xref: /openbmc/linux/kernel/exit.c (revision 95e9fd10)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct * tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 		/*
76 		 * If we are the last child process in a pid namespace to be
77 		 * reaped, notify the reaper sleeping zap_pid_ns_processes().
78 		 */
79 		if (IS_ENABLED(CONFIG_PID_NS)) {
80 			struct task_struct *parent = p->real_parent;
81 
82 			if ((task_active_pid_ns(parent)->child_reaper == parent) &&
83 			    list_empty(&parent->children) &&
84 			    (parent->flags & PF_EXITING))
85 				wake_up_process(parent);
86 		}
87 	}
88 	list_del_rcu(&p->thread_group);
89 }
90 
91 /*
92  * This function expects the tasklist_lock write-locked.
93  */
94 static void __exit_signal(struct task_struct *tsk)
95 {
96 	struct signal_struct *sig = tsk->signal;
97 	bool group_dead = thread_group_leader(tsk);
98 	struct sighand_struct *sighand;
99 	struct tty_struct *uninitialized_var(tty);
100 
101 	sighand = rcu_dereference_check(tsk->sighand,
102 					lockdep_tasklist_lock_is_held());
103 	spin_lock(&sighand->siglock);
104 
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead) {
107 		posix_cpu_timers_exit_group(tsk);
108 		tty = sig->tty;
109 		sig->tty = NULL;
110 	} else {
111 		/*
112 		 * This can only happen if the caller is de_thread().
113 		 * FIXME: this is the temporary hack, we should teach
114 		 * posix-cpu-timers to handle this case correctly.
115 		 */
116 		if (unlikely(has_group_leader_pid(tsk)))
117 			posix_cpu_timers_exit_group(tsk);
118 
119 		/*
120 		 * If there is any task waiting for the group exit
121 		 * then notify it:
122 		 */
123 		if (sig->notify_count > 0 && !--sig->notify_count)
124 			wake_up_process(sig->group_exit_task);
125 
126 		if (tsk == sig->curr_target)
127 			sig->curr_target = next_thread(tsk);
128 		/*
129 		 * Accumulate here the counters for all threads but the
130 		 * group leader as they die, so they can be added into
131 		 * the process-wide totals when those are taken.
132 		 * The group leader stays around as a zombie as long
133 		 * as there are other threads.  When it gets reaped,
134 		 * the exit.c code will add its counts into these totals.
135 		 * We won't ever get here for the group leader, since it
136 		 * will have been the last reference on the signal_struct.
137 		 */
138 		sig->utime += tsk->utime;
139 		sig->stime += tsk->stime;
140 		sig->gtime += tsk->gtime;
141 		sig->min_flt += tsk->min_flt;
142 		sig->maj_flt += tsk->maj_flt;
143 		sig->nvcsw += tsk->nvcsw;
144 		sig->nivcsw += tsk->nivcsw;
145 		sig->inblock += task_io_get_inblock(tsk);
146 		sig->oublock += task_io_get_oublock(tsk);
147 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
148 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
149 	}
150 
151 	sig->nr_threads--;
152 	__unhash_process(tsk, group_dead);
153 
154 	/*
155 	 * Do this under ->siglock, we can race with another thread
156 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
157 	 */
158 	flush_sigqueue(&tsk->pending);
159 	tsk->sighand = NULL;
160 	spin_unlock(&sighand->siglock);
161 
162 	__cleanup_sighand(sighand);
163 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
164 	if (group_dead) {
165 		flush_sigqueue(&sig->shared_pending);
166 		tty_kref_put(tty);
167 	}
168 }
169 
170 static void delayed_put_task_struct(struct rcu_head *rhp)
171 {
172 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
173 
174 	perf_event_delayed_put(tsk);
175 	trace_sched_process_free(tsk);
176 	put_task_struct(tsk);
177 }
178 
179 
180 void release_task(struct task_struct * p)
181 {
182 	struct task_struct *leader;
183 	int zap_leader;
184 repeat:
185 	/* don't need to get the RCU readlock here - the process is dead and
186 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
187 	rcu_read_lock();
188 	atomic_dec(&__task_cred(p)->user->processes);
189 	rcu_read_unlock();
190 
191 	proc_flush_task(p);
192 
193 	write_lock_irq(&tasklist_lock);
194 	ptrace_release_task(p);
195 	__exit_signal(p);
196 
197 	/*
198 	 * If we are the last non-leader member of the thread
199 	 * group, and the leader is zombie, then notify the
200 	 * group leader's parent process. (if it wants notification.)
201 	 */
202 	zap_leader = 0;
203 	leader = p->group_leader;
204 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
205 		/*
206 		 * If we were the last child thread and the leader has
207 		 * exited already, and the leader's parent ignores SIGCHLD,
208 		 * then we are the one who should release the leader.
209 		 */
210 		zap_leader = do_notify_parent(leader, leader->exit_signal);
211 		if (zap_leader)
212 			leader->exit_state = EXIT_DEAD;
213 	}
214 
215 	write_unlock_irq(&tasklist_lock);
216 	release_thread(p);
217 	call_rcu(&p->rcu, delayed_put_task_struct);
218 
219 	p = leader;
220 	if (unlikely(zap_leader))
221 		goto repeat;
222 }
223 
224 /*
225  * This checks not only the pgrp, but falls back on the pid if no
226  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
227  * without this...
228  *
229  * The caller must hold rcu lock or the tasklist lock.
230  */
231 struct pid *session_of_pgrp(struct pid *pgrp)
232 {
233 	struct task_struct *p;
234 	struct pid *sid = NULL;
235 
236 	p = pid_task(pgrp, PIDTYPE_PGID);
237 	if (p == NULL)
238 		p = pid_task(pgrp, PIDTYPE_PID);
239 	if (p != NULL)
240 		sid = task_session(p);
241 
242 	return sid;
243 }
244 
245 /*
246  * Determine if a process group is "orphaned", according to the POSIX
247  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
248  * by terminal-generated stop signals.  Newly orphaned process groups are
249  * to receive a SIGHUP and a SIGCONT.
250  *
251  * "I ask you, have you ever known what it is to be an orphan?"
252  */
253 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
254 {
255 	struct task_struct *p;
256 
257 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
258 		if ((p == ignored_task) ||
259 		    (p->exit_state && thread_group_empty(p)) ||
260 		    is_global_init(p->real_parent))
261 			continue;
262 
263 		if (task_pgrp(p->real_parent) != pgrp &&
264 		    task_session(p->real_parent) == task_session(p))
265 			return 0;
266 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
267 
268 	return 1;
269 }
270 
271 int is_current_pgrp_orphaned(void)
272 {
273 	int retval;
274 
275 	read_lock(&tasklist_lock);
276 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
277 	read_unlock(&tasklist_lock);
278 
279 	return retval;
280 }
281 
282 static bool has_stopped_jobs(struct pid *pgrp)
283 {
284 	struct task_struct *p;
285 
286 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
287 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
288 			return true;
289 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
290 
291 	return false;
292 }
293 
294 /*
295  * Check to see if any process groups have become orphaned as
296  * a result of our exiting, and if they have any stopped jobs,
297  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298  */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302 	struct pid *pgrp = task_pgrp(tsk);
303 	struct task_struct *ignored_task = tsk;
304 
305 	if (!parent)
306 		 /* exit: our father is in a different pgrp than
307 		  * we are and we were the only connection outside.
308 		  */
309 		parent = tsk->real_parent;
310 	else
311 		/* reparent: our child is in a different pgrp than
312 		 * we are, and it was the only connection outside.
313 		 */
314 		ignored_task = NULL;
315 
316 	if (task_pgrp(parent) != pgrp &&
317 	    task_session(parent) == task_session(tsk) &&
318 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 	    has_stopped_jobs(pgrp)) {
320 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322 	}
323 }
324 
325 /**
326  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327  *
328  * If a kernel thread is launched as a result of a system call, or if
329  * it ever exits, it should generally reparent itself to kthreadd so it
330  * isn't in the way of other processes and is correctly cleaned up on exit.
331  *
332  * The various task state such as scheduling policy and priority may have
333  * been inherited from a user process, so we reset them to sane values here.
334  *
335  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336  */
337 static void reparent_to_kthreadd(void)
338 {
339 	write_lock_irq(&tasklist_lock);
340 
341 	ptrace_unlink(current);
342 	/* Reparent to init */
343 	current->real_parent = current->parent = kthreadd_task;
344 	list_move_tail(&current->sibling, &current->real_parent->children);
345 
346 	/* Set the exit signal to SIGCHLD so we signal init on exit */
347 	current->exit_signal = SIGCHLD;
348 
349 	if (task_nice(current) < 0)
350 		set_user_nice(current, 0);
351 	/* cpus_allowed? */
352 	/* rt_priority? */
353 	/* signals? */
354 	memcpy(current->signal->rlim, init_task.signal->rlim,
355 	       sizeof(current->signal->rlim));
356 
357 	atomic_inc(&init_cred.usage);
358 	commit_creds(&init_cred);
359 	write_unlock_irq(&tasklist_lock);
360 }
361 
362 void __set_special_pids(struct pid *pid)
363 {
364 	struct task_struct *curr = current->group_leader;
365 
366 	if (task_session(curr) != pid)
367 		change_pid(curr, PIDTYPE_SID, pid);
368 
369 	if (task_pgrp(curr) != pid)
370 		change_pid(curr, PIDTYPE_PGID, pid);
371 }
372 
373 static void set_special_pids(struct pid *pid)
374 {
375 	write_lock_irq(&tasklist_lock);
376 	__set_special_pids(pid);
377 	write_unlock_irq(&tasklist_lock);
378 }
379 
380 /*
381  * Let kernel threads use this to say that they allow a certain signal.
382  * Must not be used if kthread was cloned with CLONE_SIGHAND.
383  */
384 int allow_signal(int sig)
385 {
386 	if (!valid_signal(sig) || sig < 1)
387 		return -EINVAL;
388 
389 	spin_lock_irq(&current->sighand->siglock);
390 	/* This is only needed for daemonize()'ed kthreads */
391 	sigdelset(&current->blocked, sig);
392 	/*
393 	 * Kernel threads handle their own signals. Let the signal code
394 	 * know it'll be handled, so that they don't get converted to
395 	 * SIGKILL or just silently dropped.
396 	 */
397 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 	recalc_sigpending();
399 	spin_unlock_irq(&current->sighand->siglock);
400 	return 0;
401 }
402 
403 EXPORT_SYMBOL(allow_signal);
404 
405 int disallow_signal(int sig)
406 {
407 	if (!valid_signal(sig) || sig < 1)
408 		return -EINVAL;
409 
410 	spin_lock_irq(&current->sighand->siglock);
411 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 	recalc_sigpending();
413 	spin_unlock_irq(&current->sighand->siglock);
414 	return 0;
415 }
416 
417 EXPORT_SYMBOL(disallow_signal);
418 
419 /*
420  *	Put all the gunge required to become a kernel thread without
421  *	attached user resources in one place where it belongs.
422  */
423 
424 void daemonize(const char *name, ...)
425 {
426 	va_list args;
427 	sigset_t blocked;
428 
429 	va_start(args, name);
430 	vsnprintf(current->comm, sizeof(current->comm), name, args);
431 	va_end(args);
432 
433 	/*
434 	 * If we were started as result of loading a module, close all of the
435 	 * user space pages.  We don't need them, and if we didn't close them
436 	 * they would be locked into memory.
437 	 */
438 	exit_mm(current);
439 	/*
440 	 * We don't want to get frozen, in case system-wide hibernation
441 	 * or suspend transition begins right now.
442 	 */
443 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444 
445 	if (current->nsproxy != &init_nsproxy) {
446 		get_nsproxy(&init_nsproxy);
447 		switch_task_namespaces(current, &init_nsproxy);
448 	}
449 	set_special_pids(&init_struct_pid);
450 	proc_clear_tty(current);
451 
452 	/* Block and flush all signals */
453 	sigfillset(&blocked);
454 	sigprocmask(SIG_BLOCK, &blocked, NULL);
455 	flush_signals(current);
456 
457 	/* Become as one with the init task */
458 
459 	daemonize_fs_struct();
460 	exit_files(current);
461 	current->files = init_task.files;
462 	atomic_inc(&current->files->count);
463 
464 	reparent_to_kthreadd();
465 }
466 
467 EXPORT_SYMBOL(daemonize);
468 
469 static void close_files(struct files_struct * files)
470 {
471 	int i, j;
472 	struct fdtable *fdt;
473 
474 	j = 0;
475 
476 	/*
477 	 * It is safe to dereference the fd table without RCU or
478 	 * ->file_lock because this is the last reference to the
479 	 * files structure.  But use RCU to shut RCU-lockdep up.
480 	 */
481 	rcu_read_lock();
482 	fdt = files_fdtable(files);
483 	rcu_read_unlock();
484 	for (;;) {
485 		unsigned long set;
486 		i = j * BITS_PER_LONG;
487 		if (i >= fdt->max_fds)
488 			break;
489 		set = fdt->open_fds[j++];
490 		while (set) {
491 			if (set & 1) {
492 				struct file * file = xchg(&fdt->fd[i], NULL);
493 				if (file) {
494 					filp_close(file, files);
495 					cond_resched();
496 				}
497 			}
498 			i++;
499 			set >>= 1;
500 		}
501 	}
502 }
503 
504 struct files_struct *get_files_struct(struct task_struct *task)
505 {
506 	struct files_struct *files;
507 
508 	task_lock(task);
509 	files = task->files;
510 	if (files)
511 		atomic_inc(&files->count);
512 	task_unlock(task);
513 
514 	return files;
515 }
516 
517 void put_files_struct(struct files_struct *files)
518 {
519 	struct fdtable *fdt;
520 
521 	if (atomic_dec_and_test(&files->count)) {
522 		close_files(files);
523 		/*
524 		 * Free the fd and fdset arrays if we expanded them.
525 		 * If the fdtable was embedded, pass files for freeing
526 		 * at the end of the RCU grace period. Otherwise,
527 		 * you can free files immediately.
528 		 */
529 		rcu_read_lock();
530 		fdt = files_fdtable(files);
531 		if (fdt != &files->fdtab)
532 			kmem_cache_free(files_cachep, files);
533 		free_fdtable(fdt);
534 		rcu_read_unlock();
535 	}
536 }
537 
538 void reset_files_struct(struct files_struct *files)
539 {
540 	struct task_struct *tsk = current;
541 	struct files_struct *old;
542 
543 	old = tsk->files;
544 	task_lock(tsk);
545 	tsk->files = files;
546 	task_unlock(tsk);
547 	put_files_struct(old);
548 }
549 
550 void exit_files(struct task_struct *tsk)
551 {
552 	struct files_struct * files = tsk->files;
553 
554 	if (files) {
555 		task_lock(tsk);
556 		tsk->files = NULL;
557 		task_unlock(tsk);
558 		put_files_struct(files);
559 	}
560 }
561 
562 #ifdef CONFIG_MM_OWNER
563 /*
564  * A task is exiting.   If it owned this mm, find a new owner for the mm.
565  */
566 void mm_update_next_owner(struct mm_struct *mm)
567 {
568 	struct task_struct *c, *g, *p = current;
569 
570 retry:
571 	/*
572 	 * If the exiting or execing task is not the owner, it's
573 	 * someone else's problem.
574 	 */
575 	if (mm->owner != p)
576 		return;
577 	/*
578 	 * The current owner is exiting/execing and there are no other
579 	 * candidates.  Do not leave the mm pointing to a possibly
580 	 * freed task structure.
581 	 */
582 	if (atomic_read(&mm->mm_users) <= 1) {
583 		mm->owner = NULL;
584 		return;
585 	}
586 
587 	read_lock(&tasklist_lock);
588 	/*
589 	 * Search in the children
590 	 */
591 	list_for_each_entry(c, &p->children, sibling) {
592 		if (c->mm == mm)
593 			goto assign_new_owner;
594 	}
595 
596 	/*
597 	 * Search in the siblings
598 	 */
599 	list_for_each_entry(c, &p->real_parent->children, sibling) {
600 		if (c->mm == mm)
601 			goto assign_new_owner;
602 	}
603 
604 	/*
605 	 * Search through everything else. We should not get
606 	 * here often
607 	 */
608 	do_each_thread(g, c) {
609 		if (c->mm == mm)
610 			goto assign_new_owner;
611 	} while_each_thread(g, c);
612 
613 	read_unlock(&tasklist_lock);
614 	/*
615 	 * We found no owner yet mm_users > 1: this implies that we are
616 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
617 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
618 	 */
619 	mm->owner = NULL;
620 	return;
621 
622 assign_new_owner:
623 	BUG_ON(c == p);
624 	get_task_struct(c);
625 	/*
626 	 * The task_lock protects c->mm from changing.
627 	 * We always want mm->owner->mm == mm
628 	 */
629 	task_lock(c);
630 	/*
631 	 * Delay read_unlock() till we have the task_lock()
632 	 * to ensure that c does not slip away underneath us
633 	 */
634 	read_unlock(&tasklist_lock);
635 	if (c->mm != mm) {
636 		task_unlock(c);
637 		put_task_struct(c);
638 		goto retry;
639 	}
640 	mm->owner = c;
641 	task_unlock(c);
642 	put_task_struct(c);
643 }
644 #endif /* CONFIG_MM_OWNER */
645 
646 /*
647  * Turn us into a lazy TLB process if we
648  * aren't already..
649  */
650 static void exit_mm(struct task_struct * tsk)
651 {
652 	struct mm_struct *mm = tsk->mm;
653 	struct core_state *core_state;
654 
655 	mm_release(tsk, mm);
656 	if (!mm)
657 		return;
658 	sync_mm_rss(mm);
659 	/*
660 	 * Serialize with any possible pending coredump.
661 	 * We must hold mmap_sem around checking core_state
662 	 * and clearing tsk->mm.  The core-inducing thread
663 	 * will increment ->nr_threads for each thread in the
664 	 * group with ->mm != NULL.
665 	 */
666 	down_read(&mm->mmap_sem);
667 	core_state = mm->core_state;
668 	if (core_state) {
669 		struct core_thread self;
670 		up_read(&mm->mmap_sem);
671 
672 		self.task = tsk;
673 		self.next = xchg(&core_state->dumper.next, &self);
674 		/*
675 		 * Implies mb(), the result of xchg() must be visible
676 		 * to core_state->dumper.
677 		 */
678 		if (atomic_dec_and_test(&core_state->nr_threads))
679 			complete(&core_state->startup);
680 
681 		for (;;) {
682 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
683 			if (!self.task) /* see coredump_finish() */
684 				break;
685 			schedule();
686 		}
687 		__set_task_state(tsk, TASK_RUNNING);
688 		down_read(&mm->mmap_sem);
689 	}
690 	atomic_inc(&mm->mm_count);
691 	BUG_ON(mm != tsk->active_mm);
692 	/* more a memory barrier than a real lock */
693 	task_lock(tsk);
694 	tsk->mm = NULL;
695 	up_read(&mm->mmap_sem);
696 	enter_lazy_tlb(mm, current);
697 	task_unlock(tsk);
698 	mm_update_next_owner(mm);
699 	mmput(mm);
700 }
701 
702 /*
703  * When we die, we re-parent all our children, and try to:
704  * 1. give them to another thread in our thread group, if such a member exists
705  * 2. give it to the first ancestor process which prctl'd itself as a
706  *    child_subreaper for its children (like a service manager)
707  * 3. give it to the init process (PID 1) in our pid namespace
708  */
709 static struct task_struct *find_new_reaper(struct task_struct *father)
710 	__releases(&tasklist_lock)
711 	__acquires(&tasklist_lock)
712 {
713 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
714 	struct task_struct *thread;
715 
716 	thread = father;
717 	while_each_thread(father, thread) {
718 		if (thread->flags & PF_EXITING)
719 			continue;
720 		if (unlikely(pid_ns->child_reaper == father))
721 			pid_ns->child_reaper = thread;
722 		return thread;
723 	}
724 
725 	if (unlikely(pid_ns->child_reaper == father)) {
726 		write_unlock_irq(&tasklist_lock);
727 		if (unlikely(pid_ns == &init_pid_ns)) {
728 			panic("Attempted to kill init! exitcode=0x%08x\n",
729 				father->signal->group_exit_code ?:
730 					father->exit_code);
731 		}
732 
733 		zap_pid_ns_processes(pid_ns);
734 		write_lock_irq(&tasklist_lock);
735 	} else if (father->signal->has_child_subreaper) {
736 		struct task_struct *reaper;
737 
738 		/*
739 		 * Find the first ancestor marked as child_subreaper.
740 		 * Note that the code below checks same_thread_group(reaper,
741 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
742 		 * PID namespace. However we still need the check above, see
743 		 * http://marc.info/?l=linux-kernel&m=131385460420380
744 		 */
745 		for (reaper = father->real_parent;
746 		     reaper != &init_task;
747 		     reaper = reaper->real_parent) {
748 			if (same_thread_group(reaper, pid_ns->child_reaper))
749 				break;
750 			if (!reaper->signal->is_child_subreaper)
751 				continue;
752 			thread = reaper;
753 			do {
754 				if (!(thread->flags & PF_EXITING))
755 					return reaper;
756 			} while_each_thread(reaper, thread);
757 		}
758 	}
759 
760 	return pid_ns->child_reaper;
761 }
762 
763 /*
764 * Any that need to be release_task'd are put on the @dead list.
765  */
766 static void reparent_leader(struct task_struct *father, struct task_struct *p,
767 				struct list_head *dead)
768 {
769 	list_move_tail(&p->sibling, &p->real_parent->children);
770 
771 	if (p->exit_state == EXIT_DEAD)
772 		return;
773 	/*
774 	 * If this is a threaded reparent there is no need to
775 	 * notify anyone anything has happened.
776 	 */
777 	if (same_thread_group(p->real_parent, father))
778 		return;
779 
780 	/* We don't want people slaying init.  */
781 	p->exit_signal = SIGCHLD;
782 
783 	/* If it has exited notify the new parent about this child's death. */
784 	if (!p->ptrace &&
785 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
786 		if (do_notify_parent(p, p->exit_signal)) {
787 			p->exit_state = EXIT_DEAD;
788 			list_move_tail(&p->sibling, dead);
789 		}
790 	}
791 
792 	kill_orphaned_pgrp(p, father);
793 }
794 
795 static void forget_original_parent(struct task_struct *father)
796 {
797 	struct task_struct *p, *n, *reaper;
798 	LIST_HEAD(dead_children);
799 
800 	write_lock_irq(&tasklist_lock);
801 	/*
802 	 * Note that exit_ptrace() and find_new_reaper() might
803 	 * drop tasklist_lock and reacquire it.
804 	 */
805 	exit_ptrace(father);
806 	reaper = find_new_reaper(father);
807 
808 	list_for_each_entry_safe(p, n, &father->children, sibling) {
809 		struct task_struct *t = p;
810 		do {
811 			t->real_parent = reaper;
812 			if (t->parent == father) {
813 				BUG_ON(t->ptrace);
814 				t->parent = t->real_parent;
815 			}
816 			if (t->pdeath_signal)
817 				group_send_sig_info(t->pdeath_signal,
818 						    SEND_SIG_NOINFO, t);
819 		} while_each_thread(p, t);
820 		reparent_leader(father, p, &dead_children);
821 	}
822 	write_unlock_irq(&tasklist_lock);
823 
824 	BUG_ON(!list_empty(&father->children));
825 
826 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
827 		list_del_init(&p->sibling);
828 		release_task(p);
829 	}
830 }
831 
832 /*
833  * Send signals to all our closest relatives so that they know
834  * to properly mourn us..
835  */
836 static void exit_notify(struct task_struct *tsk, int group_dead)
837 {
838 	bool autoreap;
839 
840 	/*
841 	 * This does two things:
842 	 *
843   	 * A.  Make init inherit all the child processes
844 	 * B.  Check to see if any process groups have become orphaned
845 	 *	as a result of our exiting, and if they have any stopped
846 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
847 	 */
848 	forget_original_parent(tsk);
849 	exit_task_namespaces(tsk);
850 
851 	write_lock_irq(&tasklist_lock);
852 	if (group_dead)
853 		kill_orphaned_pgrp(tsk->group_leader, NULL);
854 
855 	if (unlikely(tsk->ptrace)) {
856 		int sig = thread_group_leader(tsk) &&
857 				thread_group_empty(tsk) &&
858 				!ptrace_reparented(tsk) ?
859 			tsk->exit_signal : SIGCHLD;
860 		autoreap = do_notify_parent(tsk, sig);
861 	} else if (thread_group_leader(tsk)) {
862 		autoreap = thread_group_empty(tsk) &&
863 			do_notify_parent(tsk, tsk->exit_signal);
864 	} else {
865 		autoreap = true;
866 	}
867 
868 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
869 
870 	/* mt-exec, de_thread() is waiting for group leader */
871 	if (unlikely(tsk->signal->notify_count < 0))
872 		wake_up_process(tsk->signal->group_exit_task);
873 	write_unlock_irq(&tasklist_lock);
874 
875 	/* If the process is dead, release it - nobody will wait for it */
876 	if (autoreap)
877 		release_task(tsk);
878 }
879 
880 #ifdef CONFIG_DEBUG_STACK_USAGE
881 static void check_stack_usage(void)
882 {
883 	static DEFINE_SPINLOCK(low_water_lock);
884 	static int lowest_to_date = THREAD_SIZE;
885 	unsigned long free;
886 
887 	free = stack_not_used(current);
888 
889 	if (free >= lowest_to_date)
890 		return;
891 
892 	spin_lock(&low_water_lock);
893 	if (free < lowest_to_date) {
894 		printk(KERN_WARNING "%s (%d) used greatest stack depth: "
895 				"%lu bytes left\n",
896 				current->comm, task_pid_nr(current), free);
897 		lowest_to_date = free;
898 	}
899 	spin_unlock(&low_water_lock);
900 }
901 #else
902 static inline void check_stack_usage(void) {}
903 #endif
904 
905 void do_exit(long code)
906 {
907 	struct task_struct *tsk = current;
908 	int group_dead;
909 
910 	profile_task_exit(tsk);
911 
912 	WARN_ON(blk_needs_flush_plug(tsk));
913 
914 	if (unlikely(in_interrupt()))
915 		panic("Aiee, killing interrupt handler!");
916 	if (unlikely(!tsk->pid))
917 		panic("Attempted to kill the idle task!");
918 
919 	/*
920 	 * If do_exit is called because this processes oopsed, it's possible
921 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
922 	 * continuing. Amongst other possible reasons, this is to prevent
923 	 * mm_release()->clear_child_tid() from writing to a user-controlled
924 	 * kernel address.
925 	 */
926 	set_fs(USER_DS);
927 
928 	ptrace_event(PTRACE_EVENT_EXIT, code);
929 
930 	validate_creds_for_do_exit(tsk);
931 
932 	/*
933 	 * We're taking recursive faults here in do_exit. Safest is to just
934 	 * leave this task alone and wait for reboot.
935 	 */
936 	if (unlikely(tsk->flags & PF_EXITING)) {
937 		printk(KERN_ALERT
938 			"Fixing recursive fault but reboot is needed!\n");
939 		/*
940 		 * We can do this unlocked here. The futex code uses
941 		 * this flag just to verify whether the pi state
942 		 * cleanup has been done or not. In the worst case it
943 		 * loops once more. We pretend that the cleanup was
944 		 * done as there is no way to return. Either the
945 		 * OWNER_DIED bit is set by now or we push the blocked
946 		 * task into the wait for ever nirwana as well.
947 		 */
948 		tsk->flags |= PF_EXITPIDONE;
949 		set_current_state(TASK_UNINTERRUPTIBLE);
950 		schedule();
951 	}
952 
953 	exit_signals(tsk);  /* sets PF_EXITING */
954 	/*
955 	 * tsk->flags are checked in the futex code to protect against
956 	 * an exiting task cleaning up the robust pi futexes.
957 	 */
958 	smp_mb();
959 	raw_spin_unlock_wait(&tsk->pi_lock);
960 
961 	if (unlikely(in_atomic()))
962 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
963 				current->comm, task_pid_nr(current),
964 				preempt_count());
965 
966 	acct_update_integrals(tsk);
967 	/* sync mm's RSS info before statistics gathering */
968 	if (tsk->mm)
969 		sync_mm_rss(tsk->mm);
970 	group_dead = atomic_dec_and_test(&tsk->signal->live);
971 	if (group_dead) {
972 		hrtimer_cancel(&tsk->signal->real_timer);
973 		exit_itimers(tsk->signal);
974 		if (tsk->mm)
975 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
976 	}
977 	acct_collect(code, group_dead);
978 	if (group_dead)
979 		tty_audit_exit();
980 	audit_free(tsk);
981 
982 	tsk->exit_code = code;
983 	taskstats_exit(tsk, group_dead);
984 
985 	exit_mm(tsk);
986 
987 	if (group_dead)
988 		acct_process();
989 	trace_sched_process_exit(tsk);
990 
991 	exit_sem(tsk);
992 	exit_shm(tsk);
993 	exit_files(tsk);
994 	exit_fs(tsk);
995 	exit_task_work(tsk);
996 	check_stack_usage();
997 	exit_thread();
998 
999 	/*
1000 	 * Flush inherited counters to the parent - before the parent
1001 	 * gets woken up by child-exit notifications.
1002 	 *
1003 	 * because of cgroup mode, must be called before cgroup_exit()
1004 	 */
1005 	perf_event_exit_task(tsk);
1006 
1007 	cgroup_exit(tsk, 1);
1008 
1009 	if (group_dead)
1010 		disassociate_ctty(1);
1011 
1012 	module_put(task_thread_info(tsk)->exec_domain->module);
1013 
1014 	proc_exit_connector(tsk);
1015 
1016 	/*
1017 	 * FIXME: do that only when needed, using sched_exit tracepoint
1018 	 */
1019 	ptrace_put_breakpoints(tsk);
1020 
1021 	exit_notify(tsk, group_dead);
1022 #ifdef CONFIG_NUMA
1023 	task_lock(tsk);
1024 	mpol_put(tsk->mempolicy);
1025 	tsk->mempolicy = NULL;
1026 	task_unlock(tsk);
1027 #endif
1028 #ifdef CONFIG_FUTEX
1029 	if (unlikely(current->pi_state_cache))
1030 		kfree(current->pi_state_cache);
1031 #endif
1032 	/*
1033 	 * Make sure we are holding no locks:
1034 	 */
1035 	debug_check_no_locks_held(tsk);
1036 	/*
1037 	 * We can do this unlocked here. The futex code uses this flag
1038 	 * just to verify whether the pi state cleanup has been done
1039 	 * or not. In the worst case it loops once more.
1040 	 */
1041 	tsk->flags |= PF_EXITPIDONE;
1042 
1043 	if (tsk->io_context)
1044 		exit_io_context(tsk);
1045 
1046 	if (tsk->splice_pipe)
1047 		__free_pipe_info(tsk->splice_pipe);
1048 
1049 	validate_creds_for_do_exit(tsk);
1050 
1051 	preempt_disable();
1052 	if (tsk->nr_dirtied)
1053 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1054 	exit_rcu();
1055 
1056 	/*
1057 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1058 	 * when the following two conditions become true.
1059 	 *   - There is race condition of mmap_sem (It is acquired by
1060 	 *     exit_mm()), and
1061 	 *   - SMI occurs before setting TASK_RUNINNG.
1062 	 *     (or hypervisor of virtual machine switches to other guest)
1063 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1064 	 *
1065 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
1066 	 * is held by try_to_wake_up()
1067 	 */
1068 	smp_mb();
1069 	raw_spin_unlock_wait(&tsk->pi_lock);
1070 
1071 	/* causes final put_task_struct in finish_task_switch(). */
1072 	tsk->state = TASK_DEAD;
1073 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
1074 	schedule();
1075 	BUG();
1076 	/* Avoid "noreturn function does return".  */
1077 	for (;;)
1078 		cpu_relax();	/* For when BUG is null */
1079 }
1080 
1081 EXPORT_SYMBOL_GPL(do_exit);
1082 
1083 void complete_and_exit(struct completion *comp, long code)
1084 {
1085 	if (comp)
1086 		complete(comp);
1087 
1088 	do_exit(code);
1089 }
1090 
1091 EXPORT_SYMBOL(complete_and_exit);
1092 
1093 SYSCALL_DEFINE1(exit, int, error_code)
1094 {
1095 	do_exit((error_code&0xff)<<8);
1096 }
1097 
1098 /*
1099  * Take down every thread in the group.  This is called by fatal signals
1100  * as well as by sys_exit_group (below).
1101  */
1102 void
1103 do_group_exit(int exit_code)
1104 {
1105 	struct signal_struct *sig = current->signal;
1106 
1107 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1108 
1109 	if (signal_group_exit(sig))
1110 		exit_code = sig->group_exit_code;
1111 	else if (!thread_group_empty(current)) {
1112 		struct sighand_struct *const sighand = current->sighand;
1113 		spin_lock_irq(&sighand->siglock);
1114 		if (signal_group_exit(sig))
1115 			/* Another thread got here before we took the lock.  */
1116 			exit_code = sig->group_exit_code;
1117 		else {
1118 			sig->group_exit_code = exit_code;
1119 			sig->flags = SIGNAL_GROUP_EXIT;
1120 			zap_other_threads(current);
1121 		}
1122 		spin_unlock_irq(&sighand->siglock);
1123 	}
1124 
1125 	do_exit(exit_code);
1126 	/* NOTREACHED */
1127 }
1128 
1129 /*
1130  * this kills every thread in the thread group. Note that any externally
1131  * wait4()-ing process will get the correct exit code - even if this
1132  * thread is not the thread group leader.
1133  */
1134 SYSCALL_DEFINE1(exit_group, int, error_code)
1135 {
1136 	do_group_exit((error_code & 0xff) << 8);
1137 	/* NOTREACHED */
1138 	return 0;
1139 }
1140 
1141 struct wait_opts {
1142 	enum pid_type		wo_type;
1143 	int			wo_flags;
1144 	struct pid		*wo_pid;
1145 
1146 	struct siginfo __user	*wo_info;
1147 	int __user		*wo_stat;
1148 	struct rusage __user	*wo_rusage;
1149 
1150 	wait_queue_t		child_wait;
1151 	int			notask_error;
1152 };
1153 
1154 static inline
1155 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1156 {
1157 	if (type != PIDTYPE_PID)
1158 		task = task->group_leader;
1159 	return task->pids[type].pid;
1160 }
1161 
1162 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1163 {
1164 	return	wo->wo_type == PIDTYPE_MAX ||
1165 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1166 }
1167 
1168 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1169 {
1170 	if (!eligible_pid(wo, p))
1171 		return 0;
1172 	/* Wait for all children (clone and not) if __WALL is set;
1173 	 * otherwise, wait for clone children *only* if __WCLONE is
1174 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1175 	 * A "clone" child here is one that reports to its parent
1176 	 * using a signal other than SIGCHLD.) */
1177 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1178 	    && !(wo->wo_flags & __WALL))
1179 		return 0;
1180 
1181 	return 1;
1182 }
1183 
1184 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1185 				pid_t pid, uid_t uid, int why, int status)
1186 {
1187 	struct siginfo __user *infop;
1188 	int retval = wo->wo_rusage
1189 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1190 
1191 	put_task_struct(p);
1192 	infop = wo->wo_info;
1193 	if (infop) {
1194 		if (!retval)
1195 			retval = put_user(SIGCHLD, &infop->si_signo);
1196 		if (!retval)
1197 			retval = put_user(0, &infop->si_errno);
1198 		if (!retval)
1199 			retval = put_user((short)why, &infop->si_code);
1200 		if (!retval)
1201 			retval = put_user(pid, &infop->si_pid);
1202 		if (!retval)
1203 			retval = put_user(uid, &infop->si_uid);
1204 		if (!retval)
1205 			retval = put_user(status, &infop->si_status);
1206 	}
1207 	if (!retval)
1208 		retval = pid;
1209 	return retval;
1210 }
1211 
1212 /*
1213  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1214  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1215  * the lock and this task is uninteresting.  If we return nonzero, we have
1216  * released the lock and the system call should return.
1217  */
1218 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1219 {
1220 	unsigned long state;
1221 	int retval, status, traced;
1222 	pid_t pid = task_pid_vnr(p);
1223 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1224 	struct siginfo __user *infop;
1225 
1226 	if (!likely(wo->wo_flags & WEXITED))
1227 		return 0;
1228 
1229 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1230 		int exit_code = p->exit_code;
1231 		int why;
1232 
1233 		get_task_struct(p);
1234 		read_unlock(&tasklist_lock);
1235 		if ((exit_code & 0x7f) == 0) {
1236 			why = CLD_EXITED;
1237 			status = exit_code >> 8;
1238 		} else {
1239 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1240 			status = exit_code & 0x7f;
1241 		}
1242 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1243 	}
1244 
1245 	/*
1246 	 * Try to move the task's state to DEAD
1247 	 * only one thread is allowed to do this:
1248 	 */
1249 	state = xchg(&p->exit_state, EXIT_DEAD);
1250 	if (state != EXIT_ZOMBIE) {
1251 		BUG_ON(state != EXIT_DEAD);
1252 		return 0;
1253 	}
1254 
1255 	traced = ptrace_reparented(p);
1256 	/*
1257 	 * It can be ptraced but not reparented, check
1258 	 * thread_group_leader() to filter out sub-threads.
1259 	 */
1260 	if (likely(!traced) && thread_group_leader(p)) {
1261 		struct signal_struct *psig;
1262 		struct signal_struct *sig;
1263 		unsigned long maxrss;
1264 		cputime_t tgutime, tgstime;
1265 
1266 		/*
1267 		 * The resource counters for the group leader are in its
1268 		 * own task_struct.  Those for dead threads in the group
1269 		 * are in its signal_struct, as are those for the child
1270 		 * processes it has previously reaped.  All these
1271 		 * accumulate in the parent's signal_struct c* fields.
1272 		 *
1273 		 * We don't bother to take a lock here to protect these
1274 		 * p->signal fields, because they are only touched by
1275 		 * __exit_signal, which runs with tasklist_lock
1276 		 * write-locked anyway, and so is excluded here.  We do
1277 		 * need to protect the access to parent->signal fields,
1278 		 * as other threads in the parent group can be right
1279 		 * here reaping other children at the same time.
1280 		 *
1281 		 * We use thread_group_times() to get times for the thread
1282 		 * group, which consolidates times for all threads in the
1283 		 * group including the group leader.
1284 		 */
1285 		thread_group_times(p, &tgutime, &tgstime);
1286 		spin_lock_irq(&p->real_parent->sighand->siglock);
1287 		psig = p->real_parent->signal;
1288 		sig = p->signal;
1289 		psig->cutime += tgutime + sig->cutime;
1290 		psig->cstime += tgstime + sig->cstime;
1291 		psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1292 		psig->cmin_flt +=
1293 			p->min_flt + sig->min_flt + sig->cmin_flt;
1294 		psig->cmaj_flt +=
1295 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1296 		psig->cnvcsw +=
1297 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1298 		psig->cnivcsw +=
1299 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1300 		psig->cinblock +=
1301 			task_io_get_inblock(p) +
1302 			sig->inblock + sig->cinblock;
1303 		psig->coublock +=
1304 			task_io_get_oublock(p) +
1305 			sig->oublock + sig->coublock;
1306 		maxrss = max(sig->maxrss, sig->cmaxrss);
1307 		if (psig->cmaxrss < maxrss)
1308 			psig->cmaxrss = maxrss;
1309 		task_io_accounting_add(&psig->ioac, &p->ioac);
1310 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1311 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1312 	}
1313 
1314 	/*
1315 	 * Now we are sure this task is interesting, and no other
1316 	 * thread can reap it because we set its state to EXIT_DEAD.
1317 	 */
1318 	read_unlock(&tasklist_lock);
1319 
1320 	retval = wo->wo_rusage
1321 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1322 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1323 		? p->signal->group_exit_code : p->exit_code;
1324 	if (!retval && wo->wo_stat)
1325 		retval = put_user(status, wo->wo_stat);
1326 
1327 	infop = wo->wo_info;
1328 	if (!retval && infop)
1329 		retval = put_user(SIGCHLD, &infop->si_signo);
1330 	if (!retval && infop)
1331 		retval = put_user(0, &infop->si_errno);
1332 	if (!retval && infop) {
1333 		int why;
1334 
1335 		if ((status & 0x7f) == 0) {
1336 			why = CLD_EXITED;
1337 			status >>= 8;
1338 		} else {
1339 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1340 			status &= 0x7f;
1341 		}
1342 		retval = put_user((short)why, &infop->si_code);
1343 		if (!retval)
1344 			retval = put_user(status, &infop->si_status);
1345 	}
1346 	if (!retval && infop)
1347 		retval = put_user(pid, &infop->si_pid);
1348 	if (!retval && infop)
1349 		retval = put_user(uid, &infop->si_uid);
1350 	if (!retval)
1351 		retval = pid;
1352 
1353 	if (traced) {
1354 		write_lock_irq(&tasklist_lock);
1355 		/* We dropped tasklist, ptracer could die and untrace */
1356 		ptrace_unlink(p);
1357 		/*
1358 		 * If this is not a sub-thread, notify the parent.
1359 		 * If parent wants a zombie, don't release it now.
1360 		 */
1361 		if (thread_group_leader(p) &&
1362 		    !do_notify_parent(p, p->exit_signal)) {
1363 			p->exit_state = EXIT_ZOMBIE;
1364 			p = NULL;
1365 		}
1366 		write_unlock_irq(&tasklist_lock);
1367 	}
1368 	if (p != NULL)
1369 		release_task(p);
1370 
1371 	return retval;
1372 }
1373 
1374 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1375 {
1376 	if (ptrace) {
1377 		if (task_is_stopped_or_traced(p) &&
1378 		    !(p->jobctl & JOBCTL_LISTENING))
1379 			return &p->exit_code;
1380 	} else {
1381 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1382 			return &p->signal->group_exit_code;
1383 	}
1384 	return NULL;
1385 }
1386 
1387 /**
1388  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1389  * @wo: wait options
1390  * @ptrace: is the wait for ptrace
1391  * @p: task to wait for
1392  *
1393  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1394  *
1395  * CONTEXT:
1396  * read_lock(&tasklist_lock), which is released if return value is
1397  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1398  *
1399  * RETURNS:
1400  * 0 if wait condition didn't exist and search for other wait conditions
1401  * should continue.  Non-zero return, -errno on failure and @p's pid on
1402  * success, implies that tasklist_lock is released and wait condition
1403  * search should terminate.
1404  */
1405 static int wait_task_stopped(struct wait_opts *wo,
1406 				int ptrace, struct task_struct *p)
1407 {
1408 	struct siginfo __user *infop;
1409 	int retval, exit_code, *p_code, why;
1410 	uid_t uid = 0; /* unneeded, required by compiler */
1411 	pid_t pid;
1412 
1413 	/*
1414 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1415 	 */
1416 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1417 		return 0;
1418 
1419 	if (!task_stopped_code(p, ptrace))
1420 		return 0;
1421 
1422 	exit_code = 0;
1423 	spin_lock_irq(&p->sighand->siglock);
1424 
1425 	p_code = task_stopped_code(p, ptrace);
1426 	if (unlikely(!p_code))
1427 		goto unlock_sig;
1428 
1429 	exit_code = *p_code;
1430 	if (!exit_code)
1431 		goto unlock_sig;
1432 
1433 	if (!unlikely(wo->wo_flags & WNOWAIT))
1434 		*p_code = 0;
1435 
1436 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1437 unlock_sig:
1438 	spin_unlock_irq(&p->sighand->siglock);
1439 	if (!exit_code)
1440 		return 0;
1441 
1442 	/*
1443 	 * Now we are pretty sure this task is interesting.
1444 	 * Make sure it doesn't get reaped out from under us while we
1445 	 * give up the lock and then examine it below.  We don't want to
1446 	 * keep holding onto the tasklist_lock while we call getrusage and
1447 	 * possibly take page faults for user memory.
1448 	 */
1449 	get_task_struct(p);
1450 	pid = task_pid_vnr(p);
1451 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1452 	read_unlock(&tasklist_lock);
1453 
1454 	if (unlikely(wo->wo_flags & WNOWAIT))
1455 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1456 
1457 	retval = wo->wo_rusage
1458 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1459 	if (!retval && wo->wo_stat)
1460 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1461 
1462 	infop = wo->wo_info;
1463 	if (!retval && infop)
1464 		retval = put_user(SIGCHLD, &infop->si_signo);
1465 	if (!retval && infop)
1466 		retval = put_user(0, &infop->si_errno);
1467 	if (!retval && infop)
1468 		retval = put_user((short)why, &infop->si_code);
1469 	if (!retval && infop)
1470 		retval = put_user(exit_code, &infop->si_status);
1471 	if (!retval && infop)
1472 		retval = put_user(pid, &infop->si_pid);
1473 	if (!retval && infop)
1474 		retval = put_user(uid, &infop->si_uid);
1475 	if (!retval)
1476 		retval = pid;
1477 	put_task_struct(p);
1478 
1479 	BUG_ON(!retval);
1480 	return retval;
1481 }
1482 
1483 /*
1484  * Handle do_wait work for one task in a live, non-stopped state.
1485  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1486  * the lock and this task is uninteresting.  If we return nonzero, we have
1487  * released the lock and the system call should return.
1488  */
1489 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1490 {
1491 	int retval;
1492 	pid_t pid;
1493 	uid_t uid;
1494 
1495 	if (!unlikely(wo->wo_flags & WCONTINUED))
1496 		return 0;
1497 
1498 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1499 		return 0;
1500 
1501 	spin_lock_irq(&p->sighand->siglock);
1502 	/* Re-check with the lock held.  */
1503 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1504 		spin_unlock_irq(&p->sighand->siglock);
1505 		return 0;
1506 	}
1507 	if (!unlikely(wo->wo_flags & WNOWAIT))
1508 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1509 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1510 	spin_unlock_irq(&p->sighand->siglock);
1511 
1512 	pid = task_pid_vnr(p);
1513 	get_task_struct(p);
1514 	read_unlock(&tasklist_lock);
1515 
1516 	if (!wo->wo_info) {
1517 		retval = wo->wo_rusage
1518 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1519 		put_task_struct(p);
1520 		if (!retval && wo->wo_stat)
1521 			retval = put_user(0xffff, wo->wo_stat);
1522 		if (!retval)
1523 			retval = pid;
1524 	} else {
1525 		retval = wait_noreap_copyout(wo, p, pid, uid,
1526 					     CLD_CONTINUED, SIGCONT);
1527 		BUG_ON(retval == 0);
1528 	}
1529 
1530 	return retval;
1531 }
1532 
1533 /*
1534  * Consider @p for a wait by @parent.
1535  *
1536  * -ECHILD should be in ->notask_error before the first call.
1537  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1538  * Returns zero if the search for a child should continue;
1539  * then ->notask_error is 0 if @p is an eligible child,
1540  * or another error from security_task_wait(), or still -ECHILD.
1541  */
1542 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1543 				struct task_struct *p)
1544 {
1545 	int ret = eligible_child(wo, p);
1546 	if (!ret)
1547 		return ret;
1548 
1549 	ret = security_task_wait(p);
1550 	if (unlikely(ret < 0)) {
1551 		/*
1552 		 * If we have not yet seen any eligible child,
1553 		 * then let this error code replace -ECHILD.
1554 		 * A permission error will give the user a clue
1555 		 * to look for security policy problems, rather
1556 		 * than for mysterious wait bugs.
1557 		 */
1558 		if (wo->notask_error)
1559 			wo->notask_error = ret;
1560 		return 0;
1561 	}
1562 
1563 	/* dead body doesn't have much to contribute */
1564 	if (unlikely(p->exit_state == EXIT_DEAD)) {
1565 		/*
1566 		 * But do not ignore this task until the tracer does
1567 		 * wait_task_zombie()->do_notify_parent().
1568 		 */
1569 		if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1570 			wo->notask_error = 0;
1571 		return 0;
1572 	}
1573 
1574 	/* slay zombie? */
1575 	if (p->exit_state == EXIT_ZOMBIE) {
1576 		/*
1577 		 * A zombie ptracee is only visible to its ptracer.
1578 		 * Notification and reaping will be cascaded to the real
1579 		 * parent when the ptracer detaches.
1580 		 */
1581 		if (likely(!ptrace) && unlikely(p->ptrace)) {
1582 			/* it will become visible, clear notask_error */
1583 			wo->notask_error = 0;
1584 			return 0;
1585 		}
1586 
1587 		/* we don't reap group leaders with subthreads */
1588 		if (!delay_group_leader(p))
1589 			return wait_task_zombie(wo, p);
1590 
1591 		/*
1592 		 * Allow access to stopped/continued state via zombie by
1593 		 * falling through.  Clearing of notask_error is complex.
1594 		 *
1595 		 * When !@ptrace:
1596 		 *
1597 		 * If WEXITED is set, notask_error should naturally be
1598 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1599 		 * so, if there are live subthreads, there are events to
1600 		 * wait for.  If all subthreads are dead, it's still safe
1601 		 * to clear - this function will be called again in finite
1602 		 * amount time once all the subthreads are released and
1603 		 * will then return without clearing.
1604 		 *
1605 		 * When @ptrace:
1606 		 *
1607 		 * Stopped state is per-task and thus can't change once the
1608 		 * target task dies.  Only continued and exited can happen.
1609 		 * Clear notask_error if WCONTINUED | WEXITED.
1610 		 */
1611 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1612 			wo->notask_error = 0;
1613 	} else {
1614 		/*
1615 		 * If @p is ptraced by a task in its real parent's group,
1616 		 * hide group stop/continued state when looking at @p as
1617 		 * the real parent; otherwise, a single stop can be
1618 		 * reported twice as group and ptrace stops.
1619 		 *
1620 		 * If a ptracer wants to distinguish the two events for its
1621 		 * own children, it should create a separate process which
1622 		 * takes the role of real parent.
1623 		 */
1624 		if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1625 			return 0;
1626 
1627 		/*
1628 		 * @p is alive and it's gonna stop, continue or exit, so
1629 		 * there always is something to wait for.
1630 		 */
1631 		wo->notask_error = 0;
1632 	}
1633 
1634 	/*
1635 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1636 	 * is used and the two don't interact with each other.
1637 	 */
1638 	ret = wait_task_stopped(wo, ptrace, p);
1639 	if (ret)
1640 		return ret;
1641 
1642 	/*
1643 	 * Wait for continued.  There's only one continued state and the
1644 	 * ptracer can consume it which can confuse the real parent.  Don't
1645 	 * use WCONTINUED from ptracer.  You don't need or want it.
1646 	 */
1647 	return wait_task_continued(wo, p);
1648 }
1649 
1650 /*
1651  * Do the work of do_wait() for one thread in the group, @tsk.
1652  *
1653  * -ECHILD should be in ->notask_error before the first call.
1654  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1655  * Returns zero if the search for a child should continue; then
1656  * ->notask_error is 0 if there were any eligible children,
1657  * or another error from security_task_wait(), or still -ECHILD.
1658  */
1659 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1660 {
1661 	struct task_struct *p;
1662 
1663 	list_for_each_entry(p, &tsk->children, sibling) {
1664 		int ret = wait_consider_task(wo, 0, p);
1665 		if (ret)
1666 			return ret;
1667 	}
1668 
1669 	return 0;
1670 }
1671 
1672 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1673 {
1674 	struct task_struct *p;
1675 
1676 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1677 		int ret = wait_consider_task(wo, 1, p);
1678 		if (ret)
1679 			return ret;
1680 	}
1681 
1682 	return 0;
1683 }
1684 
1685 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1686 				int sync, void *key)
1687 {
1688 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1689 						child_wait);
1690 	struct task_struct *p = key;
1691 
1692 	if (!eligible_pid(wo, p))
1693 		return 0;
1694 
1695 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1696 		return 0;
1697 
1698 	return default_wake_function(wait, mode, sync, key);
1699 }
1700 
1701 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1702 {
1703 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1704 				TASK_INTERRUPTIBLE, 1, p);
1705 }
1706 
1707 static long do_wait(struct wait_opts *wo)
1708 {
1709 	struct task_struct *tsk;
1710 	int retval;
1711 
1712 	trace_sched_process_wait(wo->wo_pid);
1713 
1714 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1715 	wo->child_wait.private = current;
1716 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1717 repeat:
1718 	/*
1719 	 * If there is nothing that can match our critiera just get out.
1720 	 * We will clear ->notask_error to zero if we see any child that
1721 	 * might later match our criteria, even if we are not able to reap
1722 	 * it yet.
1723 	 */
1724 	wo->notask_error = -ECHILD;
1725 	if ((wo->wo_type < PIDTYPE_MAX) &&
1726 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1727 		goto notask;
1728 
1729 	set_current_state(TASK_INTERRUPTIBLE);
1730 	read_lock(&tasklist_lock);
1731 	tsk = current;
1732 	do {
1733 		retval = do_wait_thread(wo, tsk);
1734 		if (retval)
1735 			goto end;
1736 
1737 		retval = ptrace_do_wait(wo, tsk);
1738 		if (retval)
1739 			goto end;
1740 
1741 		if (wo->wo_flags & __WNOTHREAD)
1742 			break;
1743 	} while_each_thread(current, tsk);
1744 	read_unlock(&tasklist_lock);
1745 
1746 notask:
1747 	retval = wo->notask_error;
1748 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1749 		retval = -ERESTARTSYS;
1750 		if (!signal_pending(current)) {
1751 			schedule();
1752 			goto repeat;
1753 		}
1754 	}
1755 end:
1756 	__set_current_state(TASK_RUNNING);
1757 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1758 	return retval;
1759 }
1760 
1761 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1762 		infop, int, options, struct rusage __user *, ru)
1763 {
1764 	struct wait_opts wo;
1765 	struct pid *pid = NULL;
1766 	enum pid_type type;
1767 	long ret;
1768 
1769 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1770 		return -EINVAL;
1771 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1772 		return -EINVAL;
1773 
1774 	switch (which) {
1775 	case P_ALL:
1776 		type = PIDTYPE_MAX;
1777 		break;
1778 	case P_PID:
1779 		type = PIDTYPE_PID;
1780 		if (upid <= 0)
1781 			return -EINVAL;
1782 		break;
1783 	case P_PGID:
1784 		type = PIDTYPE_PGID;
1785 		if (upid <= 0)
1786 			return -EINVAL;
1787 		break;
1788 	default:
1789 		return -EINVAL;
1790 	}
1791 
1792 	if (type < PIDTYPE_MAX)
1793 		pid = find_get_pid(upid);
1794 
1795 	wo.wo_type	= type;
1796 	wo.wo_pid	= pid;
1797 	wo.wo_flags	= options;
1798 	wo.wo_info	= infop;
1799 	wo.wo_stat	= NULL;
1800 	wo.wo_rusage	= ru;
1801 	ret = do_wait(&wo);
1802 
1803 	if (ret > 0) {
1804 		ret = 0;
1805 	} else if (infop) {
1806 		/*
1807 		 * For a WNOHANG return, clear out all the fields
1808 		 * we would set so the user can easily tell the
1809 		 * difference.
1810 		 */
1811 		if (!ret)
1812 			ret = put_user(0, &infop->si_signo);
1813 		if (!ret)
1814 			ret = put_user(0, &infop->si_errno);
1815 		if (!ret)
1816 			ret = put_user(0, &infop->si_code);
1817 		if (!ret)
1818 			ret = put_user(0, &infop->si_pid);
1819 		if (!ret)
1820 			ret = put_user(0, &infop->si_uid);
1821 		if (!ret)
1822 			ret = put_user(0, &infop->si_status);
1823 	}
1824 
1825 	put_pid(pid);
1826 
1827 	/* avoid REGPARM breakage on x86: */
1828 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1829 	return ret;
1830 }
1831 
1832 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1833 		int, options, struct rusage __user *, ru)
1834 {
1835 	struct wait_opts wo;
1836 	struct pid *pid = NULL;
1837 	enum pid_type type;
1838 	long ret;
1839 
1840 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1841 			__WNOTHREAD|__WCLONE|__WALL))
1842 		return -EINVAL;
1843 
1844 	if (upid == -1)
1845 		type = PIDTYPE_MAX;
1846 	else if (upid < 0) {
1847 		type = PIDTYPE_PGID;
1848 		pid = find_get_pid(-upid);
1849 	} else if (upid == 0) {
1850 		type = PIDTYPE_PGID;
1851 		pid = get_task_pid(current, PIDTYPE_PGID);
1852 	} else /* upid > 0 */ {
1853 		type = PIDTYPE_PID;
1854 		pid = find_get_pid(upid);
1855 	}
1856 
1857 	wo.wo_type	= type;
1858 	wo.wo_pid	= pid;
1859 	wo.wo_flags	= options | WEXITED;
1860 	wo.wo_info	= NULL;
1861 	wo.wo_stat	= stat_addr;
1862 	wo.wo_rusage	= ru;
1863 	ret = do_wait(&wo);
1864 	put_pid(pid);
1865 
1866 	/* avoid REGPARM breakage on x86: */
1867 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1868 	return ret;
1869 }
1870 
1871 #ifdef __ARCH_WANT_SYS_WAITPID
1872 
1873 /*
1874  * sys_waitpid() remains for compatibility. waitpid() should be
1875  * implemented by calling sys_wait4() from libc.a.
1876  */
1877 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1878 {
1879 	return sys_wait4(pid, stat_addr, options, NULL);
1880 }
1881 
1882 #endif
1883