1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void exit_mm(struct task_struct * tsk); 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 } 76 list_del_rcu(&p->thread_group); 77 list_del_rcu(&p->thread_node); 78 } 79 80 /* 81 * This function expects the tasklist_lock write-locked. 82 */ 83 static void __exit_signal(struct task_struct *tsk) 84 { 85 struct signal_struct *sig = tsk->signal; 86 bool group_dead = thread_group_leader(tsk); 87 struct sighand_struct *sighand; 88 struct tty_struct *uninitialized_var(tty); 89 cputime_t utime, stime; 90 91 sighand = rcu_dereference_check(tsk->sighand, 92 lockdep_tasklist_lock_is_held()); 93 spin_lock(&sighand->siglock); 94 95 posix_cpu_timers_exit(tsk); 96 if (group_dead) { 97 posix_cpu_timers_exit_group(tsk); 98 tty = sig->tty; 99 sig->tty = NULL; 100 } else { 101 /* 102 * This can only happen if the caller is de_thread(). 103 * FIXME: this is the temporary hack, we should teach 104 * posix-cpu-timers to handle this case correctly. 105 */ 106 if (unlikely(has_group_leader_pid(tsk))) 107 posix_cpu_timers_exit_group(tsk); 108 109 /* 110 * If there is any task waiting for the group exit 111 * then notify it: 112 */ 113 if (sig->notify_count > 0 && !--sig->notify_count) 114 wake_up_process(sig->group_exit_task); 115 116 if (tsk == sig->curr_target) 117 sig->curr_target = next_thread(tsk); 118 /* 119 * Accumulate here the counters for all threads but the 120 * group leader as they die, so they can be added into 121 * the process-wide totals when those are taken. 122 * The group leader stays around as a zombie as long 123 * as there are other threads. When it gets reaped, 124 * the exit.c code will add its counts into these totals. 125 * We won't ever get here for the group leader, since it 126 * will have been the last reference on the signal_struct. 127 */ 128 task_cputime(tsk, &utime, &stime); 129 sig->utime += utime; 130 sig->stime += stime; 131 sig->gtime += task_gtime(tsk); 132 sig->min_flt += tsk->min_flt; 133 sig->maj_flt += tsk->maj_flt; 134 sig->nvcsw += tsk->nvcsw; 135 sig->nivcsw += tsk->nivcsw; 136 sig->inblock += task_io_get_inblock(tsk); 137 sig->oublock += task_io_get_oublock(tsk); 138 task_io_accounting_add(&sig->ioac, &tsk->ioac); 139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 140 } 141 142 sig->nr_threads--; 143 __unhash_process(tsk, group_dead); 144 145 /* 146 * Do this under ->siglock, we can race with another thread 147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 148 */ 149 flush_sigqueue(&tsk->pending); 150 tsk->sighand = NULL; 151 spin_unlock(&sighand->siglock); 152 153 __cleanup_sighand(sighand); 154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 155 if (group_dead) { 156 flush_sigqueue(&sig->shared_pending); 157 tty_kref_put(tty); 158 } 159 } 160 161 static void delayed_put_task_struct(struct rcu_head *rhp) 162 { 163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 164 165 perf_event_delayed_put(tsk); 166 trace_sched_process_free(tsk); 167 put_task_struct(tsk); 168 } 169 170 171 void release_task(struct task_struct * p) 172 { 173 struct task_struct *leader; 174 int zap_leader; 175 repeat: 176 /* don't need to get the RCU readlock here - the process is dead and 177 * can't be modifying its own credentials. But shut RCU-lockdep up */ 178 rcu_read_lock(); 179 atomic_dec(&__task_cred(p)->user->processes); 180 rcu_read_unlock(); 181 182 proc_flush_task(p); 183 184 write_lock_irq(&tasklist_lock); 185 ptrace_release_task(p); 186 __exit_signal(p); 187 188 /* 189 * If we are the last non-leader member of the thread 190 * group, and the leader is zombie, then notify the 191 * group leader's parent process. (if it wants notification.) 192 */ 193 zap_leader = 0; 194 leader = p->group_leader; 195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 196 /* 197 * If we were the last child thread and the leader has 198 * exited already, and the leader's parent ignores SIGCHLD, 199 * then we are the one who should release the leader. 200 */ 201 zap_leader = do_notify_parent(leader, leader->exit_signal); 202 if (zap_leader) 203 leader->exit_state = EXIT_DEAD; 204 } 205 206 write_unlock_irq(&tasklist_lock); 207 release_thread(p); 208 call_rcu(&p->rcu, delayed_put_task_struct); 209 210 p = leader; 211 if (unlikely(zap_leader)) 212 goto repeat; 213 } 214 215 /* 216 * This checks not only the pgrp, but falls back on the pid if no 217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 218 * without this... 219 * 220 * The caller must hold rcu lock or the tasklist lock. 221 */ 222 struct pid *session_of_pgrp(struct pid *pgrp) 223 { 224 struct task_struct *p; 225 struct pid *sid = NULL; 226 227 p = pid_task(pgrp, PIDTYPE_PGID); 228 if (p == NULL) 229 p = pid_task(pgrp, PIDTYPE_PID); 230 if (p != NULL) 231 sid = task_session(p); 232 233 return sid; 234 } 235 236 /* 237 * Determine if a process group is "orphaned", according to the POSIX 238 * definition in 2.2.2.52. Orphaned process groups are not to be affected 239 * by terminal-generated stop signals. Newly orphaned process groups are 240 * to receive a SIGHUP and a SIGCONT. 241 * 242 * "I ask you, have you ever known what it is to be an orphan?" 243 */ 244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 245 { 246 struct task_struct *p; 247 248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 249 if ((p == ignored_task) || 250 (p->exit_state && thread_group_empty(p)) || 251 is_global_init(p->real_parent)) 252 continue; 253 254 if (task_pgrp(p->real_parent) != pgrp && 255 task_session(p->real_parent) == task_session(p)) 256 return 0; 257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 258 259 return 1; 260 } 261 262 int is_current_pgrp_orphaned(void) 263 { 264 int retval; 265 266 read_lock(&tasklist_lock); 267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 268 read_unlock(&tasklist_lock); 269 270 return retval; 271 } 272 273 static bool has_stopped_jobs(struct pid *pgrp) 274 { 275 struct task_struct *p; 276 277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 278 if (p->signal->flags & SIGNAL_STOP_STOPPED) 279 return true; 280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 281 282 return false; 283 } 284 285 /* 286 * Check to see if any process groups have become orphaned as 287 * a result of our exiting, and if they have any stopped jobs, 288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 289 */ 290 static void 291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 292 { 293 struct pid *pgrp = task_pgrp(tsk); 294 struct task_struct *ignored_task = tsk; 295 296 if (!parent) 297 /* exit: our father is in a different pgrp than 298 * we are and we were the only connection outside. 299 */ 300 parent = tsk->real_parent; 301 else 302 /* reparent: our child is in a different pgrp than 303 * we are, and it was the only connection outside. 304 */ 305 ignored_task = NULL; 306 307 if (task_pgrp(parent) != pgrp && 308 task_session(parent) == task_session(tsk) && 309 will_become_orphaned_pgrp(pgrp, ignored_task) && 310 has_stopped_jobs(pgrp)) { 311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 313 } 314 } 315 316 /* 317 * Let kernel threads use this to say that they allow a certain signal. 318 * Must not be used if kthread was cloned with CLONE_SIGHAND. 319 */ 320 int allow_signal(int sig) 321 { 322 if (!valid_signal(sig) || sig < 1) 323 return -EINVAL; 324 325 spin_lock_irq(¤t->sighand->siglock); 326 /* This is only needed for daemonize()'ed kthreads */ 327 sigdelset(¤t->blocked, sig); 328 /* 329 * Kernel threads handle their own signals. Let the signal code 330 * know it'll be handled, so that they don't get converted to 331 * SIGKILL or just silently dropped. 332 */ 333 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 334 recalc_sigpending(); 335 spin_unlock_irq(¤t->sighand->siglock); 336 return 0; 337 } 338 339 EXPORT_SYMBOL(allow_signal); 340 341 int disallow_signal(int sig) 342 { 343 if (!valid_signal(sig) || sig < 1) 344 return -EINVAL; 345 346 spin_lock_irq(¤t->sighand->siglock); 347 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 348 recalc_sigpending(); 349 spin_unlock_irq(¤t->sighand->siglock); 350 return 0; 351 } 352 353 EXPORT_SYMBOL(disallow_signal); 354 355 #ifdef CONFIG_MEMCG 356 /* 357 * A task is exiting. If it owned this mm, find a new owner for the mm. 358 */ 359 void mm_update_next_owner(struct mm_struct *mm) 360 { 361 struct task_struct *c, *g, *p = current; 362 363 retry: 364 /* 365 * If the exiting or execing task is not the owner, it's 366 * someone else's problem. 367 */ 368 if (mm->owner != p) 369 return; 370 /* 371 * The current owner is exiting/execing and there are no other 372 * candidates. Do not leave the mm pointing to a possibly 373 * freed task structure. 374 */ 375 if (atomic_read(&mm->mm_users) <= 1) { 376 mm->owner = NULL; 377 return; 378 } 379 380 read_lock(&tasklist_lock); 381 /* 382 * Search in the children 383 */ 384 list_for_each_entry(c, &p->children, sibling) { 385 if (c->mm == mm) 386 goto assign_new_owner; 387 } 388 389 /* 390 * Search in the siblings 391 */ 392 list_for_each_entry(c, &p->real_parent->children, sibling) { 393 if (c->mm == mm) 394 goto assign_new_owner; 395 } 396 397 /* 398 * Search through everything else, we should not get here often. 399 */ 400 for_each_process(g) { 401 if (g->flags & PF_KTHREAD) 402 continue; 403 for_each_thread(g, c) { 404 if (c->mm == mm) 405 goto assign_new_owner; 406 if (c->mm) 407 break; 408 } 409 } 410 read_unlock(&tasklist_lock); 411 /* 412 * We found no owner yet mm_users > 1: this implies that we are 413 * most likely racing with swapoff (try_to_unuse()) or /proc or 414 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 415 */ 416 mm->owner = NULL; 417 return; 418 419 assign_new_owner: 420 BUG_ON(c == p); 421 get_task_struct(c); 422 /* 423 * The task_lock protects c->mm from changing. 424 * We always want mm->owner->mm == mm 425 */ 426 task_lock(c); 427 /* 428 * Delay read_unlock() till we have the task_lock() 429 * to ensure that c does not slip away underneath us 430 */ 431 read_unlock(&tasklist_lock); 432 if (c->mm != mm) { 433 task_unlock(c); 434 put_task_struct(c); 435 goto retry; 436 } 437 mm->owner = c; 438 task_unlock(c); 439 put_task_struct(c); 440 } 441 #endif /* CONFIG_MEMCG */ 442 443 /* 444 * Turn us into a lazy TLB process if we 445 * aren't already.. 446 */ 447 static void exit_mm(struct task_struct * tsk) 448 { 449 struct mm_struct *mm = tsk->mm; 450 struct core_state *core_state; 451 452 mm_release(tsk, mm); 453 if (!mm) 454 return; 455 sync_mm_rss(mm); 456 /* 457 * Serialize with any possible pending coredump. 458 * We must hold mmap_sem around checking core_state 459 * and clearing tsk->mm. The core-inducing thread 460 * will increment ->nr_threads for each thread in the 461 * group with ->mm != NULL. 462 */ 463 down_read(&mm->mmap_sem); 464 core_state = mm->core_state; 465 if (core_state) { 466 struct core_thread self; 467 up_read(&mm->mmap_sem); 468 469 self.task = tsk; 470 self.next = xchg(&core_state->dumper.next, &self); 471 /* 472 * Implies mb(), the result of xchg() must be visible 473 * to core_state->dumper. 474 */ 475 if (atomic_dec_and_test(&core_state->nr_threads)) 476 complete(&core_state->startup); 477 478 for (;;) { 479 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 480 if (!self.task) /* see coredump_finish() */ 481 break; 482 freezable_schedule(); 483 } 484 __set_task_state(tsk, TASK_RUNNING); 485 down_read(&mm->mmap_sem); 486 } 487 atomic_inc(&mm->mm_count); 488 BUG_ON(mm != tsk->active_mm); 489 /* more a memory barrier than a real lock */ 490 task_lock(tsk); 491 tsk->mm = NULL; 492 up_read(&mm->mmap_sem); 493 enter_lazy_tlb(mm, current); 494 task_unlock(tsk); 495 mm_update_next_owner(mm); 496 mmput(mm); 497 } 498 499 /* 500 * When we die, we re-parent all our children, and try to: 501 * 1. give them to another thread in our thread group, if such a member exists 502 * 2. give it to the first ancestor process which prctl'd itself as a 503 * child_subreaper for its children (like a service manager) 504 * 3. give it to the init process (PID 1) in our pid namespace 505 */ 506 static struct task_struct *find_new_reaper(struct task_struct *father) 507 __releases(&tasklist_lock) 508 __acquires(&tasklist_lock) 509 { 510 struct pid_namespace *pid_ns = task_active_pid_ns(father); 511 struct task_struct *thread; 512 513 thread = father; 514 while_each_thread(father, thread) { 515 if (thread->flags & PF_EXITING) 516 continue; 517 if (unlikely(pid_ns->child_reaper == father)) 518 pid_ns->child_reaper = thread; 519 return thread; 520 } 521 522 if (unlikely(pid_ns->child_reaper == father)) { 523 write_unlock_irq(&tasklist_lock); 524 if (unlikely(pid_ns == &init_pid_ns)) { 525 panic("Attempted to kill init! exitcode=0x%08x\n", 526 father->signal->group_exit_code ?: 527 father->exit_code); 528 } 529 530 zap_pid_ns_processes(pid_ns); 531 write_lock_irq(&tasklist_lock); 532 } else if (father->signal->has_child_subreaper) { 533 struct task_struct *reaper; 534 535 /* 536 * Find the first ancestor marked as child_subreaper. 537 * Note that the code below checks same_thread_group(reaper, 538 * pid_ns->child_reaper). This is what we need to DTRT in a 539 * PID namespace. However we still need the check above, see 540 * http://marc.info/?l=linux-kernel&m=131385460420380 541 */ 542 for (reaper = father->real_parent; 543 reaper != &init_task; 544 reaper = reaper->real_parent) { 545 if (same_thread_group(reaper, pid_ns->child_reaper)) 546 break; 547 if (!reaper->signal->is_child_subreaper) 548 continue; 549 thread = reaper; 550 do { 551 if (!(thread->flags & PF_EXITING)) 552 return reaper; 553 } while_each_thread(reaper, thread); 554 } 555 } 556 557 return pid_ns->child_reaper; 558 } 559 560 /* 561 * Any that need to be release_task'd are put on the @dead list. 562 */ 563 static void reparent_leader(struct task_struct *father, struct task_struct *p, 564 struct list_head *dead) 565 { 566 list_move_tail(&p->sibling, &p->real_parent->children); 567 568 if (p->exit_state == EXIT_DEAD) 569 return; 570 /* 571 * If this is a threaded reparent there is no need to 572 * notify anyone anything has happened. 573 */ 574 if (same_thread_group(p->real_parent, father)) 575 return; 576 577 /* We don't want people slaying init. */ 578 p->exit_signal = SIGCHLD; 579 580 /* If it has exited notify the new parent about this child's death. */ 581 if (!p->ptrace && 582 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 583 if (do_notify_parent(p, p->exit_signal)) { 584 p->exit_state = EXIT_DEAD; 585 list_move_tail(&p->sibling, dead); 586 } 587 } 588 589 kill_orphaned_pgrp(p, father); 590 } 591 592 static void forget_original_parent(struct task_struct *father) 593 { 594 struct task_struct *p, *n, *reaper; 595 LIST_HEAD(dead_children); 596 597 write_lock_irq(&tasklist_lock); 598 /* 599 * Note that exit_ptrace() and find_new_reaper() might 600 * drop tasklist_lock and reacquire it. 601 */ 602 exit_ptrace(father); 603 reaper = find_new_reaper(father); 604 605 list_for_each_entry_safe(p, n, &father->children, sibling) { 606 struct task_struct *t = p; 607 do { 608 t->real_parent = reaper; 609 if (t->parent == father) { 610 BUG_ON(t->ptrace); 611 t->parent = t->real_parent; 612 } 613 if (t->pdeath_signal) 614 group_send_sig_info(t->pdeath_signal, 615 SEND_SIG_NOINFO, t); 616 } while_each_thread(p, t); 617 reparent_leader(father, p, &dead_children); 618 } 619 write_unlock_irq(&tasklist_lock); 620 621 BUG_ON(!list_empty(&father->children)); 622 623 list_for_each_entry_safe(p, n, &dead_children, sibling) { 624 list_del_init(&p->sibling); 625 release_task(p); 626 } 627 } 628 629 /* 630 * Send signals to all our closest relatives so that they know 631 * to properly mourn us.. 632 */ 633 static void exit_notify(struct task_struct *tsk, int group_dead) 634 { 635 bool autoreap; 636 637 /* 638 * This does two things: 639 * 640 * A. Make init inherit all the child processes 641 * B. Check to see if any process groups have become orphaned 642 * as a result of our exiting, and if they have any stopped 643 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 644 */ 645 forget_original_parent(tsk); 646 647 write_lock_irq(&tasklist_lock); 648 if (group_dead) 649 kill_orphaned_pgrp(tsk->group_leader, NULL); 650 651 if (unlikely(tsk->ptrace)) { 652 int sig = thread_group_leader(tsk) && 653 thread_group_empty(tsk) && 654 !ptrace_reparented(tsk) ? 655 tsk->exit_signal : SIGCHLD; 656 autoreap = do_notify_parent(tsk, sig); 657 } else if (thread_group_leader(tsk)) { 658 autoreap = thread_group_empty(tsk) && 659 do_notify_parent(tsk, tsk->exit_signal); 660 } else { 661 autoreap = true; 662 } 663 664 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 665 666 /* mt-exec, de_thread() is waiting for group leader */ 667 if (unlikely(tsk->signal->notify_count < 0)) 668 wake_up_process(tsk->signal->group_exit_task); 669 write_unlock_irq(&tasklist_lock); 670 671 /* If the process is dead, release it - nobody will wait for it */ 672 if (autoreap) 673 release_task(tsk); 674 } 675 676 #ifdef CONFIG_DEBUG_STACK_USAGE 677 static void check_stack_usage(void) 678 { 679 static DEFINE_SPINLOCK(low_water_lock); 680 static int lowest_to_date = THREAD_SIZE; 681 unsigned long free; 682 683 free = stack_not_used(current); 684 685 if (free >= lowest_to_date) 686 return; 687 688 spin_lock(&low_water_lock); 689 if (free < lowest_to_date) { 690 printk(KERN_WARNING "%s (%d) used greatest stack depth: " 691 "%lu bytes left\n", 692 current->comm, task_pid_nr(current), free); 693 lowest_to_date = free; 694 } 695 spin_unlock(&low_water_lock); 696 } 697 #else 698 static inline void check_stack_usage(void) {} 699 #endif 700 701 void do_exit(long code) 702 { 703 struct task_struct *tsk = current; 704 int group_dead; 705 706 profile_task_exit(tsk); 707 708 WARN_ON(blk_needs_flush_plug(tsk)); 709 710 if (unlikely(in_interrupt())) 711 panic("Aiee, killing interrupt handler!"); 712 if (unlikely(!tsk->pid)) 713 panic("Attempted to kill the idle task!"); 714 715 /* 716 * If do_exit is called because this processes oopsed, it's possible 717 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 718 * continuing. Amongst other possible reasons, this is to prevent 719 * mm_release()->clear_child_tid() from writing to a user-controlled 720 * kernel address. 721 */ 722 set_fs(USER_DS); 723 724 ptrace_event(PTRACE_EVENT_EXIT, code); 725 726 validate_creds_for_do_exit(tsk); 727 728 /* 729 * We're taking recursive faults here in do_exit. Safest is to just 730 * leave this task alone and wait for reboot. 731 */ 732 if (unlikely(tsk->flags & PF_EXITING)) { 733 printk(KERN_ALERT 734 "Fixing recursive fault but reboot is needed!\n"); 735 /* 736 * We can do this unlocked here. The futex code uses 737 * this flag just to verify whether the pi state 738 * cleanup has been done or not. In the worst case it 739 * loops once more. We pretend that the cleanup was 740 * done as there is no way to return. Either the 741 * OWNER_DIED bit is set by now or we push the blocked 742 * task into the wait for ever nirwana as well. 743 */ 744 tsk->flags |= PF_EXITPIDONE; 745 set_current_state(TASK_UNINTERRUPTIBLE); 746 schedule(); 747 } 748 749 exit_signals(tsk); /* sets PF_EXITING */ 750 /* 751 * tsk->flags are checked in the futex code to protect against 752 * an exiting task cleaning up the robust pi futexes. 753 */ 754 smp_mb(); 755 raw_spin_unlock_wait(&tsk->pi_lock); 756 757 if (unlikely(in_atomic())) 758 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 759 current->comm, task_pid_nr(current), 760 preempt_count()); 761 762 acct_update_integrals(tsk); 763 /* sync mm's RSS info before statistics gathering */ 764 if (tsk->mm) 765 sync_mm_rss(tsk->mm); 766 group_dead = atomic_dec_and_test(&tsk->signal->live); 767 if (group_dead) { 768 hrtimer_cancel(&tsk->signal->real_timer); 769 exit_itimers(tsk->signal); 770 if (tsk->mm) 771 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 772 } 773 acct_collect(code, group_dead); 774 if (group_dead) 775 tty_audit_exit(); 776 audit_free(tsk); 777 778 tsk->exit_code = code; 779 taskstats_exit(tsk, group_dead); 780 781 exit_mm(tsk); 782 783 if (group_dead) 784 acct_process(); 785 trace_sched_process_exit(tsk); 786 787 exit_sem(tsk); 788 exit_shm(tsk); 789 exit_files(tsk); 790 exit_fs(tsk); 791 if (group_dead) 792 disassociate_ctty(1); 793 exit_task_namespaces(tsk); 794 exit_task_work(tsk); 795 exit_thread(); 796 797 /* 798 * Flush inherited counters to the parent - before the parent 799 * gets woken up by child-exit notifications. 800 * 801 * because of cgroup mode, must be called before cgroup_exit() 802 */ 803 perf_event_exit_task(tsk); 804 805 cgroup_exit(tsk); 806 807 module_put(task_thread_info(tsk)->exec_domain->module); 808 809 /* 810 * FIXME: do that only when needed, using sched_exit tracepoint 811 */ 812 flush_ptrace_hw_breakpoint(tsk); 813 814 exit_notify(tsk, group_dead); 815 proc_exit_connector(tsk); 816 #ifdef CONFIG_NUMA 817 task_lock(tsk); 818 mpol_put(tsk->mempolicy); 819 tsk->mempolicy = NULL; 820 task_unlock(tsk); 821 #endif 822 #ifdef CONFIG_FUTEX 823 if (unlikely(current->pi_state_cache)) 824 kfree(current->pi_state_cache); 825 #endif 826 /* 827 * Make sure we are holding no locks: 828 */ 829 debug_check_no_locks_held(); 830 /* 831 * We can do this unlocked here. The futex code uses this flag 832 * just to verify whether the pi state cleanup has been done 833 * or not. In the worst case it loops once more. 834 */ 835 tsk->flags |= PF_EXITPIDONE; 836 837 if (tsk->io_context) 838 exit_io_context(tsk); 839 840 if (tsk->splice_pipe) 841 free_pipe_info(tsk->splice_pipe); 842 843 if (tsk->task_frag.page) 844 put_page(tsk->task_frag.page); 845 846 validate_creds_for_do_exit(tsk); 847 848 check_stack_usage(); 849 preempt_disable(); 850 if (tsk->nr_dirtied) 851 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 852 exit_rcu(); 853 854 /* 855 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 856 * when the following two conditions become true. 857 * - There is race condition of mmap_sem (It is acquired by 858 * exit_mm()), and 859 * - SMI occurs before setting TASK_RUNINNG. 860 * (or hypervisor of virtual machine switches to other guest) 861 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 862 * 863 * To avoid it, we have to wait for releasing tsk->pi_lock which 864 * is held by try_to_wake_up() 865 */ 866 smp_mb(); 867 raw_spin_unlock_wait(&tsk->pi_lock); 868 869 /* causes final put_task_struct in finish_task_switch(). */ 870 tsk->state = TASK_DEAD; 871 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 872 schedule(); 873 BUG(); 874 /* Avoid "noreturn function does return". */ 875 for (;;) 876 cpu_relax(); /* For when BUG is null */ 877 } 878 879 EXPORT_SYMBOL_GPL(do_exit); 880 881 void complete_and_exit(struct completion *comp, long code) 882 { 883 if (comp) 884 complete(comp); 885 886 do_exit(code); 887 } 888 889 EXPORT_SYMBOL(complete_and_exit); 890 891 SYSCALL_DEFINE1(exit, int, error_code) 892 { 893 do_exit((error_code&0xff)<<8); 894 } 895 896 /* 897 * Take down every thread in the group. This is called by fatal signals 898 * as well as by sys_exit_group (below). 899 */ 900 void 901 do_group_exit(int exit_code) 902 { 903 struct signal_struct *sig = current->signal; 904 905 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 906 907 if (signal_group_exit(sig)) 908 exit_code = sig->group_exit_code; 909 else if (!thread_group_empty(current)) { 910 struct sighand_struct *const sighand = current->sighand; 911 spin_lock_irq(&sighand->siglock); 912 if (signal_group_exit(sig)) 913 /* Another thread got here before we took the lock. */ 914 exit_code = sig->group_exit_code; 915 else { 916 sig->group_exit_code = exit_code; 917 sig->flags = SIGNAL_GROUP_EXIT; 918 zap_other_threads(current); 919 } 920 spin_unlock_irq(&sighand->siglock); 921 } 922 923 do_exit(exit_code); 924 /* NOTREACHED */ 925 } 926 927 /* 928 * this kills every thread in the thread group. Note that any externally 929 * wait4()-ing process will get the correct exit code - even if this 930 * thread is not the thread group leader. 931 */ 932 SYSCALL_DEFINE1(exit_group, int, error_code) 933 { 934 do_group_exit((error_code & 0xff) << 8); 935 /* NOTREACHED */ 936 return 0; 937 } 938 939 struct wait_opts { 940 enum pid_type wo_type; 941 int wo_flags; 942 struct pid *wo_pid; 943 944 struct siginfo __user *wo_info; 945 int __user *wo_stat; 946 struct rusage __user *wo_rusage; 947 948 wait_queue_t child_wait; 949 int notask_error; 950 }; 951 952 static inline 953 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 954 { 955 if (type != PIDTYPE_PID) 956 task = task->group_leader; 957 return task->pids[type].pid; 958 } 959 960 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 961 { 962 return wo->wo_type == PIDTYPE_MAX || 963 task_pid_type(p, wo->wo_type) == wo->wo_pid; 964 } 965 966 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 967 { 968 if (!eligible_pid(wo, p)) 969 return 0; 970 /* Wait for all children (clone and not) if __WALL is set; 971 * otherwise, wait for clone children *only* if __WCLONE is 972 * set; otherwise, wait for non-clone children *only*. (Note: 973 * A "clone" child here is one that reports to its parent 974 * using a signal other than SIGCHLD.) */ 975 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 976 && !(wo->wo_flags & __WALL)) 977 return 0; 978 979 return 1; 980 } 981 982 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 983 pid_t pid, uid_t uid, int why, int status) 984 { 985 struct siginfo __user *infop; 986 int retval = wo->wo_rusage 987 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 988 989 put_task_struct(p); 990 infop = wo->wo_info; 991 if (infop) { 992 if (!retval) 993 retval = put_user(SIGCHLD, &infop->si_signo); 994 if (!retval) 995 retval = put_user(0, &infop->si_errno); 996 if (!retval) 997 retval = put_user((short)why, &infop->si_code); 998 if (!retval) 999 retval = put_user(pid, &infop->si_pid); 1000 if (!retval) 1001 retval = put_user(uid, &infop->si_uid); 1002 if (!retval) 1003 retval = put_user(status, &infop->si_status); 1004 } 1005 if (!retval) 1006 retval = pid; 1007 return retval; 1008 } 1009 1010 /* 1011 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1012 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1013 * the lock and this task is uninteresting. If we return nonzero, we have 1014 * released the lock and the system call should return. 1015 */ 1016 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1017 { 1018 unsigned long state; 1019 int retval, status, traced; 1020 pid_t pid = task_pid_vnr(p); 1021 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1022 struct siginfo __user *infop; 1023 1024 if (!likely(wo->wo_flags & WEXITED)) 1025 return 0; 1026 1027 if (unlikely(wo->wo_flags & WNOWAIT)) { 1028 int exit_code = p->exit_code; 1029 int why; 1030 1031 get_task_struct(p); 1032 read_unlock(&tasklist_lock); 1033 if ((exit_code & 0x7f) == 0) { 1034 why = CLD_EXITED; 1035 status = exit_code >> 8; 1036 } else { 1037 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1038 status = exit_code & 0x7f; 1039 } 1040 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1041 } 1042 1043 traced = ptrace_reparented(p); 1044 /* 1045 * Move the task's state to DEAD/TRACE, only one thread can do this. 1046 */ 1047 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD; 1048 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1049 return 0; 1050 /* 1051 * It can be ptraced but not reparented, check 1052 * thread_group_leader() to filter out sub-threads. 1053 */ 1054 if (likely(!traced) && thread_group_leader(p)) { 1055 struct signal_struct *psig; 1056 struct signal_struct *sig; 1057 unsigned long maxrss; 1058 cputime_t tgutime, tgstime; 1059 1060 /* 1061 * The resource counters for the group leader are in its 1062 * own task_struct. Those for dead threads in the group 1063 * are in its signal_struct, as are those for the child 1064 * processes it has previously reaped. All these 1065 * accumulate in the parent's signal_struct c* fields. 1066 * 1067 * We don't bother to take a lock here to protect these 1068 * p->signal fields, because they are only touched by 1069 * __exit_signal, which runs with tasklist_lock 1070 * write-locked anyway, and so is excluded here. We do 1071 * need to protect the access to parent->signal fields, 1072 * as other threads in the parent group can be right 1073 * here reaping other children at the same time. 1074 * 1075 * We use thread_group_cputime_adjusted() to get times for the thread 1076 * group, which consolidates times for all threads in the 1077 * group including the group leader. 1078 */ 1079 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1080 spin_lock_irq(&p->real_parent->sighand->siglock); 1081 psig = p->real_parent->signal; 1082 sig = p->signal; 1083 psig->cutime += tgutime + sig->cutime; 1084 psig->cstime += tgstime + sig->cstime; 1085 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1086 psig->cmin_flt += 1087 p->min_flt + sig->min_flt + sig->cmin_flt; 1088 psig->cmaj_flt += 1089 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1090 psig->cnvcsw += 1091 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1092 psig->cnivcsw += 1093 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1094 psig->cinblock += 1095 task_io_get_inblock(p) + 1096 sig->inblock + sig->cinblock; 1097 psig->coublock += 1098 task_io_get_oublock(p) + 1099 sig->oublock + sig->coublock; 1100 maxrss = max(sig->maxrss, sig->cmaxrss); 1101 if (psig->cmaxrss < maxrss) 1102 psig->cmaxrss = maxrss; 1103 task_io_accounting_add(&psig->ioac, &p->ioac); 1104 task_io_accounting_add(&psig->ioac, &sig->ioac); 1105 spin_unlock_irq(&p->real_parent->sighand->siglock); 1106 } 1107 1108 /* 1109 * Now we are sure this task is interesting, and no other 1110 * thread can reap it because we its state == DEAD/TRACE. 1111 */ 1112 read_unlock(&tasklist_lock); 1113 1114 retval = wo->wo_rusage 1115 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1116 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1117 ? p->signal->group_exit_code : p->exit_code; 1118 if (!retval && wo->wo_stat) 1119 retval = put_user(status, wo->wo_stat); 1120 1121 infop = wo->wo_info; 1122 if (!retval && infop) 1123 retval = put_user(SIGCHLD, &infop->si_signo); 1124 if (!retval && infop) 1125 retval = put_user(0, &infop->si_errno); 1126 if (!retval && infop) { 1127 int why; 1128 1129 if ((status & 0x7f) == 0) { 1130 why = CLD_EXITED; 1131 status >>= 8; 1132 } else { 1133 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1134 status &= 0x7f; 1135 } 1136 retval = put_user((short)why, &infop->si_code); 1137 if (!retval) 1138 retval = put_user(status, &infop->si_status); 1139 } 1140 if (!retval && infop) 1141 retval = put_user(pid, &infop->si_pid); 1142 if (!retval && infop) 1143 retval = put_user(uid, &infop->si_uid); 1144 if (!retval) 1145 retval = pid; 1146 1147 if (state == EXIT_TRACE) { 1148 write_lock_irq(&tasklist_lock); 1149 /* We dropped tasklist, ptracer could die and untrace */ 1150 ptrace_unlink(p); 1151 1152 /* If parent wants a zombie, don't release it now */ 1153 state = EXIT_ZOMBIE; 1154 if (do_notify_parent(p, p->exit_signal)) 1155 state = EXIT_DEAD; 1156 p->exit_state = state; 1157 write_unlock_irq(&tasklist_lock); 1158 } 1159 if (state == EXIT_DEAD) 1160 release_task(p); 1161 1162 return retval; 1163 } 1164 1165 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1166 { 1167 if (ptrace) { 1168 if (task_is_stopped_or_traced(p) && 1169 !(p->jobctl & JOBCTL_LISTENING)) 1170 return &p->exit_code; 1171 } else { 1172 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1173 return &p->signal->group_exit_code; 1174 } 1175 return NULL; 1176 } 1177 1178 /** 1179 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1180 * @wo: wait options 1181 * @ptrace: is the wait for ptrace 1182 * @p: task to wait for 1183 * 1184 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1185 * 1186 * CONTEXT: 1187 * read_lock(&tasklist_lock), which is released if return value is 1188 * non-zero. Also, grabs and releases @p->sighand->siglock. 1189 * 1190 * RETURNS: 1191 * 0 if wait condition didn't exist and search for other wait conditions 1192 * should continue. Non-zero return, -errno on failure and @p's pid on 1193 * success, implies that tasklist_lock is released and wait condition 1194 * search should terminate. 1195 */ 1196 static int wait_task_stopped(struct wait_opts *wo, 1197 int ptrace, struct task_struct *p) 1198 { 1199 struct siginfo __user *infop; 1200 int retval, exit_code, *p_code, why; 1201 uid_t uid = 0; /* unneeded, required by compiler */ 1202 pid_t pid; 1203 1204 /* 1205 * Traditionally we see ptrace'd stopped tasks regardless of options. 1206 */ 1207 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1208 return 0; 1209 1210 if (!task_stopped_code(p, ptrace)) 1211 return 0; 1212 1213 exit_code = 0; 1214 spin_lock_irq(&p->sighand->siglock); 1215 1216 p_code = task_stopped_code(p, ptrace); 1217 if (unlikely(!p_code)) 1218 goto unlock_sig; 1219 1220 exit_code = *p_code; 1221 if (!exit_code) 1222 goto unlock_sig; 1223 1224 if (!unlikely(wo->wo_flags & WNOWAIT)) 1225 *p_code = 0; 1226 1227 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1228 unlock_sig: 1229 spin_unlock_irq(&p->sighand->siglock); 1230 if (!exit_code) 1231 return 0; 1232 1233 /* 1234 * Now we are pretty sure this task is interesting. 1235 * Make sure it doesn't get reaped out from under us while we 1236 * give up the lock and then examine it below. We don't want to 1237 * keep holding onto the tasklist_lock while we call getrusage and 1238 * possibly take page faults for user memory. 1239 */ 1240 get_task_struct(p); 1241 pid = task_pid_vnr(p); 1242 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1243 read_unlock(&tasklist_lock); 1244 1245 if (unlikely(wo->wo_flags & WNOWAIT)) 1246 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1247 1248 retval = wo->wo_rusage 1249 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1250 if (!retval && wo->wo_stat) 1251 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1252 1253 infop = wo->wo_info; 1254 if (!retval && infop) 1255 retval = put_user(SIGCHLD, &infop->si_signo); 1256 if (!retval && infop) 1257 retval = put_user(0, &infop->si_errno); 1258 if (!retval && infop) 1259 retval = put_user((short)why, &infop->si_code); 1260 if (!retval && infop) 1261 retval = put_user(exit_code, &infop->si_status); 1262 if (!retval && infop) 1263 retval = put_user(pid, &infop->si_pid); 1264 if (!retval && infop) 1265 retval = put_user(uid, &infop->si_uid); 1266 if (!retval) 1267 retval = pid; 1268 put_task_struct(p); 1269 1270 BUG_ON(!retval); 1271 return retval; 1272 } 1273 1274 /* 1275 * Handle do_wait work for one task in a live, non-stopped state. 1276 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1277 * the lock and this task is uninteresting. If we return nonzero, we have 1278 * released the lock and the system call should return. 1279 */ 1280 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1281 { 1282 int retval; 1283 pid_t pid; 1284 uid_t uid; 1285 1286 if (!unlikely(wo->wo_flags & WCONTINUED)) 1287 return 0; 1288 1289 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1290 return 0; 1291 1292 spin_lock_irq(&p->sighand->siglock); 1293 /* Re-check with the lock held. */ 1294 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1295 spin_unlock_irq(&p->sighand->siglock); 1296 return 0; 1297 } 1298 if (!unlikely(wo->wo_flags & WNOWAIT)) 1299 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1300 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1301 spin_unlock_irq(&p->sighand->siglock); 1302 1303 pid = task_pid_vnr(p); 1304 get_task_struct(p); 1305 read_unlock(&tasklist_lock); 1306 1307 if (!wo->wo_info) { 1308 retval = wo->wo_rusage 1309 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1310 put_task_struct(p); 1311 if (!retval && wo->wo_stat) 1312 retval = put_user(0xffff, wo->wo_stat); 1313 if (!retval) 1314 retval = pid; 1315 } else { 1316 retval = wait_noreap_copyout(wo, p, pid, uid, 1317 CLD_CONTINUED, SIGCONT); 1318 BUG_ON(retval == 0); 1319 } 1320 1321 return retval; 1322 } 1323 1324 /* 1325 * Consider @p for a wait by @parent. 1326 * 1327 * -ECHILD should be in ->notask_error before the first call. 1328 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1329 * Returns zero if the search for a child should continue; 1330 * then ->notask_error is 0 if @p is an eligible child, 1331 * or another error from security_task_wait(), or still -ECHILD. 1332 */ 1333 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1334 struct task_struct *p) 1335 { 1336 int ret; 1337 1338 if (unlikely(p->exit_state == EXIT_DEAD)) 1339 return 0; 1340 1341 ret = eligible_child(wo, p); 1342 if (!ret) 1343 return ret; 1344 1345 ret = security_task_wait(p); 1346 if (unlikely(ret < 0)) { 1347 /* 1348 * If we have not yet seen any eligible child, 1349 * then let this error code replace -ECHILD. 1350 * A permission error will give the user a clue 1351 * to look for security policy problems, rather 1352 * than for mysterious wait bugs. 1353 */ 1354 if (wo->notask_error) 1355 wo->notask_error = ret; 1356 return 0; 1357 } 1358 1359 if (unlikely(p->exit_state == EXIT_TRACE)) { 1360 /* 1361 * ptrace == 0 means we are the natural parent. In this case 1362 * we should clear notask_error, debugger will notify us. 1363 */ 1364 if (likely(!ptrace)) 1365 wo->notask_error = 0; 1366 return 0; 1367 } 1368 1369 if (likely(!ptrace) && unlikely(p->ptrace)) { 1370 /* 1371 * If it is traced by its real parent's group, just pretend 1372 * the caller is ptrace_do_wait() and reap this child if it 1373 * is zombie. 1374 * 1375 * This also hides group stop state from real parent; otherwise 1376 * a single stop can be reported twice as group and ptrace stop. 1377 * If a ptracer wants to distinguish these two events for its 1378 * own children it should create a separate process which takes 1379 * the role of real parent. 1380 */ 1381 if (!ptrace_reparented(p)) 1382 ptrace = 1; 1383 } 1384 1385 /* slay zombie? */ 1386 if (p->exit_state == EXIT_ZOMBIE) { 1387 /* we don't reap group leaders with subthreads */ 1388 if (!delay_group_leader(p)) { 1389 /* 1390 * A zombie ptracee is only visible to its ptracer. 1391 * Notification and reaping will be cascaded to the 1392 * real parent when the ptracer detaches. 1393 */ 1394 if (unlikely(ptrace) || likely(!p->ptrace)) 1395 return wait_task_zombie(wo, p); 1396 } 1397 1398 /* 1399 * Allow access to stopped/continued state via zombie by 1400 * falling through. Clearing of notask_error is complex. 1401 * 1402 * When !@ptrace: 1403 * 1404 * If WEXITED is set, notask_error should naturally be 1405 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1406 * so, if there are live subthreads, there are events to 1407 * wait for. If all subthreads are dead, it's still safe 1408 * to clear - this function will be called again in finite 1409 * amount time once all the subthreads are released and 1410 * will then return without clearing. 1411 * 1412 * When @ptrace: 1413 * 1414 * Stopped state is per-task and thus can't change once the 1415 * target task dies. Only continued and exited can happen. 1416 * Clear notask_error if WCONTINUED | WEXITED. 1417 */ 1418 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1419 wo->notask_error = 0; 1420 } else { 1421 /* 1422 * @p is alive and it's gonna stop, continue or exit, so 1423 * there always is something to wait for. 1424 */ 1425 wo->notask_error = 0; 1426 } 1427 1428 /* 1429 * Wait for stopped. Depending on @ptrace, different stopped state 1430 * is used and the two don't interact with each other. 1431 */ 1432 ret = wait_task_stopped(wo, ptrace, p); 1433 if (ret) 1434 return ret; 1435 1436 /* 1437 * Wait for continued. There's only one continued state and the 1438 * ptracer can consume it which can confuse the real parent. Don't 1439 * use WCONTINUED from ptracer. You don't need or want it. 1440 */ 1441 return wait_task_continued(wo, p); 1442 } 1443 1444 /* 1445 * Do the work of do_wait() for one thread in the group, @tsk. 1446 * 1447 * -ECHILD should be in ->notask_error before the first call. 1448 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1449 * Returns zero if the search for a child should continue; then 1450 * ->notask_error is 0 if there were any eligible children, 1451 * or another error from security_task_wait(), or still -ECHILD. 1452 */ 1453 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1454 { 1455 struct task_struct *p; 1456 1457 list_for_each_entry(p, &tsk->children, sibling) { 1458 int ret = wait_consider_task(wo, 0, p); 1459 if (ret) 1460 return ret; 1461 } 1462 1463 return 0; 1464 } 1465 1466 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1467 { 1468 struct task_struct *p; 1469 1470 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1471 int ret = wait_consider_task(wo, 1, p); 1472 if (ret) 1473 return ret; 1474 } 1475 1476 return 0; 1477 } 1478 1479 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1480 int sync, void *key) 1481 { 1482 struct wait_opts *wo = container_of(wait, struct wait_opts, 1483 child_wait); 1484 struct task_struct *p = key; 1485 1486 if (!eligible_pid(wo, p)) 1487 return 0; 1488 1489 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1490 return 0; 1491 1492 return default_wake_function(wait, mode, sync, key); 1493 } 1494 1495 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1496 { 1497 __wake_up_sync_key(&parent->signal->wait_chldexit, 1498 TASK_INTERRUPTIBLE, 1, p); 1499 } 1500 1501 static long do_wait(struct wait_opts *wo) 1502 { 1503 struct task_struct *tsk; 1504 int retval; 1505 1506 trace_sched_process_wait(wo->wo_pid); 1507 1508 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1509 wo->child_wait.private = current; 1510 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1511 repeat: 1512 /* 1513 * If there is nothing that can match our critiera just get out. 1514 * We will clear ->notask_error to zero if we see any child that 1515 * might later match our criteria, even if we are not able to reap 1516 * it yet. 1517 */ 1518 wo->notask_error = -ECHILD; 1519 if ((wo->wo_type < PIDTYPE_MAX) && 1520 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1521 goto notask; 1522 1523 set_current_state(TASK_INTERRUPTIBLE); 1524 read_lock(&tasklist_lock); 1525 tsk = current; 1526 do { 1527 retval = do_wait_thread(wo, tsk); 1528 if (retval) 1529 goto end; 1530 1531 retval = ptrace_do_wait(wo, tsk); 1532 if (retval) 1533 goto end; 1534 1535 if (wo->wo_flags & __WNOTHREAD) 1536 break; 1537 } while_each_thread(current, tsk); 1538 read_unlock(&tasklist_lock); 1539 1540 notask: 1541 retval = wo->notask_error; 1542 if (!retval && !(wo->wo_flags & WNOHANG)) { 1543 retval = -ERESTARTSYS; 1544 if (!signal_pending(current)) { 1545 schedule(); 1546 goto repeat; 1547 } 1548 } 1549 end: 1550 __set_current_state(TASK_RUNNING); 1551 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1552 return retval; 1553 } 1554 1555 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1556 infop, int, options, struct rusage __user *, ru) 1557 { 1558 struct wait_opts wo; 1559 struct pid *pid = NULL; 1560 enum pid_type type; 1561 long ret; 1562 1563 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1564 return -EINVAL; 1565 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1566 return -EINVAL; 1567 1568 switch (which) { 1569 case P_ALL: 1570 type = PIDTYPE_MAX; 1571 break; 1572 case P_PID: 1573 type = PIDTYPE_PID; 1574 if (upid <= 0) 1575 return -EINVAL; 1576 break; 1577 case P_PGID: 1578 type = PIDTYPE_PGID; 1579 if (upid <= 0) 1580 return -EINVAL; 1581 break; 1582 default: 1583 return -EINVAL; 1584 } 1585 1586 if (type < PIDTYPE_MAX) 1587 pid = find_get_pid(upid); 1588 1589 wo.wo_type = type; 1590 wo.wo_pid = pid; 1591 wo.wo_flags = options; 1592 wo.wo_info = infop; 1593 wo.wo_stat = NULL; 1594 wo.wo_rusage = ru; 1595 ret = do_wait(&wo); 1596 1597 if (ret > 0) { 1598 ret = 0; 1599 } else if (infop) { 1600 /* 1601 * For a WNOHANG return, clear out all the fields 1602 * we would set so the user can easily tell the 1603 * difference. 1604 */ 1605 if (!ret) 1606 ret = put_user(0, &infop->si_signo); 1607 if (!ret) 1608 ret = put_user(0, &infop->si_errno); 1609 if (!ret) 1610 ret = put_user(0, &infop->si_code); 1611 if (!ret) 1612 ret = put_user(0, &infop->si_pid); 1613 if (!ret) 1614 ret = put_user(0, &infop->si_uid); 1615 if (!ret) 1616 ret = put_user(0, &infop->si_status); 1617 } 1618 1619 put_pid(pid); 1620 return ret; 1621 } 1622 1623 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1624 int, options, struct rusage __user *, ru) 1625 { 1626 struct wait_opts wo; 1627 struct pid *pid = NULL; 1628 enum pid_type type; 1629 long ret; 1630 1631 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1632 __WNOTHREAD|__WCLONE|__WALL)) 1633 return -EINVAL; 1634 1635 if (upid == -1) 1636 type = PIDTYPE_MAX; 1637 else if (upid < 0) { 1638 type = PIDTYPE_PGID; 1639 pid = find_get_pid(-upid); 1640 } else if (upid == 0) { 1641 type = PIDTYPE_PGID; 1642 pid = get_task_pid(current, PIDTYPE_PGID); 1643 } else /* upid > 0 */ { 1644 type = PIDTYPE_PID; 1645 pid = find_get_pid(upid); 1646 } 1647 1648 wo.wo_type = type; 1649 wo.wo_pid = pid; 1650 wo.wo_flags = options | WEXITED; 1651 wo.wo_info = NULL; 1652 wo.wo_stat = stat_addr; 1653 wo.wo_rusage = ru; 1654 ret = do_wait(&wo); 1655 put_pid(pid); 1656 1657 return ret; 1658 } 1659 1660 #ifdef __ARCH_WANT_SYS_WAITPID 1661 1662 /* 1663 * sys_waitpid() remains for compatibility. waitpid() should be 1664 * implemented by calling sys_wait4() from libc.a. 1665 */ 1666 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1667 { 1668 return sys_wait4(pid, stat_addr, options, NULL); 1669 } 1670 1671 #endif 1672