1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 #include <linux/kcov.h> 57 #include <linux/random.h> 58 59 #include <linux/uaccess.h> 60 #include <asm/unistd.h> 61 #include <asm/pgtable.h> 62 #include <asm/mmu_context.h> 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 } 76 list_del_rcu(&p->thread_group); 77 list_del_rcu(&p->thread_node); 78 } 79 80 /* 81 * This function expects the tasklist_lock write-locked. 82 */ 83 static void __exit_signal(struct task_struct *tsk) 84 { 85 struct signal_struct *sig = tsk->signal; 86 bool group_dead = thread_group_leader(tsk); 87 struct sighand_struct *sighand; 88 struct tty_struct *uninitialized_var(tty); 89 cputime_t utime, stime; 90 91 sighand = rcu_dereference_check(tsk->sighand, 92 lockdep_tasklist_lock_is_held()); 93 spin_lock(&sighand->siglock); 94 95 #ifdef CONFIG_POSIX_TIMERS 96 posix_cpu_timers_exit(tsk); 97 if (group_dead) { 98 posix_cpu_timers_exit_group(tsk); 99 } else { 100 /* 101 * This can only happen if the caller is de_thread(). 102 * FIXME: this is the temporary hack, we should teach 103 * posix-cpu-timers to handle this case correctly. 104 */ 105 if (unlikely(has_group_leader_pid(tsk))) 106 posix_cpu_timers_exit_group(tsk); 107 } 108 #endif 109 110 if (group_dead) { 111 tty = sig->tty; 112 sig->tty = NULL; 113 } else { 114 /* 115 * If there is any task waiting for the group exit 116 * then notify it: 117 */ 118 if (sig->notify_count > 0 && !--sig->notify_count) 119 wake_up_process(sig->group_exit_task); 120 121 if (tsk == sig->curr_target) 122 sig->curr_target = next_thread(tsk); 123 } 124 125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 126 sizeof(unsigned long long)); 127 128 /* 129 * Accumulate here the counters for all threads as they die. We could 130 * skip the group leader because it is the last user of signal_struct, 131 * but we want to avoid the race with thread_group_cputime() which can 132 * see the empty ->thread_head list. 133 */ 134 task_cputime(tsk, &utime, &stime); 135 write_seqlock(&sig->stats_lock); 136 sig->utime += utime; 137 sig->stime += stime; 138 sig->gtime += task_gtime(tsk); 139 sig->min_flt += tsk->min_flt; 140 sig->maj_flt += tsk->maj_flt; 141 sig->nvcsw += tsk->nvcsw; 142 sig->nivcsw += tsk->nivcsw; 143 sig->inblock += task_io_get_inblock(tsk); 144 sig->oublock += task_io_get_oublock(tsk); 145 task_io_accounting_add(&sig->ioac, &tsk->ioac); 146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 147 sig->nr_threads--; 148 __unhash_process(tsk, group_dead); 149 write_sequnlock(&sig->stats_lock); 150 151 /* 152 * Do this under ->siglock, we can race with another thread 153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 154 */ 155 flush_sigqueue(&tsk->pending); 156 tsk->sighand = NULL; 157 spin_unlock(&sighand->siglock); 158 159 __cleanup_sighand(sighand); 160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 161 if (group_dead) { 162 flush_sigqueue(&sig->shared_pending); 163 tty_kref_put(tty); 164 } 165 } 166 167 static void delayed_put_task_struct(struct rcu_head *rhp) 168 { 169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 170 171 perf_event_delayed_put(tsk); 172 trace_sched_process_free(tsk); 173 put_task_struct(tsk); 174 } 175 176 177 void release_task(struct task_struct *p) 178 { 179 struct task_struct *leader; 180 int zap_leader; 181 repeat: 182 /* don't need to get the RCU readlock here - the process is dead and 183 * can't be modifying its own credentials. But shut RCU-lockdep up */ 184 rcu_read_lock(); 185 atomic_dec(&__task_cred(p)->user->processes); 186 rcu_read_unlock(); 187 188 proc_flush_task(p); 189 190 write_lock_irq(&tasklist_lock); 191 ptrace_release_task(p); 192 __exit_signal(p); 193 194 /* 195 * If we are the last non-leader member of the thread 196 * group, and the leader is zombie, then notify the 197 * group leader's parent process. (if it wants notification.) 198 */ 199 zap_leader = 0; 200 leader = p->group_leader; 201 if (leader != p && thread_group_empty(leader) 202 && leader->exit_state == EXIT_ZOMBIE) { 203 /* 204 * If we were the last child thread and the leader has 205 * exited already, and the leader's parent ignores SIGCHLD, 206 * then we are the one who should release the leader. 207 */ 208 zap_leader = do_notify_parent(leader, leader->exit_signal); 209 if (zap_leader) 210 leader->exit_state = EXIT_DEAD; 211 } 212 213 write_unlock_irq(&tasklist_lock); 214 release_thread(p); 215 call_rcu(&p->rcu, delayed_put_task_struct); 216 217 p = leader; 218 if (unlikely(zap_leader)) 219 goto repeat; 220 } 221 222 /* 223 * Note that if this function returns a valid task_struct pointer (!NULL) 224 * task->usage must remain >0 for the duration of the RCU critical section. 225 */ 226 struct task_struct *task_rcu_dereference(struct task_struct **ptask) 227 { 228 struct sighand_struct *sighand; 229 struct task_struct *task; 230 231 /* 232 * We need to verify that release_task() was not called and thus 233 * delayed_put_task_struct() can't run and drop the last reference 234 * before rcu_read_unlock(). We check task->sighand != NULL, 235 * but we can read the already freed and reused memory. 236 */ 237 retry: 238 task = rcu_dereference(*ptask); 239 if (!task) 240 return NULL; 241 242 probe_kernel_address(&task->sighand, sighand); 243 244 /* 245 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task 246 * was already freed we can not miss the preceding update of this 247 * pointer. 248 */ 249 smp_rmb(); 250 if (unlikely(task != READ_ONCE(*ptask))) 251 goto retry; 252 253 /* 254 * We've re-checked that "task == *ptask", now we have two different 255 * cases: 256 * 257 * 1. This is actually the same task/task_struct. In this case 258 * sighand != NULL tells us it is still alive. 259 * 260 * 2. This is another task which got the same memory for task_struct. 261 * We can't know this of course, and we can not trust 262 * sighand != NULL. 263 * 264 * In this case we actually return a random value, but this is 265 * correct. 266 * 267 * If we return NULL - we can pretend that we actually noticed that 268 * *ptask was updated when the previous task has exited. Or pretend 269 * that probe_slab_address(&sighand) reads NULL. 270 * 271 * If we return the new task (because sighand is not NULL for any 272 * reason) - this is fine too. This (new) task can't go away before 273 * another gp pass. 274 * 275 * And note: We could even eliminate the false positive if re-read 276 * task->sighand once again to avoid the falsely NULL. But this case 277 * is very unlikely so we don't care. 278 */ 279 if (!sighand) 280 return NULL; 281 282 return task; 283 } 284 285 struct task_struct *try_get_task_struct(struct task_struct **ptask) 286 { 287 struct task_struct *task; 288 289 rcu_read_lock(); 290 task = task_rcu_dereference(ptask); 291 if (task) 292 get_task_struct(task); 293 rcu_read_unlock(); 294 295 return task; 296 } 297 298 /* 299 * Determine if a process group is "orphaned", according to the POSIX 300 * definition in 2.2.2.52. Orphaned process groups are not to be affected 301 * by terminal-generated stop signals. Newly orphaned process groups are 302 * to receive a SIGHUP and a SIGCONT. 303 * 304 * "I ask you, have you ever known what it is to be an orphan?" 305 */ 306 static int will_become_orphaned_pgrp(struct pid *pgrp, 307 struct task_struct *ignored_task) 308 { 309 struct task_struct *p; 310 311 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 312 if ((p == ignored_task) || 313 (p->exit_state && thread_group_empty(p)) || 314 is_global_init(p->real_parent)) 315 continue; 316 317 if (task_pgrp(p->real_parent) != pgrp && 318 task_session(p->real_parent) == task_session(p)) 319 return 0; 320 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 321 322 return 1; 323 } 324 325 int is_current_pgrp_orphaned(void) 326 { 327 int retval; 328 329 read_lock(&tasklist_lock); 330 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 331 read_unlock(&tasklist_lock); 332 333 return retval; 334 } 335 336 static bool has_stopped_jobs(struct pid *pgrp) 337 { 338 struct task_struct *p; 339 340 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 341 if (p->signal->flags & SIGNAL_STOP_STOPPED) 342 return true; 343 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 344 345 return false; 346 } 347 348 /* 349 * Check to see if any process groups have become orphaned as 350 * a result of our exiting, and if they have any stopped jobs, 351 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 352 */ 353 static void 354 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 355 { 356 struct pid *pgrp = task_pgrp(tsk); 357 struct task_struct *ignored_task = tsk; 358 359 if (!parent) 360 /* exit: our father is in a different pgrp than 361 * we are and we were the only connection outside. 362 */ 363 parent = tsk->real_parent; 364 else 365 /* reparent: our child is in a different pgrp than 366 * we are, and it was the only connection outside. 367 */ 368 ignored_task = NULL; 369 370 if (task_pgrp(parent) != pgrp && 371 task_session(parent) == task_session(tsk) && 372 will_become_orphaned_pgrp(pgrp, ignored_task) && 373 has_stopped_jobs(pgrp)) { 374 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 375 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 376 } 377 } 378 379 #ifdef CONFIG_MEMCG 380 /* 381 * A task is exiting. If it owned this mm, find a new owner for the mm. 382 */ 383 void mm_update_next_owner(struct mm_struct *mm) 384 { 385 struct task_struct *c, *g, *p = current; 386 387 retry: 388 /* 389 * If the exiting or execing task is not the owner, it's 390 * someone else's problem. 391 */ 392 if (mm->owner != p) 393 return; 394 /* 395 * The current owner is exiting/execing and there are no other 396 * candidates. Do not leave the mm pointing to a possibly 397 * freed task structure. 398 */ 399 if (atomic_read(&mm->mm_users) <= 1) { 400 mm->owner = NULL; 401 return; 402 } 403 404 read_lock(&tasklist_lock); 405 /* 406 * Search in the children 407 */ 408 list_for_each_entry(c, &p->children, sibling) { 409 if (c->mm == mm) 410 goto assign_new_owner; 411 } 412 413 /* 414 * Search in the siblings 415 */ 416 list_for_each_entry(c, &p->real_parent->children, sibling) { 417 if (c->mm == mm) 418 goto assign_new_owner; 419 } 420 421 /* 422 * Search through everything else, we should not get here often. 423 */ 424 for_each_process(g) { 425 if (g->flags & PF_KTHREAD) 426 continue; 427 for_each_thread(g, c) { 428 if (c->mm == mm) 429 goto assign_new_owner; 430 if (c->mm) 431 break; 432 } 433 } 434 read_unlock(&tasklist_lock); 435 /* 436 * We found no owner yet mm_users > 1: this implies that we are 437 * most likely racing with swapoff (try_to_unuse()) or /proc or 438 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 439 */ 440 mm->owner = NULL; 441 return; 442 443 assign_new_owner: 444 BUG_ON(c == p); 445 get_task_struct(c); 446 /* 447 * The task_lock protects c->mm from changing. 448 * We always want mm->owner->mm == mm 449 */ 450 task_lock(c); 451 /* 452 * Delay read_unlock() till we have the task_lock() 453 * to ensure that c does not slip away underneath us 454 */ 455 read_unlock(&tasklist_lock); 456 if (c->mm != mm) { 457 task_unlock(c); 458 put_task_struct(c); 459 goto retry; 460 } 461 mm->owner = c; 462 task_unlock(c); 463 put_task_struct(c); 464 } 465 #endif /* CONFIG_MEMCG */ 466 467 /* 468 * Turn us into a lazy TLB process if we 469 * aren't already.. 470 */ 471 static void exit_mm(struct task_struct *tsk) 472 { 473 struct mm_struct *mm = tsk->mm; 474 struct core_state *core_state; 475 476 mm_release(tsk, mm); 477 if (!mm) 478 return; 479 sync_mm_rss(mm); 480 /* 481 * Serialize with any possible pending coredump. 482 * We must hold mmap_sem around checking core_state 483 * and clearing tsk->mm. The core-inducing thread 484 * will increment ->nr_threads for each thread in the 485 * group with ->mm != NULL. 486 */ 487 down_read(&mm->mmap_sem); 488 core_state = mm->core_state; 489 if (core_state) { 490 struct core_thread self; 491 492 up_read(&mm->mmap_sem); 493 494 self.task = tsk; 495 self.next = xchg(&core_state->dumper.next, &self); 496 /* 497 * Implies mb(), the result of xchg() must be visible 498 * to core_state->dumper. 499 */ 500 if (atomic_dec_and_test(&core_state->nr_threads)) 501 complete(&core_state->startup); 502 503 for (;;) { 504 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 505 if (!self.task) /* see coredump_finish() */ 506 break; 507 freezable_schedule(); 508 } 509 __set_task_state(tsk, TASK_RUNNING); 510 down_read(&mm->mmap_sem); 511 } 512 atomic_inc(&mm->mm_count); 513 BUG_ON(mm != tsk->active_mm); 514 /* more a memory barrier than a real lock */ 515 task_lock(tsk); 516 tsk->mm = NULL; 517 up_read(&mm->mmap_sem); 518 enter_lazy_tlb(mm, current); 519 task_unlock(tsk); 520 mm_update_next_owner(mm); 521 mmput(mm); 522 if (test_thread_flag(TIF_MEMDIE)) 523 exit_oom_victim(); 524 } 525 526 static struct task_struct *find_alive_thread(struct task_struct *p) 527 { 528 struct task_struct *t; 529 530 for_each_thread(p, t) { 531 if (!(t->flags & PF_EXITING)) 532 return t; 533 } 534 return NULL; 535 } 536 537 static struct task_struct *find_child_reaper(struct task_struct *father) 538 __releases(&tasklist_lock) 539 __acquires(&tasklist_lock) 540 { 541 struct pid_namespace *pid_ns = task_active_pid_ns(father); 542 struct task_struct *reaper = pid_ns->child_reaper; 543 544 if (likely(reaper != father)) 545 return reaper; 546 547 reaper = find_alive_thread(father); 548 if (reaper) { 549 pid_ns->child_reaper = reaper; 550 return reaper; 551 } 552 553 write_unlock_irq(&tasklist_lock); 554 if (unlikely(pid_ns == &init_pid_ns)) { 555 panic("Attempted to kill init! exitcode=0x%08x\n", 556 father->signal->group_exit_code ?: father->exit_code); 557 } 558 zap_pid_ns_processes(pid_ns); 559 write_lock_irq(&tasklist_lock); 560 561 return father; 562 } 563 564 /* 565 * When we die, we re-parent all our children, and try to: 566 * 1. give them to another thread in our thread group, if such a member exists 567 * 2. give it to the first ancestor process which prctl'd itself as a 568 * child_subreaper for its children (like a service manager) 569 * 3. give it to the init process (PID 1) in our pid namespace 570 */ 571 static struct task_struct *find_new_reaper(struct task_struct *father, 572 struct task_struct *child_reaper) 573 { 574 struct task_struct *thread, *reaper; 575 576 thread = find_alive_thread(father); 577 if (thread) 578 return thread; 579 580 if (father->signal->has_child_subreaper) { 581 /* 582 * Find the first ->is_child_subreaper ancestor in our pid_ns. 583 * We start from father to ensure we can not look into another 584 * namespace, this is safe because all its threads are dead. 585 */ 586 for (reaper = father; 587 !same_thread_group(reaper, child_reaper); 588 reaper = reaper->real_parent) { 589 /* call_usermodehelper() descendants need this check */ 590 if (reaper == &init_task) 591 break; 592 if (!reaper->signal->is_child_subreaper) 593 continue; 594 thread = find_alive_thread(reaper); 595 if (thread) 596 return thread; 597 } 598 } 599 600 return child_reaper; 601 } 602 603 /* 604 * Any that need to be release_task'd are put on the @dead list. 605 */ 606 static void reparent_leader(struct task_struct *father, struct task_struct *p, 607 struct list_head *dead) 608 { 609 if (unlikely(p->exit_state == EXIT_DEAD)) 610 return; 611 612 /* We don't want people slaying init. */ 613 p->exit_signal = SIGCHLD; 614 615 /* If it has exited notify the new parent about this child's death. */ 616 if (!p->ptrace && 617 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 618 if (do_notify_parent(p, p->exit_signal)) { 619 p->exit_state = EXIT_DEAD; 620 list_add(&p->ptrace_entry, dead); 621 } 622 } 623 624 kill_orphaned_pgrp(p, father); 625 } 626 627 /* 628 * This does two things: 629 * 630 * A. Make init inherit all the child processes 631 * B. Check to see if any process groups have become orphaned 632 * as a result of our exiting, and if they have any stopped 633 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 634 */ 635 static void forget_original_parent(struct task_struct *father, 636 struct list_head *dead) 637 { 638 struct task_struct *p, *t, *reaper; 639 640 if (unlikely(!list_empty(&father->ptraced))) 641 exit_ptrace(father, dead); 642 643 /* Can drop and reacquire tasklist_lock */ 644 reaper = find_child_reaper(father); 645 if (list_empty(&father->children)) 646 return; 647 648 reaper = find_new_reaper(father, reaper); 649 list_for_each_entry(p, &father->children, sibling) { 650 for_each_thread(p, t) { 651 t->real_parent = reaper; 652 BUG_ON((!t->ptrace) != (t->parent == father)); 653 if (likely(!t->ptrace)) 654 t->parent = t->real_parent; 655 if (t->pdeath_signal) 656 group_send_sig_info(t->pdeath_signal, 657 SEND_SIG_NOINFO, t); 658 } 659 /* 660 * If this is a threaded reparent there is no need to 661 * notify anyone anything has happened. 662 */ 663 if (!same_thread_group(reaper, father)) 664 reparent_leader(father, p, dead); 665 } 666 list_splice_tail_init(&father->children, &reaper->children); 667 } 668 669 /* 670 * Send signals to all our closest relatives so that they know 671 * to properly mourn us.. 672 */ 673 static void exit_notify(struct task_struct *tsk, int group_dead) 674 { 675 bool autoreap; 676 struct task_struct *p, *n; 677 LIST_HEAD(dead); 678 679 write_lock_irq(&tasklist_lock); 680 forget_original_parent(tsk, &dead); 681 682 if (group_dead) 683 kill_orphaned_pgrp(tsk->group_leader, NULL); 684 685 if (unlikely(tsk->ptrace)) { 686 int sig = thread_group_leader(tsk) && 687 thread_group_empty(tsk) && 688 !ptrace_reparented(tsk) ? 689 tsk->exit_signal : SIGCHLD; 690 autoreap = do_notify_parent(tsk, sig); 691 } else if (thread_group_leader(tsk)) { 692 autoreap = thread_group_empty(tsk) && 693 do_notify_parent(tsk, tsk->exit_signal); 694 } else { 695 autoreap = true; 696 } 697 698 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 699 if (tsk->exit_state == EXIT_DEAD) 700 list_add(&tsk->ptrace_entry, &dead); 701 702 /* mt-exec, de_thread() is waiting for group leader */ 703 if (unlikely(tsk->signal->notify_count < 0)) 704 wake_up_process(tsk->signal->group_exit_task); 705 write_unlock_irq(&tasklist_lock); 706 707 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 708 list_del_init(&p->ptrace_entry); 709 release_task(p); 710 } 711 } 712 713 #ifdef CONFIG_DEBUG_STACK_USAGE 714 static void check_stack_usage(void) 715 { 716 static DEFINE_SPINLOCK(low_water_lock); 717 static int lowest_to_date = THREAD_SIZE; 718 unsigned long free; 719 720 free = stack_not_used(current); 721 722 if (free >= lowest_to_date) 723 return; 724 725 spin_lock(&low_water_lock); 726 if (free < lowest_to_date) { 727 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 728 current->comm, task_pid_nr(current), free); 729 lowest_to_date = free; 730 } 731 spin_unlock(&low_water_lock); 732 } 733 #else 734 static inline void check_stack_usage(void) {} 735 #endif 736 737 void __noreturn do_exit(long code) 738 { 739 struct task_struct *tsk = current; 740 int group_dead; 741 TASKS_RCU(int tasks_rcu_i); 742 743 profile_task_exit(tsk); 744 kcov_task_exit(tsk); 745 746 WARN_ON(blk_needs_flush_plug(tsk)); 747 748 if (unlikely(in_interrupt())) 749 panic("Aiee, killing interrupt handler!"); 750 if (unlikely(!tsk->pid)) 751 panic("Attempted to kill the idle task!"); 752 753 /* 754 * If do_exit is called because this processes oopsed, it's possible 755 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 756 * continuing. Amongst other possible reasons, this is to prevent 757 * mm_release()->clear_child_tid() from writing to a user-controlled 758 * kernel address. 759 */ 760 set_fs(USER_DS); 761 762 ptrace_event(PTRACE_EVENT_EXIT, code); 763 764 validate_creds_for_do_exit(tsk); 765 766 /* 767 * We're taking recursive faults here in do_exit. Safest is to just 768 * leave this task alone and wait for reboot. 769 */ 770 if (unlikely(tsk->flags & PF_EXITING)) { 771 pr_alert("Fixing recursive fault but reboot is needed!\n"); 772 /* 773 * We can do this unlocked here. The futex code uses 774 * this flag just to verify whether the pi state 775 * cleanup has been done or not. In the worst case it 776 * loops once more. We pretend that the cleanup was 777 * done as there is no way to return. Either the 778 * OWNER_DIED bit is set by now or we push the blocked 779 * task into the wait for ever nirwana as well. 780 */ 781 tsk->flags |= PF_EXITPIDONE; 782 set_current_state(TASK_UNINTERRUPTIBLE); 783 schedule(); 784 } 785 786 exit_signals(tsk); /* sets PF_EXITING */ 787 /* 788 * Ensure that all new tsk->pi_lock acquisitions must observe 789 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner(). 790 */ 791 smp_mb(); 792 /* 793 * Ensure that we must observe the pi_state in exit_mm() -> 794 * mm_release() -> exit_pi_state_list(). 795 */ 796 raw_spin_unlock_wait(&tsk->pi_lock); 797 798 if (unlikely(in_atomic())) { 799 pr_info("note: %s[%d] exited with preempt_count %d\n", 800 current->comm, task_pid_nr(current), 801 preempt_count()); 802 preempt_count_set(PREEMPT_ENABLED); 803 } 804 805 /* sync mm's RSS info before statistics gathering */ 806 if (tsk->mm) 807 sync_mm_rss(tsk->mm); 808 acct_update_integrals(tsk); 809 group_dead = atomic_dec_and_test(&tsk->signal->live); 810 if (group_dead) { 811 #ifdef CONFIG_POSIX_TIMERS 812 hrtimer_cancel(&tsk->signal->real_timer); 813 exit_itimers(tsk->signal); 814 #endif 815 if (tsk->mm) 816 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 817 } 818 acct_collect(code, group_dead); 819 if (group_dead) 820 tty_audit_exit(); 821 audit_free(tsk); 822 823 tsk->exit_code = code; 824 taskstats_exit(tsk, group_dead); 825 826 exit_mm(tsk); 827 828 if (group_dead) 829 acct_process(); 830 trace_sched_process_exit(tsk); 831 832 exit_sem(tsk); 833 exit_shm(tsk); 834 exit_files(tsk); 835 exit_fs(tsk); 836 if (group_dead) 837 disassociate_ctty(1); 838 exit_task_namespaces(tsk); 839 exit_task_work(tsk); 840 exit_thread(tsk); 841 842 /* 843 * Flush inherited counters to the parent - before the parent 844 * gets woken up by child-exit notifications. 845 * 846 * because of cgroup mode, must be called before cgroup_exit() 847 */ 848 perf_event_exit_task(tsk); 849 850 sched_autogroup_exit_task(tsk); 851 cgroup_exit(tsk); 852 853 /* 854 * FIXME: do that only when needed, using sched_exit tracepoint 855 */ 856 flush_ptrace_hw_breakpoint(tsk); 857 858 TASKS_RCU(preempt_disable()); 859 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 860 TASKS_RCU(preempt_enable()); 861 exit_notify(tsk, group_dead); 862 proc_exit_connector(tsk); 863 mpol_put_task_policy(tsk); 864 #ifdef CONFIG_FUTEX 865 if (unlikely(current->pi_state_cache)) 866 kfree(current->pi_state_cache); 867 #endif 868 /* 869 * Make sure we are holding no locks: 870 */ 871 debug_check_no_locks_held(); 872 /* 873 * We can do this unlocked here. The futex code uses this flag 874 * just to verify whether the pi state cleanup has been done 875 * or not. In the worst case it loops once more. 876 */ 877 tsk->flags |= PF_EXITPIDONE; 878 879 if (tsk->io_context) 880 exit_io_context(tsk); 881 882 if (tsk->splice_pipe) 883 free_pipe_info(tsk->splice_pipe); 884 885 if (tsk->task_frag.page) 886 put_page(tsk->task_frag.page); 887 888 validate_creds_for_do_exit(tsk); 889 890 check_stack_usage(); 891 preempt_disable(); 892 if (tsk->nr_dirtied) 893 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 894 exit_rcu(); 895 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 896 897 do_task_dead(); 898 } 899 EXPORT_SYMBOL_GPL(do_exit); 900 901 void complete_and_exit(struct completion *comp, long code) 902 { 903 if (comp) 904 complete(comp); 905 906 do_exit(code); 907 } 908 EXPORT_SYMBOL(complete_and_exit); 909 910 SYSCALL_DEFINE1(exit, int, error_code) 911 { 912 do_exit((error_code&0xff)<<8); 913 } 914 915 /* 916 * Take down every thread in the group. This is called by fatal signals 917 * as well as by sys_exit_group (below). 918 */ 919 void 920 do_group_exit(int exit_code) 921 { 922 struct signal_struct *sig = current->signal; 923 924 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 925 926 if (signal_group_exit(sig)) 927 exit_code = sig->group_exit_code; 928 else if (!thread_group_empty(current)) { 929 struct sighand_struct *const sighand = current->sighand; 930 931 spin_lock_irq(&sighand->siglock); 932 if (signal_group_exit(sig)) 933 /* Another thread got here before we took the lock. */ 934 exit_code = sig->group_exit_code; 935 else { 936 sig->group_exit_code = exit_code; 937 sig->flags = SIGNAL_GROUP_EXIT; 938 zap_other_threads(current); 939 } 940 spin_unlock_irq(&sighand->siglock); 941 } 942 943 do_exit(exit_code); 944 /* NOTREACHED */ 945 } 946 947 /* 948 * this kills every thread in the thread group. Note that any externally 949 * wait4()-ing process will get the correct exit code - even if this 950 * thread is not the thread group leader. 951 */ 952 SYSCALL_DEFINE1(exit_group, int, error_code) 953 { 954 do_group_exit((error_code & 0xff) << 8); 955 /* NOTREACHED */ 956 return 0; 957 } 958 959 struct wait_opts { 960 enum pid_type wo_type; 961 int wo_flags; 962 struct pid *wo_pid; 963 964 struct siginfo __user *wo_info; 965 int __user *wo_stat; 966 struct rusage __user *wo_rusage; 967 968 wait_queue_t child_wait; 969 int notask_error; 970 }; 971 972 static inline 973 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 974 { 975 if (type != PIDTYPE_PID) 976 task = task->group_leader; 977 return task->pids[type].pid; 978 } 979 980 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 981 { 982 return wo->wo_type == PIDTYPE_MAX || 983 task_pid_type(p, wo->wo_type) == wo->wo_pid; 984 } 985 986 static int 987 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 988 { 989 if (!eligible_pid(wo, p)) 990 return 0; 991 992 /* 993 * Wait for all children (clone and not) if __WALL is set or 994 * if it is traced by us. 995 */ 996 if (ptrace || (wo->wo_flags & __WALL)) 997 return 1; 998 999 /* 1000 * Otherwise, wait for clone children *only* if __WCLONE is set; 1001 * otherwise, wait for non-clone children *only*. 1002 * 1003 * Note: a "clone" child here is one that reports to its parent 1004 * using a signal other than SIGCHLD, or a non-leader thread which 1005 * we can only see if it is traced by us. 1006 */ 1007 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1008 return 0; 1009 1010 return 1; 1011 } 1012 1013 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1014 pid_t pid, uid_t uid, int why, int status) 1015 { 1016 struct siginfo __user *infop; 1017 int retval = wo->wo_rusage 1018 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1019 1020 put_task_struct(p); 1021 infop = wo->wo_info; 1022 if (infop) { 1023 if (!retval) 1024 retval = put_user(SIGCHLD, &infop->si_signo); 1025 if (!retval) 1026 retval = put_user(0, &infop->si_errno); 1027 if (!retval) 1028 retval = put_user((short)why, &infop->si_code); 1029 if (!retval) 1030 retval = put_user(pid, &infop->si_pid); 1031 if (!retval) 1032 retval = put_user(uid, &infop->si_uid); 1033 if (!retval) 1034 retval = put_user(status, &infop->si_status); 1035 } 1036 if (!retval) 1037 retval = pid; 1038 return retval; 1039 } 1040 1041 /* 1042 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1043 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1044 * the lock and this task is uninteresting. If we return nonzero, we have 1045 * released the lock and the system call should return. 1046 */ 1047 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1048 { 1049 int state, retval, status; 1050 pid_t pid = task_pid_vnr(p); 1051 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1052 struct siginfo __user *infop; 1053 1054 if (!likely(wo->wo_flags & WEXITED)) 1055 return 0; 1056 1057 if (unlikely(wo->wo_flags & WNOWAIT)) { 1058 int exit_code = p->exit_code; 1059 int why; 1060 1061 get_task_struct(p); 1062 read_unlock(&tasklist_lock); 1063 sched_annotate_sleep(); 1064 1065 if ((exit_code & 0x7f) == 0) { 1066 why = CLD_EXITED; 1067 status = exit_code >> 8; 1068 } else { 1069 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1070 status = exit_code & 0x7f; 1071 } 1072 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1073 } 1074 /* 1075 * Move the task's state to DEAD/TRACE, only one thread can do this. 1076 */ 1077 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1078 EXIT_TRACE : EXIT_DEAD; 1079 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1080 return 0; 1081 /* 1082 * We own this thread, nobody else can reap it. 1083 */ 1084 read_unlock(&tasklist_lock); 1085 sched_annotate_sleep(); 1086 1087 /* 1088 * Check thread_group_leader() to exclude the traced sub-threads. 1089 */ 1090 if (state == EXIT_DEAD && thread_group_leader(p)) { 1091 struct signal_struct *sig = p->signal; 1092 struct signal_struct *psig = current->signal; 1093 unsigned long maxrss; 1094 cputime_t tgutime, tgstime; 1095 1096 /* 1097 * The resource counters for the group leader are in its 1098 * own task_struct. Those for dead threads in the group 1099 * are in its signal_struct, as are those for the child 1100 * processes it has previously reaped. All these 1101 * accumulate in the parent's signal_struct c* fields. 1102 * 1103 * We don't bother to take a lock here to protect these 1104 * p->signal fields because the whole thread group is dead 1105 * and nobody can change them. 1106 * 1107 * psig->stats_lock also protects us from our sub-theads 1108 * which can reap other children at the same time. Until 1109 * we change k_getrusage()-like users to rely on this lock 1110 * we have to take ->siglock as well. 1111 * 1112 * We use thread_group_cputime_adjusted() to get times for 1113 * the thread group, which consolidates times for all threads 1114 * in the group including the group leader. 1115 */ 1116 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1117 spin_lock_irq(¤t->sighand->siglock); 1118 write_seqlock(&psig->stats_lock); 1119 psig->cutime += tgutime + sig->cutime; 1120 psig->cstime += tgstime + sig->cstime; 1121 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1122 psig->cmin_flt += 1123 p->min_flt + sig->min_flt + sig->cmin_flt; 1124 psig->cmaj_flt += 1125 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1126 psig->cnvcsw += 1127 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1128 psig->cnivcsw += 1129 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1130 psig->cinblock += 1131 task_io_get_inblock(p) + 1132 sig->inblock + sig->cinblock; 1133 psig->coublock += 1134 task_io_get_oublock(p) + 1135 sig->oublock + sig->coublock; 1136 maxrss = max(sig->maxrss, sig->cmaxrss); 1137 if (psig->cmaxrss < maxrss) 1138 psig->cmaxrss = maxrss; 1139 task_io_accounting_add(&psig->ioac, &p->ioac); 1140 task_io_accounting_add(&psig->ioac, &sig->ioac); 1141 write_sequnlock(&psig->stats_lock); 1142 spin_unlock_irq(¤t->sighand->siglock); 1143 } 1144 1145 retval = wo->wo_rusage 1146 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1147 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1148 ? p->signal->group_exit_code : p->exit_code; 1149 if (!retval && wo->wo_stat) 1150 retval = put_user(status, wo->wo_stat); 1151 1152 infop = wo->wo_info; 1153 if (!retval && infop) 1154 retval = put_user(SIGCHLD, &infop->si_signo); 1155 if (!retval && infop) 1156 retval = put_user(0, &infop->si_errno); 1157 if (!retval && infop) { 1158 int why; 1159 1160 if ((status & 0x7f) == 0) { 1161 why = CLD_EXITED; 1162 status >>= 8; 1163 } else { 1164 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1165 status &= 0x7f; 1166 } 1167 retval = put_user((short)why, &infop->si_code); 1168 if (!retval) 1169 retval = put_user(status, &infop->si_status); 1170 } 1171 if (!retval && infop) 1172 retval = put_user(pid, &infop->si_pid); 1173 if (!retval && infop) 1174 retval = put_user(uid, &infop->si_uid); 1175 if (!retval) 1176 retval = pid; 1177 1178 if (state == EXIT_TRACE) { 1179 write_lock_irq(&tasklist_lock); 1180 /* We dropped tasklist, ptracer could die and untrace */ 1181 ptrace_unlink(p); 1182 1183 /* If parent wants a zombie, don't release it now */ 1184 state = EXIT_ZOMBIE; 1185 if (do_notify_parent(p, p->exit_signal)) 1186 state = EXIT_DEAD; 1187 p->exit_state = state; 1188 write_unlock_irq(&tasklist_lock); 1189 } 1190 if (state == EXIT_DEAD) 1191 release_task(p); 1192 1193 return retval; 1194 } 1195 1196 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1197 { 1198 if (ptrace) { 1199 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1200 return &p->exit_code; 1201 } else { 1202 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1203 return &p->signal->group_exit_code; 1204 } 1205 return NULL; 1206 } 1207 1208 /** 1209 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1210 * @wo: wait options 1211 * @ptrace: is the wait for ptrace 1212 * @p: task to wait for 1213 * 1214 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1215 * 1216 * CONTEXT: 1217 * read_lock(&tasklist_lock), which is released if return value is 1218 * non-zero. Also, grabs and releases @p->sighand->siglock. 1219 * 1220 * RETURNS: 1221 * 0 if wait condition didn't exist and search for other wait conditions 1222 * should continue. Non-zero return, -errno on failure and @p's pid on 1223 * success, implies that tasklist_lock is released and wait condition 1224 * search should terminate. 1225 */ 1226 static int wait_task_stopped(struct wait_opts *wo, 1227 int ptrace, struct task_struct *p) 1228 { 1229 struct siginfo __user *infop; 1230 int retval, exit_code, *p_code, why; 1231 uid_t uid = 0; /* unneeded, required by compiler */ 1232 pid_t pid; 1233 1234 /* 1235 * Traditionally we see ptrace'd stopped tasks regardless of options. 1236 */ 1237 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1238 return 0; 1239 1240 if (!task_stopped_code(p, ptrace)) 1241 return 0; 1242 1243 exit_code = 0; 1244 spin_lock_irq(&p->sighand->siglock); 1245 1246 p_code = task_stopped_code(p, ptrace); 1247 if (unlikely(!p_code)) 1248 goto unlock_sig; 1249 1250 exit_code = *p_code; 1251 if (!exit_code) 1252 goto unlock_sig; 1253 1254 if (!unlikely(wo->wo_flags & WNOWAIT)) 1255 *p_code = 0; 1256 1257 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1258 unlock_sig: 1259 spin_unlock_irq(&p->sighand->siglock); 1260 if (!exit_code) 1261 return 0; 1262 1263 /* 1264 * Now we are pretty sure this task is interesting. 1265 * Make sure it doesn't get reaped out from under us while we 1266 * give up the lock and then examine it below. We don't want to 1267 * keep holding onto the tasklist_lock while we call getrusage and 1268 * possibly take page faults for user memory. 1269 */ 1270 get_task_struct(p); 1271 pid = task_pid_vnr(p); 1272 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1273 read_unlock(&tasklist_lock); 1274 sched_annotate_sleep(); 1275 1276 if (unlikely(wo->wo_flags & WNOWAIT)) 1277 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1278 1279 retval = wo->wo_rusage 1280 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1281 if (!retval && wo->wo_stat) 1282 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1283 1284 infop = wo->wo_info; 1285 if (!retval && infop) 1286 retval = put_user(SIGCHLD, &infop->si_signo); 1287 if (!retval && infop) 1288 retval = put_user(0, &infop->si_errno); 1289 if (!retval && infop) 1290 retval = put_user((short)why, &infop->si_code); 1291 if (!retval && infop) 1292 retval = put_user(exit_code, &infop->si_status); 1293 if (!retval && infop) 1294 retval = put_user(pid, &infop->si_pid); 1295 if (!retval && infop) 1296 retval = put_user(uid, &infop->si_uid); 1297 if (!retval) 1298 retval = pid; 1299 put_task_struct(p); 1300 1301 BUG_ON(!retval); 1302 return retval; 1303 } 1304 1305 /* 1306 * Handle do_wait work for one task in a live, non-stopped state. 1307 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1308 * the lock and this task is uninteresting. If we return nonzero, we have 1309 * released the lock and the system call should return. 1310 */ 1311 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1312 { 1313 int retval; 1314 pid_t pid; 1315 uid_t uid; 1316 1317 if (!unlikely(wo->wo_flags & WCONTINUED)) 1318 return 0; 1319 1320 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1321 return 0; 1322 1323 spin_lock_irq(&p->sighand->siglock); 1324 /* Re-check with the lock held. */ 1325 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1326 spin_unlock_irq(&p->sighand->siglock); 1327 return 0; 1328 } 1329 if (!unlikely(wo->wo_flags & WNOWAIT)) 1330 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1331 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1332 spin_unlock_irq(&p->sighand->siglock); 1333 1334 pid = task_pid_vnr(p); 1335 get_task_struct(p); 1336 read_unlock(&tasklist_lock); 1337 sched_annotate_sleep(); 1338 1339 if (!wo->wo_info) { 1340 retval = wo->wo_rusage 1341 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1342 put_task_struct(p); 1343 if (!retval && wo->wo_stat) 1344 retval = put_user(0xffff, wo->wo_stat); 1345 if (!retval) 1346 retval = pid; 1347 } else { 1348 retval = wait_noreap_copyout(wo, p, pid, uid, 1349 CLD_CONTINUED, SIGCONT); 1350 BUG_ON(retval == 0); 1351 } 1352 1353 return retval; 1354 } 1355 1356 /* 1357 * Consider @p for a wait by @parent. 1358 * 1359 * -ECHILD should be in ->notask_error before the first call. 1360 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1361 * Returns zero if the search for a child should continue; 1362 * then ->notask_error is 0 if @p is an eligible child, 1363 * or another error from security_task_wait(), or still -ECHILD. 1364 */ 1365 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1366 struct task_struct *p) 1367 { 1368 /* 1369 * We can race with wait_task_zombie() from another thread. 1370 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1371 * can't confuse the checks below. 1372 */ 1373 int exit_state = ACCESS_ONCE(p->exit_state); 1374 int ret; 1375 1376 if (unlikely(exit_state == EXIT_DEAD)) 1377 return 0; 1378 1379 ret = eligible_child(wo, ptrace, p); 1380 if (!ret) 1381 return ret; 1382 1383 ret = security_task_wait(p); 1384 if (unlikely(ret < 0)) { 1385 /* 1386 * If we have not yet seen any eligible child, 1387 * then let this error code replace -ECHILD. 1388 * A permission error will give the user a clue 1389 * to look for security policy problems, rather 1390 * than for mysterious wait bugs. 1391 */ 1392 if (wo->notask_error) 1393 wo->notask_error = ret; 1394 return 0; 1395 } 1396 1397 if (unlikely(exit_state == EXIT_TRACE)) { 1398 /* 1399 * ptrace == 0 means we are the natural parent. In this case 1400 * we should clear notask_error, debugger will notify us. 1401 */ 1402 if (likely(!ptrace)) 1403 wo->notask_error = 0; 1404 return 0; 1405 } 1406 1407 if (likely(!ptrace) && unlikely(p->ptrace)) { 1408 /* 1409 * If it is traced by its real parent's group, just pretend 1410 * the caller is ptrace_do_wait() and reap this child if it 1411 * is zombie. 1412 * 1413 * This also hides group stop state from real parent; otherwise 1414 * a single stop can be reported twice as group and ptrace stop. 1415 * If a ptracer wants to distinguish these two events for its 1416 * own children it should create a separate process which takes 1417 * the role of real parent. 1418 */ 1419 if (!ptrace_reparented(p)) 1420 ptrace = 1; 1421 } 1422 1423 /* slay zombie? */ 1424 if (exit_state == EXIT_ZOMBIE) { 1425 /* we don't reap group leaders with subthreads */ 1426 if (!delay_group_leader(p)) { 1427 /* 1428 * A zombie ptracee is only visible to its ptracer. 1429 * Notification and reaping will be cascaded to the 1430 * real parent when the ptracer detaches. 1431 */ 1432 if (unlikely(ptrace) || likely(!p->ptrace)) 1433 return wait_task_zombie(wo, p); 1434 } 1435 1436 /* 1437 * Allow access to stopped/continued state via zombie by 1438 * falling through. Clearing of notask_error is complex. 1439 * 1440 * When !@ptrace: 1441 * 1442 * If WEXITED is set, notask_error should naturally be 1443 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1444 * so, if there are live subthreads, there are events to 1445 * wait for. If all subthreads are dead, it's still safe 1446 * to clear - this function will be called again in finite 1447 * amount time once all the subthreads are released and 1448 * will then return without clearing. 1449 * 1450 * When @ptrace: 1451 * 1452 * Stopped state is per-task and thus can't change once the 1453 * target task dies. Only continued and exited can happen. 1454 * Clear notask_error if WCONTINUED | WEXITED. 1455 */ 1456 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1457 wo->notask_error = 0; 1458 } else { 1459 /* 1460 * @p is alive and it's gonna stop, continue or exit, so 1461 * there always is something to wait for. 1462 */ 1463 wo->notask_error = 0; 1464 } 1465 1466 /* 1467 * Wait for stopped. Depending on @ptrace, different stopped state 1468 * is used and the two don't interact with each other. 1469 */ 1470 ret = wait_task_stopped(wo, ptrace, p); 1471 if (ret) 1472 return ret; 1473 1474 /* 1475 * Wait for continued. There's only one continued state and the 1476 * ptracer can consume it which can confuse the real parent. Don't 1477 * use WCONTINUED from ptracer. You don't need or want it. 1478 */ 1479 return wait_task_continued(wo, p); 1480 } 1481 1482 /* 1483 * Do the work of do_wait() for one thread in the group, @tsk. 1484 * 1485 * -ECHILD should be in ->notask_error before the first call. 1486 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1487 * Returns zero if the search for a child should continue; then 1488 * ->notask_error is 0 if there were any eligible children, 1489 * or another error from security_task_wait(), or still -ECHILD. 1490 */ 1491 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1492 { 1493 struct task_struct *p; 1494 1495 list_for_each_entry(p, &tsk->children, sibling) { 1496 int ret = wait_consider_task(wo, 0, p); 1497 1498 if (ret) 1499 return ret; 1500 } 1501 1502 return 0; 1503 } 1504 1505 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1506 { 1507 struct task_struct *p; 1508 1509 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1510 int ret = wait_consider_task(wo, 1, p); 1511 1512 if (ret) 1513 return ret; 1514 } 1515 1516 return 0; 1517 } 1518 1519 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1520 int sync, void *key) 1521 { 1522 struct wait_opts *wo = container_of(wait, struct wait_opts, 1523 child_wait); 1524 struct task_struct *p = key; 1525 1526 if (!eligible_pid(wo, p)) 1527 return 0; 1528 1529 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1530 return 0; 1531 1532 return default_wake_function(wait, mode, sync, key); 1533 } 1534 1535 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1536 { 1537 __wake_up_sync_key(&parent->signal->wait_chldexit, 1538 TASK_INTERRUPTIBLE, 1, p); 1539 } 1540 1541 static long do_wait(struct wait_opts *wo) 1542 { 1543 struct task_struct *tsk; 1544 int retval; 1545 1546 trace_sched_process_wait(wo->wo_pid); 1547 1548 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1549 wo->child_wait.private = current; 1550 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1551 repeat: 1552 /* 1553 * If there is nothing that can match our criteria, just get out. 1554 * We will clear ->notask_error to zero if we see any child that 1555 * might later match our criteria, even if we are not able to reap 1556 * it yet. 1557 */ 1558 wo->notask_error = -ECHILD; 1559 if ((wo->wo_type < PIDTYPE_MAX) && 1560 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1561 goto notask; 1562 1563 set_current_state(TASK_INTERRUPTIBLE); 1564 read_lock(&tasklist_lock); 1565 tsk = current; 1566 do { 1567 retval = do_wait_thread(wo, tsk); 1568 if (retval) 1569 goto end; 1570 1571 retval = ptrace_do_wait(wo, tsk); 1572 if (retval) 1573 goto end; 1574 1575 if (wo->wo_flags & __WNOTHREAD) 1576 break; 1577 } while_each_thread(current, tsk); 1578 read_unlock(&tasklist_lock); 1579 1580 notask: 1581 retval = wo->notask_error; 1582 if (!retval && !(wo->wo_flags & WNOHANG)) { 1583 retval = -ERESTARTSYS; 1584 if (!signal_pending(current)) { 1585 schedule(); 1586 goto repeat; 1587 } 1588 } 1589 end: 1590 __set_current_state(TASK_RUNNING); 1591 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1592 return retval; 1593 } 1594 1595 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1596 infop, int, options, struct rusage __user *, ru) 1597 { 1598 struct wait_opts wo; 1599 struct pid *pid = NULL; 1600 enum pid_type type; 1601 long ret; 1602 1603 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1604 __WNOTHREAD|__WCLONE|__WALL)) 1605 return -EINVAL; 1606 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1607 return -EINVAL; 1608 1609 switch (which) { 1610 case P_ALL: 1611 type = PIDTYPE_MAX; 1612 break; 1613 case P_PID: 1614 type = PIDTYPE_PID; 1615 if (upid <= 0) 1616 return -EINVAL; 1617 break; 1618 case P_PGID: 1619 type = PIDTYPE_PGID; 1620 if (upid <= 0) 1621 return -EINVAL; 1622 break; 1623 default: 1624 return -EINVAL; 1625 } 1626 1627 if (type < PIDTYPE_MAX) 1628 pid = find_get_pid(upid); 1629 1630 wo.wo_type = type; 1631 wo.wo_pid = pid; 1632 wo.wo_flags = options; 1633 wo.wo_info = infop; 1634 wo.wo_stat = NULL; 1635 wo.wo_rusage = ru; 1636 ret = do_wait(&wo); 1637 1638 if (ret > 0) { 1639 ret = 0; 1640 } else if (infop) { 1641 /* 1642 * For a WNOHANG return, clear out all the fields 1643 * we would set so the user can easily tell the 1644 * difference. 1645 */ 1646 if (!ret) 1647 ret = put_user(0, &infop->si_signo); 1648 if (!ret) 1649 ret = put_user(0, &infop->si_errno); 1650 if (!ret) 1651 ret = put_user(0, &infop->si_code); 1652 if (!ret) 1653 ret = put_user(0, &infop->si_pid); 1654 if (!ret) 1655 ret = put_user(0, &infop->si_uid); 1656 if (!ret) 1657 ret = put_user(0, &infop->si_status); 1658 } 1659 1660 put_pid(pid); 1661 return ret; 1662 } 1663 1664 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1665 int, options, struct rusage __user *, ru) 1666 { 1667 struct wait_opts wo; 1668 struct pid *pid = NULL; 1669 enum pid_type type; 1670 long ret; 1671 1672 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1673 __WNOTHREAD|__WCLONE|__WALL)) 1674 return -EINVAL; 1675 1676 if (upid == -1) 1677 type = PIDTYPE_MAX; 1678 else if (upid < 0) { 1679 type = PIDTYPE_PGID; 1680 pid = find_get_pid(-upid); 1681 } else if (upid == 0) { 1682 type = PIDTYPE_PGID; 1683 pid = get_task_pid(current, PIDTYPE_PGID); 1684 } else /* upid > 0 */ { 1685 type = PIDTYPE_PID; 1686 pid = find_get_pid(upid); 1687 } 1688 1689 wo.wo_type = type; 1690 wo.wo_pid = pid; 1691 wo.wo_flags = options | WEXITED; 1692 wo.wo_info = NULL; 1693 wo.wo_stat = stat_addr; 1694 wo.wo_rusage = ru; 1695 ret = do_wait(&wo); 1696 put_pid(pid); 1697 1698 return ret; 1699 } 1700 1701 #ifdef __ARCH_WANT_SYS_WAITPID 1702 1703 /* 1704 * sys_waitpid() remains for compatibility. waitpid() should be 1705 * implemented by calling sys_wait4() from libc.a. 1706 */ 1707 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1708 { 1709 return sys_wait4(pid, stat_addr, options, NULL); 1710 } 1711 1712 #endif 1713