1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/blkdev.h> 53 #include <linux/task_work.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/kmsan.h> 64 #include <linux/random.h> 65 #include <linux/rcuwait.h> 66 #include <linux/compat.h> 67 #include <linux/io_uring.h> 68 #include <linux/kprobes.h> 69 #include <linux/rethook.h> 70 #include <linux/sysfs.h> 71 #include <linux/user_events.h> 72 73 #include <linux/uaccess.h> 74 #include <asm/unistd.h> 75 #include <asm/mmu_context.h> 76 77 /* 78 * The default value should be high enough to not crash a system that randomly 79 * crashes its kernel from time to time, but low enough to at least not permit 80 * overflowing 32-bit refcounts or the ldsem writer count. 81 */ 82 static unsigned int oops_limit = 10000; 83 84 #ifdef CONFIG_SYSCTL 85 static struct ctl_table kern_exit_table[] = { 86 { 87 .procname = "oops_limit", 88 .data = &oops_limit, 89 .maxlen = sizeof(oops_limit), 90 .mode = 0644, 91 .proc_handler = proc_douintvec, 92 }, 93 { } 94 }; 95 96 static __init int kernel_exit_sysctls_init(void) 97 { 98 register_sysctl_init("kernel", kern_exit_table); 99 return 0; 100 } 101 late_initcall(kernel_exit_sysctls_init); 102 #endif 103 104 static atomic_t oops_count = ATOMIC_INIT(0); 105 106 #ifdef CONFIG_SYSFS 107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 108 char *page) 109 { 110 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 111 } 112 113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 114 115 static __init int kernel_exit_sysfs_init(void) 116 { 117 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 118 return 0; 119 } 120 late_initcall(kernel_exit_sysfs_init); 121 #endif 122 123 static void __unhash_process(struct task_struct *p, bool group_dead) 124 { 125 nr_threads--; 126 detach_pid(p, PIDTYPE_PID); 127 if (group_dead) { 128 detach_pid(p, PIDTYPE_TGID); 129 detach_pid(p, PIDTYPE_PGID); 130 detach_pid(p, PIDTYPE_SID); 131 132 list_del_rcu(&p->tasks); 133 list_del_init(&p->sibling); 134 __this_cpu_dec(process_counts); 135 } 136 list_del_rcu(&p->thread_group); 137 list_del_rcu(&p->thread_node); 138 } 139 140 /* 141 * This function expects the tasklist_lock write-locked. 142 */ 143 static void __exit_signal(struct task_struct *tsk) 144 { 145 struct signal_struct *sig = tsk->signal; 146 bool group_dead = thread_group_leader(tsk); 147 struct sighand_struct *sighand; 148 struct tty_struct *tty; 149 u64 utime, stime; 150 151 sighand = rcu_dereference_check(tsk->sighand, 152 lockdep_tasklist_lock_is_held()); 153 spin_lock(&sighand->siglock); 154 155 #ifdef CONFIG_POSIX_TIMERS 156 posix_cpu_timers_exit(tsk); 157 if (group_dead) 158 posix_cpu_timers_exit_group(tsk); 159 #endif 160 161 if (group_dead) { 162 tty = sig->tty; 163 sig->tty = NULL; 164 } else { 165 /* 166 * If there is any task waiting for the group exit 167 * then notify it: 168 */ 169 if (sig->notify_count > 0 && !--sig->notify_count) 170 wake_up_process(sig->group_exec_task); 171 172 if (tsk == sig->curr_target) 173 sig->curr_target = next_thread(tsk); 174 } 175 176 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 177 sizeof(unsigned long long)); 178 179 /* 180 * Accumulate here the counters for all threads as they die. We could 181 * skip the group leader because it is the last user of signal_struct, 182 * but we want to avoid the race with thread_group_cputime() which can 183 * see the empty ->thread_head list. 184 */ 185 task_cputime(tsk, &utime, &stime); 186 write_seqlock(&sig->stats_lock); 187 sig->utime += utime; 188 sig->stime += stime; 189 sig->gtime += task_gtime(tsk); 190 sig->min_flt += tsk->min_flt; 191 sig->maj_flt += tsk->maj_flt; 192 sig->nvcsw += tsk->nvcsw; 193 sig->nivcsw += tsk->nivcsw; 194 sig->inblock += task_io_get_inblock(tsk); 195 sig->oublock += task_io_get_oublock(tsk); 196 task_io_accounting_add(&sig->ioac, &tsk->ioac); 197 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 198 sig->nr_threads--; 199 __unhash_process(tsk, group_dead); 200 write_sequnlock(&sig->stats_lock); 201 202 /* 203 * Do this under ->siglock, we can race with another thread 204 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 205 */ 206 flush_sigqueue(&tsk->pending); 207 tsk->sighand = NULL; 208 spin_unlock(&sighand->siglock); 209 210 __cleanup_sighand(sighand); 211 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 212 if (group_dead) { 213 flush_sigqueue(&sig->shared_pending); 214 tty_kref_put(tty); 215 } 216 } 217 218 static void delayed_put_task_struct(struct rcu_head *rhp) 219 { 220 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 221 222 kprobe_flush_task(tsk); 223 rethook_flush_task(tsk); 224 perf_event_delayed_put(tsk); 225 trace_sched_process_free(tsk); 226 put_task_struct(tsk); 227 } 228 229 void put_task_struct_rcu_user(struct task_struct *task) 230 { 231 if (refcount_dec_and_test(&task->rcu_users)) 232 call_rcu(&task->rcu, delayed_put_task_struct); 233 } 234 235 void __weak release_thread(struct task_struct *dead_task) 236 { 237 } 238 239 void release_task(struct task_struct *p) 240 { 241 struct task_struct *leader; 242 struct pid *thread_pid; 243 int zap_leader; 244 repeat: 245 /* don't need to get the RCU readlock here - the process is dead and 246 * can't be modifying its own credentials. But shut RCU-lockdep up */ 247 rcu_read_lock(); 248 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 249 rcu_read_unlock(); 250 251 cgroup_release(p); 252 253 write_lock_irq(&tasklist_lock); 254 ptrace_release_task(p); 255 thread_pid = get_pid(p->thread_pid); 256 __exit_signal(p); 257 258 /* 259 * If we are the last non-leader member of the thread 260 * group, and the leader is zombie, then notify the 261 * group leader's parent process. (if it wants notification.) 262 */ 263 zap_leader = 0; 264 leader = p->group_leader; 265 if (leader != p && thread_group_empty(leader) 266 && leader->exit_state == EXIT_ZOMBIE) { 267 /* 268 * If we were the last child thread and the leader has 269 * exited already, and the leader's parent ignores SIGCHLD, 270 * then we are the one who should release the leader. 271 */ 272 zap_leader = do_notify_parent(leader, leader->exit_signal); 273 if (zap_leader) 274 leader->exit_state = EXIT_DEAD; 275 } 276 277 write_unlock_irq(&tasklist_lock); 278 seccomp_filter_release(p); 279 proc_flush_pid(thread_pid); 280 put_pid(thread_pid); 281 release_thread(p); 282 put_task_struct_rcu_user(p); 283 284 p = leader; 285 if (unlikely(zap_leader)) 286 goto repeat; 287 } 288 289 int rcuwait_wake_up(struct rcuwait *w) 290 { 291 int ret = 0; 292 struct task_struct *task; 293 294 rcu_read_lock(); 295 296 /* 297 * Order condition vs @task, such that everything prior to the load 298 * of @task is visible. This is the condition as to why the user called 299 * rcuwait_wake() in the first place. Pairs with set_current_state() 300 * barrier (A) in rcuwait_wait_event(). 301 * 302 * WAIT WAKE 303 * [S] tsk = current [S] cond = true 304 * MB (A) MB (B) 305 * [L] cond [L] tsk 306 */ 307 smp_mb(); /* (B) */ 308 309 task = rcu_dereference(w->task); 310 if (task) 311 ret = wake_up_process(task); 312 rcu_read_unlock(); 313 314 return ret; 315 } 316 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 317 318 /* 319 * Determine if a process group is "orphaned", according to the POSIX 320 * definition in 2.2.2.52. Orphaned process groups are not to be affected 321 * by terminal-generated stop signals. Newly orphaned process groups are 322 * to receive a SIGHUP and a SIGCONT. 323 * 324 * "I ask you, have you ever known what it is to be an orphan?" 325 */ 326 static int will_become_orphaned_pgrp(struct pid *pgrp, 327 struct task_struct *ignored_task) 328 { 329 struct task_struct *p; 330 331 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 332 if ((p == ignored_task) || 333 (p->exit_state && thread_group_empty(p)) || 334 is_global_init(p->real_parent)) 335 continue; 336 337 if (task_pgrp(p->real_parent) != pgrp && 338 task_session(p->real_parent) == task_session(p)) 339 return 0; 340 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 341 342 return 1; 343 } 344 345 int is_current_pgrp_orphaned(void) 346 { 347 int retval; 348 349 read_lock(&tasklist_lock); 350 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 351 read_unlock(&tasklist_lock); 352 353 return retval; 354 } 355 356 static bool has_stopped_jobs(struct pid *pgrp) 357 { 358 struct task_struct *p; 359 360 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 361 if (p->signal->flags & SIGNAL_STOP_STOPPED) 362 return true; 363 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 364 365 return false; 366 } 367 368 /* 369 * Check to see if any process groups have become orphaned as 370 * a result of our exiting, and if they have any stopped jobs, 371 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 372 */ 373 static void 374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 375 { 376 struct pid *pgrp = task_pgrp(tsk); 377 struct task_struct *ignored_task = tsk; 378 379 if (!parent) 380 /* exit: our father is in a different pgrp than 381 * we are and we were the only connection outside. 382 */ 383 parent = tsk->real_parent; 384 else 385 /* reparent: our child is in a different pgrp than 386 * we are, and it was the only connection outside. 387 */ 388 ignored_task = NULL; 389 390 if (task_pgrp(parent) != pgrp && 391 task_session(parent) == task_session(tsk) && 392 will_become_orphaned_pgrp(pgrp, ignored_task) && 393 has_stopped_jobs(pgrp)) { 394 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 395 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 396 } 397 } 398 399 static void coredump_task_exit(struct task_struct *tsk) 400 { 401 struct core_state *core_state; 402 403 /* 404 * Serialize with any possible pending coredump. 405 * We must hold siglock around checking core_state 406 * and setting PF_POSTCOREDUMP. The core-inducing thread 407 * will increment ->nr_threads for each thread in the 408 * group without PF_POSTCOREDUMP set. 409 */ 410 spin_lock_irq(&tsk->sighand->siglock); 411 tsk->flags |= PF_POSTCOREDUMP; 412 core_state = tsk->signal->core_state; 413 spin_unlock_irq(&tsk->sighand->siglock); 414 415 /* The vhost_worker does not particpate in coredumps */ 416 if (core_state && 417 ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) { 418 struct core_thread self; 419 420 self.task = current; 421 if (self.task->flags & PF_SIGNALED) 422 self.next = xchg(&core_state->dumper.next, &self); 423 else 424 self.task = NULL; 425 /* 426 * Implies mb(), the result of xchg() must be visible 427 * to core_state->dumper. 428 */ 429 if (atomic_dec_and_test(&core_state->nr_threads)) 430 complete(&core_state->startup); 431 432 for (;;) { 433 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); 434 if (!self.task) /* see coredump_finish() */ 435 break; 436 schedule(); 437 } 438 __set_current_state(TASK_RUNNING); 439 } 440 } 441 442 #ifdef CONFIG_MEMCG 443 /* 444 * A task is exiting. If it owned this mm, find a new owner for the mm. 445 */ 446 void mm_update_next_owner(struct mm_struct *mm) 447 { 448 struct task_struct *c, *g, *p = current; 449 450 retry: 451 /* 452 * If the exiting or execing task is not the owner, it's 453 * someone else's problem. 454 */ 455 if (mm->owner != p) 456 return; 457 /* 458 * The current owner is exiting/execing and there are no other 459 * candidates. Do not leave the mm pointing to a possibly 460 * freed task structure. 461 */ 462 if (atomic_read(&mm->mm_users) <= 1) { 463 WRITE_ONCE(mm->owner, NULL); 464 return; 465 } 466 467 read_lock(&tasklist_lock); 468 /* 469 * Search in the children 470 */ 471 list_for_each_entry(c, &p->children, sibling) { 472 if (c->mm == mm) 473 goto assign_new_owner; 474 } 475 476 /* 477 * Search in the siblings 478 */ 479 list_for_each_entry(c, &p->real_parent->children, sibling) { 480 if (c->mm == mm) 481 goto assign_new_owner; 482 } 483 484 /* 485 * Search through everything else, we should not get here often. 486 */ 487 for_each_process(g) { 488 if (g->flags & PF_KTHREAD) 489 continue; 490 for_each_thread(g, c) { 491 if (c->mm == mm) 492 goto assign_new_owner; 493 if (c->mm) 494 break; 495 } 496 } 497 read_unlock(&tasklist_lock); 498 /* 499 * We found no owner yet mm_users > 1: this implies that we are 500 * most likely racing with swapoff (try_to_unuse()) or /proc or 501 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 502 */ 503 WRITE_ONCE(mm->owner, NULL); 504 return; 505 506 assign_new_owner: 507 BUG_ON(c == p); 508 get_task_struct(c); 509 /* 510 * The task_lock protects c->mm from changing. 511 * We always want mm->owner->mm == mm 512 */ 513 task_lock(c); 514 /* 515 * Delay read_unlock() till we have the task_lock() 516 * to ensure that c does not slip away underneath us 517 */ 518 read_unlock(&tasklist_lock); 519 if (c->mm != mm) { 520 task_unlock(c); 521 put_task_struct(c); 522 goto retry; 523 } 524 WRITE_ONCE(mm->owner, c); 525 lru_gen_migrate_mm(mm); 526 task_unlock(c); 527 put_task_struct(c); 528 } 529 #endif /* CONFIG_MEMCG */ 530 531 /* 532 * Turn us into a lazy TLB process if we 533 * aren't already.. 534 */ 535 static void exit_mm(void) 536 { 537 struct mm_struct *mm = current->mm; 538 539 exit_mm_release(current, mm); 540 if (!mm) 541 return; 542 sync_mm_rss(mm); 543 mmap_read_lock(mm); 544 mmgrab_lazy_tlb(mm); 545 BUG_ON(mm != current->active_mm); 546 /* more a memory barrier than a real lock */ 547 task_lock(current); 548 /* 549 * When a thread stops operating on an address space, the loop 550 * in membarrier_private_expedited() may not observe that 551 * tsk->mm, and the loop in membarrier_global_expedited() may 552 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 553 * rq->membarrier_state, so those would not issue an IPI. 554 * Membarrier requires a memory barrier after accessing 555 * user-space memory, before clearing tsk->mm or the 556 * rq->membarrier_state. 557 */ 558 smp_mb__after_spinlock(); 559 local_irq_disable(); 560 current->mm = NULL; 561 membarrier_update_current_mm(NULL); 562 enter_lazy_tlb(mm, current); 563 local_irq_enable(); 564 task_unlock(current); 565 mmap_read_unlock(mm); 566 mm_update_next_owner(mm); 567 mmput(mm); 568 if (test_thread_flag(TIF_MEMDIE)) 569 exit_oom_victim(); 570 } 571 572 static struct task_struct *find_alive_thread(struct task_struct *p) 573 { 574 struct task_struct *t; 575 576 for_each_thread(p, t) { 577 if (!(t->flags & PF_EXITING)) 578 return t; 579 } 580 return NULL; 581 } 582 583 static struct task_struct *find_child_reaper(struct task_struct *father, 584 struct list_head *dead) 585 __releases(&tasklist_lock) 586 __acquires(&tasklist_lock) 587 { 588 struct pid_namespace *pid_ns = task_active_pid_ns(father); 589 struct task_struct *reaper = pid_ns->child_reaper; 590 struct task_struct *p, *n; 591 592 if (likely(reaper != father)) 593 return reaper; 594 595 reaper = find_alive_thread(father); 596 if (reaper) { 597 pid_ns->child_reaper = reaper; 598 return reaper; 599 } 600 601 write_unlock_irq(&tasklist_lock); 602 603 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 604 list_del_init(&p->ptrace_entry); 605 release_task(p); 606 } 607 608 zap_pid_ns_processes(pid_ns); 609 write_lock_irq(&tasklist_lock); 610 611 return father; 612 } 613 614 /* 615 * When we die, we re-parent all our children, and try to: 616 * 1. give them to another thread in our thread group, if such a member exists 617 * 2. give it to the first ancestor process which prctl'd itself as a 618 * child_subreaper for its children (like a service manager) 619 * 3. give it to the init process (PID 1) in our pid namespace 620 */ 621 static struct task_struct *find_new_reaper(struct task_struct *father, 622 struct task_struct *child_reaper) 623 { 624 struct task_struct *thread, *reaper; 625 626 thread = find_alive_thread(father); 627 if (thread) 628 return thread; 629 630 if (father->signal->has_child_subreaper) { 631 unsigned int ns_level = task_pid(father)->level; 632 /* 633 * Find the first ->is_child_subreaper ancestor in our pid_ns. 634 * We can't check reaper != child_reaper to ensure we do not 635 * cross the namespaces, the exiting parent could be injected 636 * by setns() + fork(). 637 * We check pid->level, this is slightly more efficient than 638 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 639 */ 640 for (reaper = father->real_parent; 641 task_pid(reaper)->level == ns_level; 642 reaper = reaper->real_parent) { 643 if (reaper == &init_task) 644 break; 645 if (!reaper->signal->is_child_subreaper) 646 continue; 647 thread = find_alive_thread(reaper); 648 if (thread) 649 return thread; 650 } 651 } 652 653 return child_reaper; 654 } 655 656 /* 657 * Any that need to be release_task'd are put on the @dead list. 658 */ 659 static void reparent_leader(struct task_struct *father, struct task_struct *p, 660 struct list_head *dead) 661 { 662 if (unlikely(p->exit_state == EXIT_DEAD)) 663 return; 664 665 /* We don't want people slaying init. */ 666 p->exit_signal = SIGCHLD; 667 668 /* If it has exited notify the new parent about this child's death. */ 669 if (!p->ptrace && 670 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 671 if (do_notify_parent(p, p->exit_signal)) { 672 p->exit_state = EXIT_DEAD; 673 list_add(&p->ptrace_entry, dead); 674 } 675 } 676 677 kill_orphaned_pgrp(p, father); 678 } 679 680 /* 681 * This does two things: 682 * 683 * A. Make init inherit all the child processes 684 * B. Check to see if any process groups have become orphaned 685 * as a result of our exiting, and if they have any stopped 686 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 687 */ 688 static void forget_original_parent(struct task_struct *father, 689 struct list_head *dead) 690 { 691 struct task_struct *p, *t, *reaper; 692 693 if (unlikely(!list_empty(&father->ptraced))) 694 exit_ptrace(father, dead); 695 696 /* Can drop and reacquire tasklist_lock */ 697 reaper = find_child_reaper(father, dead); 698 if (list_empty(&father->children)) 699 return; 700 701 reaper = find_new_reaper(father, reaper); 702 list_for_each_entry(p, &father->children, sibling) { 703 for_each_thread(p, t) { 704 RCU_INIT_POINTER(t->real_parent, reaper); 705 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 706 if (likely(!t->ptrace)) 707 t->parent = t->real_parent; 708 if (t->pdeath_signal) 709 group_send_sig_info(t->pdeath_signal, 710 SEND_SIG_NOINFO, t, 711 PIDTYPE_TGID); 712 } 713 /* 714 * If this is a threaded reparent there is no need to 715 * notify anyone anything has happened. 716 */ 717 if (!same_thread_group(reaper, father)) 718 reparent_leader(father, p, dead); 719 } 720 list_splice_tail_init(&father->children, &reaper->children); 721 } 722 723 /* 724 * Send signals to all our closest relatives so that they know 725 * to properly mourn us.. 726 */ 727 static void exit_notify(struct task_struct *tsk, int group_dead) 728 { 729 bool autoreap; 730 struct task_struct *p, *n; 731 LIST_HEAD(dead); 732 733 write_lock_irq(&tasklist_lock); 734 forget_original_parent(tsk, &dead); 735 736 if (group_dead) 737 kill_orphaned_pgrp(tsk->group_leader, NULL); 738 739 tsk->exit_state = EXIT_ZOMBIE; 740 if (unlikely(tsk->ptrace)) { 741 int sig = thread_group_leader(tsk) && 742 thread_group_empty(tsk) && 743 !ptrace_reparented(tsk) ? 744 tsk->exit_signal : SIGCHLD; 745 autoreap = do_notify_parent(tsk, sig); 746 } else if (thread_group_leader(tsk)) { 747 autoreap = thread_group_empty(tsk) && 748 do_notify_parent(tsk, tsk->exit_signal); 749 } else { 750 autoreap = true; 751 } 752 753 if (autoreap) { 754 tsk->exit_state = EXIT_DEAD; 755 list_add(&tsk->ptrace_entry, &dead); 756 } 757 758 /* mt-exec, de_thread() is waiting for group leader */ 759 if (unlikely(tsk->signal->notify_count < 0)) 760 wake_up_process(tsk->signal->group_exec_task); 761 write_unlock_irq(&tasklist_lock); 762 763 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 764 list_del_init(&p->ptrace_entry); 765 release_task(p); 766 } 767 } 768 769 #ifdef CONFIG_DEBUG_STACK_USAGE 770 static void check_stack_usage(void) 771 { 772 static DEFINE_SPINLOCK(low_water_lock); 773 static int lowest_to_date = THREAD_SIZE; 774 unsigned long free; 775 776 free = stack_not_used(current); 777 778 if (free >= lowest_to_date) 779 return; 780 781 spin_lock(&low_water_lock); 782 if (free < lowest_to_date) { 783 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 784 current->comm, task_pid_nr(current), free); 785 lowest_to_date = free; 786 } 787 spin_unlock(&low_water_lock); 788 } 789 #else 790 static inline void check_stack_usage(void) {} 791 #endif 792 793 static void synchronize_group_exit(struct task_struct *tsk, long code) 794 { 795 struct sighand_struct *sighand = tsk->sighand; 796 struct signal_struct *signal = tsk->signal; 797 798 spin_lock_irq(&sighand->siglock); 799 signal->quick_threads--; 800 if ((signal->quick_threads == 0) && 801 !(signal->flags & SIGNAL_GROUP_EXIT)) { 802 signal->flags = SIGNAL_GROUP_EXIT; 803 signal->group_exit_code = code; 804 signal->group_stop_count = 0; 805 } 806 spin_unlock_irq(&sighand->siglock); 807 } 808 809 void __noreturn do_exit(long code) 810 { 811 struct task_struct *tsk = current; 812 int group_dead; 813 814 WARN_ON(irqs_disabled()); 815 816 synchronize_group_exit(tsk, code); 817 818 WARN_ON(tsk->plug); 819 820 kcov_task_exit(tsk); 821 kmsan_task_exit(tsk); 822 823 coredump_task_exit(tsk); 824 ptrace_event(PTRACE_EVENT_EXIT, code); 825 user_events_exit(tsk); 826 827 io_uring_files_cancel(); 828 exit_signals(tsk); /* sets PF_EXITING */ 829 830 /* sync mm's RSS info before statistics gathering */ 831 if (tsk->mm) 832 sync_mm_rss(tsk->mm); 833 acct_update_integrals(tsk); 834 group_dead = atomic_dec_and_test(&tsk->signal->live); 835 if (group_dead) { 836 /* 837 * If the last thread of global init has exited, panic 838 * immediately to get a useable coredump. 839 */ 840 if (unlikely(is_global_init(tsk))) 841 panic("Attempted to kill init! exitcode=0x%08x\n", 842 tsk->signal->group_exit_code ?: (int)code); 843 844 #ifdef CONFIG_POSIX_TIMERS 845 hrtimer_cancel(&tsk->signal->real_timer); 846 exit_itimers(tsk); 847 #endif 848 if (tsk->mm) 849 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 850 } 851 acct_collect(code, group_dead); 852 if (group_dead) 853 tty_audit_exit(); 854 audit_free(tsk); 855 856 tsk->exit_code = code; 857 taskstats_exit(tsk, group_dead); 858 859 exit_mm(); 860 861 if (group_dead) 862 acct_process(); 863 trace_sched_process_exit(tsk); 864 865 exit_sem(tsk); 866 exit_shm(tsk); 867 exit_files(tsk); 868 exit_fs(tsk); 869 if (group_dead) 870 disassociate_ctty(1); 871 exit_task_namespaces(tsk); 872 exit_task_work(tsk); 873 exit_thread(tsk); 874 875 /* 876 * Flush inherited counters to the parent - before the parent 877 * gets woken up by child-exit notifications. 878 * 879 * because of cgroup mode, must be called before cgroup_exit() 880 */ 881 perf_event_exit_task(tsk); 882 883 sched_autogroup_exit_task(tsk); 884 cgroup_exit(tsk); 885 886 /* 887 * FIXME: do that only when needed, using sched_exit tracepoint 888 */ 889 flush_ptrace_hw_breakpoint(tsk); 890 891 exit_tasks_rcu_start(); 892 exit_notify(tsk, group_dead); 893 proc_exit_connector(tsk); 894 mpol_put_task_policy(tsk); 895 #ifdef CONFIG_FUTEX 896 if (unlikely(current->pi_state_cache)) 897 kfree(current->pi_state_cache); 898 #endif 899 /* 900 * Make sure we are holding no locks: 901 */ 902 debug_check_no_locks_held(); 903 904 if (tsk->io_context) 905 exit_io_context(tsk); 906 907 if (tsk->splice_pipe) 908 free_pipe_info(tsk->splice_pipe); 909 910 if (tsk->task_frag.page) 911 put_page(tsk->task_frag.page); 912 913 exit_task_stack_account(tsk); 914 915 check_stack_usage(); 916 preempt_disable(); 917 if (tsk->nr_dirtied) 918 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 919 exit_rcu(); 920 exit_tasks_rcu_finish(); 921 922 lockdep_free_task(tsk); 923 do_task_dead(); 924 } 925 926 void __noreturn make_task_dead(int signr) 927 { 928 /* 929 * Take the task off the cpu after something catastrophic has 930 * happened. 931 * 932 * We can get here from a kernel oops, sometimes with preemption off. 933 * Start by checking for critical errors. 934 * Then fix up important state like USER_DS and preemption. 935 * Then do everything else. 936 */ 937 struct task_struct *tsk = current; 938 unsigned int limit; 939 940 if (unlikely(in_interrupt())) 941 panic("Aiee, killing interrupt handler!"); 942 if (unlikely(!tsk->pid)) 943 panic("Attempted to kill the idle task!"); 944 945 if (unlikely(irqs_disabled())) { 946 pr_info("note: %s[%d] exited with irqs disabled\n", 947 current->comm, task_pid_nr(current)); 948 local_irq_enable(); 949 } 950 if (unlikely(in_atomic())) { 951 pr_info("note: %s[%d] exited with preempt_count %d\n", 952 current->comm, task_pid_nr(current), 953 preempt_count()); 954 preempt_count_set(PREEMPT_ENABLED); 955 } 956 957 /* 958 * Every time the system oopses, if the oops happens while a reference 959 * to an object was held, the reference leaks. 960 * If the oops doesn't also leak memory, repeated oopsing can cause 961 * reference counters to wrap around (if they're not using refcount_t). 962 * This means that repeated oopsing can make unexploitable-looking bugs 963 * exploitable through repeated oopsing. 964 * To make sure this can't happen, place an upper bound on how often the 965 * kernel may oops without panic(). 966 */ 967 limit = READ_ONCE(oops_limit); 968 if (atomic_inc_return(&oops_count) >= limit && limit) 969 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 970 971 /* 972 * We're taking recursive faults here in make_task_dead. Safest is to just 973 * leave this task alone and wait for reboot. 974 */ 975 if (unlikely(tsk->flags & PF_EXITING)) { 976 pr_alert("Fixing recursive fault but reboot is needed!\n"); 977 futex_exit_recursive(tsk); 978 tsk->exit_state = EXIT_DEAD; 979 refcount_inc(&tsk->rcu_users); 980 do_task_dead(); 981 } 982 983 do_exit(signr); 984 } 985 986 SYSCALL_DEFINE1(exit, int, error_code) 987 { 988 do_exit((error_code&0xff)<<8); 989 } 990 991 /* 992 * Take down every thread in the group. This is called by fatal signals 993 * as well as by sys_exit_group (below). 994 */ 995 void __noreturn 996 do_group_exit(int exit_code) 997 { 998 struct signal_struct *sig = current->signal; 999 1000 if (sig->flags & SIGNAL_GROUP_EXIT) 1001 exit_code = sig->group_exit_code; 1002 else if (sig->group_exec_task) 1003 exit_code = 0; 1004 else { 1005 struct sighand_struct *const sighand = current->sighand; 1006 1007 spin_lock_irq(&sighand->siglock); 1008 if (sig->flags & SIGNAL_GROUP_EXIT) 1009 /* Another thread got here before we took the lock. */ 1010 exit_code = sig->group_exit_code; 1011 else if (sig->group_exec_task) 1012 exit_code = 0; 1013 else { 1014 sig->group_exit_code = exit_code; 1015 sig->flags = SIGNAL_GROUP_EXIT; 1016 zap_other_threads(current); 1017 } 1018 spin_unlock_irq(&sighand->siglock); 1019 } 1020 1021 do_exit(exit_code); 1022 /* NOTREACHED */ 1023 } 1024 1025 /* 1026 * this kills every thread in the thread group. Note that any externally 1027 * wait4()-ing process will get the correct exit code - even if this 1028 * thread is not the thread group leader. 1029 */ 1030 SYSCALL_DEFINE1(exit_group, int, error_code) 1031 { 1032 do_group_exit((error_code & 0xff) << 8); 1033 /* NOTREACHED */ 1034 return 0; 1035 } 1036 1037 struct waitid_info { 1038 pid_t pid; 1039 uid_t uid; 1040 int status; 1041 int cause; 1042 }; 1043 1044 struct wait_opts { 1045 enum pid_type wo_type; 1046 int wo_flags; 1047 struct pid *wo_pid; 1048 1049 struct waitid_info *wo_info; 1050 int wo_stat; 1051 struct rusage *wo_rusage; 1052 1053 wait_queue_entry_t child_wait; 1054 int notask_error; 1055 }; 1056 1057 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1058 { 1059 return wo->wo_type == PIDTYPE_MAX || 1060 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1061 } 1062 1063 static int 1064 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1065 { 1066 if (!eligible_pid(wo, p)) 1067 return 0; 1068 1069 /* 1070 * Wait for all children (clone and not) if __WALL is set or 1071 * if it is traced by us. 1072 */ 1073 if (ptrace || (wo->wo_flags & __WALL)) 1074 return 1; 1075 1076 /* 1077 * Otherwise, wait for clone children *only* if __WCLONE is set; 1078 * otherwise, wait for non-clone children *only*. 1079 * 1080 * Note: a "clone" child here is one that reports to its parent 1081 * using a signal other than SIGCHLD, or a non-leader thread which 1082 * we can only see if it is traced by us. 1083 */ 1084 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1085 return 0; 1086 1087 return 1; 1088 } 1089 1090 /* 1091 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1092 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1093 * the lock and this task is uninteresting. If we return nonzero, we have 1094 * released the lock and the system call should return. 1095 */ 1096 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1097 { 1098 int state, status; 1099 pid_t pid = task_pid_vnr(p); 1100 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1101 struct waitid_info *infop; 1102 1103 if (!likely(wo->wo_flags & WEXITED)) 1104 return 0; 1105 1106 if (unlikely(wo->wo_flags & WNOWAIT)) { 1107 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1108 ? p->signal->group_exit_code : p->exit_code; 1109 get_task_struct(p); 1110 read_unlock(&tasklist_lock); 1111 sched_annotate_sleep(); 1112 if (wo->wo_rusage) 1113 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1114 put_task_struct(p); 1115 goto out_info; 1116 } 1117 /* 1118 * Move the task's state to DEAD/TRACE, only one thread can do this. 1119 */ 1120 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1121 EXIT_TRACE : EXIT_DEAD; 1122 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1123 return 0; 1124 /* 1125 * We own this thread, nobody else can reap it. 1126 */ 1127 read_unlock(&tasklist_lock); 1128 sched_annotate_sleep(); 1129 1130 /* 1131 * Check thread_group_leader() to exclude the traced sub-threads. 1132 */ 1133 if (state == EXIT_DEAD && thread_group_leader(p)) { 1134 struct signal_struct *sig = p->signal; 1135 struct signal_struct *psig = current->signal; 1136 unsigned long maxrss; 1137 u64 tgutime, tgstime; 1138 1139 /* 1140 * The resource counters for the group leader are in its 1141 * own task_struct. Those for dead threads in the group 1142 * are in its signal_struct, as are those for the child 1143 * processes it has previously reaped. All these 1144 * accumulate in the parent's signal_struct c* fields. 1145 * 1146 * We don't bother to take a lock here to protect these 1147 * p->signal fields because the whole thread group is dead 1148 * and nobody can change them. 1149 * 1150 * psig->stats_lock also protects us from our sub-threads 1151 * which can reap other children at the same time. Until 1152 * we change k_getrusage()-like users to rely on this lock 1153 * we have to take ->siglock as well. 1154 * 1155 * We use thread_group_cputime_adjusted() to get times for 1156 * the thread group, which consolidates times for all threads 1157 * in the group including the group leader. 1158 */ 1159 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1160 spin_lock_irq(¤t->sighand->siglock); 1161 write_seqlock(&psig->stats_lock); 1162 psig->cutime += tgutime + sig->cutime; 1163 psig->cstime += tgstime + sig->cstime; 1164 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1165 psig->cmin_flt += 1166 p->min_flt + sig->min_flt + sig->cmin_flt; 1167 psig->cmaj_flt += 1168 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1169 psig->cnvcsw += 1170 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1171 psig->cnivcsw += 1172 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1173 psig->cinblock += 1174 task_io_get_inblock(p) + 1175 sig->inblock + sig->cinblock; 1176 psig->coublock += 1177 task_io_get_oublock(p) + 1178 sig->oublock + sig->coublock; 1179 maxrss = max(sig->maxrss, sig->cmaxrss); 1180 if (psig->cmaxrss < maxrss) 1181 psig->cmaxrss = maxrss; 1182 task_io_accounting_add(&psig->ioac, &p->ioac); 1183 task_io_accounting_add(&psig->ioac, &sig->ioac); 1184 write_sequnlock(&psig->stats_lock); 1185 spin_unlock_irq(¤t->sighand->siglock); 1186 } 1187 1188 if (wo->wo_rusage) 1189 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1190 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1191 ? p->signal->group_exit_code : p->exit_code; 1192 wo->wo_stat = status; 1193 1194 if (state == EXIT_TRACE) { 1195 write_lock_irq(&tasklist_lock); 1196 /* We dropped tasklist, ptracer could die and untrace */ 1197 ptrace_unlink(p); 1198 1199 /* If parent wants a zombie, don't release it now */ 1200 state = EXIT_ZOMBIE; 1201 if (do_notify_parent(p, p->exit_signal)) 1202 state = EXIT_DEAD; 1203 p->exit_state = state; 1204 write_unlock_irq(&tasklist_lock); 1205 } 1206 if (state == EXIT_DEAD) 1207 release_task(p); 1208 1209 out_info: 1210 infop = wo->wo_info; 1211 if (infop) { 1212 if ((status & 0x7f) == 0) { 1213 infop->cause = CLD_EXITED; 1214 infop->status = status >> 8; 1215 } else { 1216 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1217 infop->status = status & 0x7f; 1218 } 1219 infop->pid = pid; 1220 infop->uid = uid; 1221 } 1222 1223 return pid; 1224 } 1225 1226 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1227 { 1228 if (ptrace) { 1229 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1230 return &p->exit_code; 1231 } else { 1232 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1233 return &p->signal->group_exit_code; 1234 } 1235 return NULL; 1236 } 1237 1238 /** 1239 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1240 * @wo: wait options 1241 * @ptrace: is the wait for ptrace 1242 * @p: task to wait for 1243 * 1244 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1245 * 1246 * CONTEXT: 1247 * read_lock(&tasklist_lock), which is released if return value is 1248 * non-zero. Also, grabs and releases @p->sighand->siglock. 1249 * 1250 * RETURNS: 1251 * 0 if wait condition didn't exist and search for other wait conditions 1252 * should continue. Non-zero return, -errno on failure and @p's pid on 1253 * success, implies that tasklist_lock is released and wait condition 1254 * search should terminate. 1255 */ 1256 static int wait_task_stopped(struct wait_opts *wo, 1257 int ptrace, struct task_struct *p) 1258 { 1259 struct waitid_info *infop; 1260 int exit_code, *p_code, why; 1261 uid_t uid = 0; /* unneeded, required by compiler */ 1262 pid_t pid; 1263 1264 /* 1265 * Traditionally we see ptrace'd stopped tasks regardless of options. 1266 */ 1267 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1268 return 0; 1269 1270 if (!task_stopped_code(p, ptrace)) 1271 return 0; 1272 1273 exit_code = 0; 1274 spin_lock_irq(&p->sighand->siglock); 1275 1276 p_code = task_stopped_code(p, ptrace); 1277 if (unlikely(!p_code)) 1278 goto unlock_sig; 1279 1280 exit_code = *p_code; 1281 if (!exit_code) 1282 goto unlock_sig; 1283 1284 if (!unlikely(wo->wo_flags & WNOWAIT)) 1285 *p_code = 0; 1286 1287 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1288 unlock_sig: 1289 spin_unlock_irq(&p->sighand->siglock); 1290 if (!exit_code) 1291 return 0; 1292 1293 /* 1294 * Now we are pretty sure this task is interesting. 1295 * Make sure it doesn't get reaped out from under us while we 1296 * give up the lock and then examine it below. We don't want to 1297 * keep holding onto the tasklist_lock while we call getrusage and 1298 * possibly take page faults for user memory. 1299 */ 1300 get_task_struct(p); 1301 pid = task_pid_vnr(p); 1302 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1303 read_unlock(&tasklist_lock); 1304 sched_annotate_sleep(); 1305 if (wo->wo_rusage) 1306 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1307 put_task_struct(p); 1308 1309 if (likely(!(wo->wo_flags & WNOWAIT))) 1310 wo->wo_stat = (exit_code << 8) | 0x7f; 1311 1312 infop = wo->wo_info; 1313 if (infop) { 1314 infop->cause = why; 1315 infop->status = exit_code; 1316 infop->pid = pid; 1317 infop->uid = uid; 1318 } 1319 return pid; 1320 } 1321 1322 /* 1323 * Handle do_wait work for one task in a live, non-stopped state. 1324 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1325 * the lock and this task is uninteresting. If we return nonzero, we have 1326 * released the lock and the system call should return. 1327 */ 1328 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1329 { 1330 struct waitid_info *infop; 1331 pid_t pid; 1332 uid_t uid; 1333 1334 if (!unlikely(wo->wo_flags & WCONTINUED)) 1335 return 0; 1336 1337 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1338 return 0; 1339 1340 spin_lock_irq(&p->sighand->siglock); 1341 /* Re-check with the lock held. */ 1342 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1343 spin_unlock_irq(&p->sighand->siglock); 1344 return 0; 1345 } 1346 if (!unlikely(wo->wo_flags & WNOWAIT)) 1347 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1348 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1349 spin_unlock_irq(&p->sighand->siglock); 1350 1351 pid = task_pid_vnr(p); 1352 get_task_struct(p); 1353 read_unlock(&tasklist_lock); 1354 sched_annotate_sleep(); 1355 if (wo->wo_rusage) 1356 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1357 put_task_struct(p); 1358 1359 infop = wo->wo_info; 1360 if (!infop) { 1361 wo->wo_stat = 0xffff; 1362 } else { 1363 infop->cause = CLD_CONTINUED; 1364 infop->pid = pid; 1365 infop->uid = uid; 1366 infop->status = SIGCONT; 1367 } 1368 return pid; 1369 } 1370 1371 /* 1372 * Consider @p for a wait by @parent. 1373 * 1374 * -ECHILD should be in ->notask_error before the first call. 1375 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1376 * Returns zero if the search for a child should continue; 1377 * then ->notask_error is 0 if @p is an eligible child, 1378 * or still -ECHILD. 1379 */ 1380 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1381 struct task_struct *p) 1382 { 1383 /* 1384 * We can race with wait_task_zombie() from another thread. 1385 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1386 * can't confuse the checks below. 1387 */ 1388 int exit_state = READ_ONCE(p->exit_state); 1389 int ret; 1390 1391 if (unlikely(exit_state == EXIT_DEAD)) 1392 return 0; 1393 1394 ret = eligible_child(wo, ptrace, p); 1395 if (!ret) 1396 return ret; 1397 1398 if (unlikely(exit_state == EXIT_TRACE)) { 1399 /* 1400 * ptrace == 0 means we are the natural parent. In this case 1401 * we should clear notask_error, debugger will notify us. 1402 */ 1403 if (likely(!ptrace)) 1404 wo->notask_error = 0; 1405 return 0; 1406 } 1407 1408 if (likely(!ptrace) && unlikely(p->ptrace)) { 1409 /* 1410 * If it is traced by its real parent's group, just pretend 1411 * the caller is ptrace_do_wait() and reap this child if it 1412 * is zombie. 1413 * 1414 * This also hides group stop state from real parent; otherwise 1415 * a single stop can be reported twice as group and ptrace stop. 1416 * If a ptracer wants to distinguish these two events for its 1417 * own children it should create a separate process which takes 1418 * the role of real parent. 1419 */ 1420 if (!ptrace_reparented(p)) 1421 ptrace = 1; 1422 } 1423 1424 /* slay zombie? */ 1425 if (exit_state == EXIT_ZOMBIE) { 1426 /* we don't reap group leaders with subthreads */ 1427 if (!delay_group_leader(p)) { 1428 /* 1429 * A zombie ptracee is only visible to its ptracer. 1430 * Notification and reaping will be cascaded to the 1431 * real parent when the ptracer detaches. 1432 */ 1433 if (unlikely(ptrace) || likely(!p->ptrace)) 1434 return wait_task_zombie(wo, p); 1435 } 1436 1437 /* 1438 * Allow access to stopped/continued state via zombie by 1439 * falling through. Clearing of notask_error is complex. 1440 * 1441 * When !@ptrace: 1442 * 1443 * If WEXITED is set, notask_error should naturally be 1444 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1445 * so, if there are live subthreads, there are events to 1446 * wait for. If all subthreads are dead, it's still safe 1447 * to clear - this function will be called again in finite 1448 * amount time once all the subthreads are released and 1449 * will then return without clearing. 1450 * 1451 * When @ptrace: 1452 * 1453 * Stopped state is per-task and thus can't change once the 1454 * target task dies. Only continued and exited can happen. 1455 * Clear notask_error if WCONTINUED | WEXITED. 1456 */ 1457 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1458 wo->notask_error = 0; 1459 } else { 1460 /* 1461 * @p is alive and it's gonna stop, continue or exit, so 1462 * there always is something to wait for. 1463 */ 1464 wo->notask_error = 0; 1465 } 1466 1467 /* 1468 * Wait for stopped. Depending on @ptrace, different stopped state 1469 * is used and the two don't interact with each other. 1470 */ 1471 ret = wait_task_stopped(wo, ptrace, p); 1472 if (ret) 1473 return ret; 1474 1475 /* 1476 * Wait for continued. There's only one continued state and the 1477 * ptracer can consume it which can confuse the real parent. Don't 1478 * use WCONTINUED from ptracer. You don't need or want it. 1479 */ 1480 return wait_task_continued(wo, p); 1481 } 1482 1483 /* 1484 * Do the work of do_wait() for one thread in the group, @tsk. 1485 * 1486 * -ECHILD should be in ->notask_error before the first call. 1487 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1488 * Returns zero if the search for a child should continue; then 1489 * ->notask_error is 0 if there were any eligible children, 1490 * or still -ECHILD. 1491 */ 1492 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1493 { 1494 struct task_struct *p; 1495 1496 list_for_each_entry(p, &tsk->children, sibling) { 1497 int ret = wait_consider_task(wo, 0, p); 1498 1499 if (ret) 1500 return ret; 1501 } 1502 1503 return 0; 1504 } 1505 1506 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1507 { 1508 struct task_struct *p; 1509 1510 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1511 int ret = wait_consider_task(wo, 1, p); 1512 1513 if (ret) 1514 return ret; 1515 } 1516 1517 return 0; 1518 } 1519 1520 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1521 int sync, void *key) 1522 { 1523 struct wait_opts *wo = container_of(wait, struct wait_opts, 1524 child_wait); 1525 struct task_struct *p = key; 1526 1527 if (!eligible_pid(wo, p)) 1528 return 0; 1529 1530 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1531 return 0; 1532 1533 return default_wake_function(wait, mode, sync, key); 1534 } 1535 1536 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1537 { 1538 __wake_up_sync_key(&parent->signal->wait_chldexit, 1539 TASK_INTERRUPTIBLE, p); 1540 } 1541 1542 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1543 struct task_struct *target) 1544 { 1545 struct task_struct *parent = 1546 !ptrace ? target->real_parent : target->parent; 1547 1548 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1549 same_thread_group(current, parent)); 1550 } 1551 1552 /* 1553 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1554 * and tracee lists to find the target task. 1555 */ 1556 static int do_wait_pid(struct wait_opts *wo) 1557 { 1558 bool ptrace; 1559 struct task_struct *target; 1560 int retval; 1561 1562 ptrace = false; 1563 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1564 if (target && is_effectively_child(wo, ptrace, target)) { 1565 retval = wait_consider_task(wo, ptrace, target); 1566 if (retval) 1567 return retval; 1568 } 1569 1570 ptrace = true; 1571 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1572 if (target && target->ptrace && 1573 is_effectively_child(wo, ptrace, target)) { 1574 retval = wait_consider_task(wo, ptrace, target); 1575 if (retval) 1576 return retval; 1577 } 1578 1579 return 0; 1580 } 1581 1582 static long do_wait(struct wait_opts *wo) 1583 { 1584 int retval; 1585 1586 trace_sched_process_wait(wo->wo_pid); 1587 1588 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1589 wo->child_wait.private = current; 1590 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1591 repeat: 1592 /* 1593 * If there is nothing that can match our criteria, just get out. 1594 * We will clear ->notask_error to zero if we see any child that 1595 * might later match our criteria, even if we are not able to reap 1596 * it yet. 1597 */ 1598 wo->notask_error = -ECHILD; 1599 if ((wo->wo_type < PIDTYPE_MAX) && 1600 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1601 goto notask; 1602 1603 set_current_state(TASK_INTERRUPTIBLE); 1604 read_lock(&tasklist_lock); 1605 1606 if (wo->wo_type == PIDTYPE_PID) { 1607 retval = do_wait_pid(wo); 1608 if (retval) 1609 goto end; 1610 } else { 1611 struct task_struct *tsk = current; 1612 1613 do { 1614 retval = do_wait_thread(wo, tsk); 1615 if (retval) 1616 goto end; 1617 1618 retval = ptrace_do_wait(wo, tsk); 1619 if (retval) 1620 goto end; 1621 1622 if (wo->wo_flags & __WNOTHREAD) 1623 break; 1624 } while_each_thread(current, tsk); 1625 } 1626 read_unlock(&tasklist_lock); 1627 1628 notask: 1629 retval = wo->notask_error; 1630 if (!retval && !(wo->wo_flags & WNOHANG)) { 1631 retval = -ERESTARTSYS; 1632 if (!signal_pending(current)) { 1633 schedule(); 1634 goto repeat; 1635 } 1636 } 1637 end: 1638 __set_current_state(TASK_RUNNING); 1639 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1640 return retval; 1641 } 1642 1643 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1644 int options, struct rusage *ru) 1645 { 1646 struct wait_opts wo; 1647 struct pid *pid = NULL; 1648 enum pid_type type; 1649 long ret; 1650 unsigned int f_flags = 0; 1651 1652 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1653 __WNOTHREAD|__WCLONE|__WALL)) 1654 return -EINVAL; 1655 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1656 return -EINVAL; 1657 1658 switch (which) { 1659 case P_ALL: 1660 type = PIDTYPE_MAX; 1661 break; 1662 case P_PID: 1663 type = PIDTYPE_PID; 1664 if (upid <= 0) 1665 return -EINVAL; 1666 1667 pid = find_get_pid(upid); 1668 break; 1669 case P_PGID: 1670 type = PIDTYPE_PGID; 1671 if (upid < 0) 1672 return -EINVAL; 1673 1674 if (upid) 1675 pid = find_get_pid(upid); 1676 else 1677 pid = get_task_pid(current, PIDTYPE_PGID); 1678 break; 1679 case P_PIDFD: 1680 type = PIDTYPE_PID; 1681 if (upid < 0) 1682 return -EINVAL; 1683 1684 pid = pidfd_get_pid(upid, &f_flags); 1685 if (IS_ERR(pid)) 1686 return PTR_ERR(pid); 1687 1688 break; 1689 default: 1690 return -EINVAL; 1691 } 1692 1693 wo.wo_type = type; 1694 wo.wo_pid = pid; 1695 wo.wo_flags = options; 1696 wo.wo_info = infop; 1697 wo.wo_rusage = ru; 1698 if (f_flags & O_NONBLOCK) 1699 wo.wo_flags |= WNOHANG; 1700 1701 ret = do_wait(&wo); 1702 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) 1703 ret = -EAGAIN; 1704 1705 put_pid(pid); 1706 return ret; 1707 } 1708 1709 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1710 infop, int, options, struct rusage __user *, ru) 1711 { 1712 struct rusage r; 1713 struct waitid_info info = {.status = 0}; 1714 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1715 int signo = 0; 1716 1717 if (err > 0) { 1718 signo = SIGCHLD; 1719 err = 0; 1720 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1721 return -EFAULT; 1722 } 1723 if (!infop) 1724 return err; 1725 1726 if (!user_write_access_begin(infop, sizeof(*infop))) 1727 return -EFAULT; 1728 1729 unsafe_put_user(signo, &infop->si_signo, Efault); 1730 unsafe_put_user(0, &infop->si_errno, Efault); 1731 unsafe_put_user(info.cause, &infop->si_code, Efault); 1732 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1733 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1734 unsafe_put_user(info.status, &infop->si_status, Efault); 1735 user_write_access_end(); 1736 return err; 1737 Efault: 1738 user_write_access_end(); 1739 return -EFAULT; 1740 } 1741 1742 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1743 struct rusage *ru) 1744 { 1745 struct wait_opts wo; 1746 struct pid *pid = NULL; 1747 enum pid_type type; 1748 long ret; 1749 1750 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1751 __WNOTHREAD|__WCLONE|__WALL)) 1752 return -EINVAL; 1753 1754 /* -INT_MIN is not defined */ 1755 if (upid == INT_MIN) 1756 return -ESRCH; 1757 1758 if (upid == -1) 1759 type = PIDTYPE_MAX; 1760 else if (upid < 0) { 1761 type = PIDTYPE_PGID; 1762 pid = find_get_pid(-upid); 1763 } else if (upid == 0) { 1764 type = PIDTYPE_PGID; 1765 pid = get_task_pid(current, PIDTYPE_PGID); 1766 } else /* upid > 0 */ { 1767 type = PIDTYPE_PID; 1768 pid = find_get_pid(upid); 1769 } 1770 1771 wo.wo_type = type; 1772 wo.wo_pid = pid; 1773 wo.wo_flags = options | WEXITED; 1774 wo.wo_info = NULL; 1775 wo.wo_stat = 0; 1776 wo.wo_rusage = ru; 1777 ret = do_wait(&wo); 1778 put_pid(pid); 1779 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1780 ret = -EFAULT; 1781 1782 return ret; 1783 } 1784 1785 int kernel_wait(pid_t pid, int *stat) 1786 { 1787 struct wait_opts wo = { 1788 .wo_type = PIDTYPE_PID, 1789 .wo_pid = find_get_pid(pid), 1790 .wo_flags = WEXITED, 1791 }; 1792 int ret; 1793 1794 ret = do_wait(&wo); 1795 if (ret > 0 && wo.wo_stat) 1796 *stat = wo.wo_stat; 1797 put_pid(wo.wo_pid); 1798 return ret; 1799 } 1800 1801 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1802 int, options, struct rusage __user *, ru) 1803 { 1804 struct rusage r; 1805 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1806 1807 if (err > 0) { 1808 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1809 return -EFAULT; 1810 } 1811 return err; 1812 } 1813 1814 #ifdef __ARCH_WANT_SYS_WAITPID 1815 1816 /* 1817 * sys_waitpid() remains for compatibility. waitpid() should be 1818 * implemented by calling sys_wait4() from libc.a. 1819 */ 1820 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1821 { 1822 return kernel_wait4(pid, stat_addr, options, NULL); 1823 } 1824 1825 #endif 1826 1827 #ifdef CONFIG_COMPAT 1828 COMPAT_SYSCALL_DEFINE4(wait4, 1829 compat_pid_t, pid, 1830 compat_uint_t __user *, stat_addr, 1831 int, options, 1832 struct compat_rusage __user *, ru) 1833 { 1834 struct rusage r; 1835 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1836 if (err > 0) { 1837 if (ru && put_compat_rusage(&r, ru)) 1838 return -EFAULT; 1839 } 1840 return err; 1841 } 1842 1843 COMPAT_SYSCALL_DEFINE5(waitid, 1844 int, which, compat_pid_t, pid, 1845 struct compat_siginfo __user *, infop, int, options, 1846 struct compat_rusage __user *, uru) 1847 { 1848 struct rusage ru; 1849 struct waitid_info info = {.status = 0}; 1850 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1851 int signo = 0; 1852 if (err > 0) { 1853 signo = SIGCHLD; 1854 err = 0; 1855 if (uru) { 1856 /* kernel_waitid() overwrites everything in ru */ 1857 if (COMPAT_USE_64BIT_TIME) 1858 err = copy_to_user(uru, &ru, sizeof(ru)); 1859 else 1860 err = put_compat_rusage(&ru, uru); 1861 if (err) 1862 return -EFAULT; 1863 } 1864 } 1865 1866 if (!infop) 1867 return err; 1868 1869 if (!user_write_access_begin(infop, sizeof(*infop))) 1870 return -EFAULT; 1871 1872 unsafe_put_user(signo, &infop->si_signo, Efault); 1873 unsafe_put_user(0, &infop->si_errno, Efault); 1874 unsafe_put_user(info.cause, &infop->si_code, Efault); 1875 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1876 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1877 unsafe_put_user(info.status, &infop->si_status, Efault); 1878 user_write_access_end(); 1879 return err; 1880 Efault: 1881 user_write_access_end(); 1882 return -EFAULT; 1883 } 1884 #endif 1885 1886 /** 1887 * thread_group_exited - check that a thread group has exited 1888 * @pid: tgid of thread group to be checked. 1889 * 1890 * Test if the thread group represented by tgid has exited (all 1891 * threads are zombies, dead or completely gone). 1892 * 1893 * Return: true if the thread group has exited. false otherwise. 1894 */ 1895 bool thread_group_exited(struct pid *pid) 1896 { 1897 struct task_struct *task; 1898 bool exited; 1899 1900 rcu_read_lock(); 1901 task = pid_task(pid, PIDTYPE_PID); 1902 exited = !task || 1903 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1904 rcu_read_unlock(); 1905 1906 return exited; 1907 } 1908 EXPORT_SYMBOL(thread_group_exited); 1909 1910 /* 1911 * This needs to be __function_aligned as GCC implicitly makes any 1912 * implementation of abort() cold and drops alignment specified by 1913 * -falign-functions=N. 1914 * 1915 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1916 */ 1917 __weak __function_aligned void abort(void) 1918 { 1919 BUG(); 1920 1921 /* if that doesn't kill us, halt */ 1922 panic("Oops failed to kill thread"); 1923 } 1924 EXPORT_SYMBOL(abort); 1925