1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void exit_mm(struct task_struct * tsk); 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 /* 76 * If we are the last child process in a pid namespace to be 77 * reaped, notify the reaper sleeping zap_pid_ns_processes(). 78 */ 79 if (IS_ENABLED(CONFIG_PID_NS)) { 80 struct task_struct *parent = p->real_parent; 81 82 if ((task_active_pid_ns(parent)->child_reaper == parent) && 83 list_empty(&parent->children) && 84 (parent->flags & PF_EXITING)) 85 wake_up_process(parent); 86 } 87 } 88 list_del_rcu(&p->thread_group); 89 } 90 91 /* 92 * This function expects the tasklist_lock write-locked. 93 */ 94 static void __exit_signal(struct task_struct *tsk) 95 { 96 struct signal_struct *sig = tsk->signal; 97 bool group_dead = thread_group_leader(tsk); 98 struct sighand_struct *sighand; 99 struct tty_struct *uninitialized_var(tty); 100 101 sighand = rcu_dereference_check(tsk->sighand, 102 lockdep_tasklist_lock_is_held()); 103 spin_lock(&sighand->siglock); 104 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) { 107 posix_cpu_timers_exit_group(tsk); 108 tty = sig->tty; 109 sig->tty = NULL; 110 } else { 111 /* 112 * This can only happen if the caller is de_thread(). 113 * FIXME: this is the temporary hack, we should teach 114 * posix-cpu-timers to handle this case correctly. 115 */ 116 if (unlikely(has_group_leader_pid(tsk))) 117 posix_cpu_timers_exit_group(tsk); 118 119 /* 120 * If there is any task waiting for the group exit 121 * then notify it: 122 */ 123 if (sig->notify_count > 0 && !--sig->notify_count) 124 wake_up_process(sig->group_exit_task); 125 126 if (tsk == sig->curr_target) 127 sig->curr_target = next_thread(tsk); 128 /* 129 * Accumulate here the counters for all threads but the 130 * group leader as they die, so they can be added into 131 * the process-wide totals when those are taken. 132 * The group leader stays around as a zombie as long 133 * as there are other threads. When it gets reaped, 134 * the exit.c code will add its counts into these totals. 135 * We won't ever get here for the group leader, since it 136 * will have been the last reference on the signal_struct. 137 */ 138 sig->utime += tsk->utime; 139 sig->stime += tsk->stime; 140 sig->gtime += tsk->gtime; 141 sig->min_flt += tsk->min_flt; 142 sig->maj_flt += tsk->maj_flt; 143 sig->nvcsw += tsk->nvcsw; 144 sig->nivcsw += tsk->nivcsw; 145 sig->inblock += task_io_get_inblock(tsk); 146 sig->oublock += task_io_get_oublock(tsk); 147 task_io_accounting_add(&sig->ioac, &tsk->ioac); 148 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 149 } 150 151 sig->nr_threads--; 152 __unhash_process(tsk, group_dead); 153 154 /* 155 * Do this under ->siglock, we can race with another thread 156 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 157 */ 158 flush_sigqueue(&tsk->pending); 159 tsk->sighand = NULL; 160 spin_unlock(&sighand->siglock); 161 162 __cleanup_sighand(sighand); 163 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 164 if (group_dead) { 165 flush_sigqueue(&sig->shared_pending); 166 tty_kref_put(tty); 167 } 168 } 169 170 static void delayed_put_task_struct(struct rcu_head *rhp) 171 { 172 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 173 174 perf_event_delayed_put(tsk); 175 trace_sched_process_free(tsk); 176 put_task_struct(tsk); 177 } 178 179 180 void release_task(struct task_struct * p) 181 { 182 struct task_struct *leader; 183 int zap_leader; 184 repeat: 185 /* don't need to get the RCU readlock here - the process is dead and 186 * can't be modifying its own credentials. But shut RCU-lockdep up */ 187 rcu_read_lock(); 188 atomic_dec(&__task_cred(p)->user->processes); 189 rcu_read_unlock(); 190 191 proc_flush_task(p); 192 193 write_lock_irq(&tasklist_lock); 194 ptrace_release_task(p); 195 __exit_signal(p); 196 197 /* 198 * If we are the last non-leader member of the thread 199 * group, and the leader is zombie, then notify the 200 * group leader's parent process. (if it wants notification.) 201 */ 202 zap_leader = 0; 203 leader = p->group_leader; 204 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 205 /* 206 * If we were the last child thread and the leader has 207 * exited already, and the leader's parent ignores SIGCHLD, 208 * then we are the one who should release the leader. 209 */ 210 zap_leader = do_notify_parent(leader, leader->exit_signal); 211 if (zap_leader) 212 leader->exit_state = EXIT_DEAD; 213 } 214 215 write_unlock_irq(&tasklist_lock); 216 release_thread(p); 217 call_rcu(&p->rcu, delayed_put_task_struct); 218 219 p = leader; 220 if (unlikely(zap_leader)) 221 goto repeat; 222 } 223 224 /* 225 * This checks not only the pgrp, but falls back on the pid if no 226 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 227 * without this... 228 * 229 * The caller must hold rcu lock or the tasklist lock. 230 */ 231 struct pid *session_of_pgrp(struct pid *pgrp) 232 { 233 struct task_struct *p; 234 struct pid *sid = NULL; 235 236 p = pid_task(pgrp, PIDTYPE_PGID); 237 if (p == NULL) 238 p = pid_task(pgrp, PIDTYPE_PID); 239 if (p != NULL) 240 sid = task_session(p); 241 242 return sid; 243 } 244 245 /* 246 * Determine if a process group is "orphaned", according to the POSIX 247 * definition in 2.2.2.52. Orphaned process groups are not to be affected 248 * by terminal-generated stop signals. Newly orphaned process groups are 249 * to receive a SIGHUP and a SIGCONT. 250 * 251 * "I ask you, have you ever known what it is to be an orphan?" 252 */ 253 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 254 { 255 struct task_struct *p; 256 257 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 258 if ((p == ignored_task) || 259 (p->exit_state && thread_group_empty(p)) || 260 is_global_init(p->real_parent)) 261 continue; 262 263 if (task_pgrp(p->real_parent) != pgrp && 264 task_session(p->real_parent) == task_session(p)) 265 return 0; 266 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 267 268 return 1; 269 } 270 271 int is_current_pgrp_orphaned(void) 272 { 273 int retval; 274 275 read_lock(&tasklist_lock); 276 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 277 read_unlock(&tasklist_lock); 278 279 return retval; 280 } 281 282 static bool has_stopped_jobs(struct pid *pgrp) 283 { 284 struct task_struct *p; 285 286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 287 if (p->signal->flags & SIGNAL_STOP_STOPPED) 288 return true; 289 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 290 291 return false; 292 } 293 294 /* 295 * Check to see if any process groups have become orphaned as 296 * a result of our exiting, and if they have any stopped jobs, 297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 298 */ 299 static void 300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 301 { 302 struct pid *pgrp = task_pgrp(tsk); 303 struct task_struct *ignored_task = tsk; 304 305 if (!parent) 306 /* exit: our father is in a different pgrp than 307 * we are and we were the only connection outside. 308 */ 309 parent = tsk->real_parent; 310 else 311 /* reparent: our child is in a different pgrp than 312 * we are, and it was the only connection outside. 313 */ 314 ignored_task = NULL; 315 316 if (task_pgrp(parent) != pgrp && 317 task_session(parent) == task_session(tsk) && 318 will_become_orphaned_pgrp(pgrp, ignored_task) && 319 has_stopped_jobs(pgrp)) { 320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 322 } 323 } 324 325 /** 326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 327 * 328 * If a kernel thread is launched as a result of a system call, or if 329 * it ever exits, it should generally reparent itself to kthreadd so it 330 * isn't in the way of other processes and is correctly cleaned up on exit. 331 * 332 * The various task state such as scheduling policy and priority may have 333 * been inherited from a user process, so we reset them to sane values here. 334 * 335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 336 */ 337 static void reparent_to_kthreadd(void) 338 { 339 write_lock_irq(&tasklist_lock); 340 341 ptrace_unlink(current); 342 /* Reparent to init */ 343 current->real_parent = current->parent = kthreadd_task; 344 list_move_tail(¤t->sibling, ¤t->real_parent->children); 345 346 /* Set the exit signal to SIGCHLD so we signal init on exit */ 347 current->exit_signal = SIGCHLD; 348 349 if (task_nice(current) < 0) 350 set_user_nice(current, 0); 351 /* cpus_allowed? */ 352 /* rt_priority? */ 353 /* signals? */ 354 memcpy(current->signal->rlim, init_task.signal->rlim, 355 sizeof(current->signal->rlim)); 356 357 atomic_inc(&init_cred.usage); 358 commit_creds(&init_cred); 359 write_unlock_irq(&tasklist_lock); 360 } 361 362 void __set_special_pids(struct pid *pid) 363 { 364 struct task_struct *curr = current->group_leader; 365 366 if (task_session(curr) != pid) 367 change_pid(curr, PIDTYPE_SID, pid); 368 369 if (task_pgrp(curr) != pid) 370 change_pid(curr, PIDTYPE_PGID, pid); 371 } 372 373 static void set_special_pids(struct pid *pid) 374 { 375 write_lock_irq(&tasklist_lock); 376 __set_special_pids(pid); 377 write_unlock_irq(&tasklist_lock); 378 } 379 380 /* 381 * Let kernel threads use this to say that they allow a certain signal. 382 * Must not be used if kthread was cloned with CLONE_SIGHAND. 383 */ 384 int allow_signal(int sig) 385 { 386 if (!valid_signal(sig) || sig < 1) 387 return -EINVAL; 388 389 spin_lock_irq(¤t->sighand->siglock); 390 /* This is only needed for daemonize()'ed kthreads */ 391 sigdelset(¤t->blocked, sig); 392 /* 393 * Kernel threads handle their own signals. Let the signal code 394 * know it'll be handled, so that they don't get converted to 395 * SIGKILL or just silently dropped. 396 */ 397 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 398 recalc_sigpending(); 399 spin_unlock_irq(¤t->sighand->siglock); 400 return 0; 401 } 402 403 EXPORT_SYMBOL(allow_signal); 404 405 int disallow_signal(int sig) 406 { 407 if (!valid_signal(sig) || sig < 1) 408 return -EINVAL; 409 410 spin_lock_irq(¤t->sighand->siglock); 411 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 412 recalc_sigpending(); 413 spin_unlock_irq(¤t->sighand->siglock); 414 return 0; 415 } 416 417 EXPORT_SYMBOL(disallow_signal); 418 419 /* 420 * Put all the gunge required to become a kernel thread without 421 * attached user resources in one place where it belongs. 422 */ 423 424 void daemonize(const char *name, ...) 425 { 426 va_list args; 427 sigset_t blocked; 428 429 va_start(args, name); 430 vsnprintf(current->comm, sizeof(current->comm), name, args); 431 va_end(args); 432 433 /* 434 * If we were started as result of loading a module, close all of the 435 * user space pages. We don't need them, and if we didn't close them 436 * they would be locked into memory. 437 */ 438 exit_mm(current); 439 /* 440 * We don't want to get frozen, in case system-wide hibernation 441 * or suspend transition begins right now. 442 */ 443 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 444 445 if (current->nsproxy != &init_nsproxy) { 446 get_nsproxy(&init_nsproxy); 447 switch_task_namespaces(current, &init_nsproxy); 448 } 449 set_special_pids(&init_struct_pid); 450 proc_clear_tty(current); 451 452 /* Block and flush all signals */ 453 sigfillset(&blocked); 454 sigprocmask(SIG_BLOCK, &blocked, NULL); 455 flush_signals(current); 456 457 /* Become as one with the init task */ 458 459 daemonize_fs_struct(); 460 exit_files(current); 461 current->files = init_task.files; 462 atomic_inc(¤t->files->count); 463 464 reparent_to_kthreadd(); 465 } 466 467 EXPORT_SYMBOL(daemonize); 468 469 static void close_files(struct files_struct * files) 470 { 471 int i, j; 472 struct fdtable *fdt; 473 474 j = 0; 475 476 /* 477 * It is safe to dereference the fd table without RCU or 478 * ->file_lock because this is the last reference to the 479 * files structure. But use RCU to shut RCU-lockdep up. 480 */ 481 rcu_read_lock(); 482 fdt = files_fdtable(files); 483 rcu_read_unlock(); 484 for (;;) { 485 unsigned long set; 486 i = j * BITS_PER_LONG; 487 if (i >= fdt->max_fds) 488 break; 489 set = fdt->open_fds[j++]; 490 while (set) { 491 if (set & 1) { 492 struct file * file = xchg(&fdt->fd[i], NULL); 493 if (file) { 494 filp_close(file, files); 495 cond_resched(); 496 } 497 } 498 i++; 499 set >>= 1; 500 } 501 } 502 } 503 504 struct files_struct *get_files_struct(struct task_struct *task) 505 { 506 struct files_struct *files; 507 508 task_lock(task); 509 files = task->files; 510 if (files) 511 atomic_inc(&files->count); 512 task_unlock(task); 513 514 return files; 515 } 516 517 void put_files_struct(struct files_struct *files) 518 { 519 struct fdtable *fdt; 520 521 if (atomic_dec_and_test(&files->count)) { 522 close_files(files); 523 /* 524 * Free the fd and fdset arrays if we expanded them. 525 * If the fdtable was embedded, pass files for freeing 526 * at the end of the RCU grace period. Otherwise, 527 * you can free files immediately. 528 */ 529 rcu_read_lock(); 530 fdt = files_fdtable(files); 531 if (fdt != &files->fdtab) 532 kmem_cache_free(files_cachep, files); 533 free_fdtable(fdt); 534 rcu_read_unlock(); 535 } 536 } 537 538 void reset_files_struct(struct files_struct *files) 539 { 540 struct task_struct *tsk = current; 541 struct files_struct *old; 542 543 old = tsk->files; 544 task_lock(tsk); 545 tsk->files = files; 546 task_unlock(tsk); 547 put_files_struct(old); 548 } 549 550 void exit_files(struct task_struct *tsk) 551 { 552 struct files_struct * files = tsk->files; 553 554 if (files) { 555 task_lock(tsk); 556 tsk->files = NULL; 557 task_unlock(tsk); 558 put_files_struct(files); 559 } 560 } 561 562 #ifdef CONFIG_MM_OWNER 563 /* 564 * A task is exiting. If it owned this mm, find a new owner for the mm. 565 */ 566 void mm_update_next_owner(struct mm_struct *mm) 567 { 568 struct task_struct *c, *g, *p = current; 569 570 retry: 571 /* 572 * If the exiting or execing task is not the owner, it's 573 * someone else's problem. 574 */ 575 if (mm->owner != p) 576 return; 577 /* 578 * The current owner is exiting/execing and there are no other 579 * candidates. Do not leave the mm pointing to a possibly 580 * freed task structure. 581 */ 582 if (atomic_read(&mm->mm_users) <= 1) { 583 mm->owner = NULL; 584 return; 585 } 586 587 read_lock(&tasklist_lock); 588 /* 589 * Search in the children 590 */ 591 list_for_each_entry(c, &p->children, sibling) { 592 if (c->mm == mm) 593 goto assign_new_owner; 594 } 595 596 /* 597 * Search in the siblings 598 */ 599 list_for_each_entry(c, &p->real_parent->children, sibling) { 600 if (c->mm == mm) 601 goto assign_new_owner; 602 } 603 604 /* 605 * Search through everything else. We should not get 606 * here often 607 */ 608 do_each_thread(g, c) { 609 if (c->mm == mm) 610 goto assign_new_owner; 611 } while_each_thread(g, c); 612 613 read_unlock(&tasklist_lock); 614 /* 615 * We found no owner yet mm_users > 1: this implies that we are 616 * most likely racing with swapoff (try_to_unuse()) or /proc or 617 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 618 */ 619 mm->owner = NULL; 620 return; 621 622 assign_new_owner: 623 BUG_ON(c == p); 624 get_task_struct(c); 625 /* 626 * The task_lock protects c->mm from changing. 627 * We always want mm->owner->mm == mm 628 */ 629 task_lock(c); 630 /* 631 * Delay read_unlock() till we have the task_lock() 632 * to ensure that c does not slip away underneath us 633 */ 634 read_unlock(&tasklist_lock); 635 if (c->mm != mm) { 636 task_unlock(c); 637 put_task_struct(c); 638 goto retry; 639 } 640 mm->owner = c; 641 task_unlock(c); 642 put_task_struct(c); 643 } 644 #endif /* CONFIG_MM_OWNER */ 645 646 /* 647 * Turn us into a lazy TLB process if we 648 * aren't already.. 649 */ 650 static void exit_mm(struct task_struct * tsk) 651 { 652 struct mm_struct *mm = tsk->mm; 653 struct core_state *core_state; 654 655 mm_release(tsk, mm); 656 if (!mm) 657 return; 658 sync_mm_rss(mm); 659 /* 660 * Serialize with any possible pending coredump. 661 * We must hold mmap_sem around checking core_state 662 * and clearing tsk->mm. The core-inducing thread 663 * will increment ->nr_threads for each thread in the 664 * group with ->mm != NULL. 665 */ 666 down_read(&mm->mmap_sem); 667 core_state = mm->core_state; 668 if (core_state) { 669 struct core_thread self; 670 up_read(&mm->mmap_sem); 671 672 self.task = tsk; 673 self.next = xchg(&core_state->dumper.next, &self); 674 /* 675 * Implies mb(), the result of xchg() must be visible 676 * to core_state->dumper. 677 */ 678 if (atomic_dec_and_test(&core_state->nr_threads)) 679 complete(&core_state->startup); 680 681 for (;;) { 682 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 683 if (!self.task) /* see coredump_finish() */ 684 break; 685 schedule(); 686 } 687 __set_task_state(tsk, TASK_RUNNING); 688 down_read(&mm->mmap_sem); 689 } 690 atomic_inc(&mm->mm_count); 691 BUG_ON(mm != tsk->active_mm); 692 /* more a memory barrier than a real lock */ 693 task_lock(tsk); 694 tsk->mm = NULL; 695 up_read(&mm->mmap_sem); 696 enter_lazy_tlb(mm, current); 697 task_unlock(tsk); 698 mm_update_next_owner(mm); 699 mmput(mm); 700 } 701 702 /* 703 * When we die, we re-parent all our children, and try to: 704 * 1. give them to another thread in our thread group, if such a member exists 705 * 2. give it to the first ancestor process which prctl'd itself as a 706 * child_subreaper for its children (like a service manager) 707 * 3. give it to the init process (PID 1) in our pid namespace 708 */ 709 static struct task_struct *find_new_reaper(struct task_struct *father) 710 __releases(&tasklist_lock) 711 __acquires(&tasklist_lock) 712 { 713 struct pid_namespace *pid_ns = task_active_pid_ns(father); 714 struct task_struct *thread; 715 716 thread = father; 717 while_each_thread(father, thread) { 718 if (thread->flags & PF_EXITING) 719 continue; 720 if (unlikely(pid_ns->child_reaper == father)) 721 pid_ns->child_reaper = thread; 722 return thread; 723 } 724 725 if (unlikely(pid_ns->child_reaper == father)) { 726 write_unlock_irq(&tasklist_lock); 727 if (unlikely(pid_ns == &init_pid_ns)) { 728 panic("Attempted to kill init! exitcode=0x%08x\n", 729 father->signal->group_exit_code ?: 730 father->exit_code); 731 } 732 733 zap_pid_ns_processes(pid_ns); 734 write_lock_irq(&tasklist_lock); 735 } else if (father->signal->has_child_subreaper) { 736 struct task_struct *reaper; 737 738 /* 739 * Find the first ancestor marked as child_subreaper. 740 * Note that the code below checks same_thread_group(reaper, 741 * pid_ns->child_reaper). This is what we need to DTRT in a 742 * PID namespace. However we still need the check above, see 743 * http://marc.info/?l=linux-kernel&m=131385460420380 744 */ 745 for (reaper = father->real_parent; 746 reaper != &init_task; 747 reaper = reaper->real_parent) { 748 if (same_thread_group(reaper, pid_ns->child_reaper)) 749 break; 750 if (!reaper->signal->is_child_subreaper) 751 continue; 752 thread = reaper; 753 do { 754 if (!(thread->flags & PF_EXITING)) 755 return reaper; 756 } while_each_thread(reaper, thread); 757 } 758 } 759 760 return pid_ns->child_reaper; 761 } 762 763 /* 764 * Any that need to be release_task'd are put on the @dead list. 765 */ 766 static void reparent_leader(struct task_struct *father, struct task_struct *p, 767 struct list_head *dead) 768 { 769 list_move_tail(&p->sibling, &p->real_parent->children); 770 771 if (p->exit_state == EXIT_DEAD) 772 return; 773 /* 774 * If this is a threaded reparent there is no need to 775 * notify anyone anything has happened. 776 */ 777 if (same_thread_group(p->real_parent, father)) 778 return; 779 780 /* We don't want people slaying init. */ 781 p->exit_signal = SIGCHLD; 782 783 /* If it has exited notify the new parent about this child's death. */ 784 if (!p->ptrace && 785 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 786 if (do_notify_parent(p, p->exit_signal)) { 787 p->exit_state = EXIT_DEAD; 788 list_move_tail(&p->sibling, dead); 789 } 790 } 791 792 kill_orphaned_pgrp(p, father); 793 } 794 795 static void forget_original_parent(struct task_struct *father) 796 { 797 struct task_struct *p, *n, *reaper; 798 LIST_HEAD(dead_children); 799 800 write_lock_irq(&tasklist_lock); 801 /* 802 * Note that exit_ptrace() and find_new_reaper() might 803 * drop tasklist_lock and reacquire it. 804 */ 805 exit_ptrace(father); 806 reaper = find_new_reaper(father); 807 808 list_for_each_entry_safe(p, n, &father->children, sibling) { 809 struct task_struct *t = p; 810 do { 811 t->real_parent = reaper; 812 if (t->parent == father) { 813 BUG_ON(t->ptrace); 814 t->parent = t->real_parent; 815 } 816 if (t->pdeath_signal) 817 group_send_sig_info(t->pdeath_signal, 818 SEND_SIG_NOINFO, t); 819 } while_each_thread(p, t); 820 reparent_leader(father, p, &dead_children); 821 } 822 write_unlock_irq(&tasklist_lock); 823 824 BUG_ON(!list_empty(&father->children)); 825 826 list_for_each_entry_safe(p, n, &dead_children, sibling) { 827 list_del_init(&p->sibling); 828 release_task(p); 829 } 830 } 831 832 /* 833 * Send signals to all our closest relatives so that they know 834 * to properly mourn us.. 835 */ 836 static void exit_notify(struct task_struct *tsk, int group_dead) 837 { 838 bool autoreap; 839 840 /* 841 * This does two things: 842 * 843 * A. Make init inherit all the child processes 844 * B. Check to see if any process groups have become orphaned 845 * as a result of our exiting, and if they have any stopped 846 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 847 */ 848 forget_original_parent(tsk); 849 exit_task_namespaces(tsk); 850 851 write_lock_irq(&tasklist_lock); 852 if (group_dead) 853 kill_orphaned_pgrp(tsk->group_leader, NULL); 854 855 if (unlikely(tsk->ptrace)) { 856 int sig = thread_group_leader(tsk) && 857 thread_group_empty(tsk) && 858 !ptrace_reparented(tsk) ? 859 tsk->exit_signal : SIGCHLD; 860 autoreap = do_notify_parent(tsk, sig); 861 } else if (thread_group_leader(tsk)) { 862 autoreap = thread_group_empty(tsk) && 863 do_notify_parent(tsk, tsk->exit_signal); 864 } else { 865 autoreap = true; 866 } 867 868 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 869 870 /* mt-exec, de_thread() is waiting for group leader */ 871 if (unlikely(tsk->signal->notify_count < 0)) 872 wake_up_process(tsk->signal->group_exit_task); 873 write_unlock_irq(&tasklist_lock); 874 875 /* If the process is dead, release it - nobody will wait for it */ 876 if (autoreap) 877 release_task(tsk); 878 } 879 880 #ifdef CONFIG_DEBUG_STACK_USAGE 881 static void check_stack_usage(void) 882 { 883 static DEFINE_SPINLOCK(low_water_lock); 884 static int lowest_to_date = THREAD_SIZE; 885 unsigned long free; 886 887 free = stack_not_used(current); 888 889 if (free >= lowest_to_date) 890 return; 891 892 spin_lock(&low_water_lock); 893 if (free < lowest_to_date) { 894 printk(KERN_WARNING "%s (%d) used greatest stack depth: " 895 "%lu bytes left\n", 896 current->comm, task_pid_nr(current), free); 897 lowest_to_date = free; 898 } 899 spin_unlock(&low_water_lock); 900 } 901 #else 902 static inline void check_stack_usage(void) {} 903 #endif 904 905 void do_exit(long code) 906 { 907 struct task_struct *tsk = current; 908 int group_dead; 909 910 profile_task_exit(tsk); 911 912 WARN_ON(blk_needs_flush_plug(tsk)); 913 914 if (unlikely(in_interrupt())) 915 panic("Aiee, killing interrupt handler!"); 916 if (unlikely(!tsk->pid)) 917 panic("Attempted to kill the idle task!"); 918 919 /* 920 * If do_exit is called because this processes oopsed, it's possible 921 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 922 * continuing. Amongst other possible reasons, this is to prevent 923 * mm_release()->clear_child_tid() from writing to a user-controlled 924 * kernel address. 925 */ 926 set_fs(USER_DS); 927 928 ptrace_event(PTRACE_EVENT_EXIT, code); 929 930 validate_creds_for_do_exit(tsk); 931 932 /* 933 * We're taking recursive faults here in do_exit. Safest is to just 934 * leave this task alone and wait for reboot. 935 */ 936 if (unlikely(tsk->flags & PF_EXITING)) { 937 printk(KERN_ALERT 938 "Fixing recursive fault but reboot is needed!\n"); 939 /* 940 * We can do this unlocked here. The futex code uses 941 * this flag just to verify whether the pi state 942 * cleanup has been done or not. In the worst case it 943 * loops once more. We pretend that the cleanup was 944 * done as there is no way to return. Either the 945 * OWNER_DIED bit is set by now or we push the blocked 946 * task into the wait for ever nirwana as well. 947 */ 948 tsk->flags |= PF_EXITPIDONE; 949 set_current_state(TASK_UNINTERRUPTIBLE); 950 schedule(); 951 } 952 953 exit_signals(tsk); /* sets PF_EXITING */ 954 /* 955 * tsk->flags are checked in the futex code to protect against 956 * an exiting task cleaning up the robust pi futexes. 957 */ 958 smp_mb(); 959 raw_spin_unlock_wait(&tsk->pi_lock); 960 961 if (unlikely(in_atomic())) 962 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 963 current->comm, task_pid_nr(current), 964 preempt_count()); 965 966 acct_update_integrals(tsk); 967 /* sync mm's RSS info before statistics gathering */ 968 if (tsk->mm) 969 sync_mm_rss(tsk->mm); 970 group_dead = atomic_dec_and_test(&tsk->signal->live); 971 if (group_dead) { 972 hrtimer_cancel(&tsk->signal->real_timer); 973 exit_itimers(tsk->signal); 974 if (tsk->mm) 975 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 976 } 977 acct_collect(code, group_dead); 978 if (group_dead) 979 tty_audit_exit(); 980 audit_free(tsk); 981 982 tsk->exit_code = code; 983 taskstats_exit(tsk, group_dead); 984 985 exit_mm(tsk); 986 987 if (group_dead) 988 acct_process(); 989 trace_sched_process_exit(tsk); 990 991 exit_sem(tsk); 992 exit_shm(tsk); 993 exit_files(tsk); 994 exit_fs(tsk); 995 exit_task_work(tsk); 996 check_stack_usage(); 997 exit_thread(); 998 999 /* 1000 * Flush inherited counters to the parent - before the parent 1001 * gets woken up by child-exit notifications. 1002 * 1003 * because of cgroup mode, must be called before cgroup_exit() 1004 */ 1005 perf_event_exit_task(tsk); 1006 1007 cgroup_exit(tsk, 1); 1008 1009 if (group_dead) 1010 disassociate_ctty(1); 1011 1012 module_put(task_thread_info(tsk)->exec_domain->module); 1013 1014 proc_exit_connector(tsk); 1015 1016 /* 1017 * FIXME: do that only when needed, using sched_exit tracepoint 1018 */ 1019 ptrace_put_breakpoints(tsk); 1020 1021 exit_notify(tsk, group_dead); 1022 #ifdef CONFIG_NUMA 1023 task_lock(tsk); 1024 mpol_put(tsk->mempolicy); 1025 tsk->mempolicy = NULL; 1026 task_unlock(tsk); 1027 #endif 1028 #ifdef CONFIG_FUTEX 1029 if (unlikely(current->pi_state_cache)) 1030 kfree(current->pi_state_cache); 1031 #endif 1032 /* 1033 * Make sure we are holding no locks: 1034 */ 1035 debug_check_no_locks_held(tsk); 1036 /* 1037 * We can do this unlocked here. The futex code uses this flag 1038 * just to verify whether the pi state cleanup has been done 1039 * or not. In the worst case it loops once more. 1040 */ 1041 tsk->flags |= PF_EXITPIDONE; 1042 1043 if (tsk->io_context) 1044 exit_io_context(tsk); 1045 1046 if (tsk->splice_pipe) 1047 __free_pipe_info(tsk->splice_pipe); 1048 1049 validate_creds_for_do_exit(tsk); 1050 1051 preempt_disable(); 1052 if (tsk->nr_dirtied) 1053 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 1054 exit_rcu(); 1055 1056 /* 1057 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 1058 * when the following two conditions become true. 1059 * - There is race condition of mmap_sem (It is acquired by 1060 * exit_mm()), and 1061 * - SMI occurs before setting TASK_RUNINNG. 1062 * (or hypervisor of virtual machine switches to other guest) 1063 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 1064 * 1065 * To avoid it, we have to wait for releasing tsk->pi_lock which 1066 * is held by try_to_wake_up() 1067 */ 1068 smp_mb(); 1069 raw_spin_unlock_wait(&tsk->pi_lock); 1070 1071 /* causes final put_task_struct in finish_task_switch(). */ 1072 tsk->state = TASK_DEAD; 1073 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 1074 schedule(); 1075 BUG(); 1076 /* Avoid "noreturn function does return". */ 1077 for (;;) 1078 cpu_relax(); /* For when BUG is null */ 1079 } 1080 1081 EXPORT_SYMBOL_GPL(do_exit); 1082 1083 void complete_and_exit(struct completion *comp, long code) 1084 { 1085 if (comp) 1086 complete(comp); 1087 1088 do_exit(code); 1089 } 1090 1091 EXPORT_SYMBOL(complete_and_exit); 1092 1093 SYSCALL_DEFINE1(exit, int, error_code) 1094 { 1095 do_exit((error_code&0xff)<<8); 1096 } 1097 1098 /* 1099 * Take down every thread in the group. This is called by fatal signals 1100 * as well as by sys_exit_group (below). 1101 */ 1102 void 1103 do_group_exit(int exit_code) 1104 { 1105 struct signal_struct *sig = current->signal; 1106 1107 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1108 1109 if (signal_group_exit(sig)) 1110 exit_code = sig->group_exit_code; 1111 else if (!thread_group_empty(current)) { 1112 struct sighand_struct *const sighand = current->sighand; 1113 spin_lock_irq(&sighand->siglock); 1114 if (signal_group_exit(sig)) 1115 /* Another thread got here before we took the lock. */ 1116 exit_code = sig->group_exit_code; 1117 else { 1118 sig->group_exit_code = exit_code; 1119 sig->flags = SIGNAL_GROUP_EXIT; 1120 zap_other_threads(current); 1121 } 1122 spin_unlock_irq(&sighand->siglock); 1123 } 1124 1125 do_exit(exit_code); 1126 /* NOTREACHED */ 1127 } 1128 1129 /* 1130 * this kills every thread in the thread group. Note that any externally 1131 * wait4()-ing process will get the correct exit code - even if this 1132 * thread is not the thread group leader. 1133 */ 1134 SYSCALL_DEFINE1(exit_group, int, error_code) 1135 { 1136 do_group_exit((error_code & 0xff) << 8); 1137 /* NOTREACHED */ 1138 return 0; 1139 } 1140 1141 struct wait_opts { 1142 enum pid_type wo_type; 1143 int wo_flags; 1144 struct pid *wo_pid; 1145 1146 struct siginfo __user *wo_info; 1147 int __user *wo_stat; 1148 struct rusage __user *wo_rusage; 1149 1150 wait_queue_t child_wait; 1151 int notask_error; 1152 }; 1153 1154 static inline 1155 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1156 { 1157 if (type != PIDTYPE_PID) 1158 task = task->group_leader; 1159 return task->pids[type].pid; 1160 } 1161 1162 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1163 { 1164 return wo->wo_type == PIDTYPE_MAX || 1165 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1166 } 1167 1168 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1169 { 1170 if (!eligible_pid(wo, p)) 1171 return 0; 1172 /* Wait for all children (clone and not) if __WALL is set; 1173 * otherwise, wait for clone children *only* if __WCLONE is 1174 * set; otherwise, wait for non-clone children *only*. (Note: 1175 * A "clone" child here is one that reports to its parent 1176 * using a signal other than SIGCHLD.) */ 1177 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1178 && !(wo->wo_flags & __WALL)) 1179 return 0; 1180 1181 return 1; 1182 } 1183 1184 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1185 pid_t pid, uid_t uid, int why, int status) 1186 { 1187 struct siginfo __user *infop; 1188 int retval = wo->wo_rusage 1189 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1190 1191 put_task_struct(p); 1192 infop = wo->wo_info; 1193 if (infop) { 1194 if (!retval) 1195 retval = put_user(SIGCHLD, &infop->si_signo); 1196 if (!retval) 1197 retval = put_user(0, &infop->si_errno); 1198 if (!retval) 1199 retval = put_user((short)why, &infop->si_code); 1200 if (!retval) 1201 retval = put_user(pid, &infop->si_pid); 1202 if (!retval) 1203 retval = put_user(uid, &infop->si_uid); 1204 if (!retval) 1205 retval = put_user(status, &infop->si_status); 1206 } 1207 if (!retval) 1208 retval = pid; 1209 return retval; 1210 } 1211 1212 /* 1213 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1214 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1215 * the lock and this task is uninteresting. If we return nonzero, we have 1216 * released the lock and the system call should return. 1217 */ 1218 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1219 { 1220 unsigned long state; 1221 int retval, status, traced; 1222 pid_t pid = task_pid_vnr(p); 1223 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1224 struct siginfo __user *infop; 1225 1226 if (!likely(wo->wo_flags & WEXITED)) 1227 return 0; 1228 1229 if (unlikely(wo->wo_flags & WNOWAIT)) { 1230 int exit_code = p->exit_code; 1231 int why; 1232 1233 get_task_struct(p); 1234 read_unlock(&tasklist_lock); 1235 if ((exit_code & 0x7f) == 0) { 1236 why = CLD_EXITED; 1237 status = exit_code >> 8; 1238 } else { 1239 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1240 status = exit_code & 0x7f; 1241 } 1242 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1243 } 1244 1245 /* 1246 * Try to move the task's state to DEAD 1247 * only one thread is allowed to do this: 1248 */ 1249 state = xchg(&p->exit_state, EXIT_DEAD); 1250 if (state != EXIT_ZOMBIE) { 1251 BUG_ON(state != EXIT_DEAD); 1252 return 0; 1253 } 1254 1255 traced = ptrace_reparented(p); 1256 /* 1257 * It can be ptraced but not reparented, check 1258 * thread_group_leader() to filter out sub-threads. 1259 */ 1260 if (likely(!traced) && thread_group_leader(p)) { 1261 struct signal_struct *psig; 1262 struct signal_struct *sig; 1263 unsigned long maxrss; 1264 cputime_t tgutime, tgstime; 1265 1266 /* 1267 * The resource counters for the group leader are in its 1268 * own task_struct. Those for dead threads in the group 1269 * are in its signal_struct, as are those for the child 1270 * processes it has previously reaped. All these 1271 * accumulate in the parent's signal_struct c* fields. 1272 * 1273 * We don't bother to take a lock here to protect these 1274 * p->signal fields, because they are only touched by 1275 * __exit_signal, which runs with tasklist_lock 1276 * write-locked anyway, and so is excluded here. We do 1277 * need to protect the access to parent->signal fields, 1278 * as other threads in the parent group can be right 1279 * here reaping other children at the same time. 1280 * 1281 * We use thread_group_times() to get times for the thread 1282 * group, which consolidates times for all threads in the 1283 * group including the group leader. 1284 */ 1285 thread_group_times(p, &tgutime, &tgstime); 1286 spin_lock_irq(&p->real_parent->sighand->siglock); 1287 psig = p->real_parent->signal; 1288 sig = p->signal; 1289 psig->cutime += tgutime + sig->cutime; 1290 psig->cstime += tgstime + sig->cstime; 1291 psig->cgtime += p->gtime + sig->gtime + sig->cgtime; 1292 psig->cmin_flt += 1293 p->min_flt + sig->min_flt + sig->cmin_flt; 1294 psig->cmaj_flt += 1295 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1296 psig->cnvcsw += 1297 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1298 psig->cnivcsw += 1299 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1300 psig->cinblock += 1301 task_io_get_inblock(p) + 1302 sig->inblock + sig->cinblock; 1303 psig->coublock += 1304 task_io_get_oublock(p) + 1305 sig->oublock + sig->coublock; 1306 maxrss = max(sig->maxrss, sig->cmaxrss); 1307 if (psig->cmaxrss < maxrss) 1308 psig->cmaxrss = maxrss; 1309 task_io_accounting_add(&psig->ioac, &p->ioac); 1310 task_io_accounting_add(&psig->ioac, &sig->ioac); 1311 spin_unlock_irq(&p->real_parent->sighand->siglock); 1312 } 1313 1314 /* 1315 * Now we are sure this task is interesting, and no other 1316 * thread can reap it because we set its state to EXIT_DEAD. 1317 */ 1318 read_unlock(&tasklist_lock); 1319 1320 retval = wo->wo_rusage 1321 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1322 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1323 ? p->signal->group_exit_code : p->exit_code; 1324 if (!retval && wo->wo_stat) 1325 retval = put_user(status, wo->wo_stat); 1326 1327 infop = wo->wo_info; 1328 if (!retval && infop) 1329 retval = put_user(SIGCHLD, &infop->si_signo); 1330 if (!retval && infop) 1331 retval = put_user(0, &infop->si_errno); 1332 if (!retval && infop) { 1333 int why; 1334 1335 if ((status & 0x7f) == 0) { 1336 why = CLD_EXITED; 1337 status >>= 8; 1338 } else { 1339 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1340 status &= 0x7f; 1341 } 1342 retval = put_user((short)why, &infop->si_code); 1343 if (!retval) 1344 retval = put_user(status, &infop->si_status); 1345 } 1346 if (!retval && infop) 1347 retval = put_user(pid, &infop->si_pid); 1348 if (!retval && infop) 1349 retval = put_user(uid, &infop->si_uid); 1350 if (!retval) 1351 retval = pid; 1352 1353 if (traced) { 1354 write_lock_irq(&tasklist_lock); 1355 /* We dropped tasklist, ptracer could die and untrace */ 1356 ptrace_unlink(p); 1357 /* 1358 * If this is not a sub-thread, notify the parent. 1359 * If parent wants a zombie, don't release it now. 1360 */ 1361 if (thread_group_leader(p) && 1362 !do_notify_parent(p, p->exit_signal)) { 1363 p->exit_state = EXIT_ZOMBIE; 1364 p = NULL; 1365 } 1366 write_unlock_irq(&tasklist_lock); 1367 } 1368 if (p != NULL) 1369 release_task(p); 1370 1371 return retval; 1372 } 1373 1374 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1375 { 1376 if (ptrace) { 1377 if (task_is_stopped_or_traced(p) && 1378 !(p->jobctl & JOBCTL_LISTENING)) 1379 return &p->exit_code; 1380 } else { 1381 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1382 return &p->signal->group_exit_code; 1383 } 1384 return NULL; 1385 } 1386 1387 /** 1388 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1389 * @wo: wait options 1390 * @ptrace: is the wait for ptrace 1391 * @p: task to wait for 1392 * 1393 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1394 * 1395 * CONTEXT: 1396 * read_lock(&tasklist_lock), which is released if return value is 1397 * non-zero. Also, grabs and releases @p->sighand->siglock. 1398 * 1399 * RETURNS: 1400 * 0 if wait condition didn't exist and search for other wait conditions 1401 * should continue. Non-zero return, -errno on failure and @p's pid on 1402 * success, implies that tasklist_lock is released and wait condition 1403 * search should terminate. 1404 */ 1405 static int wait_task_stopped(struct wait_opts *wo, 1406 int ptrace, struct task_struct *p) 1407 { 1408 struct siginfo __user *infop; 1409 int retval, exit_code, *p_code, why; 1410 uid_t uid = 0; /* unneeded, required by compiler */ 1411 pid_t pid; 1412 1413 /* 1414 * Traditionally we see ptrace'd stopped tasks regardless of options. 1415 */ 1416 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1417 return 0; 1418 1419 if (!task_stopped_code(p, ptrace)) 1420 return 0; 1421 1422 exit_code = 0; 1423 spin_lock_irq(&p->sighand->siglock); 1424 1425 p_code = task_stopped_code(p, ptrace); 1426 if (unlikely(!p_code)) 1427 goto unlock_sig; 1428 1429 exit_code = *p_code; 1430 if (!exit_code) 1431 goto unlock_sig; 1432 1433 if (!unlikely(wo->wo_flags & WNOWAIT)) 1434 *p_code = 0; 1435 1436 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1437 unlock_sig: 1438 spin_unlock_irq(&p->sighand->siglock); 1439 if (!exit_code) 1440 return 0; 1441 1442 /* 1443 * Now we are pretty sure this task is interesting. 1444 * Make sure it doesn't get reaped out from under us while we 1445 * give up the lock and then examine it below. We don't want to 1446 * keep holding onto the tasklist_lock while we call getrusage and 1447 * possibly take page faults for user memory. 1448 */ 1449 get_task_struct(p); 1450 pid = task_pid_vnr(p); 1451 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1452 read_unlock(&tasklist_lock); 1453 1454 if (unlikely(wo->wo_flags & WNOWAIT)) 1455 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1456 1457 retval = wo->wo_rusage 1458 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1459 if (!retval && wo->wo_stat) 1460 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1461 1462 infop = wo->wo_info; 1463 if (!retval && infop) 1464 retval = put_user(SIGCHLD, &infop->si_signo); 1465 if (!retval && infop) 1466 retval = put_user(0, &infop->si_errno); 1467 if (!retval && infop) 1468 retval = put_user((short)why, &infop->si_code); 1469 if (!retval && infop) 1470 retval = put_user(exit_code, &infop->si_status); 1471 if (!retval && infop) 1472 retval = put_user(pid, &infop->si_pid); 1473 if (!retval && infop) 1474 retval = put_user(uid, &infop->si_uid); 1475 if (!retval) 1476 retval = pid; 1477 put_task_struct(p); 1478 1479 BUG_ON(!retval); 1480 return retval; 1481 } 1482 1483 /* 1484 * Handle do_wait work for one task in a live, non-stopped state. 1485 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1486 * the lock and this task is uninteresting. If we return nonzero, we have 1487 * released the lock and the system call should return. 1488 */ 1489 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1490 { 1491 int retval; 1492 pid_t pid; 1493 uid_t uid; 1494 1495 if (!unlikely(wo->wo_flags & WCONTINUED)) 1496 return 0; 1497 1498 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1499 return 0; 1500 1501 spin_lock_irq(&p->sighand->siglock); 1502 /* Re-check with the lock held. */ 1503 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1504 spin_unlock_irq(&p->sighand->siglock); 1505 return 0; 1506 } 1507 if (!unlikely(wo->wo_flags & WNOWAIT)) 1508 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1509 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1510 spin_unlock_irq(&p->sighand->siglock); 1511 1512 pid = task_pid_vnr(p); 1513 get_task_struct(p); 1514 read_unlock(&tasklist_lock); 1515 1516 if (!wo->wo_info) { 1517 retval = wo->wo_rusage 1518 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1519 put_task_struct(p); 1520 if (!retval && wo->wo_stat) 1521 retval = put_user(0xffff, wo->wo_stat); 1522 if (!retval) 1523 retval = pid; 1524 } else { 1525 retval = wait_noreap_copyout(wo, p, pid, uid, 1526 CLD_CONTINUED, SIGCONT); 1527 BUG_ON(retval == 0); 1528 } 1529 1530 return retval; 1531 } 1532 1533 /* 1534 * Consider @p for a wait by @parent. 1535 * 1536 * -ECHILD should be in ->notask_error before the first call. 1537 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1538 * Returns zero if the search for a child should continue; 1539 * then ->notask_error is 0 if @p is an eligible child, 1540 * or another error from security_task_wait(), or still -ECHILD. 1541 */ 1542 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1543 struct task_struct *p) 1544 { 1545 int ret = eligible_child(wo, p); 1546 if (!ret) 1547 return ret; 1548 1549 ret = security_task_wait(p); 1550 if (unlikely(ret < 0)) { 1551 /* 1552 * If we have not yet seen any eligible child, 1553 * then let this error code replace -ECHILD. 1554 * A permission error will give the user a clue 1555 * to look for security policy problems, rather 1556 * than for mysterious wait bugs. 1557 */ 1558 if (wo->notask_error) 1559 wo->notask_error = ret; 1560 return 0; 1561 } 1562 1563 /* dead body doesn't have much to contribute */ 1564 if (unlikely(p->exit_state == EXIT_DEAD)) { 1565 /* 1566 * But do not ignore this task until the tracer does 1567 * wait_task_zombie()->do_notify_parent(). 1568 */ 1569 if (likely(!ptrace) && unlikely(ptrace_reparented(p))) 1570 wo->notask_error = 0; 1571 return 0; 1572 } 1573 1574 /* slay zombie? */ 1575 if (p->exit_state == EXIT_ZOMBIE) { 1576 /* 1577 * A zombie ptracee is only visible to its ptracer. 1578 * Notification and reaping will be cascaded to the real 1579 * parent when the ptracer detaches. 1580 */ 1581 if (likely(!ptrace) && unlikely(p->ptrace)) { 1582 /* it will become visible, clear notask_error */ 1583 wo->notask_error = 0; 1584 return 0; 1585 } 1586 1587 /* we don't reap group leaders with subthreads */ 1588 if (!delay_group_leader(p)) 1589 return wait_task_zombie(wo, p); 1590 1591 /* 1592 * Allow access to stopped/continued state via zombie by 1593 * falling through. Clearing of notask_error is complex. 1594 * 1595 * When !@ptrace: 1596 * 1597 * If WEXITED is set, notask_error should naturally be 1598 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1599 * so, if there are live subthreads, there are events to 1600 * wait for. If all subthreads are dead, it's still safe 1601 * to clear - this function will be called again in finite 1602 * amount time once all the subthreads are released and 1603 * will then return without clearing. 1604 * 1605 * When @ptrace: 1606 * 1607 * Stopped state is per-task and thus can't change once the 1608 * target task dies. Only continued and exited can happen. 1609 * Clear notask_error if WCONTINUED | WEXITED. 1610 */ 1611 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1612 wo->notask_error = 0; 1613 } else { 1614 /* 1615 * If @p is ptraced by a task in its real parent's group, 1616 * hide group stop/continued state when looking at @p as 1617 * the real parent; otherwise, a single stop can be 1618 * reported twice as group and ptrace stops. 1619 * 1620 * If a ptracer wants to distinguish the two events for its 1621 * own children, it should create a separate process which 1622 * takes the role of real parent. 1623 */ 1624 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p)) 1625 return 0; 1626 1627 /* 1628 * @p is alive and it's gonna stop, continue or exit, so 1629 * there always is something to wait for. 1630 */ 1631 wo->notask_error = 0; 1632 } 1633 1634 /* 1635 * Wait for stopped. Depending on @ptrace, different stopped state 1636 * is used and the two don't interact with each other. 1637 */ 1638 ret = wait_task_stopped(wo, ptrace, p); 1639 if (ret) 1640 return ret; 1641 1642 /* 1643 * Wait for continued. There's only one continued state and the 1644 * ptracer can consume it which can confuse the real parent. Don't 1645 * use WCONTINUED from ptracer. You don't need or want it. 1646 */ 1647 return wait_task_continued(wo, p); 1648 } 1649 1650 /* 1651 * Do the work of do_wait() for one thread in the group, @tsk. 1652 * 1653 * -ECHILD should be in ->notask_error before the first call. 1654 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1655 * Returns zero if the search for a child should continue; then 1656 * ->notask_error is 0 if there were any eligible children, 1657 * or another error from security_task_wait(), or still -ECHILD. 1658 */ 1659 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1660 { 1661 struct task_struct *p; 1662 1663 list_for_each_entry(p, &tsk->children, sibling) { 1664 int ret = wait_consider_task(wo, 0, p); 1665 if (ret) 1666 return ret; 1667 } 1668 1669 return 0; 1670 } 1671 1672 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1673 { 1674 struct task_struct *p; 1675 1676 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1677 int ret = wait_consider_task(wo, 1, p); 1678 if (ret) 1679 return ret; 1680 } 1681 1682 return 0; 1683 } 1684 1685 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1686 int sync, void *key) 1687 { 1688 struct wait_opts *wo = container_of(wait, struct wait_opts, 1689 child_wait); 1690 struct task_struct *p = key; 1691 1692 if (!eligible_pid(wo, p)) 1693 return 0; 1694 1695 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1696 return 0; 1697 1698 return default_wake_function(wait, mode, sync, key); 1699 } 1700 1701 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1702 { 1703 __wake_up_sync_key(&parent->signal->wait_chldexit, 1704 TASK_INTERRUPTIBLE, 1, p); 1705 } 1706 1707 static long do_wait(struct wait_opts *wo) 1708 { 1709 struct task_struct *tsk; 1710 int retval; 1711 1712 trace_sched_process_wait(wo->wo_pid); 1713 1714 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1715 wo->child_wait.private = current; 1716 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1717 repeat: 1718 /* 1719 * If there is nothing that can match our critiera just get out. 1720 * We will clear ->notask_error to zero if we see any child that 1721 * might later match our criteria, even if we are not able to reap 1722 * it yet. 1723 */ 1724 wo->notask_error = -ECHILD; 1725 if ((wo->wo_type < PIDTYPE_MAX) && 1726 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1727 goto notask; 1728 1729 set_current_state(TASK_INTERRUPTIBLE); 1730 read_lock(&tasklist_lock); 1731 tsk = current; 1732 do { 1733 retval = do_wait_thread(wo, tsk); 1734 if (retval) 1735 goto end; 1736 1737 retval = ptrace_do_wait(wo, tsk); 1738 if (retval) 1739 goto end; 1740 1741 if (wo->wo_flags & __WNOTHREAD) 1742 break; 1743 } while_each_thread(current, tsk); 1744 read_unlock(&tasklist_lock); 1745 1746 notask: 1747 retval = wo->notask_error; 1748 if (!retval && !(wo->wo_flags & WNOHANG)) { 1749 retval = -ERESTARTSYS; 1750 if (!signal_pending(current)) { 1751 schedule(); 1752 goto repeat; 1753 } 1754 } 1755 end: 1756 __set_current_state(TASK_RUNNING); 1757 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1758 return retval; 1759 } 1760 1761 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1762 infop, int, options, struct rusage __user *, ru) 1763 { 1764 struct wait_opts wo; 1765 struct pid *pid = NULL; 1766 enum pid_type type; 1767 long ret; 1768 1769 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1770 return -EINVAL; 1771 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1772 return -EINVAL; 1773 1774 switch (which) { 1775 case P_ALL: 1776 type = PIDTYPE_MAX; 1777 break; 1778 case P_PID: 1779 type = PIDTYPE_PID; 1780 if (upid <= 0) 1781 return -EINVAL; 1782 break; 1783 case P_PGID: 1784 type = PIDTYPE_PGID; 1785 if (upid <= 0) 1786 return -EINVAL; 1787 break; 1788 default: 1789 return -EINVAL; 1790 } 1791 1792 if (type < PIDTYPE_MAX) 1793 pid = find_get_pid(upid); 1794 1795 wo.wo_type = type; 1796 wo.wo_pid = pid; 1797 wo.wo_flags = options; 1798 wo.wo_info = infop; 1799 wo.wo_stat = NULL; 1800 wo.wo_rusage = ru; 1801 ret = do_wait(&wo); 1802 1803 if (ret > 0) { 1804 ret = 0; 1805 } else if (infop) { 1806 /* 1807 * For a WNOHANG return, clear out all the fields 1808 * we would set so the user can easily tell the 1809 * difference. 1810 */ 1811 if (!ret) 1812 ret = put_user(0, &infop->si_signo); 1813 if (!ret) 1814 ret = put_user(0, &infop->si_errno); 1815 if (!ret) 1816 ret = put_user(0, &infop->si_code); 1817 if (!ret) 1818 ret = put_user(0, &infop->si_pid); 1819 if (!ret) 1820 ret = put_user(0, &infop->si_uid); 1821 if (!ret) 1822 ret = put_user(0, &infop->si_status); 1823 } 1824 1825 put_pid(pid); 1826 1827 /* avoid REGPARM breakage on x86: */ 1828 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1829 return ret; 1830 } 1831 1832 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1833 int, options, struct rusage __user *, ru) 1834 { 1835 struct wait_opts wo; 1836 struct pid *pid = NULL; 1837 enum pid_type type; 1838 long ret; 1839 1840 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1841 __WNOTHREAD|__WCLONE|__WALL)) 1842 return -EINVAL; 1843 1844 if (upid == -1) 1845 type = PIDTYPE_MAX; 1846 else if (upid < 0) { 1847 type = PIDTYPE_PGID; 1848 pid = find_get_pid(-upid); 1849 } else if (upid == 0) { 1850 type = PIDTYPE_PGID; 1851 pid = get_task_pid(current, PIDTYPE_PGID); 1852 } else /* upid > 0 */ { 1853 type = PIDTYPE_PID; 1854 pid = find_get_pid(upid); 1855 } 1856 1857 wo.wo_type = type; 1858 wo.wo_pid = pid; 1859 wo.wo_flags = options | WEXITED; 1860 wo.wo_info = NULL; 1861 wo.wo_stat = stat_addr; 1862 wo.wo_rusage = ru; 1863 ret = do_wait(&wo); 1864 put_pid(pid); 1865 1866 /* avoid REGPARM breakage on x86: */ 1867 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1868 return ret; 1869 } 1870 1871 #ifdef __ARCH_WANT_SYS_WAITPID 1872 1873 /* 1874 * sys_waitpid() remains for compatibility. waitpid() should be 1875 * implemented by calling sys_wait4() from libc.a. 1876 */ 1877 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1878 { 1879 return sys_wait4(pid, stat_addr, options, NULL); 1880 } 1881 1882 #endif 1883