK_DEAD; 879 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 880 schedule(); 881 BUG(); 882 /* Avoid "noreturn function does return". */ 883 for (;;) 884 cpu_relax(); /* For when BUG is null */ 885 } 886 887 EXPORT_SYMBOL_GPL(do_exit); 888 889 void complete_and_exit(struct completion *comp, long code) 890 { 891 if (comp) 892 complete(comp); 893 894 do_exit(code); 895 } 896 897 EXPORT_SYMBOL(complete_and_exit); 898 899 SYSCALL_DEFINE1(exit, int, error_code) 900 { 901 do_exit((error_code&0xff)<<8); 902 } 903 904 /* 905 * Take down every thread in the group. This is called by fatal signals 906 * as well as by sys_exit_group (below). 907 */ 908 void 909 do_group_exit(int exit_code) 910 { 911 struct signal_struct *sig = current->signal; 912 913 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 914 915 if (signal_group_exit(sig)) 916 exit_code = sig->group_exit_code; 917 else if (!thread_group_empty(current)) { 918 struct sighand_struct *const sighand = current->sighand; 919 spin_lock_irq(&sighand->siglock); 920 if (signal_group_exit(sig)) 921 /* Another thread got here before we took the lock. */ 922 exit_code = sig->group_exit_code; 923 else { 924 sig->group_exit_code = exit_code; 925 sig->flags = SIGNAL_GROUP_EXIT; 926 zap_other_threads(current); 927 } 928 spin_unlock_irq(&sighand->siglock); 929 } 930 931 do_exit(exit_code); 932 /* NOTREACHED */ 933 } 934 935 /* 936 * this kills every thread in the thread group. Note that any externally 937 * wait4()-ing process will get the correct exit code - even if this 938 * thread is not the thread group leader. 939 */ 940 SYSCALL_DEFINE1(exit_group, int, error_code) 941 { 942 do_group_exit((error_code & 0xff) << 8); 943 /* NOTREACHED */ 944 return 0; 945 } 946 947 struct wait_opts { 948 enum pid_type wo_type; 949 int wo_flags; 950 struct pid *wo_pid; 951 952 struct siginfo __user *wo_info; 953 int __user *wo_stat; 954 struct rusage __user *wo_rusage; 955 956 wait_queue_t child_wait; 957 int notask_error; 958 }; 959 960 static inline 961 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 962 { 963 if (type != PIDTYPE_PID) 964 task = task->group_leader; 965 return task->pids[type].pid; 966 } 967 968 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 969 { 970 return wo->wo_type == PIDTYPE_MAX || 971 task_pid_type(p, wo->wo_type) == wo->wo_pid; 972 } 973 974 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 975 { 976 if (!eligible_pid(wo, p)) 977 return 0; 978 /* Wait for all children (clone and not) if __WALL is set; 979 * otherwise, wait for clone children *only* if __WCLONE is 980 * set; otherwise, wait for non-clone children *only*. (Note: 981 * A "clone" child here is one that reports to its parent 982 * using a signal other than SIGCHLD.) */ 983 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 984 && !(wo->wo_flags & __WALL)) 985 return 0; 986 987 return 1; 988 } 989 990 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 991 pid_t pid, uid_t uid, int why, int status) 992 { 993 struct siginfo __user *infop; 994 int retval = wo->wo_rusage 995 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 996 997 put_task_struct(p); 998 infop = wo->wo_info; 999 if (infop) { 1000 if (!retval) 1001 retval = put_user(SIGCHLD, &infop->si_signo); 1002 if (!retval) 1003 retval = put_user(0, &infop->si_errno); 1004 if (!retval) 1005 retval = put_user((short)why, &infop->si_code); 1006 if (!retval) 1007 retval = put_user(pid, &infop->si_pid); 1008 if (!retval) 1009 retval = put_user(uid, &infop->si_uid); 1010 if (!retval) 1011 retval = put_user(status, &infop->si_status); 1012 } 1013 if (!retval) 1014 retval = pid; 1015 return retval; 1016 } 1017 1018 /* 1019 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1020 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1021 * the lock and this task is uninteresting. If we return nonzero, we have 1022 * released the lock and the system call should return. 1023 */ 1024 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1025 { 1026 unsigned long state; 1027 int retval, status, traced; 1028 pid_t pid = task_pid_vnr(p); 1029 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1030 struct siginfo __user *infop; 1031 1032 if (!likely(wo->wo_flags & WEXITED)) 1033 return 0; 1034 1035 if (unlikely(wo->wo_flags & WNOWAIT)) { 1036 int exit_code = p->exit_code; 1037 int why; 1038 1039 get_task_struct(p); 1040 read_unlock(&tasklist_lock); 1041 if ((exit_code & 0x7f) == 0) { 1042 why = CLD_EXITED; 1043 status = exit_code >> 8; 1044 } else { 1045 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1046 status = exit_code & 0x7f; 1047 } 1048 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1049 } 1050 1051 /* 1052 * Try to move the task's state to DEAD 1053 * only one thread is allowed to do this: 1054 */ 1055 state = xchg(&p->exit_state, EXIT_DEAD); 1056 if (state != EXIT_ZOMBIE) { 1057 BUG_ON(state != EXIT_DEAD); 1058 return 0; 1059 } 1060 1061 traced = ptrace_reparented(p); 1062 /* 1063 * It can be ptraced but not reparented, check 1064 * thread_group_leader() to filter out sub-threads. 1065 */ 1066 if (likely(!traced) && thread_group_leader(p)) { 1067 struct signal_struct *psig; 1068 struct signal_struct *sig; 1069 unsigned long maxrss; 1070 cputime_t tgutime, tgstime; 1071 1072 /* 1073 * The resource counters for the group leader are in its 1074 * own task_struct. Those for dead threads in the group 1075 * are in its signal_struct, as are those for the child 1076 * processes it has previously reaped. All these 1077 * accumulate in the parent's signal_struct c* fields. 1078 * 1079 * We don't bother to take a lock here to protect these 1080 * p->signal fields, because they are only touched by 1081 * __exit_signal, which runs with tasklist_lock 1082 * write-locked anyway, and so is excluded here. We do 1083 * need to protect the access to parent->signal fields, 1084 * as other threads in the parent group can be right 1085 * here reaping other children at the same time. 1086 * 1087 * We use thread_group_cputime_adjusted() to get times for the thread 1088 * group, which consolidates times for all threads in the 1089 * group including the group leader. 1090 */ 1091 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1092 spin_lock_irq(&p->real_parent->sighand->siglock); 1093 psig = p->real_parent->signal; 1094 sig = p->signal; 1095 psig->cutime += tgutime + sig->cutime; 1096 psig->cstime += tgstime + sig->cstime; 1097 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1098 psig->cmin_flt += 1099 p->min_flt + sig->min_flt + sig->cmin_flt; 1100 psig->cmaj_flt += 1101 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1102 psig->cnvcsw += 1103 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1104 psig->cnivcsw += 1105 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1106 psig->cinblock += 1107 task_io_get_inblock(p) + 1108 sig->inblock + sig->cinblock; 1109 psig->coublock += 1110 task_io_get_oublock(p) + 1111 sig->oublock + sig->coublock; 1112 maxrss = max(sig->maxrss, sig->cmaxrss); 1113 if (psig->cmaxrss < maxrss) 1114 psig->cmaxrss = maxrss; 1115 task_io_accounting_add(&psig->ioac, &p->ioac); 1116 task_io_accounting_add(&psig->ioac, &sig->ioac); 1117 spin_unlock_irq(&p->real_parent->sighand->siglock); 1118 } 1119 1120 /* 1121 * Now we are sure this task is interesting, and no other 1122 * thread can reap it because we set its state to EXIT_DEAD. 1123 */ 1124 read_unlock(&tasklist_lock); 1125 1126 retval = wo->wo_rusage 1127 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1128 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1129 ? p->signal->group_exit_code : p->exit_code; 1130 if (!retval && wo->wo_stat) 1131 retval = put_user(status, wo->wo_stat); 1132 1133 infop = wo->wo_info; 1134 if (!retval && infop) 1135 retval = put_user(SIGCHLD, &infop->si_signo); 1136 if (!retval && infop) 1137 retval = put_user(0, &infop->si_errno); 1138 if (!retval && infop) { 1139 int why; 1140 1141 if ((status & 0x7f) == 0) { 1142 why = CLD_EXITED; 1143 status >>= 8; 1144 } else { 1145 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1146 status &= 0x7f; 1147 } 1148 retval = put_user((short)why, &infop->si_code); 1149 if (!retval) 1150 retval = put_user(status, &infop->si_status); 1151 } 1152 if (!retval && infop) 1153 retval = put_user(pid, &infop->si_pid); 1154 if (!retval && infop) 1155 retval = put_user(uid, &infop->si_uid); 1156 if (!retval) 1157 retval = pid; 1158 1159 if (traced) { 1160 write_lock_irq(&tasklist_lock); 1161 /* We dropped tasklist, ptracer could die and untrace */ 1162 ptrace_unlink(p); 1163 /* 1164 * If this is not a sub-thread, notify the parent. 1165 * If parent wants a zombie, don't release it now. 1166 */ 1167 if (thread_group_leader(p) && 1168 !do_notify_parent(p, p->exit_signal)) { 1169 p->exit_state = EXIT_ZOMBIE; 1170 p = NULL; 1171 } 1172 write_unlock_irq(&tasklist_lock); 1173 } 1174 if (p != NULL) 1175 release_task(p); 1176 1177 return retval; 1178 } 1179 1180 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1181 { 1182 if (ptrace) { 1183 if (task_is_stopped_or_traced(p) && 1184 !(p->jobctl & JOBCTL_LISTENING)) 1185 return &p->exit_code; 1186 } else { 1187 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1188 return &p->signal->group_exit_code; 1189 } 1190 return NULL; 1191 } 1192 1193 /** 1194 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1195 * @wo: wait options 1196 * @ptrace: is the wait for ptrace 1197 * @p: task to wait for 1198 * 1199 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1200 * 1201 * CONTEXT: 1202 * read_lock(&tasklist_lock), which is released if return value is 1203 * non-zero. Also, grabs and releases @p->sighand->siglock. 1204 * 1205 * RETURNS: 1206 * 0 if wait condition didn't exist and search for other wait conditions 1207 * should continue. Non-zero return, -errno on failure and @p's pid on 1208 * success, implies that tasklist_lock is released and wait condition 1209 * search should terminate. 1210 */ 1211 static int wait_task_stopped(struct wait_opts *wo, 1212 int ptrace, struct task_struct *p) 1213 { 1214 struct siginfo __user *infop; 1215 int retval, exit_code, *p_code, why; 1216 uid_t uid = 0; /* unneeded, required by compiler */ 1217 pid_t pid; 1218 1219 /* 1220 * Traditionally we see ptrace'd stopped tasks regardless of options. 1221 */ 1222 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1223 return 0; 1224 1225 if (!task_stopped_code(p, ptrace)) 1226 return 0; 1227 1228 exit_code = 0; 1229 spin_lock_irq(&p->sighand->siglock); 1230 1231 p_code = task_stopped_code(p, ptrace); 1232 if (unlikely(!p_code)) 1233 goto unlock_sig; 1234 1235 exit_code = *p_code; 1236 if (!exit_code) 1237 goto unlock_sig; 1238 1239 if (!unlikely(wo->wo_flags & WNOWAIT)) 1240 *p_code = 0; 1241 1242 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1243 unlock_sig: 1244 spin_unlock_irq(&p->sighand->siglock); 1245 if (!exit_code) 1246 return 0; 1247 1248 /* 1249 * Now we are pretty sure this task is interesting. 1250 * Make sure it doesn't get reaped out from under us while we 1251 * give up the lock and then examine it below. We don't want to 1252 * keep holding onto the tasklist_lock while we call getrusage and 1253 * possibly take page faults for user memory. 1254 */ 1255 get_task_struct(p); 1256 pid = task_pid_vnr(p); 1257 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1258 read_unlock(&tasklist_lock); 1259 1260 if (unlikely(wo->wo_flags & WNOWAIT)) 1261 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1262 1263 retval = wo->wo_rusage 1264 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1265 if (!retval && wo->wo_stat) 1266 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1267 1268 infop = wo->wo_info; 1269 if (!retval && infop) 1270 retval = put_user(SIGCHLD, &infop->si_signo); 1271 if (!retval && infop) 1272 retval = put_user(0, &infop->si_errno); 1273 if (!retval && infop) 1274 retval = put_user((short)why, &infop->si_code); 1275 if (!retval && infop) 1276 retval = put_user(exit_code, &infop->si_status); 1277 if (!retval && infop) 1278 retval = put_user(pid, &infop->si_pid); 1279 if (!retval && infop) 1280 retval = put_user(uid, &infop->si_uid); 1281 if (!retval) 1282 retval = pid; 1283 put_task_struct(p); 1284 1285 BUG_ON(!retval); 1286 return retval; 1287 } 1288 1289 /* 1290 * Handle do_wait work for one task in a live, non-stopped state. 1291 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1292 * the lock and this task is uninteresting. If we return nonzero, we have 1293 * released the lock and the system call should return. 1294 */ 1295 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1296 { 1297 int retval; 1298 pid_t pid; 1299 uid_t uid; 1300 1301 if (!unlikely(wo->wo_flags & WCONTINUED)) 1302 return 0; 1303 1304 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1305 return 0; 1306 1307 spin_lock_irq(&p->sighand->siglock); 1308 /* Re-check with the lock held. */ 1309 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1310 spin_unlock_irq(&p->sighand->siglock); 1311 return 0; 1312 } 1313 if (!unlikely(wo->wo_flags & WNOWAIT)) 1314 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1315 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1316 spin_unlock_irq(&p->sighand->siglock); 1317 1318 pid = task_pid_vnr(p); 1319 get_task_struct(p); 1320 read_unlock(&tasklist_lock); 1321 1322 if (!wo->wo_info) { 1323 retval = wo->wo_rusage 1324 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1325 put_task_struct(p); 1326 if (!retval && wo->wo_stat) 1327 retval = put_user(0xffff, wo->wo_stat); 1328 if (!retval) 1329 retval = pid; 1330 } else { 1331 retval = wait_noreap_copyout(wo, p, pid, uid, 1332 CLD_CONTINUED, SIGCONT); 1333 BUG_ON(retval == 0); 1334 } 1335 1336 return retval; 1337 } 1338 1339 /* 1340 * Consider @p for a wait by @parent. 1341 * 1342 * -ECHILD should be in ->notask_error before the first call. 1343 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1344 * Returns zero if the search for a child should continue; 1345 * then ->notask_error is 0 if @p is an eligible child, 1346 * or another error from security_task_wait(), or still -ECHILD. 1347 */ 1348 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1349 struct task_struct *p) 1350 { 1351 int ret = eligible_child(wo, p); 1352 if (!ret) 1353 return ret; 1354 1355 ret = security_task_wait(p); 1356 if (unlikely(ret < 0)) { 1357 /* 1358 * If we have not yet seen any eligible child, 1359 * then let this error code replace -ECHILD. 1360 * A permission error will give the user a clue 1361 * to look for security policy problems, rather 1362 * than for mysterious wait bugs. 1363 */ 1364 if (wo->notask_error) 1365 wo->notask_error = ret; 1366 return 0; 1367 } 1368 1369 /* dead body doesn't have much to contribute */ 1370 if (unlikely(p->exit_state == EXIT_DEAD)) { 1371 /* 1372 * But do not ignore this task until the tracer does 1373 * wait_task_zombie()->do_notify_parent(). 1374 */ 1375 if (likely(!ptrace) && unlikely(ptrace_reparented(p))) 1376 wo->notask_error = 0; 1377 return 0; 1378 } 1379 1380 /* slay zombie? */ 1381 if (p->exit_state == EXIT_ZOMBIE) { 1382 /* 1383 * A zombie ptracee is only visible to its ptracer. 1384 * Notification and reaping will be cascaded to the real 1385 * parent when the ptracer detaches. 1386 */ 1387 if (likely(!ptrace) && unlikely(p->ptrace)) { 1388 /* it will become visible, clear notask_error */ 1389 wo->notask_error = 0; 1390 return 0; 1391 } 1392 1393 /* we don't reap group leaders with subthreads */ 1394 if (!delay_group_leader(p)) 1395 return wait_task_zombie(wo, p); 1396 1397 /* 1398 * Allow access to stopped/continued state via zombie by 1399 * falling through. Clearing of notask_error is complex. 1400 * 1401 * When !@ptrace: 1402 * 1403 * If WEXITED is set, notask_error should naturally be 1404 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1405 * so, if there are live subthreads, there are events to 1406 * wait for. If all subthreads are dead, it's still safe 1407 * to clear - this function will be called again in finite 1408 * amount time once all the subthreads are released and 1409 * will then return without clearing. 1410 * 1411 * When @ptrace: 1412 * 1413 * Stopped state is per-task and thus can't change once the 1414 * target task dies. Only continued and exited can happen. 1415 * Clear notask_error if WCONTINUED | WEXITED. 1416 */ 1417 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1418 wo->notask_error = 0; 1419 } else { 1420 /* 1421 * If @p is ptraced by a task in its real parent's group, 1422 * hide group stop/continued state when looking at @p as 1423 * the real parent; otherwise, a single stop can be 1424 * reported twice as group and ptrace stops. 1425 * 1426 * If a ptracer wants to distinguish the two events for its 1427 * own children, it should create a separate process which 1428 * takes the role of real parent. 1429 */ 1430 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p)) 1431 return 0; 1432 1433 /* 1434 * @p is alive and it's gonna stop, continue or exit, so 1435 * there always is something to wait for. 1436 */ 1437 wo->notask_error = 0; 1438 } 1439 1440 /* 1441 * Wait for stopped. Depending on @ptrace, different stopped state 1442 * is used and the two don't interact with each other. 1443 */ 1444 ret = wait_task_stopped(wo, ptrace, p); 1445 if (ret) 1446 return ret; 1447 1448 /* 1449 * Wait for continued. There's only one continued state and the 1450 * ptracer can consume it which can confuse the real parent. Don't 1451 * use WCONTINUED from ptracer. You don't need or want it. 1452 */ 1453 return wait_task_continued(wo, p); 1454 } 1455 1456 /* 1457 * Do the work of do_wait() for one thread in the group, @tsk. 1458 * 1459 * -ECHILD should be in ->notask_error before the first call. 1460 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1461 * Returns zero if the search for a child should continue; then 1462 * ->notask_error is 0 if there were any eligible children, 1463 * or another error from security_task_wait(), or still -ECHILD. 1464 */ 1465 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1466 { 1467 struct task_struct *p; 1468 1469 list_for_each_entry(p, &tsk->children, sibling) { 1470 int ret = wait_consider_task(wo, 0, p); 1471 if (ret) 1472 return ret; 1473 } 1474 1475 return 0; 1476 } 1477 1478 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1479 { 1480 struct task_struct *p; 1481 1482 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1483 int ret = wait_consider_task(wo, 1, p); 1484 if (ret) 1485 return ret; 1486 } 1487 1488 return 0; 1489 } 1490 1491 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1492 int sync, void *key) 1493 { 1494 struct wait_opts *wo = container_of(wait, struct wait_opts, 1495 child_wait); 1496 struct task_struct *p = key; 1497 1498 if (!eligible_pid(wo, p)) 1499 return 0; 1500 1501 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1502 return 0; 1503 1504 return default_wake_function(wait, mode, sync, key); 1505 } 1506 1507 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1508 { 1509 __wake_up_sync_key(&parent->signal->wait_chldexit, 1510 TASK_INTERRUPTIBLE, 1, p); 1511 } 1512 1513 static long do_wait(struct wait_opts *wo) 1514 { 1515 struct task_struct *tsk; 1516 int retval; 1517 1518 trace_sched_process_wait(wo->wo_pid); 1519 1520 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1521 wo->child_wait.private = current; 1522 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1523 repeat: 1524 /* 1525 * If there is nothing that can match our critiera just get out. 1526 * We will clear ->notask_error to zero if we see any child that 1527 * might later match our criteria, even if we are not able to reap 1528 * it yet. 1529 */ 1530 wo->notask_error = -ECHILD; 1531 if ((wo->wo_type < PIDTYPE_MAX) && 1532 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1533 goto notask; 1534 1535 set_current_state(TASK_INTERRUPTIBLE); 1536 read_lock(&tasklist_lock); 1537 tsk = current; 1538 do { 1539 retval = do_wait_thread(wo, tsk); 1540 if (retval) 1541 goto end; 1542 1543 retval = ptrace_do_wait(wo, tsk); 1544 if (retval) 1545 goto end; 1546 1547 if (wo->wo_flags & __WNOTHREAD) 1548 break; 1549 } while_each_thread(current, tsk); 1550 read_unlock(&tasklist_lock); 1551 1552 notask: 1553 retval = wo->notask_error; 1554 if (!retval && !(wo->wo_flags & WNOHANG)) { 1555 retval = -ERESTARTSYS; 1556 if (!signal_pending(current)) { 1557 schedule(); 1558 goto repeat; 1559 } 1560 } 1561 end: 1562 __set_current_state(TASK_RUNNING); 1563 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1564 return retval; 1565 } 1566 1567 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1568 infop, int, options, struct rusage __user *, ru) 1569 { 1570 struct wait_opts wo; 1571 struct pid *pid = NULL; 1572 enum pid_type type; 1573 long ret; 1574 1575 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1576 return -EINVAL; 1577 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1578 return -EINVAL; 1579 1580 switch (which) { 1581 case P_ALL: 1582 type = PIDTYPE_MAX; 1583 break; 1584 case P_PID: 1585 type = PIDTYPE_PID; 1586 if (upid <= 0) 1587 return -EINVAL; 1588 break; 1589 case P_PGID: 1590 type = PIDTYPE_PGID; 1591 if (upid <= 0) 1592 return -EINVAL; 1593 break; 1594 default: 1595 return -EINVAL; 1596 } 1597 1598 if (type < PIDTYPE_MAX) 1599 pid = find_get_pid(upid); 1600 1601 wo.wo_type = type; 1602 wo.wo_pid = pid; 1603 wo.wo_flags = options; 1604 wo.wo_info = infop; 1605 wo.wo_stat = NULL; 1606 wo.wo_rusage = ru; 1607 ret = do_wait(&wo); 1608 1609 if (ret > 0) { 1610 ret = 0; 1611 } else if (infop) { 1612 /* 1613 * For a WNOHANG return, clear out all the fields 1614 * we would set so the user can easily tell the 1615 * difference. 1616 */ 1617 if (!ret) 1618 ret = put_user(0, &infop->si_signo); 1619 if (!ret) 1620 ret = put_user(0, &infop->si_errno); 1621 if (!ret) 1622 ret = put_user(0, &infop->si_code); 1623 if (!ret) 1624 ret = put_user(0, &infop->si_pid); 1625 if (!ret) 1626 ret = put_user(0, &infop->si_uid); 1627 if (!ret) 1628 ret = put_user(0, &infop->si_status); 1629 } 1630 1631 put_pid(pid); 1632 1633 /* avoid REGPARM breakage on x86: */ 1634 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1635 return ret; 1636 } 1637 1638 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1639 int, options, struct rusage __user *, ru) 1640 { 1641 struct wait_opts wo; 1642 struct pid *pid = NULL; 1643 enum pid_type type; 1644 long ret; 1645 1646 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1647 __WNOTHREAD|__WCLONE|__WALL)) 1648 return -EINVAL; 1649 1650 if (upid == -1) 1651 type = PIDTYPE_MAX; 1652 else if (upid < 0) { 1653 type = PIDTYPE_PGID; 1654 pid = find_get_pid(-upid); 1655 } else if (upid == 0) { 1656 type = PIDTYPE_PGID; 1657 pid = get_task_pid(current, PIDTYPE_PGID); 1658 } else /* upid > 0 */ { 1659 type = PIDTYPE_PID; 1660 pid = find_get_pid(upid); 1661 } 1662 1663 wo.wo_type = type; 1664 wo.wo_pid = pid; 1665 wo.wo_flags = options | WEXITED; 1666 wo.wo_info = NULL; 1667 wo.wo_stat = stat_addr; 1668 wo.wo_rusage = ru; 1669 ret = do_wait(&wo); 1670 put_pid(pid); 1671 1672 /* avoid REGPARM breakage on x86: */ 1673 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1674 return ret; 1675 } 1676 1677 #ifdef __ARCH_WANT_SYS_WAITPID 1678 1679 /* 1680 * sys_waitpid() remains for compatibility. waitpid() should be 1681 * implemented by calling sys_wait4() from libc.a. 1682 */ 1683 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1684 { 1685 return sys_wait4(pid, stat_addr, options, NULL); 1686 } 1687 1688 #endif 1689