xref: /openbmc/linux/kernel/exit.c (revision 862a6244eb9f9f5123fe819454fcfcae0ee1f2f9)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
59 
60 static void exit_mm(struct task_struct * tsk);
61 
62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 {
64 	nr_threads--;
65 	detach_pid(p, PIDTYPE_PID);
66 	if (group_dead) {
67 		detach_pid(p, PIDTYPE_PGID);
68 		detach_pid(p, PIDTYPE_SID);
69 
70 		list_del_rcu(&p->tasks);
71 		list_del_init(&p->sibling);
72 		__this_cpu_dec(process_counts);
73 	}
74 	list_del_rcu(&p->thread_group);
75 }
76 
77 /*
78  * This function expects the tasklist_lock write-locked.
79  */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 	struct signal_struct *sig = tsk->signal;
83 	bool group_dead = thread_group_leader(tsk);
84 	struct sighand_struct *sighand;
85 	struct tty_struct *uninitialized_var(tty);
86 
87 	sighand = rcu_dereference_check(tsk->sighand,
88 					lockdep_tasklist_lock_is_held());
89 	spin_lock(&sighand->siglock);
90 
91 	posix_cpu_timers_exit(tsk);
92 	if (group_dead) {
93 		posix_cpu_timers_exit_group(tsk);
94 		tty = sig->tty;
95 		sig->tty = NULL;
96 	} else {
97 		/*
98 		 * This can only happen if the caller is de_thread().
99 		 * FIXME: this is the temporary hack, we should teach
100 		 * posix-cpu-timers to handle this case correctly.
101 		 */
102 		if (unlikely(has_group_leader_pid(tsk)))
103 			posix_cpu_timers_exit_group(tsk);
104 
105 		/*
106 		 * If there is any task waiting for the group exit
107 		 * then notify it:
108 		 */
109 		if (sig->notify_count > 0 && !--sig->notify_count)
110 			wake_up_process(sig->group_exit_task);
111 
112 		if (tsk == sig->curr_target)
113 			sig->curr_target = next_thread(tsk);
114 		/*
115 		 * Accumulate here the counters for all threads but the
116 		 * group leader as they die, so they can be added into
117 		 * the process-wide totals when those are taken.
118 		 * The group leader stays around as a zombie as long
119 		 * as there are other threads.  When it gets reaped,
120 		 * the exit.c code will add its counts into these totals.
121 		 * We won't ever get here for the group leader, since it
122 		 * will have been the last reference on the signal_struct.
123 		 */
124 		sig->utime = cputime_add(sig->utime, tsk->utime);
125 		sig->stime = cputime_add(sig->stime, tsk->stime);
126 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
127 		sig->min_flt += tsk->min_flt;
128 		sig->maj_flt += tsk->maj_flt;
129 		sig->nvcsw += tsk->nvcsw;
130 		sig->nivcsw += tsk->nivcsw;
131 		sig->inblock += task_io_get_inblock(tsk);
132 		sig->oublock += task_io_get_oublock(tsk);
133 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
134 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
135 	}
136 
137 	sig->nr_threads--;
138 	__unhash_process(tsk, group_dead);
139 
140 	/*
141 	 * Do this under ->siglock, we can race with another thread
142 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
143 	 */
144 	flush_sigqueue(&tsk->pending);
145 	tsk->sighand = NULL;
146 	spin_unlock(&sighand->siglock);
147 
148 	__cleanup_sighand(sighand);
149 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
150 	if (group_dead) {
151 		flush_sigqueue(&sig->shared_pending);
152 		tty_kref_put(tty);
153 	}
154 }
155 
156 static void delayed_put_task_struct(struct rcu_head *rhp)
157 {
158 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
159 
160 	perf_event_delayed_put(tsk);
161 	trace_sched_process_free(tsk);
162 	put_task_struct(tsk);
163 }
164 
165 
166 void release_task(struct task_struct * p)
167 {
168 	struct task_struct *leader;
169 	int zap_leader;
170 repeat:
171 	/* don't need to get the RCU readlock here - the process is dead and
172 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
173 	rcu_read_lock();
174 	atomic_dec(&__task_cred(p)->user->processes);
175 	rcu_read_unlock();
176 
177 	proc_flush_task(p);
178 
179 	write_lock_irq(&tasklist_lock);
180 	ptrace_release_task(p);
181 	__exit_signal(p);
182 
183 	/*
184 	 * If we are the last non-leader member of the thread
185 	 * group, and the leader is zombie, then notify the
186 	 * group leader's parent process. (if it wants notification.)
187 	 */
188 	zap_leader = 0;
189 	leader = p->group_leader;
190 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
191 		/*
192 		 * If we were the last child thread and the leader has
193 		 * exited already, and the leader's parent ignores SIGCHLD,
194 		 * then we are the one who should release the leader.
195 		 */
196 		zap_leader = do_notify_parent(leader, leader->exit_signal);
197 		if (zap_leader)
198 			leader->exit_state = EXIT_DEAD;
199 	}
200 
201 	write_unlock_irq(&tasklist_lock);
202 	release_thread(p);
203 	call_rcu(&p->rcu, delayed_put_task_struct);
204 
205 	p = leader;
206 	if (unlikely(zap_leader))
207 		goto repeat;
208 }
209 
210 /*
211  * This checks not only the pgrp, but falls back on the pid if no
212  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
213  * without this...
214  *
215  * The caller must hold rcu lock or the tasklist lock.
216  */
217 struct pid *session_of_pgrp(struct pid *pgrp)
218 {
219 	struct task_struct *p;
220 	struct pid *sid = NULL;
221 
222 	p = pid_task(pgrp, PIDTYPE_PGID);
223 	if (p == NULL)
224 		p = pid_task(pgrp, PIDTYPE_PID);
225 	if (p != NULL)
226 		sid = task_session(p);
227 
228 	return sid;
229 }
230 
231 /*
232  * Determine if a process group is "orphaned", according to the POSIX
233  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
234  * by terminal-generated stop signals.  Newly orphaned process groups are
235  * to receive a SIGHUP and a SIGCONT.
236  *
237  * "I ask you, have you ever known what it is to be an orphan?"
238  */
239 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
240 {
241 	struct task_struct *p;
242 
243 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
244 		if ((p == ignored_task) ||
245 		    (p->exit_state && thread_group_empty(p)) ||
246 		    is_global_init(p->real_parent))
247 			continue;
248 
249 		if (task_pgrp(p->real_parent) != pgrp &&
250 		    task_session(p->real_parent) == task_session(p))
251 			return 0;
252 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
253 
254 	return 1;
255 }
256 
257 int is_current_pgrp_orphaned(void)
258 {
259 	int retval;
260 
261 	read_lock(&tasklist_lock);
262 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
263 	read_unlock(&tasklist_lock);
264 
265 	return retval;
266 }
267 
268 static bool has_stopped_jobs(struct pid *pgrp)
269 {
270 	struct task_struct *p;
271 
272 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
273 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
274 			return true;
275 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
276 
277 	return false;
278 }
279 
280 /*
281  * Check to see if any process groups have become orphaned as
282  * a result of our exiting, and if they have any stopped jobs,
283  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
284  */
285 static void
286 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
287 {
288 	struct pid *pgrp = task_pgrp(tsk);
289 	struct task_struct *ignored_task = tsk;
290 
291 	if (!parent)
292 		 /* exit: our father is in a different pgrp than
293 		  * we are and we were the only connection outside.
294 		  */
295 		parent = tsk->real_parent;
296 	else
297 		/* reparent: our child is in a different pgrp than
298 		 * we are, and it was the only connection outside.
299 		 */
300 		ignored_task = NULL;
301 
302 	if (task_pgrp(parent) != pgrp &&
303 	    task_session(parent) == task_session(tsk) &&
304 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
305 	    has_stopped_jobs(pgrp)) {
306 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
307 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
308 	}
309 }
310 
311 /**
312  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
313  *
314  * If a kernel thread is launched as a result of a system call, or if
315  * it ever exits, it should generally reparent itself to kthreadd so it
316  * isn't in the way of other processes and is correctly cleaned up on exit.
317  *
318  * The various task state such as scheduling policy and priority may have
319  * been inherited from a user process, so we reset them to sane values here.
320  *
321  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
322  */
323 static void reparent_to_kthreadd(void)
324 {
325 	write_lock_irq(&tasklist_lock);
326 
327 	ptrace_unlink(current);
328 	/* Reparent to init */
329 	current->real_parent = current->parent = kthreadd_task;
330 	list_move_tail(&current->sibling, &current->real_parent->children);
331 
332 	/* Set the exit signal to SIGCHLD so we signal init on exit */
333 	current->exit_signal = SIGCHLD;
334 
335 	if (task_nice(current) < 0)
336 		set_user_nice(current, 0);
337 	/* cpus_allowed? */
338 	/* rt_priority? */
339 	/* signals? */
340 	memcpy(current->signal->rlim, init_task.signal->rlim,
341 	       sizeof(current->signal->rlim));
342 
343 	atomic_inc(&init_cred.usage);
344 	commit_creds(&init_cred);
345 	write_unlock_irq(&tasklist_lock);
346 }
347 
348 void __set_special_pids(struct pid *pid)
349 {
350 	struct task_struct *curr = current->group_leader;
351 
352 	if (task_session(curr) != pid)
353 		change_pid(curr, PIDTYPE_SID, pid);
354 
355 	if (task_pgrp(curr) != pid)
356 		change_pid(curr, PIDTYPE_PGID, pid);
357 }
358 
359 static void set_special_pids(struct pid *pid)
360 {
361 	write_lock_irq(&tasklist_lock);
362 	__set_special_pids(pid);
363 	write_unlock_irq(&tasklist_lock);
364 }
365 
366 /*
367  * Let kernel threads use this to say that they allow a certain signal.
368  * Must not be used if kthread was cloned with CLONE_SIGHAND.
369  */
370 int allow_signal(int sig)
371 {
372 	if (!valid_signal(sig) || sig < 1)
373 		return -EINVAL;
374 
375 	spin_lock_irq(&current->sighand->siglock);
376 	/* This is only needed for daemonize()'ed kthreads */
377 	sigdelset(&current->blocked, sig);
378 	/*
379 	 * Kernel threads handle their own signals. Let the signal code
380 	 * know it'll be handled, so that they don't get converted to
381 	 * SIGKILL or just silently dropped.
382 	 */
383 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
384 	recalc_sigpending();
385 	spin_unlock_irq(&current->sighand->siglock);
386 	return 0;
387 }
388 
389 EXPORT_SYMBOL(allow_signal);
390 
391 int disallow_signal(int sig)
392 {
393 	if (!valid_signal(sig) || sig < 1)
394 		return -EINVAL;
395 
396 	spin_lock_irq(&current->sighand->siglock);
397 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
398 	recalc_sigpending();
399 	spin_unlock_irq(&current->sighand->siglock);
400 	return 0;
401 }
402 
403 EXPORT_SYMBOL(disallow_signal);
404 
405 /*
406  *	Put all the gunge required to become a kernel thread without
407  *	attached user resources in one place where it belongs.
408  */
409 
410 void daemonize(const char *name, ...)
411 {
412 	va_list args;
413 	sigset_t blocked;
414 
415 	va_start(args, name);
416 	vsnprintf(current->comm, sizeof(current->comm), name, args);
417 	va_end(args);
418 
419 	/*
420 	 * If we were started as result of loading a module, close all of the
421 	 * user space pages.  We don't need them, and if we didn't close them
422 	 * they would be locked into memory.
423 	 */
424 	exit_mm(current);
425 	/*
426 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
427 	 * or suspend transition begins right now.
428 	 */
429 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
430 
431 	if (current->nsproxy != &init_nsproxy) {
432 		get_nsproxy(&init_nsproxy);
433 		switch_task_namespaces(current, &init_nsproxy);
434 	}
435 	set_special_pids(&init_struct_pid);
436 	proc_clear_tty(current);
437 
438 	/* Block and flush all signals */
439 	sigfillset(&blocked);
440 	sigprocmask(SIG_BLOCK, &blocked, NULL);
441 	flush_signals(current);
442 
443 	/* Become as one with the init task */
444 
445 	daemonize_fs_struct();
446 	exit_files(current);
447 	current->files = init_task.files;
448 	atomic_inc(&current->files->count);
449 
450 	reparent_to_kthreadd();
451 }
452 
453 EXPORT_SYMBOL(daemonize);
454 
455 static void close_files(struct files_struct * files)
456 {
457 	int i, j;
458 	struct fdtable *fdt;
459 
460 	j = 0;
461 
462 	/*
463 	 * It is safe to dereference the fd table without RCU or
464 	 * ->file_lock because this is the last reference to the
465 	 * files structure.  But use RCU to shut RCU-lockdep up.
466 	 */
467 	rcu_read_lock();
468 	fdt = files_fdtable(files);
469 	rcu_read_unlock();
470 	for (;;) {
471 		unsigned long set;
472 		i = j * __NFDBITS;
473 		if (i >= fdt->max_fds)
474 			break;
475 		set = fdt->open_fds->fds_bits[j++];
476 		while (set) {
477 			if (set & 1) {
478 				struct file * file = xchg(&fdt->fd[i], NULL);
479 				if (file) {
480 					filp_close(file, files);
481 					cond_resched();
482 				}
483 			}
484 			i++;
485 			set >>= 1;
486 		}
487 	}
488 }
489 
490 struct files_struct *get_files_struct(struct task_struct *task)
491 {
492 	struct files_struct *files;
493 
494 	task_lock(task);
495 	files = task->files;
496 	if (files)
497 		atomic_inc(&files->count);
498 	task_unlock(task);
499 
500 	return files;
501 }
502 
503 void put_files_struct(struct files_struct *files)
504 {
505 	struct fdtable *fdt;
506 
507 	if (atomic_dec_and_test(&files->count)) {
508 		close_files(files);
509 		/*
510 		 * Free the fd and fdset arrays if we expanded them.
511 		 * If the fdtable was embedded, pass files for freeing
512 		 * at the end of the RCU grace period. Otherwise,
513 		 * you can free files immediately.
514 		 */
515 		rcu_read_lock();
516 		fdt = files_fdtable(files);
517 		if (fdt != &files->fdtab)
518 			kmem_cache_free(files_cachep, files);
519 		free_fdtable(fdt);
520 		rcu_read_unlock();
521 	}
522 }
523 
524 void reset_files_struct(struct files_struct *files)
525 {
526 	struct task_struct *tsk = current;
527 	struct files_struct *old;
528 
529 	old = tsk->files;
530 	task_lock(tsk);
531 	tsk->files = files;
532 	task_unlock(tsk);
533 	put_files_struct(old);
534 }
535 
536 void exit_files(struct task_struct *tsk)
537 {
538 	struct files_struct * files = tsk->files;
539 
540 	if (files) {
541 		task_lock(tsk);
542 		tsk->files = NULL;
543 		task_unlock(tsk);
544 		put_files_struct(files);
545 	}
546 }
547 
548 #ifdef CONFIG_MM_OWNER
549 /*
550  * A task is exiting.   If it owned this mm, find a new owner for the mm.
551  */
552 void mm_update_next_owner(struct mm_struct *mm)
553 {
554 	struct task_struct *c, *g, *p = current;
555 
556 retry:
557 	/*
558 	 * If the exiting or execing task is not the owner, it's
559 	 * someone else's problem.
560 	 */
561 	if (mm->owner != p)
562 		return;
563 	/*
564 	 * The current owner is exiting/execing and there are no other
565 	 * candidates.  Do not leave the mm pointing to a possibly
566 	 * freed task structure.
567 	 */
568 	if (atomic_read(&mm->mm_users) <= 1) {
569 		mm->owner = NULL;
570 		return;
571 	}
572 
573 	read_lock(&tasklist_lock);
574 	/*
575 	 * Search in the children
576 	 */
577 	list_for_each_entry(c, &p->children, sibling) {
578 		if (c->mm == mm)
579 			goto assign_new_owner;
580 	}
581 
582 	/*
583 	 * Search in the siblings
584 	 */
585 	list_for_each_entry(c, &p->real_parent->children, sibling) {
586 		if (c->mm == mm)
587 			goto assign_new_owner;
588 	}
589 
590 	/*
591 	 * Search through everything else. We should not get
592 	 * here often
593 	 */
594 	do_each_thread(g, c) {
595 		if (c->mm == mm)
596 			goto assign_new_owner;
597 	} while_each_thread(g, c);
598 
599 	read_unlock(&tasklist_lock);
600 	/*
601 	 * We found no owner yet mm_users > 1: this implies that we are
602 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
603 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
604 	 */
605 	mm->owner = NULL;
606 	return;
607 
608 assign_new_owner:
609 	BUG_ON(c == p);
610 	get_task_struct(c);
611 	/*
612 	 * The task_lock protects c->mm from changing.
613 	 * We always want mm->owner->mm == mm
614 	 */
615 	task_lock(c);
616 	/*
617 	 * Delay read_unlock() till we have the task_lock()
618 	 * to ensure that c does not slip away underneath us
619 	 */
620 	read_unlock(&tasklist_lock);
621 	if (c->mm != mm) {
622 		task_unlock(c);
623 		put_task_struct(c);
624 		goto retry;
625 	}
626 	mm->owner = c;
627 	task_unlock(c);
628 	put_task_struct(c);
629 }
630 #endif /* CONFIG_MM_OWNER */
631 
632 /*
633  * Turn us into a lazy TLB process if we
634  * aren't already..
635  */
636 static void exit_mm(struct task_struct * tsk)
637 {
638 	struct mm_struct *mm = tsk->mm;
639 	struct core_state *core_state;
640 
641 	mm_release(tsk, mm);
642 	if (!mm)
643 		return;
644 	/*
645 	 * Serialize with any possible pending coredump.
646 	 * We must hold mmap_sem around checking core_state
647 	 * and clearing tsk->mm.  The core-inducing thread
648 	 * will increment ->nr_threads for each thread in the
649 	 * group with ->mm != NULL.
650 	 */
651 	down_read(&mm->mmap_sem);
652 	core_state = mm->core_state;
653 	if (core_state) {
654 		struct core_thread self;
655 		up_read(&mm->mmap_sem);
656 
657 		self.task = tsk;
658 		self.next = xchg(&core_state->dumper.next, &self);
659 		/*
660 		 * Implies mb(), the result of xchg() must be visible
661 		 * to core_state->dumper.
662 		 */
663 		if (atomic_dec_and_test(&core_state->nr_threads))
664 			complete(&core_state->startup);
665 
666 		for (;;) {
667 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
668 			if (!self.task) /* see coredump_finish() */
669 				break;
670 			schedule();
671 		}
672 		__set_task_state(tsk, TASK_RUNNING);
673 		down_read(&mm->mmap_sem);
674 	}
675 	atomic_inc(&mm->mm_count);
676 	BUG_ON(mm != tsk->active_mm);
677 	/* more a memory barrier than a real lock */
678 	task_lock(tsk);
679 	tsk->mm = NULL;
680 	up_read(&mm->mmap_sem);
681 	enter_lazy_tlb(mm, current);
682 	/* We don't want this task to be frozen prematurely */
683 	clear_freeze_flag(tsk);
684 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
685 		atomic_dec(&mm->oom_disable_count);
686 	task_unlock(tsk);
687 	mm_update_next_owner(mm);
688 	mmput(mm);
689 }
690 
691 /*
692  * When we die, we re-parent all our children.
693  * Try to give them to another thread in our thread
694  * group, and if no such member exists, give it to
695  * the child reaper process (ie "init") in our pid
696  * space.
697  */
698 static struct task_struct *find_new_reaper(struct task_struct *father)
699 	__releases(&tasklist_lock)
700 	__acquires(&tasklist_lock)
701 {
702 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
703 	struct task_struct *thread;
704 
705 	thread = father;
706 	while_each_thread(father, thread) {
707 		if (thread->flags & PF_EXITING)
708 			continue;
709 		if (unlikely(pid_ns->child_reaper == father))
710 			pid_ns->child_reaper = thread;
711 		return thread;
712 	}
713 
714 	if (unlikely(pid_ns->child_reaper == father)) {
715 		write_unlock_irq(&tasklist_lock);
716 		if (unlikely(pid_ns == &init_pid_ns))
717 			panic("Attempted to kill init!");
718 
719 		zap_pid_ns_processes(pid_ns);
720 		write_lock_irq(&tasklist_lock);
721 		/*
722 		 * We can not clear ->child_reaper or leave it alone.
723 		 * There may by stealth EXIT_DEAD tasks on ->children,
724 		 * forget_original_parent() must move them somewhere.
725 		 */
726 		pid_ns->child_reaper = init_pid_ns.child_reaper;
727 	}
728 
729 	return pid_ns->child_reaper;
730 }
731 
732 /*
733 * Any that need to be release_task'd are put on the @dead list.
734  */
735 static void reparent_leader(struct task_struct *father, struct task_struct *p,
736 				struct list_head *dead)
737 {
738 	list_move_tail(&p->sibling, &p->real_parent->children);
739 
740 	if (p->exit_state == EXIT_DEAD)
741 		return;
742 	/*
743 	 * If this is a threaded reparent there is no need to
744 	 * notify anyone anything has happened.
745 	 */
746 	if (same_thread_group(p->real_parent, father))
747 		return;
748 
749 	/* We don't want people slaying init.  */
750 	p->exit_signal = SIGCHLD;
751 
752 	/* If it has exited notify the new parent about this child's death. */
753 	if (!p->ptrace &&
754 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
755 		if (do_notify_parent(p, p->exit_signal)) {
756 			p->exit_state = EXIT_DEAD;
757 			list_move_tail(&p->sibling, dead);
758 		}
759 	}
760 
761 	kill_orphaned_pgrp(p, father);
762 }
763 
764 static void forget_original_parent(struct task_struct *father)
765 {
766 	struct task_struct *p, *n, *reaper;
767 	LIST_HEAD(dead_children);
768 
769 	write_lock_irq(&tasklist_lock);
770 	/*
771 	 * Note that exit_ptrace() and find_new_reaper() might
772 	 * drop tasklist_lock and reacquire it.
773 	 */
774 	exit_ptrace(father);
775 	reaper = find_new_reaper(father);
776 
777 	list_for_each_entry_safe(p, n, &father->children, sibling) {
778 		struct task_struct *t = p;
779 		do {
780 			t->real_parent = reaper;
781 			if (t->parent == father) {
782 				BUG_ON(t->ptrace);
783 				t->parent = t->real_parent;
784 			}
785 			if (t->pdeath_signal)
786 				group_send_sig_info(t->pdeath_signal,
787 						    SEND_SIG_NOINFO, t);
788 		} while_each_thread(p, t);
789 		reparent_leader(father, p, &dead_children);
790 	}
791 	write_unlock_irq(&tasklist_lock);
792 
793 	BUG_ON(!list_empty(&father->children));
794 
795 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
796 		list_del_init(&p->sibling);
797 		release_task(p);
798 	}
799 }
800 
801 /*
802  * Send signals to all our closest relatives so that they know
803  * to properly mourn us..
804  */
805 static void exit_notify(struct task_struct *tsk, int group_dead)
806 {
807 	bool autoreap;
808 
809 	/*
810 	 * This does two things:
811 	 *
812   	 * A.  Make init inherit all the child processes
813 	 * B.  Check to see if any process groups have become orphaned
814 	 *	as a result of our exiting, and if they have any stopped
815 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
816 	 */
817 	forget_original_parent(tsk);
818 	exit_task_namespaces(tsk);
819 
820 	write_lock_irq(&tasklist_lock);
821 	if (group_dead)
822 		kill_orphaned_pgrp(tsk->group_leader, NULL);
823 
824 	/* Let father know we died
825 	 *
826 	 * Thread signals are configurable, but you aren't going to use
827 	 * that to send signals to arbitrary processes.
828 	 * That stops right now.
829 	 *
830 	 * If the parent exec id doesn't match the exec id we saved
831 	 * when we started then we know the parent has changed security
832 	 * domain.
833 	 *
834 	 * If our self_exec id doesn't match our parent_exec_id then
835 	 * we have changed execution domain as these two values started
836 	 * the same after a fork.
837 	 */
838 	if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD &&
839 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
840 	     tsk->self_exec_id != tsk->parent_exec_id))
841 		tsk->exit_signal = SIGCHLD;
842 
843 	if (unlikely(tsk->ptrace)) {
844 		int sig = thread_group_leader(tsk) &&
845 				thread_group_empty(tsk) &&
846 				!ptrace_reparented(tsk) ?
847 			tsk->exit_signal : SIGCHLD;
848 		autoreap = do_notify_parent(tsk, sig);
849 	} else if (thread_group_leader(tsk)) {
850 		autoreap = thread_group_empty(tsk) &&
851 			do_notify_parent(tsk, tsk->exit_signal);
852 	} else {
853 		autoreap = true;
854 	}
855 
856 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
857 
858 	/* mt-exec, de_thread() is waiting for group leader */
859 	if (unlikely(tsk->signal->notify_count < 0))
860 		wake_up_process(tsk->signal->group_exit_task);
861 	write_unlock_irq(&tasklist_lock);
862 
863 	/* If the process is dead, release it - nobody will wait for it */
864 	if (autoreap)
865 		release_task(tsk);
866 }
867 
868 #ifdef CONFIG_DEBUG_STACK_USAGE
869 static void check_stack_usage(void)
870 {
871 	static DEFINE_SPINLOCK(low_water_lock);
872 	static int lowest_to_date = THREAD_SIZE;
873 	unsigned long free;
874 
875 	free = stack_not_used(current);
876 
877 	if (free >= lowest_to_date)
878 		return;
879 
880 	spin_lock(&low_water_lock);
881 	if (free < lowest_to_date) {
882 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
883 				"left\n",
884 				current->comm, free);
885 		lowest_to_date = free;
886 	}
887 	spin_unlock(&low_water_lock);
888 }
889 #else
890 static inline void check_stack_usage(void) {}
891 #endif
892 
893 NORET_TYPE void do_exit(long code)
894 {
895 	struct task_struct *tsk = current;
896 	int group_dead;
897 
898 	profile_task_exit(tsk);
899 
900 	WARN_ON(blk_needs_flush_plug(tsk));
901 
902 	if (unlikely(in_interrupt()))
903 		panic("Aiee, killing interrupt handler!");
904 	if (unlikely(!tsk->pid))
905 		panic("Attempted to kill the idle task!");
906 
907 	/*
908 	 * If do_exit is called because this processes oopsed, it's possible
909 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
910 	 * continuing. Amongst other possible reasons, this is to prevent
911 	 * mm_release()->clear_child_tid() from writing to a user-controlled
912 	 * kernel address.
913 	 */
914 	set_fs(USER_DS);
915 
916 	ptrace_event(PTRACE_EVENT_EXIT, code);
917 
918 	validate_creds_for_do_exit(tsk);
919 
920 	/*
921 	 * We're taking recursive faults here in do_exit. Safest is to just
922 	 * leave this task alone and wait for reboot.
923 	 */
924 	if (unlikely(tsk->flags & PF_EXITING)) {
925 		printk(KERN_ALERT
926 			"Fixing recursive fault but reboot is needed!\n");
927 		/*
928 		 * We can do this unlocked here. The futex code uses
929 		 * this flag just to verify whether the pi state
930 		 * cleanup has been done or not. In the worst case it
931 		 * loops once more. We pretend that the cleanup was
932 		 * done as there is no way to return. Either the
933 		 * OWNER_DIED bit is set by now or we push the blocked
934 		 * task into the wait for ever nirwana as well.
935 		 */
936 		tsk->flags |= PF_EXITPIDONE;
937 		set_current_state(TASK_UNINTERRUPTIBLE);
938 		schedule();
939 	}
940 
941 	exit_irq_thread();
942 
943 	exit_signals(tsk);  /* sets PF_EXITING */
944 	/*
945 	 * tsk->flags are checked in the futex code to protect against
946 	 * an exiting task cleaning up the robust pi futexes.
947 	 */
948 	smp_mb();
949 	raw_spin_unlock_wait(&tsk->pi_lock);
950 
951 	if (unlikely(in_atomic()))
952 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
953 				current->comm, task_pid_nr(current),
954 				preempt_count());
955 
956 	acct_update_integrals(tsk);
957 	/* sync mm's RSS info before statistics gathering */
958 	if (tsk->mm)
959 		sync_mm_rss(tsk, tsk->mm);
960 	group_dead = atomic_dec_and_test(&tsk->signal->live);
961 	if (group_dead) {
962 		hrtimer_cancel(&tsk->signal->real_timer);
963 		exit_itimers(tsk->signal);
964 		if (tsk->mm)
965 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
966 	}
967 	acct_collect(code, group_dead);
968 	if (group_dead)
969 		tty_audit_exit();
970 	if (unlikely(tsk->audit_context))
971 		audit_free(tsk);
972 
973 	tsk->exit_code = code;
974 	taskstats_exit(tsk, group_dead);
975 
976 	exit_mm(tsk);
977 
978 	if (group_dead)
979 		acct_process();
980 	trace_sched_process_exit(tsk);
981 
982 	exit_sem(tsk);
983 	exit_shm(tsk);
984 	exit_files(tsk);
985 	exit_fs(tsk);
986 	check_stack_usage();
987 	exit_thread();
988 
989 	/*
990 	 * Flush inherited counters to the parent - before the parent
991 	 * gets woken up by child-exit notifications.
992 	 *
993 	 * because of cgroup mode, must be called before cgroup_exit()
994 	 */
995 	perf_event_exit_task(tsk);
996 
997 	cgroup_exit(tsk, 1);
998 
999 	if (group_dead)
1000 		disassociate_ctty(1);
1001 
1002 	module_put(task_thread_info(tsk)->exec_domain->module);
1003 
1004 	proc_exit_connector(tsk);
1005 
1006 	/*
1007 	 * FIXME: do that only when needed, using sched_exit tracepoint
1008 	 */
1009 	ptrace_put_breakpoints(tsk);
1010 
1011 	exit_notify(tsk, group_dead);
1012 #ifdef CONFIG_NUMA
1013 	task_lock(tsk);
1014 	mpol_put(tsk->mempolicy);
1015 	tsk->mempolicy = NULL;
1016 	task_unlock(tsk);
1017 #endif
1018 #ifdef CONFIG_FUTEX
1019 	if (unlikely(current->pi_state_cache))
1020 		kfree(current->pi_state_cache);
1021 #endif
1022 	/*
1023 	 * Make sure we are holding no locks:
1024 	 */
1025 	debug_check_no_locks_held(tsk);
1026 	/*
1027 	 * We can do this unlocked here. The futex code uses this flag
1028 	 * just to verify whether the pi state cleanup has been done
1029 	 * or not. In the worst case it loops once more.
1030 	 */
1031 	tsk->flags |= PF_EXITPIDONE;
1032 
1033 	if (tsk->io_context)
1034 		exit_io_context(tsk);
1035 
1036 	if (tsk->splice_pipe)
1037 		__free_pipe_info(tsk->splice_pipe);
1038 
1039 	validate_creds_for_do_exit(tsk);
1040 
1041 	preempt_disable();
1042 	exit_rcu();
1043 	/* causes final put_task_struct in finish_task_switch(). */
1044 	tsk->state = TASK_DEAD;
1045 	schedule();
1046 	BUG();
1047 	/* Avoid "noreturn function does return".  */
1048 	for (;;)
1049 		cpu_relax();	/* For when BUG is null */
1050 }
1051 
1052 EXPORT_SYMBOL_GPL(do_exit);
1053 
1054 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1055 {
1056 	if (comp)
1057 		complete(comp);
1058 
1059 	do_exit(code);
1060 }
1061 
1062 EXPORT_SYMBOL(complete_and_exit);
1063 
1064 SYSCALL_DEFINE1(exit, int, error_code)
1065 {
1066 	do_exit((error_code&0xff)<<8);
1067 }
1068 
1069 /*
1070  * Take down every thread in the group.  This is called by fatal signals
1071  * as well as by sys_exit_group (below).
1072  */
1073 NORET_TYPE void
1074 do_group_exit(int exit_code)
1075 {
1076 	struct signal_struct *sig = current->signal;
1077 
1078 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1079 
1080 	if (signal_group_exit(sig))
1081 		exit_code = sig->group_exit_code;
1082 	else if (!thread_group_empty(current)) {
1083 		struct sighand_struct *const sighand = current->sighand;
1084 		spin_lock_irq(&sighand->siglock);
1085 		if (signal_group_exit(sig))
1086 			/* Another thread got here before we took the lock.  */
1087 			exit_code = sig->group_exit_code;
1088 		else {
1089 			sig->group_exit_code = exit_code;
1090 			sig->flags = SIGNAL_GROUP_EXIT;
1091 			zap_other_threads(current);
1092 		}
1093 		spin_unlock_irq(&sighand->siglock);
1094 	}
1095 
1096 	do_exit(exit_code);
1097 	/* NOTREACHED */
1098 }
1099 
1100 /*
1101  * this kills every thread in the thread group. Note that any externally
1102  * wait4()-ing process will get the correct exit code - even if this
1103  * thread is not the thread group leader.
1104  */
1105 SYSCALL_DEFINE1(exit_group, int, error_code)
1106 {
1107 	do_group_exit((error_code & 0xff) << 8);
1108 	/* NOTREACHED */
1109 	return 0;
1110 }
1111 
1112 struct wait_opts {
1113 	enum pid_type		wo_type;
1114 	int			wo_flags;
1115 	struct pid		*wo_pid;
1116 
1117 	struct siginfo __user	*wo_info;
1118 	int __user		*wo_stat;
1119 	struct rusage __user	*wo_rusage;
1120 
1121 	wait_queue_t		child_wait;
1122 	int			notask_error;
1123 };
1124 
1125 static inline
1126 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1127 {
1128 	if (type != PIDTYPE_PID)
1129 		task = task->group_leader;
1130 	return task->pids[type].pid;
1131 }
1132 
1133 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1134 {
1135 	return	wo->wo_type == PIDTYPE_MAX ||
1136 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1137 }
1138 
1139 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1140 {
1141 	if (!eligible_pid(wo, p))
1142 		return 0;
1143 	/* Wait for all children (clone and not) if __WALL is set;
1144 	 * otherwise, wait for clone children *only* if __WCLONE is
1145 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1146 	 * A "clone" child here is one that reports to its parent
1147 	 * using a signal other than SIGCHLD.) */
1148 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1149 	    && !(wo->wo_flags & __WALL))
1150 		return 0;
1151 
1152 	return 1;
1153 }
1154 
1155 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1156 				pid_t pid, uid_t uid, int why, int status)
1157 {
1158 	struct siginfo __user *infop;
1159 	int retval = wo->wo_rusage
1160 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1161 
1162 	put_task_struct(p);
1163 	infop = wo->wo_info;
1164 	if (infop) {
1165 		if (!retval)
1166 			retval = put_user(SIGCHLD, &infop->si_signo);
1167 		if (!retval)
1168 			retval = put_user(0, &infop->si_errno);
1169 		if (!retval)
1170 			retval = put_user((short)why, &infop->si_code);
1171 		if (!retval)
1172 			retval = put_user(pid, &infop->si_pid);
1173 		if (!retval)
1174 			retval = put_user(uid, &infop->si_uid);
1175 		if (!retval)
1176 			retval = put_user(status, &infop->si_status);
1177 	}
1178 	if (!retval)
1179 		retval = pid;
1180 	return retval;
1181 }
1182 
1183 /*
1184  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1185  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1186  * the lock and this task is uninteresting.  If we return nonzero, we have
1187  * released the lock and the system call should return.
1188  */
1189 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1190 {
1191 	unsigned long state;
1192 	int retval, status, traced;
1193 	pid_t pid = task_pid_vnr(p);
1194 	uid_t uid = __task_cred(p)->uid;
1195 	struct siginfo __user *infop;
1196 
1197 	if (!likely(wo->wo_flags & WEXITED))
1198 		return 0;
1199 
1200 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1201 		int exit_code = p->exit_code;
1202 		int why;
1203 
1204 		get_task_struct(p);
1205 		read_unlock(&tasklist_lock);
1206 		if ((exit_code & 0x7f) == 0) {
1207 			why = CLD_EXITED;
1208 			status = exit_code >> 8;
1209 		} else {
1210 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1211 			status = exit_code & 0x7f;
1212 		}
1213 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1214 	}
1215 
1216 	/*
1217 	 * Try to move the task's state to DEAD
1218 	 * only one thread is allowed to do this:
1219 	 */
1220 	state = xchg(&p->exit_state, EXIT_DEAD);
1221 	if (state != EXIT_ZOMBIE) {
1222 		BUG_ON(state != EXIT_DEAD);
1223 		return 0;
1224 	}
1225 
1226 	traced = ptrace_reparented(p);
1227 	/*
1228 	 * It can be ptraced but not reparented, check
1229 	 * thread_group_leader() to filter out sub-threads.
1230 	 */
1231 	if (likely(!traced) && thread_group_leader(p)) {
1232 		struct signal_struct *psig;
1233 		struct signal_struct *sig;
1234 		unsigned long maxrss;
1235 		cputime_t tgutime, tgstime;
1236 
1237 		/*
1238 		 * The resource counters for the group leader are in its
1239 		 * own task_struct.  Those for dead threads in the group
1240 		 * are in its signal_struct, as are those for the child
1241 		 * processes it has previously reaped.  All these
1242 		 * accumulate in the parent's signal_struct c* fields.
1243 		 *
1244 		 * We don't bother to take a lock here to protect these
1245 		 * p->signal fields, because they are only touched by
1246 		 * __exit_signal, which runs with tasklist_lock
1247 		 * write-locked anyway, and so is excluded here.  We do
1248 		 * need to protect the access to parent->signal fields,
1249 		 * as other threads in the parent group can be right
1250 		 * here reaping other children at the same time.
1251 		 *
1252 		 * We use thread_group_times() to get times for the thread
1253 		 * group, which consolidates times for all threads in the
1254 		 * group including the group leader.
1255 		 */
1256 		thread_group_times(p, &tgutime, &tgstime);
1257 		spin_lock_irq(&p->real_parent->sighand->siglock);
1258 		psig = p->real_parent->signal;
1259 		sig = p->signal;
1260 		psig->cutime =
1261 			cputime_add(psig->cutime,
1262 			cputime_add(tgutime,
1263 				    sig->cutime));
1264 		psig->cstime =
1265 			cputime_add(psig->cstime,
1266 			cputime_add(tgstime,
1267 				    sig->cstime));
1268 		psig->cgtime =
1269 			cputime_add(psig->cgtime,
1270 			cputime_add(p->gtime,
1271 			cputime_add(sig->gtime,
1272 				    sig->cgtime)));
1273 		psig->cmin_flt +=
1274 			p->min_flt + sig->min_flt + sig->cmin_flt;
1275 		psig->cmaj_flt +=
1276 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1277 		psig->cnvcsw +=
1278 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1279 		psig->cnivcsw +=
1280 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1281 		psig->cinblock +=
1282 			task_io_get_inblock(p) +
1283 			sig->inblock + sig->cinblock;
1284 		psig->coublock +=
1285 			task_io_get_oublock(p) +
1286 			sig->oublock + sig->coublock;
1287 		maxrss = max(sig->maxrss, sig->cmaxrss);
1288 		if (psig->cmaxrss < maxrss)
1289 			psig->cmaxrss = maxrss;
1290 		task_io_accounting_add(&psig->ioac, &p->ioac);
1291 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1292 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1293 	}
1294 
1295 	/*
1296 	 * Now we are sure this task is interesting, and no other
1297 	 * thread can reap it because we set its state to EXIT_DEAD.
1298 	 */
1299 	read_unlock(&tasklist_lock);
1300 
1301 	retval = wo->wo_rusage
1302 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1303 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1304 		? p->signal->group_exit_code : p->exit_code;
1305 	if (!retval && wo->wo_stat)
1306 		retval = put_user(status, wo->wo_stat);
1307 
1308 	infop = wo->wo_info;
1309 	if (!retval && infop)
1310 		retval = put_user(SIGCHLD, &infop->si_signo);
1311 	if (!retval && infop)
1312 		retval = put_user(0, &infop->si_errno);
1313 	if (!retval && infop) {
1314 		int why;
1315 
1316 		if ((status & 0x7f) == 0) {
1317 			why = CLD_EXITED;
1318 			status >>= 8;
1319 		} else {
1320 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1321 			status &= 0x7f;
1322 		}
1323 		retval = put_user((short)why, &infop->si_code);
1324 		if (!retval)
1325 			retval = put_user(status, &infop->si_status);
1326 	}
1327 	if (!retval && infop)
1328 		retval = put_user(pid, &infop->si_pid);
1329 	if (!retval && infop)
1330 		retval = put_user(uid, &infop->si_uid);
1331 	if (!retval)
1332 		retval = pid;
1333 
1334 	if (traced) {
1335 		write_lock_irq(&tasklist_lock);
1336 		/* We dropped tasklist, ptracer could die and untrace */
1337 		ptrace_unlink(p);
1338 		/*
1339 		 * If this is not a sub-thread, notify the parent.
1340 		 * If parent wants a zombie, don't release it now.
1341 		 */
1342 		if (thread_group_leader(p) &&
1343 		    !do_notify_parent(p, p->exit_signal)) {
1344 			p->exit_state = EXIT_ZOMBIE;
1345 			p = NULL;
1346 		}
1347 		write_unlock_irq(&tasklist_lock);
1348 	}
1349 	if (p != NULL)
1350 		release_task(p);
1351 
1352 	return retval;
1353 }
1354 
1355 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1356 {
1357 	if (ptrace) {
1358 		if (task_is_stopped_or_traced(p) &&
1359 		    !(p->jobctl & JOBCTL_LISTENING))
1360 			return &p->exit_code;
1361 	} else {
1362 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1363 			return &p->signal->group_exit_code;
1364 	}
1365 	return NULL;
1366 }
1367 
1368 /**
1369  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1370  * @wo: wait options
1371  * @ptrace: is the wait for ptrace
1372  * @p: task to wait for
1373  *
1374  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1375  *
1376  * CONTEXT:
1377  * read_lock(&tasklist_lock), which is released if return value is
1378  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1379  *
1380  * RETURNS:
1381  * 0 if wait condition didn't exist and search for other wait conditions
1382  * should continue.  Non-zero return, -errno on failure and @p's pid on
1383  * success, implies that tasklist_lock is released and wait condition
1384  * search should terminate.
1385  */
1386 static int wait_task_stopped(struct wait_opts *wo,
1387 				int ptrace, struct task_struct *p)
1388 {
1389 	struct siginfo __user *infop;
1390 	int retval, exit_code, *p_code, why;
1391 	uid_t uid = 0; /* unneeded, required by compiler */
1392 	pid_t pid;
1393 
1394 	/*
1395 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1396 	 */
1397 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1398 		return 0;
1399 
1400 	if (!task_stopped_code(p, ptrace))
1401 		return 0;
1402 
1403 	exit_code = 0;
1404 	spin_lock_irq(&p->sighand->siglock);
1405 
1406 	p_code = task_stopped_code(p, ptrace);
1407 	if (unlikely(!p_code))
1408 		goto unlock_sig;
1409 
1410 	exit_code = *p_code;
1411 	if (!exit_code)
1412 		goto unlock_sig;
1413 
1414 	if (!unlikely(wo->wo_flags & WNOWAIT))
1415 		*p_code = 0;
1416 
1417 	uid = task_uid(p);
1418 unlock_sig:
1419 	spin_unlock_irq(&p->sighand->siglock);
1420 	if (!exit_code)
1421 		return 0;
1422 
1423 	/*
1424 	 * Now we are pretty sure this task is interesting.
1425 	 * Make sure it doesn't get reaped out from under us while we
1426 	 * give up the lock and then examine it below.  We don't want to
1427 	 * keep holding onto the tasklist_lock while we call getrusage and
1428 	 * possibly take page faults for user memory.
1429 	 */
1430 	get_task_struct(p);
1431 	pid = task_pid_vnr(p);
1432 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1433 	read_unlock(&tasklist_lock);
1434 
1435 	if (unlikely(wo->wo_flags & WNOWAIT))
1436 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1437 
1438 	retval = wo->wo_rusage
1439 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1440 	if (!retval && wo->wo_stat)
1441 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1442 
1443 	infop = wo->wo_info;
1444 	if (!retval && infop)
1445 		retval = put_user(SIGCHLD, &infop->si_signo);
1446 	if (!retval && infop)
1447 		retval = put_user(0, &infop->si_errno);
1448 	if (!retval && infop)
1449 		retval = put_user((short)why, &infop->si_code);
1450 	if (!retval && infop)
1451 		retval = put_user(exit_code, &infop->si_status);
1452 	if (!retval && infop)
1453 		retval = put_user(pid, &infop->si_pid);
1454 	if (!retval && infop)
1455 		retval = put_user(uid, &infop->si_uid);
1456 	if (!retval)
1457 		retval = pid;
1458 	put_task_struct(p);
1459 
1460 	BUG_ON(!retval);
1461 	return retval;
1462 }
1463 
1464 /*
1465  * Handle do_wait work for one task in a live, non-stopped state.
1466  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1467  * the lock and this task is uninteresting.  If we return nonzero, we have
1468  * released the lock and the system call should return.
1469  */
1470 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1471 {
1472 	int retval;
1473 	pid_t pid;
1474 	uid_t uid;
1475 
1476 	if (!unlikely(wo->wo_flags & WCONTINUED))
1477 		return 0;
1478 
1479 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1480 		return 0;
1481 
1482 	spin_lock_irq(&p->sighand->siglock);
1483 	/* Re-check with the lock held.  */
1484 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1485 		spin_unlock_irq(&p->sighand->siglock);
1486 		return 0;
1487 	}
1488 	if (!unlikely(wo->wo_flags & WNOWAIT))
1489 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1490 	uid = task_uid(p);
1491 	spin_unlock_irq(&p->sighand->siglock);
1492 
1493 	pid = task_pid_vnr(p);
1494 	get_task_struct(p);
1495 	read_unlock(&tasklist_lock);
1496 
1497 	if (!wo->wo_info) {
1498 		retval = wo->wo_rusage
1499 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1500 		put_task_struct(p);
1501 		if (!retval && wo->wo_stat)
1502 			retval = put_user(0xffff, wo->wo_stat);
1503 		if (!retval)
1504 			retval = pid;
1505 	} else {
1506 		retval = wait_noreap_copyout(wo, p, pid, uid,
1507 					     CLD_CONTINUED, SIGCONT);
1508 		BUG_ON(retval == 0);
1509 	}
1510 
1511 	return retval;
1512 }
1513 
1514 /*
1515  * Consider @p for a wait by @parent.
1516  *
1517  * -ECHILD should be in ->notask_error before the first call.
1518  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1519  * Returns zero if the search for a child should continue;
1520  * then ->notask_error is 0 if @p is an eligible child,
1521  * or another error from security_task_wait(), or still -ECHILD.
1522  */
1523 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1524 				struct task_struct *p)
1525 {
1526 	int ret = eligible_child(wo, p);
1527 	if (!ret)
1528 		return ret;
1529 
1530 	ret = security_task_wait(p);
1531 	if (unlikely(ret < 0)) {
1532 		/*
1533 		 * If we have not yet seen any eligible child,
1534 		 * then let this error code replace -ECHILD.
1535 		 * A permission error will give the user a clue
1536 		 * to look for security policy problems, rather
1537 		 * than for mysterious wait bugs.
1538 		 */
1539 		if (wo->notask_error)
1540 			wo->notask_error = ret;
1541 		return 0;
1542 	}
1543 
1544 	/* dead body doesn't have much to contribute */
1545 	if (p->exit_state == EXIT_DEAD)
1546 		return 0;
1547 
1548 	/* slay zombie? */
1549 	if (p->exit_state == EXIT_ZOMBIE) {
1550 		/*
1551 		 * A zombie ptracee is only visible to its ptracer.
1552 		 * Notification and reaping will be cascaded to the real
1553 		 * parent when the ptracer detaches.
1554 		 */
1555 		if (likely(!ptrace) && unlikely(p->ptrace)) {
1556 			/* it will become visible, clear notask_error */
1557 			wo->notask_error = 0;
1558 			return 0;
1559 		}
1560 
1561 		/* we don't reap group leaders with subthreads */
1562 		if (!delay_group_leader(p))
1563 			return wait_task_zombie(wo, p);
1564 
1565 		/*
1566 		 * Allow access to stopped/continued state via zombie by
1567 		 * falling through.  Clearing of notask_error is complex.
1568 		 *
1569 		 * When !@ptrace:
1570 		 *
1571 		 * If WEXITED is set, notask_error should naturally be
1572 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1573 		 * so, if there are live subthreads, there are events to
1574 		 * wait for.  If all subthreads are dead, it's still safe
1575 		 * to clear - this function will be called again in finite
1576 		 * amount time once all the subthreads are released and
1577 		 * will then return without clearing.
1578 		 *
1579 		 * When @ptrace:
1580 		 *
1581 		 * Stopped state is per-task and thus can't change once the
1582 		 * target task dies.  Only continued and exited can happen.
1583 		 * Clear notask_error if WCONTINUED | WEXITED.
1584 		 */
1585 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1586 			wo->notask_error = 0;
1587 	} else {
1588 		/*
1589 		 * If @p is ptraced by a task in its real parent's group,
1590 		 * hide group stop/continued state when looking at @p as
1591 		 * the real parent; otherwise, a single stop can be
1592 		 * reported twice as group and ptrace stops.
1593 		 *
1594 		 * If a ptracer wants to distinguish the two events for its
1595 		 * own children, it should create a separate process which
1596 		 * takes the role of real parent.
1597 		 */
1598 		if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1599 			return 0;
1600 
1601 		/*
1602 		 * @p is alive and it's gonna stop, continue or exit, so
1603 		 * there always is something to wait for.
1604 		 */
1605 		wo->notask_error = 0;
1606 	}
1607 
1608 	/*
1609 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1610 	 * is used and the two don't interact with each other.
1611 	 */
1612 	ret = wait_task_stopped(wo, ptrace, p);
1613 	if (ret)
1614 		return ret;
1615 
1616 	/*
1617 	 * Wait for continued.  There's only one continued state and the
1618 	 * ptracer can consume it which can confuse the real parent.  Don't
1619 	 * use WCONTINUED from ptracer.  You don't need or want it.
1620 	 */
1621 	return wait_task_continued(wo, p);
1622 }
1623 
1624 /*
1625  * Do the work of do_wait() for one thread in the group, @tsk.
1626  *
1627  * -ECHILD should be in ->notask_error before the first call.
1628  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1629  * Returns zero if the search for a child should continue; then
1630  * ->notask_error is 0 if there were any eligible children,
1631  * or another error from security_task_wait(), or still -ECHILD.
1632  */
1633 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1634 {
1635 	struct task_struct *p;
1636 
1637 	list_for_each_entry(p, &tsk->children, sibling) {
1638 		int ret = wait_consider_task(wo, 0, p);
1639 		if (ret)
1640 			return ret;
1641 	}
1642 
1643 	return 0;
1644 }
1645 
1646 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1647 {
1648 	struct task_struct *p;
1649 
1650 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1651 		int ret = wait_consider_task(wo, 1, p);
1652 		if (ret)
1653 			return ret;
1654 	}
1655 
1656 	return 0;
1657 }
1658 
1659 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1660 				int sync, void *key)
1661 {
1662 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1663 						child_wait);
1664 	struct task_struct *p = key;
1665 
1666 	if (!eligible_pid(wo, p))
1667 		return 0;
1668 
1669 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1670 		return 0;
1671 
1672 	return default_wake_function(wait, mode, sync, key);
1673 }
1674 
1675 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1676 {
1677 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1678 				TASK_INTERRUPTIBLE, 1, p);
1679 }
1680 
1681 static long do_wait(struct wait_opts *wo)
1682 {
1683 	struct task_struct *tsk;
1684 	int retval;
1685 
1686 	trace_sched_process_wait(wo->wo_pid);
1687 
1688 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1689 	wo->child_wait.private = current;
1690 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1691 repeat:
1692 	/*
1693 	 * If there is nothing that can match our critiera just get out.
1694 	 * We will clear ->notask_error to zero if we see any child that
1695 	 * might later match our criteria, even if we are not able to reap
1696 	 * it yet.
1697 	 */
1698 	wo->notask_error = -ECHILD;
1699 	if ((wo->wo_type < PIDTYPE_MAX) &&
1700 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1701 		goto notask;
1702 
1703 	set_current_state(TASK_INTERRUPTIBLE);
1704 	read_lock(&tasklist_lock);
1705 	tsk = current;
1706 	do {
1707 		retval = do_wait_thread(wo, tsk);
1708 		if (retval)
1709 			goto end;
1710 
1711 		retval = ptrace_do_wait(wo, tsk);
1712 		if (retval)
1713 			goto end;
1714 
1715 		if (wo->wo_flags & __WNOTHREAD)
1716 			break;
1717 	} while_each_thread(current, tsk);
1718 	read_unlock(&tasklist_lock);
1719 
1720 notask:
1721 	retval = wo->notask_error;
1722 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1723 		retval = -ERESTARTSYS;
1724 		if (!signal_pending(current)) {
1725 			schedule();
1726 			goto repeat;
1727 		}
1728 	}
1729 end:
1730 	__set_current_state(TASK_RUNNING);
1731 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1732 	return retval;
1733 }
1734 
1735 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1736 		infop, int, options, struct rusage __user *, ru)
1737 {
1738 	struct wait_opts wo;
1739 	struct pid *pid = NULL;
1740 	enum pid_type type;
1741 	long ret;
1742 
1743 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1744 		return -EINVAL;
1745 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1746 		return -EINVAL;
1747 
1748 	switch (which) {
1749 	case P_ALL:
1750 		type = PIDTYPE_MAX;
1751 		break;
1752 	case P_PID:
1753 		type = PIDTYPE_PID;
1754 		if (upid <= 0)
1755 			return -EINVAL;
1756 		break;
1757 	case P_PGID:
1758 		type = PIDTYPE_PGID;
1759 		if (upid <= 0)
1760 			return -EINVAL;
1761 		break;
1762 	default:
1763 		return -EINVAL;
1764 	}
1765 
1766 	if (type < PIDTYPE_MAX)
1767 		pid = find_get_pid(upid);
1768 
1769 	wo.wo_type	= type;
1770 	wo.wo_pid	= pid;
1771 	wo.wo_flags	= options;
1772 	wo.wo_info	= infop;
1773 	wo.wo_stat	= NULL;
1774 	wo.wo_rusage	= ru;
1775 	ret = do_wait(&wo);
1776 
1777 	if (ret > 0) {
1778 		ret = 0;
1779 	} else if (infop) {
1780 		/*
1781 		 * For a WNOHANG return, clear out all the fields
1782 		 * we would set so the user can easily tell the
1783 		 * difference.
1784 		 */
1785 		if (!ret)
1786 			ret = put_user(0, &infop->si_signo);
1787 		if (!ret)
1788 			ret = put_user(0, &infop->si_errno);
1789 		if (!ret)
1790 			ret = put_user(0, &infop->si_code);
1791 		if (!ret)
1792 			ret = put_user(0, &infop->si_pid);
1793 		if (!ret)
1794 			ret = put_user(0, &infop->si_uid);
1795 		if (!ret)
1796 			ret = put_user(0, &infop->si_status);
1797 	}
1798 
1799 	put_pid(pid);
1800 
1801 	/* avoid REGPARM breakage on x86: */
1802 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1803 	return ret;
1804 }
1805 
1806 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1807 		int, options, struct rusage __user *, ru)
1808 {
1809 	struct wait_opts wo;
1810 	struct pid *pid = NULL;
1811 	enum pid_type type;
1812 	long ret;
1813 
1814 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1815 			__WNOTHREAD|__WCLONE|__WALL))
1816 		return -EINVAL;
1817 
1818 	if (upid == -1)
1819 		type = PIDTYPE_MAX;
1820 	else if (upid < 0) {
1821 		type = PIDTYPE_PGID;
1822 		pid = find_get_pid(-upid);
1823 	} else if (upid == 0) {
1824 		type = PIDTYPE_PGID;
1825 		pid = get_task_pid(current, PIDTYPE_PGID);
1826 	} else /* upid > 0 */ {
1827 		type = PIDTYPE_PID;
1828 		pid = find_get_pid(upid);
1829 	}
1830 
1831 	wo.wo_type	= type;
1832 	wo.wo_pid	= pid;
1833 	wo.wo_flags	= options | WEXITED;
1834 	wo.wo_info	= NULL;
1835 	wo.wo_stat	= stat_addr;
1836 	wo.wo_rusage	= ru;
1837 	ret = do_wait(&wo);
1838 	put_pid(pid);
1839 
1840 	/* avoid REGPARM breakage on x86: */
1841 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1842 	return ret;
1843 }
1844 
1845 #ifdef __ARCH_WANT_SYS_WAITPID
1846 
1847 /*
1848  * sys_waitpid() remains for compatibility. waitpid() should be
1849  * implemented by calling sys_wait4() from libc.a.
1850  */
1851 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1852 {
1853 	return sys_wait4(pid, stat_addr, options, NULL);
1854 }
1855 
1856 #endif
1857