1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/unistd.h> 57 #include <asm/pgtable.h> 58 #include <asm/mmu_context.h> 59 60 static void exit_mm(struct task_struct * tsk); 61 62 static void __unhash_process(struct task_struct *p, bool group_dead) 63 { 64 nr_threads--; 65 detach_pid(p, PIDTYPE_PID); 66 if (group_dead) { 67 detach_pid(p, PIDTYPE_PGID); 68 detach_pid(p, PIDTYPE_SID); 69 70 list_del_rcu(&p->tasks); 71 list_del_init(&p->sibling); 72 __this_cpu_dec(process_counts); 73 } 74 list_del_rcu(&p->thread_group); 75 } 76 77 /* 78 * This function expects the tasklist_lock write-locked. 79 */ 80 static void __exit_signal(struct task_struct *tsk) 81 { 82 struct signal_struct *sig = tsk->signal; 83 bool group_dead = thread_group_leader(tsk); 84 struct sighand_struct *sighand; 85 struct tty_struct *uninitialized_var(tty); 86 87 sighand = rcu_dereference_check(tsk->sighand, 88 lockdep_tasklist_lock_is_held()); 89 spin_lock(&sighand->siglock); 90 91 posix_cpu_timers_exit(tsk); 92 if (group_dead) { 93 posix_cpu_timers_exit_group(tsk); 94 tty = sig->tty; 95 sig->tty = NULL; 96 } else { 97 /* 98 * This can only happen if the caller is de_thread(). 99 * FIXME: this is the temporary hack, we should teach 100 * posix-cpu-timers to handle this case correctly. 101 */ 102 if (unlikely(has_group_leader_pid(tsk))) 103 posix_cpu_timers_exit_group(tsk); 104 105 /* 106 * If there is any task waiting for the group exit 107 * then notify it: 108 */ 109 if (sig->notify_count > 0 && !--sig->notify_count) 110 wake_up_process(sig->group_exit_task); 111 112 if (tsk == sig->curr_target) 113 sig->curr_target = next_thread(tsk); 114 /* 115 * Accumulate here the counters for all threads but the 116 * group leader as they die, so they can be added into 117 * the process-wide totals when those are taken. 118 * The group leader stays around as a zombie as long 119 * as there are other threads. When it gets reaped, 120 * the exit.c code will add its counts into these totals. 121 * We won't ever get here for the group leader, since it 122 * will have been the last reference on the signal_struct. 123 */ 124 sig->utime = cputime_add(sig->utime, tsk->utime); 125 sig->stime = cputime_add(sig->stime, tsk->stime); 126 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 127 sig->min_flt += tsk->min_flt; 128 sig->maj_flt += tsk->maj_flt; 129 sig->nvcsw += tsk->nvcsw; 130 sig->nivcsw += tsk->nivcsw; 131 sig->inblock += task_io_get_inblock(tsk); 132 sig->oublock += task_io_get_oublock(tsk); 133 task_io_accounting_add(&sig->ioac, &tsk->ioac); 134 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 135 } 136 137 sig->nr_threads--; 138 __unhash_process(tsk, group_dead); 139 140 /* 141 * Do this under ->siglock, we can race with another thread 142 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 143 */ 144 flush_sigqueue(&tsk->pending); 145 tsk->sighand = NULL; 146 spin_unlock(&sighand->siglock); 147 148 __cleanup_sighand(sighand); 149 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 150 if (group_dead) { 151 flush_sigqueue(&sig->shared_pending); 152 tty_kref_put(tty); 153 } 154 } 155 156 static void delayed_put_task_struct(struct rcu_head *rhp) 157 { 158 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 159 160 perf_event_delayed_put(tsk); 161 trace_sched_process_free(tsk); 162 put_task_struct(tsk); 163 } 164 165 166 void release_task(struct task_struct * p) 167 { 168 struct task_struct *leader; 169 int zap_leader; 170 repeat: 171 /* don't need to get the RCU readlock here - the process is dead and 172 * can't be modifying its own credentials. But shut RCU-lockdep up */ 173 rcu_read_lock(); 174 atomic_dec(&__task_cred(p)->user->processes); 175 rcu_read_unlock(); 176 177 proc_flush_task(p); 178 179 write_lock_irq(&tasklist_lock); 180 ptrace_release_task(p); 181 __exit_signal(p); 182 183 /* 184 * If we are the last non-leader member of the thread 185 * group, and the leader is zombie, then notify the 186 * group leader's parent process. (if it wants notification.) 187 */ 188 zap_leader = 0; 189 leader = p->group_leader; 190 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 191 /* 192 * If we were the last child thread and the leader has 193 * exited already, and the leader's parent ignores SIGCHLD, 194 * then we are the one who should release the leader. 195 */ 196 zap_leader = do_notify_parent(leader, leader->exit_signal); 197 if (zap_leader) 198 leader->exit_state = EXIT_DEAD; 199 } 200 201 write_unlock_irq(&tasklist_lock); 202 release_thread(p); 203 call_rcu(&p->rcu, delayed_put_task_struct); 204 205 p = leader; 206 if (unlikely(zap_leader)) 207 goto repeat; 208 } 209 210 /* 211 * This checks not only the pgrp, but falls back on the pid if no 212 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 213 * without this... 214 * 215 * The caller must hold rcu lock or the tasklist lock. 216 */ 217 struct pid *session_of_pgrp(struct pid *pgrp) 218 { 219 struct task_struct *p; 220 struct pid *sid = NULL; 221 222 p = pid_task(pgrp, PIDTYPE_PGID); 223 if (p == NULL) 224 p = pid_task(pgrp, PIDTYPE_PID); 225 if (p != NULL) 226 sid = task_session(p); 227 228 return sid; 229 } 230 231 /* 232 * Determine if a process group is "orphaned", according to the POSIX 233 * definition in 2.2.2.52. Orphaned process groups are not to be affected 234 * by terminal-generated stop signals. Newly orphaned process groups are 235 * to receive a SIGHUP and a SIGCONT. 236 * 237 * "I ask you, have you ever known what it is to be an orphan?" 238 */ 239 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 240 { 241 struct task_struct *p; 242 243 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 244 if ((p == ignored_task) || 245 (p->exit_state && thread_group_empty(p)) || 246 is_global_init(p->real_parent)) 247 continue; 248 249 if (task_pgrp(p->real_parent) != pgrp && 250 task_session(p->real_parent) == task_session(p)) 251 return 0; 252 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 253 254 return 1; 255 } 256 257 int is_current_pgrp_orphaned(void) 258 { 259 int retval; 260 261 read_lock(&tasklist_lock); 262 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 263 read_unlock(&tasklist_lock); 264 265 return retval; 266 } 267 268 static bool has_stopped_jobs(struct pid *pgrp) 269 { 270 struct task_struct *p; 271 272 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 273 if (p->signal->flags & SIGNAL_STOP_STOPPED) 274 return true; 275 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 276 277 return false; 278 } 279 280 /* 281 * Check to see if any process groups have become orphaned as 282 * a result of our exiting, and if they have any stopped jobs, 283 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 284 */ 285 static void 286 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 287 { 288 struct pid *pgrp = task_pgrp(tsk); 289 struct task_struct *ignored_task = tsk; 290 291 if (!parent) 292 /* exit: our father is in a different pgrp than 293 * we are and we were the only connection outside. 294 */ 295 parent = tsk->real_parent; 296 else 297 /* reparent: our child is in a different pgrp than 298 * we are, and it was the only connection outside. 299 */ 300 ignored_task = NULL; 301 302 if (task_pgrp(parent) != pgrp && 303 task_session(parent) == task_session(tsk) && 304 will_become_orphaned_pgrp(pgrp, ignored_task) && 305 has_stopped_jobs(pgrp)) { 306 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 307 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 308 } 309 } 310 311 /** 312 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 313 * 314 * If a kernel thread is launched as a result of a system call, or if 315 * it ever exits, it should generally reparent itself to kthreadd so it 316 * isn't in the way of other processes and is correctly cleaned up on exit. 317 * 318 * The various task state such as scheduling policy and priority may have 319 * been inherited from a user process, so we reset them to sane values here. 320 * 321 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 322 */ 323 static void reparent_to_kthreadd(void) 324 { 325 write_lock_irq(&tasklist_lock); 326 327 ptrace_unlink(current); 328 /* Reparent to init */ 329 current->real_parent = current->parent = kthreadd_task; 330 list_move_tail(¤t->sibling, ¤t->real_parent->children); 331 332 /* Set the exit signal to SIGCHLD so we signal init on exit */ 333 current->exit_signal = SIGCHLD; 334 335 if (task_nice(current) < 0) 336 set_user_nice(current, 0); 337 /* cpus_allowed? */ 338 /* rt_priority? */ 339 /* signals? */ 340 memcpy(current->signal->rlim, init_task.signal->rlim, 341 sizeof(current->signal->rlim)); 342 343 atomic_inc(&init_cred.usage); 344 commit_creds(&init_cred); 345 write_unlock_irq(&tasklist_lock); 346 } 347 348 void __set_special_pids(struct pid *pid) 349 { 350 struct task_struct *curr = current->group_leader; 351 352 if (task_session(curr) != pid) 353 change_pid(curr, PIDTYPE_SID, pid); 354 355 if (task_pgrp(curr) != pid) 356 change_pid(curr, PIDTYPE_PGID, pid); 357 } 358 359 static void set_special_pids(struct pid *pid) 360 { 361 write_lock_irq(&tasklist_lock); 362 __set_special_pids(pid); 363 write_unlock_irq(&tasklist_lock); 364 } 365 366 /* 367 * Let kernel threads use this to say that they allow a certain signal. 368 * Must not be used if kthread was cloned with CLONE_SIGHAND. 369 */ 370 int allow_signal(int sig) 371 { 372 if (!valid_signal(sig) || sig < 1) 373 return -EINVAL; 374 375 spin_lock_irq(¤t->sighand->siglock); 376 /* This is only needed for daemonize()'ed kthreads */ 377 sigdelset(¤t->blocked, sig); 378 /* 379 * Kernel threads handle their own signals. Let the signal code 380 * know it'll be handled, so that they don't get converted to 381 * SIGKILL or just silently dropped. 382 */ 383 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 384 recalc_sigpending(); 385 spin_unlock_irq(¤t->sighand->siglock); 386 return 0; 387 } 388 389 EXPORT_SYMBOL(allow_signal); 390 391 int disallow_signal(int sig) 392 { 393 if (!valid_signal(sig) || sig < 1) 394 return -EINVAL; 395 396 spin_lock_irq(¤t->sighand->siglock); 397 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 398 recalc_sigpending(); 399 spin_unlock_irq(¤t->sighand->siglock); 400 return 0; 401 } 402 403 EXPORT_SYMBOL(disallow_signal); 404 405 /* 406 * Put all the gunge required to become a kernel thread without 407 * attached user resources in one place where it belongs. 408 */ 409 410 void daemonize(const char *name, ...) 411 { 412 va_list args; 413 sigset_t blocked; 414 415 va_start(args, name); 416 vsnprintf(current->comm, sizeof(current->comm), name, args); 417 va_end(args); 418 419 /* 420 * If we were started as result of loading a module, close all of the 421 * user space pages. We don't need them, and if we didn't close them 422 * they would be locked into memory. 423 */ 424 exit_mm(current); 425 /* 426 * We don't want to have TIF_FREEZE set if the system-wide hibernation 427 * or suspend transition begins right now. 428 */ 429 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 430 431 if (current->nsproxy != &init_nsproxy) { 432 get_nsproxy(&init_nsproxy); 433 switch_task_namespaces(current, &init_nsproxy); 434 } 435 set_special_pids(&init_struct_pid); 436 proc_clear_tty(current); 437 438 /* Block and flush all signals */ 439 sigfillset(&blocked); 440 sigprocmask(SIG_BLOCK, &blocked, NULL); 441 flush_signals(current); 442 443 /* Become as one with the init task */ 444 445 daemonize_fs_struct(); 446 exit_files(current); 447 current->files = init_task.files; 448 atomic_inc(¤t->files->count); 449 450 reparent_to_kthreadd(); 451 } 452 453 EXPORT_SYMBOL(daemonize); 454 455 static void close_files(struct files_struct * files) 456 { 457 int i, j; 458 struct fdtable *fdt; 459 460 j = 0; 461 462 /* 463 * It is safe to dereference the fd table without RCU or 464 * ->file_lock because this is the last reference to the 465 * files structure. But use RCU to shut RCU-lockdep up. 466 */ 467 rcu_read_lock(); 468 fdt = files_fdtable(files); 469 rcu_read_unlock(); 470 for (;;) { 471 unsigned long set; 472 i = j * __NFDBITS; 473 if (i >= fdt->max_fds) 474 break; 475 set = fdt->open_fds->fds_bits[j++]; 476 while (set) { 477 if (set & 1) { 478 struct file * file = xchg(&fdt->fd[i], NULL); 479 if (file) { 480 filp_close(file, files); 481 cond_resched(); 482 } 483 } 484 i++; 485 set >>= 1; 486 } 487 } 488 } 489 490 struct files_struct *get_files_struct(struct task_struct *task) 491 { 492 struct files_struct *files; 493 494 task_lock(task); 495 files = task->files; 496 if (files) 497 atomic_inc(&files->count); 498 task_unlock(task); 499 500 return files; 501 } 502 503 void put_files_struct(struct files_struct *files) 504 { 505 struct fdtable *fdt; 506 507 if (atomic_dec_and_test(&files->count)) { 508 close_files(files); 509 /* 510 * Free the fd and fdset arrays if we expanded them. 511 * If the fdtable was embedded, pass files for freeing 512 * at the end of the RCU grace period. Otherwise, 513 * you can free files immediately. 514 */ 515 rcu_read_lock(); 516 fdt = files_fdtable(files); 517 if (fdt != &files->fdtab) 518 kmem_cache_free(files_cachep, files); 519 free_fdtable(fdt); 520 rcu_read_unlock(); 521 } 522 } 523 524 void reset_files_struct(struct files_struct *files) 525 { 526 struct task_struct *tsk = current; 527 struct files_struct *old; 528 529 old = tsk->files; 530 task_lock(tsk); 531 tsk->files = files; 532 task_unlock(tsk); 533 put_files_struct(old); 534 } 535 536 void exit_files(struct task_struct *tsk) 537 { 538 struct files_struct * files = tsk->files; 539 540 if (files) { 541 task_lock(tsk); 542 tsk->files = NULL; 543 task_unlock(tsk); 544 put_files_struct(files); 545 } 546 } 547 548 #ifdef CONFIG_MM_OWNER 549 /* 550 * A task is exiting. If it owned this mm, find a new owner for the mm. 551 */ 552 void mm_update_next_owner(struct mm_struct *mm) 553 { 554 struct task_struct *c, *g, *p = current; 555 556 retry: 557 /* 558 * If the exiting or execing task is not the owner, it's 559 * someone else's problem. 560 */ 561 if (mm->owner != p) 562 return; 563 /* 564 * The current owner is exiting/execing and there are no other 565 * candidates. Do not leave the mm pointing to a possibly 566 * freed task structure. 567 */ 568 if (atomic_read(&mm->mm_users) <= 1) { 569 mm->owner = NULL; 570 return; 571 } 572 573 read_lock(&tasklist_lock); 574 /* 575 * Search in the children 576 */ 577 list_for_each_entry(c, &p->children, sibling) { 578 if (c->mm == mm) 579 goto assign_new_owner; 580 } 581 582 /* 583 * Search in the siblings 584 */ 585 list_for_each_entry(c, &p->real_parent->children, sibling) { 586 if (c->mm == mm) 587 goto assign_new_owner; 588 } 589 590 /* 591 * Search through everything else. We should not get 592 * here often 593 */ 594 do_each_thread(g, c) { 595 if (c->mm == mm) 596 goto assign_new_owner; 597 } while_each_thread(g, c); 598 599 read_unlock(&tasklist_lock); 600 /* 601 * We found no owner yet mm_users > 1: this implies that we are 602 * most likely racing with swapoff (try_to_unuse()) or /proc or 603 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 604 */ 605 mm->owner = NULL; 606 return; 607 608 assign_new_owner: 609 BUG_ON(c == p); 610 get_task_struct(c); 611 /* 612 * The task_lock protects c->mm from changing. 613 * We always want mm->owner->mm == mm 614 */ 615 task_lock(c); 616 /* 617 * Delay read_unlock() till we have the task_lock() 618 * to ensure that c does not slip away underneath us 619 */ 620 read_unlock(&tasklist_lock); 621 if (c->mm != mm) { 622 task_unlock(c); 623 put_task_struct(c); 624 goto retry; 625 } 626 mm->owner = c; 627 task_unlock(c); 628 put_task_struct(c); 629 } 630 #endif /* CONFIG_MM_OWNER */ 631 632 /* 633 * Turn us into a lazy TLB process if we 634 * aren't already.. 635 */ 636 static void exit_mm(struct task_struct * tsk) 637 { 638 struct mm_struct *mm = tsk->mm; 639 struct core_state *core_state; 640 641 mm_release(tsk, mm); 642 if (!mm) 643 return; 644 /* 645 * Serialize with any possible pending coredump. 646 * We must hold mmap_sem around checking core_state 647 * and clearing tsk->mm. The core-inducing thread 648 * will increment ->nr_threads for each thread in the 649 * group with ->mm != NULL. 650 */ 651 down_read(&mm->mmap_sem); 652 core_state = mm->core_state; 653 if (core_state) { 654 struct core_thread self; 655 up_read(&mm->mmap_sem); 656 657 self.task = tsk; 658 self.next = xchg(&core_state->dumper.next, &self); 659 /* 660 * Implies mb(), the result of xchg() must be visible 661 * to core_state->dumper. 662 */ 663 if (atomic_dec_and_test(&core_state->nr_threads)) 664 complete(&core_state->startup); 665 666 for (;;) { 667 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 668 if (!self.task) /* see coredump_finish() */ 669 break; 670 schedule(); 671 } 672 __set_task_state(tsk, TASK_RUNNING); 673 down_read(&mm->mmap_sem); 674 } 675 atomic_inc(&mm->mm_count); 676 BUG_ON(mm != tsk->active_mm); 677 /* more a memory barrier than a real lock */ 678 task_lock(tsk); 679 tsk->mm = NULL; 680 up_read(&mm->mmap_sem); 681 enter_lazy_tlb(mm, current); 682 /* We don't want this task to be frozen prematurely */ 683 clear_freeze_flag(tsk); 684 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 685 atomic_dec(&mm->oom_disable_count); 686 task_unlock(tsk); 687 mm_update_next_owner(mm); 688 mmput(mm); 689 } 690 691 /* 692 * When we die, we re-parent all our children. 693 * Try to give them to another thread in our thread 694 * group, and if no such member exists, give it to 695 * the child reaper process (ie "init") in our pid 696 * space. 697 */ 698 static struct task_struct *find_new_reaper(struct task_struct *father) 699 __releases(&tasklist_lock) 700 __acquires(&tasklist_lock) 701 { 702 struct pid_namespace *pid_ns = task_active_pid_ns(father); 703 struct task_struct *thread; 704 705 thread = father; 706 while_each_thread(father, thread) { 707 if (thread->flags & PF_EXITING) 708 continue; 709 if (unlikely(pid_ns->child_reaper == father)) 710 pid_ns->child_reaper = thread; 711 return thread; 712 } 713 714 if (unlikely(pid_ns->child_reaper == father)) { 715 write_unlock_irq(&tasklist_lock); 716 if (unlikely(pid_ns == &init_pid_ns)) 717 panic("Attempted to kill init!"); 718 719 zap_pid_ns_processes(pid_ns); 720 write_lock_irq(&tasklist_lock); 721 /* 722 * We can not clear ->child_reaper or leave it alone. 723 * There may by stealth EXIT_DEAD tasks on ->children, 724 * forget_original_parent() must move them somewhere. 725 */ 726 pid_ns->child_reaper = init_pid_ns.child_reaper; 727 } 728 729 return pid_ns->child_reaper; 730 } 731 732 /* 733 * Any that need to be release_task'd are put on the @dead list. 734 */ 735 static void reparent_leader(struct task_struct *father, struct task_struct *p, 736 struct list_head *dead) 737 { 738 list_move_tail(&p->sibling, &p->real_parent->children); 739 740 if (p->exit_state == EXIT_DEAD) 741 return; 742 /* 743 * If this is a threaded reparent there is no need to 744 * notify anyone anything has happened. 745 */ 746 if (same_thread_group(p->real_parent, father)) 747 return; 748 749 /* We don't want people slaying init. */ 750 p->exit_signal = SIGCHLD; 751 752 /* If it has exited notify the new parent about this child's death. */ 753 if (!p->ptrace && 754 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 755 if (do_notify_parent(p, p->exit_signal)) { 756 p->exit_state = EXIT_DEAD; 757 list_move_tail(&p->sibling, dead); 758 } 759 } 760 761 kill_orphaned_pgrp(p, father); 762 } 763 764 static void forget_original_parent(struct task_struct *father) 765 { 766 struct task_struct *p, *n, *reaper; 767 LIST_HEAD(dead_children); 768 769 write_lock_irq(&tasklist_lock); 770 /* 771 * Note that exit_ptrace() and find_new_reaper() might 772 * drop tasklist_lock and reacquire it. 773 */ 774 exit_ptrace(father); 775 reaper = find_new_reaper(father); 776 777 list_for_each_entry_safe(p, n, &father->children, sibling) { 778 struct task_struct *t = p; 779 do { 780 t->real_parent = reaper; 781 if (t->parent == father) { 782 BUG_ON(t->ptrace); 783 t->parent = t->real_parent; 784 } 785 if (t->pdeath_signal) 786 group_send_sig_info(t->pdeath_signal, 787 SEND_SIG_NOINFO, t); 788 } while_each_thread(p, t); 789 reparent_leader(father, p, &dead_children); 790 } 791 write_unlock_irq(&tasklist_lock); 792 793 BUG_ON(!list_empty(&father->children)); 794 795 list_for_each_entry_safe(p, n, &dead_children, sibling) { 796 list_del_init(&p->sibling); 797 release_task(p); 798 } 799 } 800 801 /* 802 * Send signals to all our closest relatives so that they know 803 * to properly mourn us.. 804 */ 805 static void exit_notify(struct task_struct *tsk, int group_dead) 806 { 807 bool autoreap; 808 809 /* 810 * This does two things: 811 * 812 * A. Make init inherit all the child processes 813 * B. Check to see if any process groups have become orphaned 814 * as a result of our exiting, and if they have any stopped 815 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 816 */ 817 forget_original_parent(tsk); 818 exit_task_namespaces(tsk); 819 820 write_lock_irq(&tasklist_lock); 821 if (group_dead) 822 kill_orphaned_pgrp(tsk->group_leader, NULL); 823 824 /* Let father know we died 825 * 826 * Thread signals are configurable, but you aren't going to use 827 * that to send signals to arbitrary processes. 828 * That stops right now. 829 * 830 * If the parent exec id doesn't match the exec id we saved 831 * when we started then we know the parent has changed security 832 * domain. 833 * 834 * If our self_exec id doesn't match our parent_exec_id then 835 * we have changed execution domain as these two values started 836 * the same after a fork. 837 */ 838 if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD && 839 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 840 tsk->self_exec_id != tsk->parent_exec_id)) 841 tsk->exit_signal = SIGCHLD; 842 843 if (unlikely(tsk->ptrace)) { 844 int sig = thread_group_leader(tsk) && 845 thread_group_empty(tsk) && 846 !ptrace_reparented(tsk) ? 847 tsk->exit_signal : SIGCHLD; 848 autoreap = do_notify_parent(tsk, sig); 849 } else if (thread_group_leader(tsk)) { 850 autoreap = thread_group_empty(tsk) && 851 do_notify_parent(tsk, tsk->exit_signal); 852 } else { 853 autoreap = true; 854 } 855 856 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 857 858 /* mt-exec, de_thread() is waiting for group leader */ 859 if (unlikely(tsk->signal->notify_count < 0)) 860 wake_up_process(tsk->signal->group_exit_task); 861 write_unlock_irq(&tasklist_lock); 862 863 /* If the process is dead, release it - nobody will wait for it */ 864 if (autoreap) 865 release_task(tsk); 866 } 867 868 #ifdef CONFIG_DEBUG_STACK_USAGE 869 static void check_stack_usage(void) 870 { 871 static DEFINE_SPINLOCK(low_water_lock); 872 static int lowest_to_date = THREAD_SIZE; 873 unsigned long free; 874 875 free = stack_not_used(current); 876 877 if (free >= lowest_to_date) 878 return; 879 880 spin_lock(&low_water_lock); 881 if (free < lowest_to_date) { 882 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 883 "left\n", 884 current->comm, free); 885 lowest_to_date = free; 886 } 887 spin_unlock(&low_water_lock); 888 } 889 #else 890 static inline void check_stack_usage(void) {} 891 #endif 892 893 NORET_TYPE void do_exit(long code) 894 { 895 struct task_struct *tsk = current; 896 int group_dead; 897 898 profile_task_exit(tsk); 899 900 WARN_ON(blk_needs_flush_plug(tsk)); 901 902 if (unlikely(in_interrupt())) 903 panic("Aiee, killing interrupt handler!"); 904 if (unlikely(!tsk->pid)) 905 panic("Attempted to kill the idle task!"); 906 907 /* 908 * If do_exit is called because this processes oopsed, it's possible 909 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 910 * continuing. Amongst other possible reasons, this is to prevent 911 * mm_release()->clear_child_tid() from writing to a user-controlled 912 * kernel address. 913 */ 914 set_fs(USER_DS); 915 916 ptrace_event(PTRACE_EVENT_EXIT, code); 917 918 validate_creds_for_do_exit(tsk); 919 920 /* 921 * We're taking recursive faults here in do_exit. Safest is to just 922 * leave this task alone and wait for reboot. 923 */ 924 if (unlikely(tsk->flags & PF_EXITING)) { 925 printk(KERN_ALERT 926 "Fixing recursive fault but reboot is needed!\n"); 927 /* 928 * We can do this unlocked here. The futex code uses 929 * this flag just to verify whether the pi state 930 * cleanup has been done or not. In the worst case it 931 * loops once more. We pretend that the cleanup was 932 * done as there is no way to return. Either the 933 * OWNER_DIED bit is set by now or we push the blocked 934 * task into the wait for ever nirwana as well. 935 */ 936 tsk->flags |= PF_EXITPIDONE; 937 set_current_state(TASK_UNINTERRUPTIBLE); 938 schedule(); 939 } 940 941 exit_irq_thread(); 942 943 exit_signals(tsk); /* sets PF_EXITING */ 944 /* 945 * tsk->flags are checked in the futex code to protect against 946 * an exiting task cleaning up the robust pi futexes. 947 */ 948 smp_mb(); 949 raw_spin_unlock_wait(&tsk->pi_lock); 950 951 if (unlikely(in_atomic())) 952 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 953 current->comm, task_pid_nr(current), 954 preempt_count()); 955 956 acct_update_integrals(tsk); 957 /* sync mm's RSS info before statistics gathering */ 958 if (tsk->mm) 959 sync_mm_rss(tsk, tsk->mm); 960 group_dead = atomic_dec_and_test(&tsk->signal->live); 961 if (group_dead) { 962 hrtimer_cancel(&tsk->signal->real_timer); 963 exit_itimers(tsk->signal); 964 if (tsk->mm) 965 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 966 } 967 acct_collect(code, group_dead); 968 if (group_dead) 969 tty_audit_exit(); 970 if (unlikely(tsk->audit_context)) 971 audit_free(tsk); 972 973 tsk->exit_code = code; 974 taskstats_exit(tsk, group_dead); 975 976 exit_mm(tsk); 977 978 if (group_dead) 979 acct_process(); 980 trace_sched_process_exit(tsk); 981 982 exit_sem(tsk); 983 exit_shm(tsk); 984 exit_files(tsk); 985 exit_fs(tsk); 986 check_stack_usage(); 987 exit_thread(); 988 989 /* 990 * Flush inherited counters to the parent - before the parent 991 * gets woken up by child-exit notifications. 992 * 993 * because of cgroup mode, must be called before cgroup_exit() 994 */ 995 perf_event_exit_task(tsk); 996 997 cgroup_exit(tsk, 1); 998 999 if (group_dead) 1000 disassociate_ctty(1); 1001 1002 module_put(task_thread_info(tsk)->exec_domain->module); 1003 1004 proc_exit_connector(tsk); 1005 1006 /* 1007 * FIXME: do that only when needed, using sched_exit tracepoint 1008 */ 1009 ptrace_put_breakpoints(tsk); 1010 1011 exit_notify(tsk, group_dead); 1012 #ifdef CONFIG_NUMA 1013 task_lock(tsk); 1014 mpol_put(tsk->mempolicy); 1015 tsk->mempolicy = NULL; 1016 task_unlock(tsk); 1017 #endif 1018 #ifdef CONFIG_FUTEX 1019 if (unlikely(current->pi_state_cache)) 1020 kfree(current->pi_state_cache); 1021 #endif 1022 /* 1023 * Make sure we are holding no locks: 1024 */ 1025 debug_check_no_locks_held(tsk); 1026 /* 1027 * We can do this unlocked here. The futex code uses this flag 1028 * just to verify whether the pi state cleanup has been done 1029 * or not. In the worst case it loops once more. 1030 */ 1031 tsk->flags |= PF_EXITPIDONE; 1032 1033 if (tsk->io_context) 1034 exit_io_context(tsk); 1035 1036 if (tsk->splice_pipe) 1037 __free_pipe_info(tsk->splice_pipe); 1038 1039 validate_creds_for_do_exit(tsk); 1040 1041 preempt_disable(); 1042 exit_rcu(); 1043 /* causes final put_task_struct in finish_task_switch(). */ 1044 tsk->state = TASK_DEAD; 1045 schedule(); 1046 BUG(); 1047 /* Avoid "noreturn function does return". */ 1048 for (;;) 1049 cpu_relax(); /* For when BUG is null */ 1050 } 1051 1052 EXPORT_SYMBOL_GPL(do_exit); 1053 1054 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1055 { 1056 if (comp) 1057 complete(comp); 1058 1059 do_exit(code); 1060 } 1061 1062 EXPORT_SYMBOL(complete_and_exit); 1063 1064 SYSCALL_DEFINE1(exit, int, error_code) 1065 { 1066 do_exit((error_code&0xff)<<8); 1067 } 1068 1069 /* 1070 * Take down every thread in the group. This is called by fatal signals 1071 * as well as by sys_exit_group (below). 1072 */ 1073 NORET_TYPE void 1074 do_group_exit(int exit_code) 1075 { 1076 struct signal_struct *sig = current->signal; 1077 1078 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1079 1080 if (signal_group_exit(sig)) 1081 exit_code = sig->group_exit_code; 1082 else if (!thread_group_empty(current)) { 1083 struct sighand_struct *const sighand = current->sighand; 1084 spin_lock_irq(&sighand->siglock); 1085 if (signal_group_exit(sig)) 1086 /* Another thread got here before we took the lock. */ 1087 exit_code = sig->group_exit_code; 1088 else { 1089 sig->group_exit_code = exit_code; 1090 sig->flags = SIGNAL_GROUP_EXIT; 1091 zap_other_threads(current); 1092 } 1093 spin_unlock_irq(&sighand->siglock); 1094 } 1095 1096 do_exit(exit_code); 1097 /* NOTREACHED */ 1098 } 1099 1100 /* 1101 * this kills every thread in the thread group. Note that any externally 1102 * wait4()-ing process will get the correct exit code - even if this 1103 * thread is not the thread group leader. 1104 */ 1105 SYSCALL_DEFINE1(exit_group, int, error_code) 1106 { 1107 do_group_exit((error_code & 0xff) << 8); 1108 /* NOTREACHED */ 1109 return 0; 1110 } 1111 1112 struct wait_opts { 1113 enum pid_type wo_type; 1114 int wo_flags; 1115 struct pid *wo_pid; 1116 1117 struct siginfo __user *wo_info; 1118 int __user *wo_stat; 1119 struct rusage __user *wo_rusage; 1120 1121 wait_queue_t child_wait; 1122 int notask_error; 1123 }; 1124 1125 static inline 1126 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1127 { 1128 if (type != PIDTYPE_PID) 1129 task = task->group_leader; 1130 return task->pids[type].pid; 1131 } 1132 1133 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1134 { 1135 return wo->wo_type == PIDTYPE_MAX || 1136 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1137 } 1138 1139 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1140 { 1141 if (!eligible_pid(wo, p)) 1142 return 0; 1143 /* Wait for all children (clone and not) if __WALL is set; 1144 * otherwise, wait for clone children *only* if __WCLONE is 1145 * set; otherwise, wait for non-clone children *only*. (Note: 1146 * A "clone" child here is one that reports to its parent 1147 * using a signal other than SIGCHLD.) */ 1148 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1149 && !(wo->wo_flags & __WALL)) 1150 return 0; 1151 1152 return 1; 1153 } 1154 1155 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1156 pid_t pid, uid_t uid, int why, int status) 1157 { 1158 struct siginfo __user *infop; 1159 int retval = wo->wo_rusage 1160 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1161 1162 put_task_struct(p); 1163 infop = wo->wo_info; 1164 if (infop) { 1165 if (!retval) 1166 retval = put_user(SIGCHLD, &infop->si_signo); 1167 if (!retval) 1168 retval = put_user(0, &infop->si_errno); 1169 if (!retval) 1170 retval = put_user((short)why, &infop->si_code); 1171 if (!retval) 1172 retval = put_user(pid, &infop->si_pid); 1173 if (!retval) 1174 retval = put_user(uid, &infop->si_uid); 1175 if (!retval) 1176 retval = put_user(status, &infop->si_status); 1177 } 1178 if (!retval) 1179 retval = pid; 1180 return retval; 1181 } 1182 1183 /* 1184 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1185 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1186 * the lock and this task is uninteresting. If we return nonzero, we have 1187 * released the lock and the system call should return. 1188 */ 1189 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1190 { 1191 unsigned long state; 1192 int retval, status, traced; 1193 pid_t pid = task_pid_vnr(p); 1194 uid_t uid = __task_cred(p)->uid; 1195 struct siginfo __user *infop; 1196 1197 if (!likely(wo->wo_flags & WEXITED)) 1198 return 0; 1199 1200 if (unlikely(wo->wo_flags & WNOWAIT)) { 1201 int exit_code = p->exit_code; 1202 int why; 1203 1204 get_task_struct(p); 1205 read_unlock(&tasklist_lock); 1206 if ((exit_code & 0x7f) == 0) { 1207 why = CLD_EXITED; 1208 status = exit_code >> 8; 1209 } else { 1210 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1211 status = exit_code & 0x7f; 1212 } 1213 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1214 } 1215 1216 /* 1217 * Try to move the task's state to DEAD 1218 * only one thread is allowed to do this: 1219 */ 1220 state = xchg(&p->exit_state, EXIT_DEAD); 1221 if (state != EXIT_ZOMBIE) { 1222 BUG_ON(state != EXIT_DEAD); 1223 return 0; 1224 } 1225 1226 traced = ptrace_reparented(p); 1227 /* 1228 * It can be ptraced but not reparented, check 1229 * thread_group_leader() to filter out sub-threads. 1230 */ 1231 if (likely(!traced) && thread_group_leader(p)) { 1232 struct signal_struct *psig; 1233 struct signal_struct *sig; 1234 unsigned long maxrss; 1235 cputime_t tgutime, tgstime; 1236 1237 /* 1238 * The resource counters for the group leader are in its 1239 * own task_struct. Those for dead threads in the group 1240 * are in its signal_struct, as are those for the child 1241 * processes it has previously reaped. All these 1242 * accumulate in the parent's signal_struct c* fields. 1243 * 1244 * We don't bother to take a lock here to protect these 1245 * p->signal fields, because they are only touched by 1246 * __exit_signal, which runs with tasklist_lock 1247 * write-locked anyway, and so is excluded here. We do 1248 * need to protect the access to parent->signal fields, 1249 * as other threads in the parent group can be right 1250 * here reaping other children at the same time. 1251 * 1252 * We use thread_group_times() to get times for the thread 1253 * group, which consolidates times for all threads in the 1254 * group including the group leader. 1255 */ 1256 thread_group_times(p, &tgutime, &tgstime); 1257 spin_lock_irq(&p->real_parent->sighand->siglock); 1258 psig = p->real_parent->signal; 1259 sig = p->signal; 1260 psig->cutime = 1261 cputime_add(psig->cutime, 1262 cputime_add(tgutime, 1263 sig->cutime)); 1264 psig->cstime = 1265 cputime_add(psig->cstime, 1266 cputime_add(tgstime, 1267 sig->cstime)); 1268 psig->cgtime = 1269 cputime_add(psig->cgtime, 1270 cputime_add(p->gtime, 1271 cputime_add(sig->gtime, 1272 sig->cgtime))); 1273 psig->cmin_flt += 1274 p->min_flt + sig->min_flt + sig->cmin_flt; 1275 psig->cmaj_flt += 1276 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1277 psig->cnvcsw += 1278 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1279 psig->cnivcsw += 1280 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1281 psig->cinblock += 1282 task_io_get_inblock(p) + 1283 sig->inblock + sig->cinblock; 1284 psig->coublock += 1285 task_io_get_oublock(p) + 1286 sig->oublock + sig->coublock; 1287 maxrss = max(sig->maxrss, sig->cmaxrss); 1288 if (psig->cmaxrss < maxrss) 1289 psig->cmaxrss = maxrss; 1290 task_io_accounting_add(&psig->ioac, &p->ioac); 1291 task_io_accounting_add(&psig->ioac, &sig->ioac); 1292 spin_unlock_irq(&p->real_parent->sighand->siglock); 1293 } 1294 1295 /* 1296 * Now we are sure this task is interesting, and no other 1297 * thread can reap it because we set its state to EXIT_DEAD. 1298 */ 1299 read_unlock(&tasklist_lock); 1300 1301 retval = wo->wo_rusage 1302 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1303 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1304 ? p->signal->group_exit_code : p->exit_code; 1305 if (!retval && wo->wo_stat) 1306 retval = put_user(status, wo->wo_stat); 1307 1308 infop = wo->wo_info; 1309 if (!retval && infop) 1310 retval = put_user(SIGCHLD, &infop->si_signo); 1311 if (!retval && infop) 1312 retval = put_user(0, &infop->si_errno); 1313 if (!retval && infop) { 1314 int why; 1315 1316 if ((status & 0x7f) == 0) { 1317 why = CLD_EXITED; 1318 status >>= 8; 1319 } else { 1320 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1321 status &= 0x7f; 1322 } 1323 retval = put_user((short)why, &infop->si_code); 1324 if (!retval) 1325 retval = put_user(status, &infop->si_status); 1326 } 1327 if (!retval && infop) 1328 retval = put_user(pid, &infop->si_pid); 1329 if (!retval && infop) 1330 retval = put_user(uid, &infop->si_uid); 1331 if (!retval) 1332 retval = pid; 1333 1334 if (traced) { 1335 write_lock_irq(&tasklist_lock); 1336 /* We dropped tasklist, ptracer could die and untrace */ 1337 ptrace_unlink(p); 1338 /* 1339 * If this is not a sub-thread, notify the parent. 1340 * If parent wants a zombie, don't release it now. 1341 */ 1342 if (thread_group_leader(p) && 1343 !do_notify_parent(p, p->exit_signal)) { 1344 p->exit_state = EXIT_ZOMBIE; 1345 p = NULL; 1346 } 1347 write_unlock_irq(&tasklist_lock); 1348 } 1349 if (p != NULL) 1350 release_task(p); 1351 1352 return retval; 1353 } 1354 1355 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1356 { 1357 if (ptrace) { 1358 if (task_is_stopped_or_traced(p) && 1359 !(p->jobctl & JOBCTL_LISTENING)) 1360 return &p->exit_code; 1361 } else { 1362 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1363 return &p->signal->group_exit_code; 1364 } 1365 return NULL; 1366 } 1367 1368 /** 1369 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1370 * @wo: wait options 1371 * @ptrace: is the wait for ptrace 1372 * @p: task to wait for 1373 * 1374 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1375 * 1376 * CONTEXT: 1377 * read_lock(&tasklist_lock), which is released if return value is 1378 * non-zero. Also, grabs and releases @p->sighand->siglock. 1379 * 1380 * RETURNS: 1381 * 0 if wait condition didn't exist and search for other wait conditions 1382 * should continue. Non-zero return, -errno on failure and @p's pid on 1383 * success, implies that tasklist_lock is released and wait condition 1384 * search should terminate. 1385 */ 1386 static int wait_task_stopped(struct wait_opts *wo, 1387 int ptrace, struct task_struct *p) 1388 { 1389 struct siginfo __user *infop; 1390 int retval, exit_code, *p_code, why; 1391 uid_t uid = 0; /* unneeded, required by compiler */ 1392 pid_t pid; 1393 1394 /* 1395 * Traditionally we see ptrace'd stopped tasks regardless of options. 1396 */ 1397 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1398 return 0; 1399 1400 if (!task_stopped_code(p, ptrace)) 1401 return 0; 1402 1403 exit_code = 0; 1404 spin_lock_irq(&p->sighand->siglock); 1405 1406 p_code = task_stopped_code(p, ptrace); 1407 if (unlikely(!p_code)) 1408 goto unlock_sig; 1409 1410 exit_code = *p_code; 1411 if (!exit_code) 1412 goto unlock_sig; 1413 1414 if (!unlikely(wo->wo_flags & WNOWAIT)) 1415 *p_code = 0; 1416 1417 uid = task_uid(p); 1418 unlock_sig: 1419 spin_unlock_irq(&p->sighand->siglock); 1420 if (!exit_code) 1421 return 0; 1422 1423 /* 1424 * Now we are pretty sure this task is interesting. 1425 * Make sure it doesn't get reaped out from under us while we 1426 * give up the lock and then examine it below. We don't want to 1427 * keep holding onto the tasklist_lock while we call getrusage and 1428 * possibly take page faults for user memory. 1429 */ 1430 get_task_struct(p); 1431 pid = task_pid_vnr(p); 1432 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1433 read_unlock(&tasklist_lock); 1434 1435 if (unlikely(wo->wo_flags & WNOWAIT)) 1436 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1437 1438 retval = wo->wo_rusage 1439 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1440 if (!retval && wo->wo_stat) 1441 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1442 1443 infop = wo->wo_info; 1444 if (!retval && infop) 1445 retval = put_user(SIGCHLD, &infop->si_signo); 1446 if (!retval && infop) 1447 retval = put_user(0, &infop->si_errno); 1448 if (!retval && infop) 1449 retval = put_user((short)why, &infop->si_code); 1450 if (!retval && infop) 1451 retval = put_user(exit_code, &infop->si_status); 1452 if (!retval && infop) 1453 retval = put_user(pid, &infop->si_pid); 1454 if (!retval && infop) 1455 retval = put_user(uid, &infop->si_uid); 1456 if (!retval) 1457 retval = pid; 1458 put_task_struct(p); 1459 1460 BUG_ON(!retval); 1461 return retval; 1462 } 1463 1464 /* 1465 * Handle do_wait work for one task in a live, non-stopped state. 1466 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1467 * the lock and this task is uninteresting. If we return nonzero, we have 1468 * released the lock and the system call should return. 1469 */ 1470 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1471 { 1472 int retval; 1473 pid_t pid; 1474 uid_t uid; 1475 1476 if (!unlikely(wo->wo_flags & WCONTINUED)) 1477 return 0; 1478 1479 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1480 return 0; 1481 1482 spin_lock_irq(&p->sighand->siglock); 1483 /* Re-check with the lock held. */ 1484 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1485 spin_unlock_irq(&p->sighand->siglock); 1486 return 0; 1487 } 1488 if (!unlikely(wo->wo_flags & WNOWAIT)) 1489 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1490 uid = task_uid(p); 1491 spin_unlock_irq(&p->sighand->siglock); 1492 1493 pid = task_pid_vnr(p); 1494 get_task_struct(p); 1495 read_unlock(&tasklist_lock); 1496 1497 if (!wo->wo_info) { 1498 retval = wo->wo_rusage 1499 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1500 put_task_struct(p); 1501 if (!retval && wo->wo_stat) 1502 retval = put_user(0xffff, wo->wo_stat); 1503 if (!retval) 1504 retval = pid; 1505 } else { 1506 retval = wait_noreap_copyout(wo, p, pid, uid, 1507 CLD_CONTINUED, SIGCONT); 1508 BUG_ON(retval == 0); 1509 } 1510 1511 return retval; 1512 } 1513 1514 /* 1515 * Consider @p for a wait by @parent. 1516 * 1517 * -ECHILD should be in ->notask_error before the first call. 1518 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1519 * Returns zero if the search for a child should continue; 1520 * then ->notask_error is 0 if @p is an eligible child, 1521 * or another error from security_task_wait(), or still -ECHILD. 1522 */ 1523 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1524 struct task_struct *p) 1525 { 1526 int ret = eligible_child(wo, p); 1527 if (!ret) 1528 return ret; 1529 1530 ret = security_task_wait(p); 1531 if (unlikely(ret < 0)) { 1532 /* 1533 * If we have not yet seen any eligible child, 1534 * then let this error code replace -ECHILD. 1535 * A permission error will give the user a clue 1536 * to look for security policy problems, rather 1537 * than for mysterious wait bugs. 1538 */ 1539 if (wo->notask_error) 1540 wo->notask_error = ret; 1541 return 0; 1542 } 1543 1544 /* dead body doesn't have much to contribute */ 1545 if (p->exit_state == EXIT_DEAD) 1546 return 0; 1547 1548 /* slay zombie? */ 1549 if (p->exit_state == EXIT_ZOMBIE) { 1550 /* 1551 * A zombie ptracee is only visible to its ptracer. 1552 * Notification and reaping will be cascaded to the real 1553 * parent when the ptracer detaches. 1554 */ 1555 if (likely(!ptrace) && unlikely(p->ptrace)) { 1556 /* it will become visible, clear notask_error */ 1557 wo->notask_error = 0; 1558 return 0; 1559 } 1560 1561 /* we don't reap group leaders with subthreads */ 1562 if (!delay_group_leader(p)) 1563 return wait_task_zombie(wo, p); 1564 1565 /* 1566 * Allow access to stopped/continued state via zombie by 1567 * falling through. Clearing of notask_error is complex. 1568 * 1569 * When !@ptrace: 1570 * 1571 * If WEXITED is set, notask_error should naturally be 1572 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1573 * so, if there are live subthreads, there are events to 1574 * wait for. If all subthreads are dead, it's still safe 1575 * to clear - this function will be called again in finite 1576 * amount time once all the subthreads are released and 1577 * will then return without clearing. 1578 * 1579 * When @ptrace: 1580 * 1581 * Stopped state is per-task and thus can't change once the 1582 * target task dies. Only continued and exited can happen. 1583 * Clear notask_error if WCONTINUED | WEXITED. 1584 */ 1585 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1586 wo->notask_error = 0; 1587 } else { 1588 /* 1589 * If @p is ptraced by a task in its real parent's group, 1590 * hide group stop/continued state when looking at @p as 1591 * the real parent; otherwise, a single stop can be 1592 * reported twice as group and ptrace stops. 1593 * 1594 * If a ptracer wants to distinguish the two events for its 1595 * own children, it should create a separate process which 1596 * takes the role of real parent. 1597 */ 1598 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p)) 1599 return 0; 1600 1601 /* 1602 * @p is alive and it's gonna stop, continue or exit, so 1603 * there always is something to wait for. 1604 */ 1605 wo->notask_error = 0; 1606 } 1607 1608 /* 1609 * Wait for stopped. Depending on @ptrace, different stopped state 1610 * is used and the two don't interact with each other. 1611 */ 1612 ret = wait_task_stopped(wo, ptrace, p); 1613 if (ret) 1614 return ret; 1615 1616 /* 1617 * Wait for continued. There's only one continued state and the 1618 * ptracer can consume it which can confuse the real parent. Don't 1619 * use WCONTINUED from ptracer. You don't need or want it. 1620 */ 1621 return wait_task_continued(wo, p); 1622 } 1623 1624 /* 1625 * Do the work of do_wait() for one thread in the group, @tsk. 1626 * 1627 * -ECHILD should be in ->notask_error before the first call. 1628 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1629 * Returns zero if the search for a child should continue; then 1630 * ->notask_error is 0 if there were any eligible children, 1631 * or another error from security_task_wait(), or still -ECHILD. 1632 */ 1633 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1634 { 1635 struct task_struct *p; 1636 1637 list_for_each_entry(p, &tsk->children, sibling) { 1638 int ret = wait_consider_task(wo, 0, p); 1639 if (ret) 1640 return ret; 1641 } 1642 1643 return 0; 1644 } 1645 1646 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1647 { 1648 struct task_struct *p; 1649 1650 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1651 int ret = wait_consider_task(wo, 1, p); 1652 if (ret) 1653 return ret; 1654 } 1655 1656 return 0; 1657 } 1658 1659 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1660 int sync, void *key) 1661 { 1662 struct wait_opts *wo = container_of(wait, struct wait_opts, 1663 child_wait); 1664 struct task_struct *p = key; 1665 1666 if (!eligible_pid(wo, p)) 1667 return 0; 1668 1669 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1670 return 0; 1671 1672 return default_wake_function(wait, mode, sync, key); 1673 } 1674 1675 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1676 { 1677 __wake_up_sync_key(&parent->signal->wait_chldexit, 1678 TASK_INTERRUPTIBLE, 1, p); 1679 } 1680 1681 static long do_wait(struct wait_opts *wo) 1682 { 1683 struct task_struct *tsk; 1684 int retval; 1685 1686 trace_sched_process_wait(wo->wo_pid); 1687 1688 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1689 wo->child_wait.private = current; 1690 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1691 repeat: 1692 /* 1693 * If there is nothing that can match our critiera just get out. 1694 * We will clear ->notask_error to zero if we see any child that 1695 * might later match our criteria, even if we are not able to reap 1696 * it yet. 1697 */ 1698 wo->notask_error = -ECHILD; 1699 if ((wo->wo_type < PIDTYPE_MAX) && 1700 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1701 goto notask; 1702 1703 set_current_state(TASK_INTERRUPTIBLE); 1704 read_lock(&tasklist_lock); 1705 tsk = current; 1706 do { 1707 retval = do_wait_thread(wo, tsk); 1708 if (retval) 1709 goto end; 1710 1711 retval = ptrace_do_wait(wo, tsk); 1712 if (retval) 1713 goto end; 1714 1715 if (wo->wo_flags & __WNOTHREAD) 1716 break; 1717 } while_each_thread(current, tsk); 1718 read_unlock(&tasklist_lock); 1719 1720 notask: 1721 retval = wo->notask_error; 1722 if (!retval && !(wo->wo_flags & WNOHANG)) { 1723 retval = -ERESTARTSYS; 1724 if (!signal_pending(current)) { 1725 schedule(); 1726 goto repeat; 1727 } 1728 } 1729 end: 1730 __set_current_state(TASK_RUNNING); 1731 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1732 return retval; 1733 } 1734 1735 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1736 infop, int, options, struct rusage __user *, ru) 1737 { 1738 struct wait_opts wo; 1739 struct pid *pid = NULL; 1740 enum pid_type type; 1741 long ret; 1742 1743 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1744 return -EINVAL; 1745 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1746 return -EINVAL; 1747 1748 switch (which) { 1749 case P_ALL: 1750 type = PIDTYPE_MAX; 1751 break; 1752 case P_PID: 1753 type = PIDTYPE_PID; 1754 if (upid <= 0) 1755 return -EINVAL; 1756 break; 1757 case P_PGID: 1758 type = PIDTYPE_PGID; 1759 if (upid <= 0) 1760 return -EINVAL; 1761 break; 1762 default: 1763 return -EINVAL; 1764 } 1765 1766 if (type < PIDTYPE_MAX) 1767 pid = find_get_pid(upid); 1768 1769 wo.wo_type = type; 1770 wo.wo_pid = pid; 1771 wo.wo_flags = options; 1772 wo.wo_info = infop; 1773 wo.wo_stat = NULL; 1774 wo.wo_rusage = ru; 1775 ret = do_wait(&wo); 1776 1777 if (ret > 0) { 1778 ret = 0; 1779 } else if (infop) { 1780 /* 1781 * For a WNOHANG return, clear out all the fields 1782 * we would set so the user can easily tell the 1783 * difference. 1784 */ 1785 if (!ret) 1786 ret = put_user(0, &infop->si_signo); 1787 if (!ret) 1788 ret = put_user(0, &infop->si_errno); 1789 if (!ret) 1790 ret = put_user(0, &infop->si_code); 1791 if (!ret) 1792 ret = put_user(0, &infop->si_pid); 1793 if (!ret) 1794 ret = put_user(0, &infop->si_uid); 1795 if (!ret) 1796 ret = put_user(0, &infop->si_status); 1797 } 1798 1799 put_pid(pid); 1800 1801 /* avoid REGPARM breakage on x86: */ 1802 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1803 return ret; 1804 } 1805 1806 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1807 int, options, struct rusage __user *, ru) 1808 { 1809 struct wait_opts wo; 1810 struct pid *pid = NULL; 1811 enum pid_type type; 1812 long ret; 1813 1814 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1815 __WNOTHREAD|__WCLONE|__WALL)) 1816 return -EINVAL; 1817 1818 if (upid == -1) 1819 type = PIDTYPE_MAX; 1820 else if (upid < 0) { 1821 type = PIDTYPE_PGID; 1822 pid = find_get_pid(-upid); 1823 } else if (upid == 0) { 1824 type = PIDTYPE_PGID; 1825 pid = get_task_pid(current, PIDTYPE_PGID); 1826 } else /* upid > 0 */ { 1827 type = PIDTYPE_PID; 1828 pid = find_get_pid(upid); 1829 } 1830 1831 wo.wo_type = type; 1832 wo.wo_pid = pid; 1833 wo.wo_flags = options | WEXITED; 1834 wo.wo_info = NULL; 1835 wo.wo_stat = stat_addr; 1836 wo.wo_rusage = ru; 1837 ret = do_wait(&wo); 1838 put_pid(pid); 1839 1840 /* avoid REGPARM breakage on x86: */ 1841 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1842 return ret; 1843 } 1844 1845 #ifdef __ARCH_WANT_SYS_WAITPID 1846 1847 /* 1848 * sys_waitpid() remains for compatibility. waitpid() should be 1849 * implemented by calling sys_wait4() from libc.a. 1850 */ 1851 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1852 { 1853 return sys_wait4(pid, stat_addr, options, NULL); 1854 } 1855 1856 #endif 1857