xref: /openbmc/linux/kernel/exit.c (revision 87c2ce3b)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/ptrace.h>
24 #include <linux/profile.h>
25 #include <linux/mount.h>
26 #include <linux/proc_fs.h>
27 #include <linux/mempolicy.h>
28 #include <linux/cpuset.h>
29 #include <linux/syscalls.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/mutex.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 
39 extern void sem_exit (void);
40 extern struct task_struct *child_reaper;
41 
42 int getrusage(struct task_struct *, int, struct rusage __user *);
43 
44 static void exit_mm(struct task_struct * tsk);
45 
46 static void __unhash_process(struct task_struct *p)
47 {
48 	nr_threads--;
49 	detach_pid(p, PIDTYPE_PID);
50 	detach_pid(p, PIDTYPE_TGID);
51 	if (thread_group_leader(p)) {
52 		detach_pid(p, PIDTYPE_PGID);
53 		detach_pid(p, PIDTYPE_SID);
54 		if (p->pid)
55 			__get_cpu_var(process_counts)--;
56 	}
57 
58 	REMOVE_LINKS(p);
59 }
60 
61 void release_task(struct task_struct * p)
62 {
63 	int zap_leader;
64 	task_t *leader;
65 	struct dentry *proc_dentry;
66 
67 repeat:
68 	atomic_dec(&p->user->processes);
69 	spin_lock(&p->proc_lock);
70 	proc_dentry = proc_pid_unhash(p);
71 	write_lock_irq(&tasklist_lock);
72 	if (unlikely(p->ptrace))
73 		__ptrace_unlink(p);
74 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
75 	__exit_signal(p);
76 	/*
77 	 * Note that the fastpath in sys_times depends on __exit_signal having
78 	 * updated the counters before a task is removed from the tasklist of
79 	 * the process by __unhash_process.
80 	 */
81 	__unhash_process(p);
82 
83 	/*
84 	 * If we are the last non-leader member of the thread
85 	 * group, and the leader is zombie, then notify the
86 	 * group leader's parent process. (if it wants notification.)
87 	 */
88 	zap_leader = 0;
89 	leader = p->group_leader;
90 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
91 		BUG_ON(leader->exit_signal == -1);
92 		do_notify_parent(leader, leader->exit_signal);
93 		/*
94 		 * If we were the last child thread and the leader has
95 		 * exited already, and the leader's parent ignores SIGCHLD,
96 		 * then we are the one who should release the leader.
97 		 *
98 		 * do_notify_parent() will have marked it self-reaping in
99 		 * that case.
100 		 */
101 		zap_leader = (leader->exit_signal == -1);
102 	}
103 
104 	sched_exit(p);
105 	write_unlock_irq(&tasklist_lock);
106 	spin_unlock(&p->proc_lock);
107 	proc_pid_flush(proc_dentry);
108 	release_thread(p);
109 	put_task_struct(p);
110 
111 	p = leader;
112 	if (unlikely(zap_leader))
113 		goto repeat;
114 }
115 
116 /* we are using it only for SMP init */
117 
118 void unhash_process(struct task_struct *p)
119 {
120 	struct dentry *proc_dentry;
121 
122 	spin_lock(&p->proc_lock);
123 	proc_dentry = proc_pid_unhash(p);
124 	write_lock_irq(&tasklist_lock);
125 	__unhash_process(p);
126 	write_unlock_irq(&tasklist_lock);
127 	spin_unlock(&p->proc_lock);
128 	proc_pid_flush(proc_dentry);
129 }
130 
131 /*
132  * This checks not only the pgrp, but falls back on the pid if no
133  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
134  * without this...
135  */
136 int session_of_pgrp(int pgrp)
137 {
138 	struct task_struct *p;
139 	int sid = -1;
140 
141 	read_lock(&tasklist_lock);
142 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
143 		if (p->signal->session > 0) {
144 			sid = p->signal->session;
145 			goto out;
146 		}
147 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
148 	p = find_task_by_pid(pgrp);
149 	if (p)
150 		sid = p->signal->session;
151 out:
152 	read_unlock(&tasklist_lock);
153 
154 	return sid;
155 }
156 
157 /*
158  * Determine if a process group is "orphaned", according to the POSIX
159  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
160  * by terminal-generated stop signals.  Newly orphaned process groups are
161  * to receive a SIGHUP and a SIGCONT.
162  *
163  * "I ask you, have you ever known what it is to be an orphan?"
164  */
165 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
166 {
167 	struct task_struct *p;
168 	int ret = 1;
169 
170 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
171 		if (p == ignored_task
172 				|| p->exit_state
173 				|| p->real_parent->pid == 1)
174 			continue;
175 		if (process_group(p->real_parent) != pgrp
176 			    && p->real_parent->signal->session == p->signal->session) {
177 			ret = 0;
178 			break;
179 		}
180 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
181 	return ret;	/* (sighing) "Often!" */
182 }
183 
184 int is_orphaned_pgrp(int pgrp)
185 {
186 	int retval;
187 
188 	read_lock(&tasklist_lock);
189 	retval = will_become_orphaned_pgrp(pgrp, NULL);
190 	read_unlock(&tasklist_lock);
191 
192 	return retval;
193 }
194 
195 static inline int has_stopped_jobs(int pgrp)
196 {
197 	int retval = 0;
198 	struct task_struct *p;
199 
200 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
201 		if (p->state != TASK_STOPPED)
202 			continue;
203 
204 		/* If p is stopped by a debugger on a signal that won't
205 		   stop it, then don't count p as stopped.  This isn't
206 		   perfect but it's a good approximation.  */
207 		if (unlikely (p->ptrace)
208 		    && p->exit_code != SIGSTOP
209 		    && p->exit_code != SIGTSTP
210 		    && p->exit_code != SIGTTOU
211 		    && p->exit_code != SIGTTIN)
212 			continue;
213 
214 		retval = 1;
215 		break;
216 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
217 	return retval;
218 }
219 
220 /**
221  * reparent_to_init - Reparent the calling kernel thread to the init task.
222  *
223  * If a kernel thread is launched as a result of a system call, or if
224  * it ever exits, it should generally reparent itself to init so that
225  * it is correctly cleaned up on exit.
226  *
227  * The various task state such as scheduling policy and priority may have
228  * been inherited from a user process, so we reset them to sane values here.
229  *
230  * NOTE that reparent_to_init() gives the caller full capabilities.
231  */
232 static inline void reparent_to_init(void)
233 {
234 	write_lock_irq(&tasklist_lock);
235 
236 	ptrace_unlink(current);
237 	/* Reparent to init */
238 	REMOVE_LINKS(current);
239 	current->parent = child_reaper;
240 	current->real_parent = child_reaper;
241 	SET_LINKS(current);
242 
243 	/* Set the exit signal to SIGCHLD so we signal init on exit */
244 	current->exit_signal = SIGCHLD;
245 
246 	if ((current->policy == SCHED_NORMAL) && (task_nice(current) < 0))
247 		set_user_nice(current, 0);
248 	/* cpus_allowed? */
249 	/* rt_priority? */
250 	/* signals? */
251 	security_task_reparent_to_init(current);
252 	memcpy(current->signal->rlim, init_task.signal->rlim,
253 	       sizeof(current->signal->rlim));
254 	atomic_inc(&(INIT_USER->__count));
255 	write_unlock_irq(&tasklist_lock);
256 	switch_uid(INIT_USER);
257 }
258 
259 void __set_special_pids(pid_t session, pid_t pgrp)
260 {
261 	struct task_struct *curr = current->group_leader;
262 
263 	if (curr->signal->session != session) {
264 		detach_pid(curr, PIDTYPE_SID);
265 		curr->signal->session = session;
266 		attach_pid(curr, PIDTYPE_SID, session);
267 	}
268 	if (process_group(curr) != pgrp) {
269 		detach_pid(curr, PIDTYPE_PGID);
270 		curr->signal->pgrp = pgrp;
271 		attach_pid(curr, PIDTYPE_PGID, pgrp);
272 	}
273 }
274 
275 void set_special_pids(pid_t session, pid_t pgrp)
276 {
277 	write_lock_irq(&tasklist_lock);
278 	__set_special_pids(session, pgrp);
279 	write_unlock_irq(&tasklist_lock);
280 }
281 
282 /*
283  * Let kernel threads use this to say that they
284  * allow a certain signal (since daemonize() will
285  * have disabled all of them by default).
286  */
287 int allow_signal(int sig)
288 {
289 	if (!valid_signal(sig) || sig < 1)
290 		return -EINVAL;
291 
292 	spin_lock_irq(&current->sighand->siglock);
293 	sigdelset(&current->blocked, sig);
294 	if (!current->mm) {
295 		/* Kernel threads handle their own signals.
296 		   Let the signal code know it'll be handled, so
297 		   that they don't get converted to SIGKILL or
298 		   just silently dropped */
299 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
300 	}
301 	recalc_sigpending();
302 	spin_unlock_irq(&current->sighand->siglock);
303 	return 0;
304 }
305 
306 EXPORT_SYMBOL(allow_signal);
307 
308 int disallow_signal(int sig)
309 {
310 	if (!valid_signal(sig) || sig < 1)
311 		return -EINVAL;
312 
313 	spin_lock_irq(&current->sighand->siglock);
314 	sigaddset(&current->blocked, sig);
315 	recalc_sigpending();
316 	spin_unlock_irq(&current->sighand->siglock);
317 	return 0;
318 }
319 
320 EXPORT_SYMBOL(disallow_signal);
321 
322 /*
323  *	Put all the gunge required to become a kernel thread without
324  *	attached user resources in one place where it belongs.
325  */
326 
327 void daemonize(const char *name, ...)
328 {
329 	va_list args;
330 	struct fs_struct *fs;
331 	sigset_t blocked;
332 
333 	va_start(args, name);
334 	vsnprintf(current->comm, sizeof(current->comm), name, args);
335 	va_end(args);
336 
337 	/*
338 	 * If we were started as result of loading a module, close all of the
339 	 * user space pages.  We don't need them, and if we didn't close them
340 	 * they would be locked into memory.
341 	 */
342 	exit_mm(current);
343 
344 	set_special_pids(1, 1);
345 	down(&tty_sem);
346 	current->signal->tty = NULL;
347 	up(&tty_sem);
348 
349 	/* Block and flush all signals */
350 	sigfillset(&blocked);
351 	sigprocmask(SIG_BLOCK, &blocked, NULL);
352 	flush_signals(current);
353 
354 	/* Become as one with the init task */
355 
356 	exit_fs(current);	/* current->fs->count--; */
357 	fs = init_task.fs;
358 	current->fs = fs;
359 	atomic_inc(&fs->count);
360  	exit_files(current);
361 	current->files = init_task.files;
362 	atomic_inc(&current->files->count);
363 
364 	reparent_to_init();
365 }
366 
367 EXPORT_SYMBOL(daemonize);
368 
369 static inline void close_files(struct files_struct * files)
370 {
371 	int i, j;
372 	struct fdtable *fdt;
373 
374 	j = 0;
375 
376 	/*
377 	 * It is safe to dereference the fd table without RCU or
378 	 * ->file_lock because this is the last reference to the
379 	 * files structure.
380 	 */
381 	fdt = files_fdtable(files);
382 	for (;;) {
383 		unsigned long set;
384 		i = j * __NFDBITS;
385 		if (i >= fdt->max_fdset || i >= fdt->max_fds)
386 			break;
387 		set = fdt->open_fds->fds_bits[j++];
388 		while (set) {
389 			if (set & 1) {
390 				struct file * file = xchg(&fdt->fd[i], NULL);
391 				if (file)
392 					filp_close(file, files);
393 			}
394 			i++;
395 			set >>= 1;
396 		}
397 	}
398 }
399 
400 struct files_struct *get_files_struct(struct task_struct *task)
401 {
402 	struct files_struct *files;
403 
404 	task_lock(task);
405 	files = task->files;
406 	if (files)
407 		atomic_inc(&files->count);
408 	task_unlock(task);
409 
410 	return files;
411 }
412 
413 void fastcall put_files_struct(struct files_struct *files)
414 {
415 	struct fdtable *fdt;
416 
417 	if (atomic_dec_and_test(&files->count)) {
418 		close_files(files);
419 		/*
420 		 * Free the fd and fdset arrays if we expanded them.
421 		 * If the fdtable was embedded, pass files for freeing
422 		 * at the end of the RCU grace period. Otherwise,
423 		 * you can free files immediately.
424 		 */
425 		fdt = files_fdtable(files);
426 		if (fdt == &files->fdtab)
427 			fdt->free_files = files;
428 		else
429 			kmem_cache_free(files_cachep, files);
430 		free_fdtable(fdt);
431 	}
432 }
433 
434 EXPORT_SYMBOL(put_files_struct);
435 
436 static inline void __exit_files(struct task_struct *tsk)
437 {
438 	struct files_struct * files = tsk->files;
439 
440 	if (files) {
441 		task_lock(tsk);
442 		tsk->files = NULL;
443 		task_unlock(tsk);
444 		put_files_struct(files);
445 	}
446 }
447 
448 void exit_files(struct task_struct *tsk)
449 {
450 	__exit_files(tsk);
451 }
452 
453 static inline void __put_fs_struct(struct fs_struct *fs)
454 {
455 	/* No need to hold fs->lock if we are killing it */
456 	if (atomic_dec_and_test(&fs->count)) {
457 		dput(fs->root);
458 		mntput(fs->rootmnt);
459 		dput(fs->pwd);
460 		mntput(fs->pwdmnt);
461 		if (fs->altroot) {
462 			dput(fs->altroot);
463 			mntput(fs->altrootmnt);
464 		}
465 		kmem_cache_free(fs_cachep, fs);
466 	}
467 }
468 
469 void put_fs_struct(struct fs_struct *fs)
470 {
471 	__put_fs_struct(fs);
472 }
473 
474 static inline void __exit_fs(struct task_struct *tsk)
475 {
476 	struct fs_struct * fs = tsk->fs;
477 
478 	if (fs) {
479 		task_lock(tsk);
480 		tsk->fs = NULL;
481 		task_unlock(tsk);
482 		__put_fs_struct(fs);
483 	}
484 }
485 
486 void exit_fs(struct task_struct *tsk)
487 {
488 	__exit_fs(tsk);
489 }
490 
491 EXPORT_SYMBOL_GPL(exit_fs);
492 
493 /*
494  * Turn us into a lazy TLB process if we
495  * aren't already..
496  */
497 static void exit_mm(struct task_struct * tsk)
498 {
499 	struct mm_struct *mm = tsk->mm;
500 
501 	mm_release(tsk, mm);
502 	if (!mm)
503 		return;
504 	/*
505 	 * Serialize with any possible pending coredump.
506 	 * We must hold mmap_sem around checking core_waiters
507 	 * and clearing tsk->mm.  The core-inducing thread
508 	 * will increment core_waiters for each thread in the
509 	 * group with ->mm != NULL.
510 	 */
511 	down_read(&mm->mmap_sem);
512 	if (mm->core_waiters) {
513 		up_read(&mm->mmap_sem);
514 		down_write(&mm->mmap_sem);
515 		if (!--mm->core_waiters)
516 			complete(mm->core_startup_done);
517 		up_write(&mm->mmap_sem);
518 
519 		wait_for_completion(&mm->core_done);
520 		down_read(&mm->mmap_sem);
521 	}
522 	atomic_inc(&mm->mm_count);
523 	if (mm != tsk->active_mm) BUG();
524 	/* more a memory barrier than a real lock */
525 	task_lock(tsk);
526 	tsk->mm = NULL;
527 	up_read(&mm->mmap_sem);
528 	enter_lazy_tlb(mm, current);
529 	task_unlock(tsk);
530 	mmput(mm);
531 }
532 
533 static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper)
534 {
535 	/*
536 	 * Make sure we're not reparenting to ourselves and that
537 	 * the parent is not a zombie.
538 	 */
539 	BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE);
540 	p->real_parent = reaper;
541 }
542 
543 static inline void reparent_thread(task_t *p, task_t *father, int traced)
544 {
545 	/* We don't want people slaying init.  */
546 	if (p->exit_signal != -1)
547 		p->exit_signal = SIGCHLD;
548 
549 	if (p->pdeath_signal)
550 		/* We already hold the tasklist_lock here.  */
551 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
552 
553 	/* Move the child from its dying parent to the new one.  */
554 	if (unlikely(traced)) {
555 		/* Preserve ptrace links if someone else is tracing this child.  */
556 		list_del_init(&p->ptrace_list);
557 		if (p->parent != p->real_parent)
558 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
559 	} else {
560 		/* If this child is being traced, then we're the one tracing it
561 		 * anyway, so let go of it.
562 		 */
563 		p->ptrace = 0;
564 		list_del_init(&p->sibling);
565 		p->parent = p->real_parent;
566 		list_add_tail(&p->sibling, &p->parent->children);
567 
568 		/* If we'd notified the old parent about this child's death,
569 		 * also notify the new parent.
570 		 */
571 		if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
572 		    thread_group_empty(p))
573 			do_notify_parent(p, p->exit_signal);
574 		else if (p->state == TASK_TRACED) {
575 			/*
576 			 * If it was at a trace stop, turn it into
577 			 * a normal stop since it's no longer being
578 			 * traced.
579 			 */
580 			ptrace_untrace(p);
581 		}
582 	}
583 
584 	/*
585 	 * process group orphan check
586 	 * Case ii: Our child is in a different pgrp
587 	 * than we are, and it was the only connection
588 	 * outside, so the child pgrp is now orphaned.
589 	 */
590 	if ((process_group(p) != process_group(father)) &&
591 	    (p->signal->session == father->signal->session)) {
592 		int pgrp = process_group(p);
593 
594 		if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
595 			__kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
596 			__kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
597 		}
598 	}
599 }
600 
601 /*
602  * When we die, we re-parent all our children.
603  * Try to give them to another thread in our thread
604  * group, and if no such member exists, give it to
605  * the global child reaper process (ie "init")
606  */
607 static inline void forget_original_parent(struct task_struct * father,
608 					  struct list_head *to_release)
609 {
610 	struct task_struct *p, *reaper = father;
611 	struct list_head *_p, *_n;
612 
613 	do {
614 		reaper = next_thread(reaper);
615 		if (reaper == father) {
616 			reaper = child_reaper;
617 			break;
618 		}
619 	} while (reaper->exit_state);
620 
621 	/*
622 	 * There are only two places where our children can be:
623 	 *
624 	 * - in our child list
625 	 * - in our ptraced child list
626 	 *
627 	 * Search them and reparent children.
628 	 */
629 	list_for_each_safe(_p, _n, &father->children) {
630 		int ptrace;
631 		p = list_entry(_p,struct task_struct,sibling);
632 
633 		ptrace = p->ptrace;
634 
635 		/* if father isn't the real parent, then ptrace must be enabled */
636 		BUG_ON(father != p->real_parent && !ptrace);
637 
638 		if (father == p->real_parent) {
639 			/* reparent with a reaper, real father it's us */
640 			choose_new_parent(p, reaper, child_reaper);
641 			reparent_thread(p, father, 0);
642 		} else {
643 			/* reparent ptraced task to its real parent */
644 			__ptrace_unlink (p);
645 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
646 			    thread_group_empty(p))
647 				do_notify_parent(p, p->exit_signal);
648 		}
649 
650 		/*
651 		 * if the ptraced child is a zombie with exit_signal == -1
652 		 * we must collect it before we exit, or it will remain
653 		 * zombie forever since we prevented it from self-reap itself
654 		 * while it was being traced by us, to be able to see it in wait4.
655 		 */
656 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
657 			list_add(&p->ptrace_list, to_release);
658 	}
659 	list_for_each_safe(_p, _n, &father->ptrace_children) {
660 		p = list_entry(_p,struct task_struct,ptrace_list);
661 		choose_new_parent(p, reaper, child_reaper);
662 		reparent_thread(p, father, 1);
663 	}
664 }
665 
666 /*
667  * Send signals to all our closest relatives so that they know
668  * to properly mourn us..
669  */
670 static void exit_notify(struct task_struct *tsk)
671 {
672 	int state;
673 	struct task_struct *t;
674 	struct list_head ptrace_dead, *_p, *_n;
675 
676 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
677 	    && !thread_group_empty(tsk)) {
678 		/*
679 		 * This occurs when there was a race between our exit
680 		 * syscall and a group signal choosing us as the one to
681 		 * wake up.  It could be that we are the only thread
682 		 * alerted to check for pending signals, but another thread
683 		 * should be woken now to take the signal since we will not.
684 		 * Now we'll wake all the threads in the group just to make
685 		 * sure someone gets all the pending signals.
686 		 */
687 		read_lock(&tasklist_lock);
688 		spin_lock_irq(&tsk->sighand->siglock);
689 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
690 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
691 				recalc_sigpending_tsk(t);
692 				if (signal_pending(t))
693 					signal_wake_up(t, 0);
694 			}
695 		spin_unlock_irq(&tsk->sighand->siglock);
696 		read_unlock(&tasklist_lock);
697 	}
698 
699 	write_lock_irq(&tasklist_lock);
700 
701 	/*
702 	 * This does two things:
703 	 *
704   	 * A.  Make init inherit all the child processes
705 	 * B.  Check to see if any process groups have become orphaned
706 	 *	as a result of our exiting, and if they have any stopped
707 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
708 	 */
709 
710 	INIT_LIST_HEAD(&ptrace_dead);
711 	forget_original_parent(tsk, &ptrace_dead);
712 	BUG_ON(!list_empty(&tsk->children));
713 	BUG_ON(!list_empty(&tsk->ptrace_children));
714 
715 	/*
716 	 * Check to see if any process groups have become orphaned
717 	 * as a result of our exiting, and if they have any stopped
718 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
719 	 *
720 	 * Case i: Our father is in a different pgrp than we are
721 	 * and we were the only connection outside, so our pgrp
722 	 * is about to become orphaned.
723 	 */
724 
725 	t = tsk->real_parent;
726 
727 	if ((process_group(t) != process_group(tsk)) &&
728 	    (t->signal->session == tsk->signal->session) &&
729 	    will_become_orphaned_pgrp(process_group(tsk), tsk) &&
730 	    has_stopped_jobs(process_group(tsk))) {
731 		__kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
732 		__kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
733 	}
734 
735 	/* Let father know we died
736 	 *
737 	 * Thread signals are configurable, but you aren't going to use
738 	 * that to send signals to arbitary processes.
739 	 * That stops right now.
740 	 *
741 	 * If the parent exec id doesn't match the exec id we saved
742 	 * when we started then we know the parent has changed security
743 	 * domain.
744 	 *
745 	 * If our self_exec id doesn't match our parent_exec_id then
746 	 * we have changed execution domain as these two values started
747 	 * the same after a fork.
748 	 *
749 	 */
750 
751 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
752 	    ( tsk->parent_exec_id != t->self_exec_id  ||
753 	      tsk->self_exec_id != tsk->parent_exec_id)
754 	    && !capable(CAP_KILL))
755 		tsk->exit_signal = SIGCHLD;
756 
757 
758 	/* If something other than our normal parent is ptracing us, then
759 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
760 	 * only has special meaning to our real parent.
761 	 */
762 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
763 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
764 		do_notify_parent(tsk, signal);
765 	} else if (tsk->ptrace) {
766 		do_notify_parent(tsk, SIGCHLD);
767 	}
768 
769 	state = EXIT_ZOMBIE;
770 	if (tsk->exit_signal == -1 &&
771 	    (likely(tsk->ptrace == 0) ||
772 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
773 		state = EXIT_DEAD;
774 	tsk->exit_state = state;
775 
776 	write_unlock_irq(&tasklist_lock);
777 
778 	list_for_each_safe(_p, _n, &ptrace_dead) {
779 		list_del_init(_p);
780 		t = list_entry(_p,struct task_struct,ptrace_list);
781 		release_task(t);
782 	}
783 
784 	/* If the process is dead, release it - nobody will wait for it */
785 	if (state == EXIT_DEAD)
786 		release_task(tsk);
787 }
788 
789 fastcall NORET_TYPE void do_exit(long code)
790 {
791 	struct task_struct *tsk = current;
792 	int group_dead;
793 
794 	profile_task_exit(tsk);
795 
796 	WARN_ON(atomic_read(&tsk->fs_excl));
797 
798 	if (unlikely(in_interrupt()))
799 		panic("Aiee, killing interrupt handler!");
800 	if (unlikely(!tsk->pid))
801 		panic("Attempted to kill the idle task!");
802 	if (unlikely(tsk->pid == 1))
803 		panic("Attempted to kill init!");
804 	if (tsk->io_context)
805 		exit_io_context();
806 
807 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
808 		current->ptrace_message = code;
809 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
810 	}
811 
812 	/*
813 	 * We're taking recursive faults here in do_exit. Safest is to just
814 	 * leave this task alone and wait for reboot.
815 	 */
816 	if (unlikely(tsk->flags & PF_EXITING)) {
817 		printk(KERN_ALERT
818 			"Fixing recursive fault but reboot is needed!\n");
819 		set_current_state(TASK_UNINTERRUPTIBLE);
820 		schedule();
821 	}
822 
823 	tsk->flags |= PF_EXITING;
824 
825 	/*
826 	 * Make sure we don't try to process any timer firings
827 	 * while we are already exiting.
828 	 */
829  	tsk->it_virt_expires = cputime_zero;
830  	tsk->it_prof_expires = cputime_zero;
831 	tsk->it_sched_expires = 0;
832 
833 	if (unlikely(in_atomic()))
834 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
835 				current->comm, current->pid,
836 				preempt_count());
837 
838 	acct_update_integrals(tsk);
839 	if (tsk->mm) {
840 		update_hiwater_rss(tsk->mm);
841 		update_hiwater_vm(tsk->mm);
842 	}
843 	group_dead = atomic_dec_and_test(&tsk->signal->live);
844 	if (group_dead) {
845  		hrtimer_cancel(&tsk->signal->real_timer);
846 		exit_itimers(tsk->signal);
847 		acct_process(code);
848 	}
849 	exit_mm(tsk);
850 
851 	exit_sem(tsk);
852 	__exit_files(tsk);
853 	__exit_fs(tsk);
854 	exit_namespace(tsk);
855 	exit_thread();
856 	cpuset_exit(tsk);
857 	exit_keys(tsk);
858 
859 	if (group_dead && tsk->signal->leader)
860 		disassociate_ctty(1);
861 
862 	module_put(task_thread_info(tsk)->exec_domain->module);
863 	if (tsk->binfmt)
864 		module_put(tsk->binfmt->module);
865 
866 	tsk->exit_code = code;
867 	proc_exit_connector(tsk);
868 	exit_notify(tsk);
869 #ifdef CONFIG_NUMA
870 	mpol_free(tsk->mempolicy);
871 	tsk->mempolicy = NULL;
872 #endif
873 	/*
874 	 * If DEBUG_MUTEXES is on, make sure we are holding no locks:
875 	 */
876 	mutex_debug_check_no_locks_held(tsk);
877 
878 	/* PF_DEAD causes final put_task_struct after we schedule. */
879 	preempt_disable();
880 	BUG_ON(tsk->flags & PF_DEAD);
881 	tsk->flags |= PF_DEAD;
882 
883 	schedule();
884 	BUG();
885 	/* Avoid "noreturn function does return".  */
886 	for (;;) ;
887 }
888 
889 EXPORT_SYMBOL_GPL(do_exit);
890 
891 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
892 {
893 	if (comp)
894 		complete(comp);
895 
896 	do_exit(code);
897 }
898 
899 EXPORT_SYMBOL(complete_and_exit);
900 
901 asmlinkage long sys_exit(int error_code)
902 {
903 	do_exit((error_code&0xff)<<8);
904 }
905 
906 task_t fastcall *next_thread(const task_t *p)
907 {
908 	return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID);
909 }
910 
911 EXPORT_SYMBOL(next_thread);
912 
913 /*
914  * Take down every thread in the group.  This is called by fatal signals
915  * as well as by sys_exit_group (below).
916  */
917 NORET_TYPE void
918 do_group_exit(int exit_code)
919 {
920 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
921 
922 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
923 		exit_code = current->signal->group_exit_code;
924 	else if (!thread_group_empty(current)) {
925 		struct signal_struct *const sig = current->signal;
926 		struct sighand_struct *const sighand = current->sighand;
927 		read_lock(&tasklist_lock);
928 		spin_lock_irq(&sighand->siglock);
929 		if (sig->flags & SIGNAL_GROUP_EXIT)
930 			/* Another thread got here before we took the lock.  */
931 			exit_code = sig->group_exit_code;
932 		else {
933 			sig->group_exit_code = exit_code;
934 			zap_other_threads(current);
935 		}
936 		spin_unlock_irq(&sighand->siglock);
937 		read_unlock(&tasklist_lock);
938 	}
939 
940 	do_exit(exit_code);
941 	/* NOTREACHED */
942 }
943 
944 /*
945  * this kills every thread in the thread group. Note that any externally
946  * wait4()-ing process will get the correct exit code - even if this
947  * thread is not the thread group leader.
948  */
949 asmlinkage void sys_exit_group(int error_code)
950 {
951 	do_group_exit((error_code & 0xff) << 8);
952 }
953 
954 static int eligible_child(pid_t pid, int options, task_t *p)
955 {
956 	if (pid > 0) {
957 		if (p->pid != pid)
958 			return 0;
959 	} else if (!pid) {
960 		if (process_group(p) != process_group(current))
961 			return 0;
962 	} else if (pid != -1) {
963 		if (process_group(p) != -pid)
964 			return 0;
965 	}
966 
967 	/*
968 	 * Do not consider detached threads that are
969 	 * not ptraced:
970 	 */
971 	if (p->exit_signal == -1 && !p->ptrace)
972 		return 0;
973 
974 	/* Wait for all children (clone and not) if __WALL is set;
975 	 * otherwise, wait for clone children *only* if __WCLONE is
976 	 * set; otherwise, wait for non-clone children *only*.  (Note:
977 	 * A "clone" child here is one that reports to its parent
978 	 * using a signal other than SIGCHLD.) */
979 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
980 	    && !(options & __WALL))
981 		return 0;
982 	/*
983 	 * Do not consider thread group leaders that are
984 	 * in a non-empty thread group:
985 	 */
986 	if (current->tgid != p->tgid && delay_group_leader(p))
987 		return 2;
988 
989 	if (security_task_wait(p))
990 		return 0;
991 
992 	return 1;
993 }
994 
995 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
996 			       int why, int status,
997 			       struct siginfo __user *infop,
998 			       struct rusage __user *rusagep)
999 {
1000 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1001 	put_task_struct(p);
1002 	if (!retval)
1003 		retval = put_user(SIGCHLD, &infop->si_signo);
1004 	if (!retval)
1005 		retval = put_user(0, &infop->si_errno);
1006 	if (!retval)
1007 		retval = put_user((short)why, &infop->si_code);
1008 	if (!retval)
1009 		retval = put_user(pid, &infop->si_pid);
1010 	if (!retval)
1011 		retval = put_user(uid, &infop->si_uid);
1012 	if (!retval)
1013 		retval = put_user(status, &infop->si_status);
1014 	if (!retval)
1015 		retval = pid;
1016 	return retval;
1017 }
1018 
1019 /*
1020  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1021  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1022  * the lock and this task is uninteresting.  If we return nonzero, we have
1023  * released the lock and the system call should return.
1024  */
1025 static int wait_task_zombie(task_t *p, int noreap,
1026 			    struct siginfo __user *infop,
1027 			    int __user *stat_addr, struct rusage __user *ru)
1028 {
1029 	unsigned long state;
1030 	int retval;
1031 	int status;
1032 
1033 	if (unlikely(noreap)) {
1034 		pid_t pid = p->pid;
1035 		uid_t uid = p->uid;
1036 		int exit_code = p->exit_code;
1037 		int why, status;
1038 
1039 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1040 			return 0;
1041 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1042 			return 0;
1043 		get_task_struct(p);
1044 		read_unlock(&tasklist_lock);
1045 		if ((exit_code & 0x7f) == 0) {
1046 			why = CLD_EXITED;
1047 			status = exit_code >> 8;
1048 		} else {
1049 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1050 			status = exit_code & 0x7f;
1051 		}
1052 		return wait_noreap_copyout(p, pid, uid, why,
1053 					   status, infop, ru);
1054 	}
1055 
1056 	/*
1057 	 * Try to move the task's state to DEAD
1058 	 * only one thread is allowed to do this:
1059 	 */
1060 	state = xchg(&p->exit_state, EXIT_DEAD);
1061 	if (state != EXIT_ZOMBIE) {
1062 		BUG_ON(state != EXIT_DEAD);
1063 		return 0;
1064 	}
1065 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1066 		/*
1067 		 * This can only happen in a race with a ptraced thread
1068 		 * dying on another processor.
1069 		 */
1070 		return 0;
1071 	}
1072 
1073 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1074 		/*
1075 		 * The resource counters for the group leader are in its
1076 		 * own task_struct.  Those for dead threads in the group
1077 		 * are in its signal_struct, as are those for the child
1078 		 * processes it has previously reaped.  All these
1079 		 * accumulate in the parent's signal_struct c* fields.
1080 		 *
1081 		 * We don't bother to take a lock here to protect these
1082 		 * p->signal fields, because they are only touched by
1083 		 * __exit_signal, which runs with tasklist_lock
1084 		 * write-locked anyway, and so is excluded here.  We do
1085 		 * need to protect the access to p->parent->signal fields,
1086 		 * as other threads in the parent group can be right
1087 		 * here reaping other children at the same time.
1088 		 */
1089 		spin_lock_irq(&p->parent->sighand->siglock);
1090 		p->parent->signal->cutime =
1091 			cputime_add(p->parent->signal->cutime,
1092 			cputime_add(p->utime,
1093 			cputime_add(p->signal->utime,
1094 				    p->signal->cutime)));
1095 		p->parent->signal->cstime =
1096 			cputime_add(p->parent->signal->cstime,
1097 			cputime_add(p->stime,
1098 			cputime_add(p->signal->stime,
1099 				    p->signal->cstime)));
1100 		p->parent->signal->cmin_flt +=
1101 			p->min_flt + p->signal->min_flt + p->signal->cmin_flt;
1102 		p->parent->signal->cmaj_flt +=
1103 			p->maj_flt + p->signal->maj_flt + p->signal->cmaj_flt;
1104 		p->parent->signal->cnvcsw +=
1105 			p->nvcsw + p->signal->nvcsw + p->signal->cnvcsw;
1106 		p->parent->signal->cnivcsw +=
1107 			p->nivcsw + p->signal->nivcsw + p->signal->cnivcsw;
1108 		spin_unlock_irq(&p->parent->sighand->siglock);
1109 	}
1110 
1111 	/*
1112 	 * Now we are sure this task is interesting, and no other
1113 	 * thread can reap it because we set its state to EXIT_DEAD.
1114 	 */
1115 	read_unlock(&tasklist_lock);
1116 
1117 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1118 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1119 		? p->signal->group_exit_code : p->exit_code;
1120 	if (!retval && stat_addr)
1121 		retval = put_user(status, stat_addr);
1122 	if (!retval && infop)
1123 		retval = put_user(SIGCHLD, &infop->si_signo);
1124 	if (!retval && infop)
1125 		retval = put_user(0, &infop->si_errno);
1126 	if (!retval && infop) {
1127 		int why;
1128 
1129 		if ((status & 0x7f) == 0) {
1130 			why = CLD_EXITED;
1131 			status >>= 8;
1132 		} else {
1133 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1134 			status &= 0x7f;
1135 		}
1136 		retval = put_user((short)why, &infop->si_code);
1137 		if (!retval)
1138 			retval = put_user(status, &infop->si_status);
1139 	}
1140 	if (!retval && infop)
1141 		retval = put_user(p->pid, &infop->si_pid);
1142 	if (!retval && infop)
1143 		retval = put_user(p->uid, &infop->si_uid);
1144 	if (retval) {
1145 		// TODO: is this safe?
1146 		p->exit_state = EXIT_ZOMBIE;
1147 		return retval;
1148 	}
1149 	retval = p->pid;
1150 	if (p->real_parent != p->parent) {
1151 		write_lock_irq(&tasklist_lock);
1152 		/* Double-check with lock held.  */
1153 		if (p->real_parent != p->parent) {
1154 			__ptrace_unlink(p);
1155 			// TODO: is this safe?
1156 			p->exit_state = EXIT_ZOMBIE;
1157 			/*
1158 			 * If this is not a detached task, notify the parent.
1159 			 * If it's still not detached after that, don't release
1160 			 * it now.
1161 			 */
1162 			if (p->exit_signal != -1) {
1163 				do_notify_parent(p, p->exit_signal);
1164 				if (p->exit_signal != -1)
1165 					p = NULL;
1166 			}
1167 		}
1168 		write_unlock_irq(&tasklist_lock);
1169 	}
1170 	if (p != NULL)
1171 		release_task(p);
1172 	BUG_ON(!retval);
1173 	return retval;
1174 }
1175 
1176 /*
1177  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1178  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1179  * the lock and this task is uninteresting.  If we return nonzero, we have
1180  * released the lock and the system call should return.
1181  */
1182 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1183 			     struct siginfo __user *infop,
1184 			     int __user *stat_addr, struct rusage __user *ru)
1185 {
1186 	int retval, exit_code;
1187 
1188 	if (!p->exit_code)
1189 		return 0;
1190 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1191 	    p->signal && p->signal->group_stop_count > 0)
1192 		/*
1193 		 * A group stop is in progress and this is the group leader.
1194 		 * We won't report until all threads have stopped.
1195 		 */
1196 		return 0;
1197 
1198 	/*
1199 	 * Now we are pretty sure this task is interesting.
1200 	 * Make sure it doesn't get reaped out from under us while we
1201 	 * give up the lock and then examine it below.  We don't want to
1202 	 * keep holding onto the tasklist_lock while we call getrusage and
1203 	 * possibly take page faults for user memory.
1204 	 */
1205 	get_task_struct(p);
1206 	read_unlock(&tasklist_lock);
1207 
1208 	if (unlikely(noreap)) {
1209 		pid_t pid = p->pid;
1210 		uid_t uid = p->uid;
1211 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1212 
1213 		exit_code = p->exit_code;
1214 		if (unlikely(!exit_code) ||
1215 		    unlikely(p->state & TASK_TRACED))
1216 			goto bail_ref;
1217 		return wait_noreap_copyout(p, pid, uid,
1218 					   why, (exit_code << 8) | 0x7f,
1219 					   infop, ru);
1220 	}
1221 
1222 	write_lock_irq(&tasklist_lock);
1223 
1224 	/*
1225 	 * This uses xchg to be atomic with the thread resuming and setting
1226 	 * it.  It must also be done with the write lock held to prevent a
1227 	 * race with the EXIT_ZOMBIE case.
1228 	 */
1229 	exit_code = xchg(&p->exit_code, 0);
1230 	if (unlikely(p->exit_state)) {
1231 		/*
1232 		 * The task resumed and then died.  Let the next iteration
1233 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1234 		 * already be zero here if it resumed and did _exit(0).
1235 		 * The task itself is dead and won't touch exit_code again;
1236 		 * other processors in this function are locked out.
1237 		 */
1238 		p->exit_code = exit_code;
1239 		exit_code = 0;
1240 	}
1241 	if (unlikely(exit_code == 0)) {
1242 		/*
1243 		 * Another thread in this function got to it first, or it
1244 		 * resumed, or it resumed and then died.
1245 		 */
1246 		write_unlock_irq(&tasklist_lock);
1247 bail_ref:
1248 		put_task_struct(p);
1249 		/*
1250 		 * We are returning to the wait loop without having successfully
1251 		 * removed the process and having released the lock. We cannot
1252 		 * continue, since the "p" task pointer is potentially stale.
1253 		 *
1254 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1255 		 * beginning. Do _not_ re-acquire the lock.
1256 		 */
1257 		return -EAGAIN;
1258 	}
1259 
1260 	/* move to end of parent's list to avoid starvation */
1261 	remove_parent(p);
1262 	add_parent(p, p->parent);
1263 
1264 	write_unlock_irq(&tasklist_lock);
1265 
1266 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1267 	if (!retval && stat_addr)
1268 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1269 	if (!retval && infop)
1270 		retval = put_user(SIGCHLD, &infop->si_signo);
1271 	if (!retval && infop)
1272 		retval = put_user(0, &infop->si_errno);
1273 	if (!retval && infop)
1274 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1275 					  ? CLD_TRAPPED : CLD_STOPPED),
1276 				  &infop->si_code);
1277 	if (!retval && infop)
1278 		retval = put_user(exit_code, &infop->si_status);
1279 	if (!retval && infop)
1280 		retval = put_user(p->pid, &infop->si_pid);
1281 	if (!retval && infop)
1282 		retval = put_user(p->uid, &infop->si_uid);
1283 	if (!retval)
1284 		retval = p->pid;
1285 	put_task_struct(p);
1286 
1287 	BUG_ON(!retval);
1288 	return retval;
1289 }
1290 
1291 /*
1292  * Handle do_wait work for one task in a live, non-stopped state.
1293  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1294  * the lock and this task is uninteresting.  If we return nonzero, we have
1295  * released the lock and the system call should return.
1296  */
1297 static int wait_task_continued(task_t *p, int noreap,
1298 			       struct siginfo __user *infop,
1299 			       int __user *stat_addr, struct rusage __user *ru)
1300 {
1301 	int retval;
1302 	pid_t pid;
1303 	uid_t uid;
1304 
1305 	if (unlikely(!p->signal))
1306 		return 0;
1307 
1308 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1309 		return 0;
1310 
1311 	spin_lock_irq(&p->sighand->siglock);
1312 	/* Re-check with the lock held.  */
1313 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1314 		spin_unlock_irq(&p->sighand->siglock);
1315 		return 0;
1316 	}
1317 	if (!noreap)
1318 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1319 	spin_unlock_irq(&p->sighand->siglock);
1320 
1321 	pid = p->pid;
1322 	uid = p->uid;
1323 	get_task_struct(p);
1324 	read_unlock(&tasklist_lock);
1325 
1326 	if (!infop) {
1327 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1328 		put_task_struct(p);
1329 		if (!retval && stat_addr)
1330 			retval = put_user(0xffff, stat_addr);
1331 		if (!retval)
1332 			retval = p->pid;
1333 	} else {
1334 		retval = wait_noreap_copyout(p, pid, uid,
1335 					     CLD_CONTINUED, SIGCONT,
1336 					     infop, ru);
1337 		BUG_ON(retval == 0);
1338 	}
1339 
1340 	return retval;
1341 }
1342 
1343 
1344 static inline int my_ptrace_child(struct task_struct *p)
1345 {
1346 	if (!(p->ptrace & PT_PTRACED))
1347 		return 0;
1348 	if (!(p->ptrace & PT_ATTACHED))
1349 		return 1;
1350 	/*
1351 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1352 	 * we are the attacher.  If we are the real parent, this is a race
1353 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1354 	 * which we have to switch the parent links, but has already set
1355 	 * the flags in p->ptrace.
1356 	 */
1357 	return (p->parent != p->real_parent);
1358 }
1359 
1360 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1361 		    int __user *stat_addr, struct rusage __user *ru)
1362 {
1363 	DECLARE_WAITQUEUE(wait, current);
1364 	struct task_struct *tsk;
1365 	int flag, retval;
1366 
1367 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1368 repeat:
1369 	/*
1370 	 * We will set this flag if we see any child that might later
1371 	 * match our criteria, even if we are not able to reap it yet.
1372 	 */
1373 	flag = 0;
1374 	current->state = TASK_INTERRUPTIBLE;
1375 	read_lock(&tasklist_lock);
1376 	tsk = current;
1377 	do {
1378 		struct task_struct *p;
1379 		struct list_head *_p;
1380 		int ret;
1381 
1382 		list_for_each(_p,&tsk->children) {
1383 			p = list_entry(_p,struct task_struct,sibling);
1384 
1385 			ret = eligible_child(pid, options, p);
1386 			if (!ret)
1387 				continue;
1388 
1389 			switch (p->state) {
1390 			case TASK_TRACED:
1391 				/*
1392 				 * When we hit the race with PTRACE_ATTACH,
1393 				 * we will not report this child.  But the
1394 				 * race means it has not yet been moved to
1395 				 * our ptrace_children list, so we need to
1396 				 * set the flag here to avoid a spurious ECHILD
1397 				 * when the race happens with the only child.
1398 				 */
1399 				flag = 1;
1400 				if (!my_ptrace_child(p))
1401 					continue;
1402 				/*FALLTHROUGH*/
1403 			case TASK_STOPPED:
1404 				/*
1405 				 * It's stopped now, so it might later
1406 				 * continue, exit, or stop again.
1407 				 */
1408 				flag = 1;
1409 				if (!(options & WUNTRACED) &&
1410 				    !my_ptrace_child(p))
1411 					continue;
1412 				retval = wait_task_stopped(p, ret == 2,
1413 							   (options & WNOWAIT),
1414 							   infop,
1415 							   stat_addr, ru);
1416 				if (retval == -EAGAIN)
1417 					goto repeat;
1418 				if (retval != 0) /* He released the lock.  */
1419 					goto end;
1420 				break;
1421 			default:
1422 			// case EXIT_DEAD:
1423 				if (p->exit_state == EXIT_DEAD)
1424 					continue;
1425 			// case EXIT_ZOMBIE:
1426 				if (p->exit_state == EXIT_ZOMBIE) {
1427 					/*
1428 					 * Eligible but we cannot release
1429 					 * it yet:
1430 					 */
1431 					if (ret == 2)
1432 						goto check_continued;
1433 					if (!likely(options & WEXITED))
1434 						continue;
1435 					retval = wait_task_zombie(
1436 						p, (options & WNOWAIT),
1437 						infop, stat_addr, ru);
1438 					/* He released the lock.  */
1439 					if (retval != 0)
1440 						goto end;
1441 					break;
1442 				}
1443 check_continued:
1444 				/*
1445 				 * It's running now, so it might later
1446 				 * exit, stop, or stop and then continue.
1447 				 */
1448 				flag = 1;
1449 				if (!unlikely(options & WCONTINUED))
1450 					continue;
1451 				retval = wait_task_continued(
1452 					p, (options & WNOWAIT),
1453 					infop, stat_addr, ru);
1454 				if (retval != 0) /* He released the lock.  */
1455 					goto end;
1456 				break;
1457 			}
1458 		}
1459 		if (!flag) {
1460 			list_for_each(_p, &tsk->ptrace_children) {
1461 				p = list_entry(_p, struct task_struct,
1462 						ptrace_list);
1463 				if (!eligible_child(pid, options, p))
1464 					continue;
1465 				flag = 1;
1466 				break;
1467 			}
1468 		}
1469 		if (options & __WNOTHREAD)
1470 			break;
1471 		tsk = next_thread(tsk);
1472 		if (tsk->signal != current->signal)
1473 			BUG();
1474 	} while (tsk != current);
1475 
1476 	read_unlock(&tasklist_lock);
1477 	if (flag) {
1478 		retval = 0;
1479 		if (options & WNOHANG)
1480 			goto end;
1481 		retval = -ERESTARTSYS;
1482 		if (signal_pending(current))
1483 			goto end;
1484 		schedule();
1485 		goto repeat;
1486 	}
1487 	retval = -ECHILD;
1488 end:
1489 	current->state = TASK_RUNNING;
1490 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1491 	if (infop) {
1492 		if (retval > 0)
1493 		retval = 0;
1494 		else {
1495 			/*
1496 			 * For a WNOHANG return, clear out all the fields
1497 			 * we would set so the user can easily tell the
1498 			 * difference.
1499 			 */
1500 			if (!retval)
1501 				retval = put_user(0, &infop->si_signo);
1502 			if (!retval)
1503 				retval = put_user(0, &infop->si_errno);
1504 			if (!retval)
1505 				retval = put_user(0, &infop->si_code);
1506 			if (!retval)
1507 				retval = put_user(0, &infop->si_pid);
1508 			if (!retval)
1509 				retval = put_user(0, &infop->si_uid);
1510 			if (!retval)
1511 				retval = put_user(0, &infop->si_status);
1512 		}
1513 	}
1514 	return retval;
1515 }
1516 
1517 asmlinkage long sys_waitid(int which, pid_t pid,
1518 			   struct siginfo __user *infop, int options,
1519 			   struct rusage __user *ru)
1520 {
1521 	long ret;
1522 
1523 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1524 		return -EINVAL;
1525 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1526 		return -EINVAL;
1527 
1528 	switch (which) {
1529 	case P_ALL:
1530 		pid = -1;
1531 		break;
1532 	case P_PID:
1533 		if (pid <= 0)
1534 			return -EINVAL;
1535 		break;
1536 	case P_PGID:
1537 		if (pid <= 0)
1538 			return -EINVAL;
1539 		pid = -pid;
1540 		break;
1541 	default:
1542 		return -EINVAL;
1543 	}
1544 
1545 	ret = do_wait(pid, options, infop, NULL, ru);
1546 
1547 	/* avoid REGPARM breakage on x86: */
1548 	prevent_tail_call(ret);
1549 	return ret;
1550 }
1551 
1552 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1553 			  int options, struct rusage __user *ru)
1554 {
1555 	long ret;
1556 
1557 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1558 			__WNOTHREAD|__WCLONE|__WALL))
1559 		return -EINVAL;
1560 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1561 
1562 	/* avoid REGPARM breakage on x86: */
1563 	prevent_tail_call(ret);
1564 	return ret;
1565 }
1566 
1567 #ifdef __ARCH_WANT_SYS_WAITPID
1568 
1569 /*
1570  * sys_waitpid() remains for compatibility. waitpid() should be
1571  * implemented by calling sys_wait4() from libc.a.
1572  */
1573 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1574 {
1575 	return sys_wait4(pid, stat_addr, options, NULL);
1576 }
1577 
1578 #endif
1579