xref: /openbmc/linux/kernel/exit.c (revision 84d517f3)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct * tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 	list_del_rcu(&p->thread_node);
78 }
79 
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 	struct signal_struct *sig = tsk->signal;
86 	bool group_dead = thread_group_leader(tsk);
87 	struct sighand_struct *sighand;
88 	struct tty_struct *uninitialized_var(tty);
89 	cputime_t utime, stime;
90 
91 	sighand = rcu_dereference_check(tsk->sighand,
92 					lockdep_tasklist_lock_is_held());
93 	spin_lock(&sighand->siglock);
94 
95 	posix_cpu_timers_exit(tsk);
96 	if (group_dead) {
97 		posix_cpu_timers_exit_group(tsk);
98 		tty = sig->tty;
99 		sig->tty = NULL;
100 	} else {
101 		/*
102 		 * This can only happen if the caller is de_thread().
103 		 * FIXME: this is the temporary hack, we should teach
104 		 * posix-cpu-timers to handle this case correctly.
105 		 */
106 		if (unlikely(has_group_leader_pid(tsk)))
107 			posix_cpu_timers_exit_group(tsk);
108 
109 		/*
110 		 * If there is any task waiting for the group exit
111 		 * then notify it:
112 		 */
113 		if (sig->notify_count > 0 && !--sig->notify_count)
114 			wake_up_process(sig->group_exit_task);
115 
116 		if (tsk == sig->curr_target)
117 			sig->curr_target = next_thread(tsk);
118 		/*
119 		 * Accumulate here the counters for all threads but the
120 		 * group leader as they die, so they can be added into
121 		 * the process-wide totals when those are taken.
122 		 * The group leader stays around as a zombie as long
123 		 * as there are other threads.  When it gets reaped,
124 		 * the exit.c code will add its counts into these totals.
125 		 * We won't ever get here for the group leader, since it
126 		 * will have been the last reference on the signal_struct.
127 		 */
128 		task_cputime(tsk, &utime, &stime);
129 		sig->utime += utime;
130 		sig->stime += stime;
131 		sig->gtime += task_gtime(tsk);
132 		sig->min_flt += tsk->min_flt;
133 		sig->maj_flt += tsk->maj_flt;
134 		sig->nvcsw += tsk->nvcsw;
135 		sig->nivcsw += tsk->nivcsw;
136 		sig->inblock += task_io_get_inblock(tsk);
137 		sig->oublock += task_io_get_oublock(tsk);
138 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 	}
141 
142 	sig->nr_threads--;
143 	__unhash_process(tsk, group_dead);
144 
145 	/*
146 	 * Do this under ->siglock, we can race with another thread
147 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 	 */
149 	flush_sigqueue(&tsk->pending);
150 	tsk->sighand = NULL;
151 	spin_unlock(&sighand->siglock);
152 
153 	__cleanup_sighand(sighand);
154 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
155 	if (group_dead) {
156 		flush_sigqueue(&sig->shared_pending);
157 		tty_kref_put(tty);
158 	}
159 }
160 
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164 
165 	perf_event_delayed_put(tsk);
166 	trace_sched_process_free(tsk);
167 	put_task_struct(tsk);
168 }
169 
170 
171 void release_task(struct task_struct * p)
172 {
173 	struct task_struct *leader;
174 	int zap_leader;
175 repeat:
176 	/* don't need to get the RCU readlock here - the process is dead and
177 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 	rcu_read_lock();
179 	atomic_dec(&__task_cred(p)->user->processes);
180 	rcu_read_unlock();
181 
182 	proc_flush_task(p);
183 
184 	write_lock_irq(&tasklist_lock);
185 	ptrace_release_task(p);
186 	__exit_signal(p);
187 
188 	/*
189 	 * If we are the last non-leader member of the thread
190 	 * group, and the leader is zombie, then notify the
191 	 * group leader's parent process. (if it wants notification.)
192 	 */
193 	zap_leader = 0;
194 	leader = p->group_leader;
195 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
196 		/*
197 		 * If we were the last child thread and the leader has
198 		 * exited already, and the leader's parent ignores SIGCHLD,
199 		 * then we are the one who should release the leader.
200 		 */
201 		zap_leader = do_notify_parent(leader, leader->exit_signal);
202 		if (zap_leader)
203 			leader->exit_state = EXIT_DEAD;
204 	}
205 
206 	write_unlock_irq(&tasklist_lock);
207 	release_thread(p);
208 	call_rcu(&p->rcu, delayed_put_task_struct);
209 
210 	p = leader;
211 	if (unlikely(zap_leader))
212 		goto repeat;
213 }
214 
215 /*
216  * This checks not only the pgrp, but falls back on the pid if no
217  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218  * without this...
219  *
220  * The caller must hold rcu lock or the tasklist lock.
221  */
222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 	struct task_struct *p;
225 	struct pid *sid = NULL;
226 
227 	p = pid_task(pgrp, PIDTYPE_PGID);
228 	if (p == NULL)
229 		p = pid_task(pgrp, PIDTYPE_PID);
230 	if (p != NULL)
231 		sid = task_session(p);
232 
233 	return sid;
234 }
235 
236 /*
237  * Determine if a process group is "orphaned", according to the POSIX
238  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
239  * by terminal-generated stop signals.  Newly orphaned process groups are
240  * to receive a SIGHUP and a SIGCONT.
241  *
242  * "I ask you, have you ever known what it is to be an orphan?"
243  */
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 {
246 	struct task_struct *p;
247 
248 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 		if ((p == ignored_task) ||
250 		    (p->exit_state && thread_group_empty(p)) ||
251 		    is_global_init(p->real_parent))
252 			continue;
253 
254 		if (task_pgrp(p->real_parent) != pgrp &&
255 		    task_session(p->real_parent) == task_session(p))
256 			return 0;
257 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258 
259 	return 1;
260 }
261 
262 int is_current_pgrp_orphaned(void)
263 {
264 	int retval;
265 
266 	read_lock(&tasklist_lock);
267 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 	read_unlock(&tasklist_lock);
269 
270 	return retval;
271 }
272 
273 static bool has_stopped_jobs(struct pid *pgrp)
274 {
275 	struct task_struct *p;
276 
277 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 			return true;
280 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281 
282 	return false;
283 }
284 
285 /*
286  * Check to see if any process groups have become orphaned as
287  * a result of our exiting, and if they have any stopped jobs,
288  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289  */
290 static void
291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 {
293 	struct pid *pgrp = task_pgrp(tsk);
294 	struct task_struct *ignored_task = tsk;
295 
296 	if (!parent)
297 		 /* exit: our father is in a different pgrp than
298 		  * we are and we were the only connection outside.
299 		  */
300 		parent = tsk->real_parent;
301 	else
302 		/* reparent: our child is in a different pgrp than
303 		 * we are, and it was the only connection outside.
304 		 */
305 		ignored_task = NULL;
306 
307 	if (task_pgrp(parent) != pgrp &&
308 	    task_session(parent) == task_session(tsk) &&
309 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 	    has_stopped_jobs(pgrp)) {
311 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 	}
314 }
315 
316 /*
317  * Let kernel threads use this to say that they allow a certain signal.
318  * Must not be used if kthread was cloned with CLONE_SIGHAND.
319  */
320 int allow_signal(int sig)
321 {
322 	if (!valid_signal(sig) || sig < 1)
323 		return -EINVAL;
324 
325 	spin_lock_irq(&current->sighand->siglock);
326 	/* This is only needed for daemonize()'ed kthreads */
327 	sigdelset(&current->blocked, sig);
328 	/*
329 	 * Kernel threads handle their own signals. Let the signal code
330 	 * know it'll be handled, so that they don't get converted to
331 	 * SIGKILL or just silently dropped.
332 	 */
333 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
334 	recalc_sigpending();
335 	spin_unlock_irq(&current->sighand->siglock);
336 	return 0;
337 }
338 
339 EXPORT_SYMBOL(allow_signal);
340 
341 int disallow_signal(int sig)
342 {
343 	if (!valid_signal(sig) || sig < 1)
344 		return -EINVAL;
345 
346 	spin_lock_irq(&current->sighand->siglock);
347 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
348 	recalc_sigpending();
349 	spin_unlock_irq(&current->sighand->siglock);
350 	return 0;
351 }
352 
353 EXPORT_SYMBOL(disallow_signal);
354 
355 #ifdef CONFIG_MEMCG
356 /*
357  * A task is exiting.   If it owned this mm, find a new owner for the mm.
358  */
359 void mm_update_next_owner(struct mm_struct *mm)
360 {
361 	struct task_struct *c, *g, *p = current;
362 
363 retry:
364 	/*
365 	 * If the exiting or execing task is not the owner, it's
366 	 * someone else's problem.
367 	 */
368 	if (mm->owner != p)
369 		return;
370 	/*
371 	 * The current owner is exiting/execing and there are no other
372 	 * candidates.  Do not leave the mm pointing to a possibly
373 	 * freed task structure.
374 	 */
375 	if (atomic_read(&mm->mm_users) <= 1) {
376 		mm->owner = NULL;
377 		return;
378 	}
379 
380 	read_lock(&tasklist_lock);
381 	/*
382 	 * Search in the children
383 	 */
384 	list_for_each_entry(c, &p->children, sibling) {
385 		if (c->mm == mm)
386 			goto assign_new_owner;
387 	}
388 
389 	/*
390 	 * Search in the siblings
391 	 */
392 	list_for_each_entry(c, &p->real_parent->children, sibling) {
393 		if (c->mm == mm)
394 			goto assign_new_owner;
395 	}
396 
397 	/*
398 	 * Search through everything else, we should not get here often.
399 	 */
400 	for_each_process(g) {
401 		if (g->flags & PF_KTHREAD)
402 			continue;
403 		for_each_thread(g, c) {
404 			if (c->mm == mm)
405 				goto assign_new_owner;
406 			if (c->mm)
407 				break;
408 		}
409 	}
410 	read_unlock(&tasklist_lock);
411 	/*
412 	 * We found no owner yet mm_users > 1: this implies that we are
413 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
414 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
415 	 */
416 	mm->owner = NULL;
417 	return;
418 
419 assign_new_owner:
420 	BUG_ON(c == p);
421 	get_task_struct(c);
422 	/*
423 	 * The task_lock protects c->mm from changing.
424 	 * We always want mm->owner->mm == mm
425 	 */
426 	task_lock(c);
427 	/*
428 	 * Delay read_unlock() till we have the task_lock()
429 	 * to ensure that c does not slip away underneath us
430 	 */
431 	read_unlock(&tasklist_lock);
432 	if (c->mm != mm) {
433 		task_unlock(c);
434 		put_task_struct(c);
435 		goto retry;
436 	}
437 	mm->owner = c;
438 	task_unlock(c);
439 	put_task_struct(c);
440 }
441 #endif /* CONFIG_MEMCG */
442 
443 /*
444  * Turn us into a lazy TLB process if we
445  * aren't already..
446  */
447 static void exit_mm(struct task_struct * tsk)
448 {
449 	struct mm_struct *mm = tsk->mm;
450 	struct core_state *core_state;
451 
452 	mm_release(tsk, mm);
453 	if (!mm)
454 		return;
455 	sync_mm_rss(mm);
456 	/*
457 	 * Serialize with any possible pending coredump.
458 	 * We must hold mmap_sem around checking core_state
459 	 * and clearing tsk->mm.  The core-inducing thread
460 	 * will increment ->nr_threads for each thread in the
461 	 * group with ->mm != NULL.
462 	 */
463 	down_read(&mm->mmap_sem);
464 	core_state = mm->core_state;
465 	if (core_state) {
466 		struct core_thread self;
467 		up_read(&mm->mmap_sem);
468 
469 		self.task = tsk;
470 		self.next = xchg(&core_state->dumper.next, &self);
471 		/*
472 		 * Implies mb(), the result of xchg() must be visible
473 		 * to core_state->dumper.
474 		 */
475 		if (atomic_dec_and_test(&core_state->nr_threads))
476 			complete(&core_state->startup);
477 
478 		for (;;) {
479 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
480 			if (!self.task) /* see coredump_finish() */
481 				break;
482 			freezable_schedule();
483 		}
484 		__set_task_state(tsk, TASK_RUNNING);
485 		down_read(&mm->mmap_sem);
486 	}
487 	atomic_inc(&mm->mm_count);
488 	BUG_ON(mm != tsk->active_mm);
489 	/* more a memory barrier than a real lock */
490 	task_lock(tsk);
491 	tsk->mm = NULL;
492 	up_read(&mm->mmap_sem);
493 	enter_lazy_tlb(mm, current);
494 	task_unlock(tsk);
495 	mm_update_next_owner(mm);
496 	mmput(mm);
497 }
498 
499 /*
500  * When we die, we re-parent all our children, and try to:
501  * 1. give them to another thread in our thread group, if such a member exists
502  * 2. give it to the first ancestor process which prctl'd itself as a
503  *    child_subreaper for its children (like a service manager)
504  * 3. give it to the init process (PID 1) in our pid namespace
505  */
506 static struct task_struct *find_new_reaper(struct task_struct *father)
507 	__releases(&tasklist_lock)
508 	__acquires(&tasklist_lock)
509 {
510 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
511 	struct task_struct *thread;
512 
513 	thread = father;
514 	while_each_thread(father, thread) {
515 		if (thread->flags & PF_EXITING)
516 			continue;
517 		if (unlikely(pid_ns->child_reaper == father))
518 			pid_ns->child_reaper = thread;
519 		return thread;
520 	}
521 
522 	if (unlikely(pid_ns->child_reaper == father)) {
523 		write_unlock_irq(&tasklist_lock);
524 		if (unlikely(pid_ns == &init_pid_ns)) {
525 			panic("Attempted to kill init! exitcode=0x%08x\n",
526 				father->signal->group_exit_code ?:
527 					father->exit_code);
528 		}
529 
530 		zap_pid_ns_processes(pid_ns);
531 		write_lock_irq(&tasklist_lock);
532 	} else if (father->signal->has_child_subreaper) {
533 		struct task_struct *reaper;
534 
535 		/*
536 		 * Find the first ancestor marked as child_subreaper.
537 		 * Note that the code below checks same_thread_group(reaper,
538 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
539 		 * PID namespace. However we still need the check above, see
540 		 * http://marc.info/?l=linux-kernel&m=131385460420380
541 		 */
542 		for (reaper = father->real_parent;
543 		     reaper != &init_task;
544 		     reaper = reaper->real_parent) {
545 			if (same_thread_group(reaper, pid_ns->child_reaper))
546 				break;
547 			if (!reaper->signal->is_child_subreaper)
548 				continue;
549 			thread = reaper;
550 			do {
551 				if (!(thread->flags & PF_EXITING))
552 					return reaper;
553 			} while_each_thread(reaper, thread);
554 		}
555 	}
556 
557 	return pid_ns->child_reaper;
558 }
559 
560 /*
561 * Any that need to be release_task'd are put on the @dead list.
562  */
563 static void reparent_leader(struct task_struct *father, struct task_struct *p,
564 				struct list_head *dead)
565 {
566 	list_move_tail(&p->sibling, &p->real_parent->children);
567 
568 	if (p->exit_state == EXIT_DEAD)
569 		return;
570 	/*
571 	 * If this is a threaded reparent there is no need to
572 	 * notify anyone anything has happened.
573 	 */
574 	if (same_thread_group(p->real_parent, father))
575 		return;
576 
577 	/* We don't want people slaying init. */
578 	p->exit_signal = SIGCHLD;
579 
580 	/* If it has exited notify the new parent about this child's death. */
581 	if (!p->ptrace &&
582 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
583 		if (do_notify_parent(p, p->exit_signal)) {
584 			p->exit_state = EXIT_DEAD;
585 			list_move_tail(&p->sibling, dead);
586 		}
587 	}
588 
589 	kill_orphaned_pgrp(p, father);
590 }
591 
592 static void forget_original_parent(struct task_struct *father)
593 {
594 	struct task_struct *p, *n, *reaper;
595 	LIST_HEAD(dead_children);
596 
597 	write_lock_irq(&tasklist_lock);
598 	/*
599 	 * Note that exit_ptrace() and find_new_reaper() might
600 	 * drop tasklist_lock and reacquire it.
601 	 */
602 	exit_ptrace(father);
603 	reaper = find_new_reaper(father);
604 
605 	list_for_each_entry_safe(p, n, &father->children, sibling) {
606 		struct task_struct *t = p;
607 		do {
608 			t->real_parent = reaper;
609 			if (t->parent == father) {
610 				BUG_ON(t->ptrace);
611 				t->parent = t->real_parent;
612 			}
613 			if (t->pdeath_signal)
614 				group_send_sig_info(t->pdeath_signal,
615 						    SEND_SIG_NOINFO, t);
616 		} while_each_thread(p, t);
617 		reparent_leader(father, p, &dead_children);
618 	}
619 	write_unlock_irq(&tasklist_lock);
620 
621 	BUG_ON(!list_empty(&father->children));
622 
623 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
624 		list_del_init(&p->sibling);
625 		release_task(p);
626 	}
627 }
628 
629 /*
630  * Send signals to all our closest relatives so that they know
631  * to properly mourn us..
632  */
633 static void exit_notify(struct task_struct *tsk, int group_dead)
634 {
635 	bool autoreap;
636 
637 	/*
638 	 * This does two things:
639 	 *
640   	 * A.  Make init inherit all the child processes
641 	 * B.  Check to see if any process groups have become orphaned
642 	 *	as a result of our exiting, and if they have any stopped
643 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
644 	 */
645 	forget_original_parent(tsk);
646 
647 	write_lock_irq(&tasklist_lock);
648 	if (group_dead)
649 		kill_orphaned_pgrp(tsk->group_leader, NULL);
650 
651 	if (unlikely(tsk->ptrace)) {
652 		int sig = thread_group_leader(tsk) &&
653 				thread_group_empty(tsk) &&
654 				!ptrace_reparented(tsk) ?
655 			tsk->exit_signal : SIGCHLD;
656 		autoreap = do_notify_parent(tsk, sig);
657 	} else if (thread_group_leader(tsk)) {
658 		autoreap = thread_group_empty(tsk) &&
659 			do_notify_parent(tsk, tsk->exit_signal);
660 	} else {
661 		autoreap = true;
662 	}
663 
664 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
665 
666 	/* mt-exec, de_thread() is waiting for group leader */
667 	if (unlikely(tsk->signal->notify_count < 0))
668 		wake_up_process(tsk->signal->group_exit_task);
669 	write_unlock_irq(&tasklist_lock);
670 
671 	/* If the process is dead, release it - nobody will wait for it */
672 	if (autoreap)
673 		release_task(tsk);
674 }
675 
676 #ifdef CONFIG_DEBUG_STACK_USAGE
677 static void check_stack_usage(void)
678 {
679 	static DEFINE_SPINLOCK(low_water_lock);
680 	static int lowest_to_date = THREAD_SIZE;
681 	unsigned long free;
682 
683 	free = stack_not_used(current);
684 
685 	if (free >= lowest_to_date)
686 		return;
687 
688 	spin_lock(&low_water_lock);
689 	if (free < lowest_to_date) {
690 		printk(KERN_WARNING "%s (%d) used greatest stack depth: "
691 				"%lu bytes left\n",
692 				current->comm, task_pid_nr(current), free);
693 		lowest_to_date = free;
694 	}
695 	spin_unlock(&low_water_lock);
696 }
697 #else
698 static inline void check_stack_usage(void) {}
699 #endif
700 
701 void do_exit(long code)
702 {
703 	struct task_struct *tsk = current;
704 	int group_dead;
705 
706 	profile_task_exit(tsk);
707 
708 	WARN_ON(blk_needs_flush_plug(tsk));
709 
710 	if (unlikely(in_interrupt()))
711 		panic("Aiee, killing interrupt handler!");
712 	if (unlikely(!tsk->pid))
713 		panic("Attempted to kill the idle task!");
714 
715 	/*
716 	 * If do_exit is called because this processes oopsed, it's possible
717 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
718 	 * continuing. Amongst other possible reasons, this is to prevent
719 	 * mm_release()->clear_child_tid() from writing to a user-controlled
720 	 * kernel address.
721 	 */
722 	set_fs(USER_DS);
723 
724 	ptrace_event(PTRACE_EVENT_EXIT, code);
725 
726 	validate_creds_for_do_exit(tsk);
727 
728 	/*
729 	 * We're taking recursive faults here in do_exit. Safest is to just
730 	 * leave this task alone and wait for reboot.
731 	 */
732 	if (unlikely(tsk->flags & PF_EXITING)) {
733 		printk(KERN_ALERT
734 			"Fixing recursive fault but reboot is needed!\n");
735 		/*
736 		 * We can do this unlocked here. The futex code uses
737 		 * this flag just to verify whether the pi state
738 		 * cleanup has been done or not. In the worst case it
739 		 * loops once more. We pretend that the cleanup was
740 		 * done as there is no way to return. Either the
741 		 * OWNER_DIED bit is set by now or we push the blocked
742 		 * task into the wait for ever nirwana as well.
743 		 */
744 		tsk->flags |= PF_EXITPIDONE;
745 		set_current_state(TASK_UNINTERRUPTIBLE);
746 		schedule();
747 	}
748 
749 	exit_signals(tsk);  /* sets PF_EXITING */
750 	/*
751 	 * tsk->flags are checked in the futex code to protect against
752 	 * an exiting task cleaning up the robust pi futexes.
753 	 */
754 	smp_mb();
755 	raw_spin_unlock_wait(&tsk->pi_lock);
756 
757 	if (unlikely(in_atomic()))
758 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
759 				current->comm, task_pid_nr(current),
760 				preempt_count());
761 
762 	acct_update_integrals(tsk);
763 	/* sync mm's RSS info before statistics gathering */
764 	if (tsk->mm)
765 		sync_mm_rss(tsk->mm);
766 	group_dead = atomic_dec_and_test(&tsk->signal->live);
767 	if (group_dead) {
768 		hrtimer_cancel(&tsk->signal->real_timer);
769 		exit_itimers(tsk->signal);
770 		if (tsk->mm)
771 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
772 	}
773 	acct_collect(code, group_dead);
774 	if (group_dead)
775 		tty_audit_exit();
776 	audit_free(tsk);
777 
778 	tsk->exit_code = code;
779 	taskstats_exit(tsk, group_dead);
780 
781 	exit_mm(tsk);
782 
783 	if (group_dead)
784 		acct_process();
785 	trace_sched_process_exit(tsk);
786 
787 	exit_sem(tsk);
788 	exit_shm(tsk);
789 	exit_files(tsk);
790 	exit_fs(tsk);
791 	if (group_dead)
792 		disassociate_ctty(1);
793 	exit_task_namespaces(tsk);
794 	exit_task_work(tsk);
795 	exit_thread();
796 
797 	/*
798 	 * Flush inherited counters to the parent - before the parent
799 	 * gets woken up by child-exit notifications.
800 	 *
801 	 * because of cgroup mode, must be called before cgroup_exit()
802 	 */
803 	perf_event_exit_task(tsk);
804 
805 	cgroup_exit(tsk);
806 
807 	module_put(task_thread_info(tsk)->exec_domain->module);
808 
809 	/*
810 	 * FIXME: do that only when needed, using sched_exit tracepoint
811 	 */
812 	flush_ptrace_hw_breakpoint(tsk);
813 
814 	exit_notify(tsk, group_dead);
815 	proc_exit_connector(tsk);
816 #ifdef CONFIG_NUMA
817 	task_lock(tsk);
818 	mpol_put(tsk->mempolicy);
819 	tsk->mempolicy = NULL;
820 	task_unlock(tsk);
821 #endif
822 #ifdef CONFIG_FUTEX
823 	if (unlikely(current->pi_state_cache))
824 		kfree(current->pi_state_cache);
825 #endif
826 	/*
827 	 * Make sure we are holding no locks:
828 	 */
829 	debug_check_no_locks_held();
830 	/*
831 	 * We can do this unlocked here. The futex code uses this flag
832 	 * just to verify whether the pi state cleanup has been done
833 	 * or not. In the worst case it loops once more.
834 	 */
835 	tsk->flags |= PF_EXITPIDONE;
836 
837 	if (tsk->io_context)
838 		exit_io_context(tsk);
839 
840 	if (tsk->splice_pipe)
841 		free_pipe_info(tsk->splice_pipe);
842 
843 	if (tsk->task_frag.page)
844 		put_page(tsk->task_frag.page);
845 
846 	validate_creds_for_do_exit(tsk);
847 
848 	check_stack_usage();
849 	preempt_disable();
850 	if (tsk->nr_dirtied)
851 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
852 	exit_rcu();
853 
854 	/*
855 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
856 	 * when the following two conditions become true.
857 	 *   - There is race condition of mmap_sem (It is acquired by
858 	 *     exit_mm()), and
859 	 *   - SMI occurs before setting TASK_RUNINNG.
860 	 *     (or hypervisor of virtual machine switches to other guest)
861 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
862 	 *
863 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
864 	 * is held by try_to_wake_up()
865 	 */
866 	smp_mb();
867 	raw_spin_unlock_wait(&tsk->pi_lock);
868 
869 	/* causes final put_task_struct in finish_task_switch(). */
870 	tsk->state = TASK_DEAD;
871 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
872 	schedule();
873 	BUG();
874 	/* Avoid "noreturn function does return".  */
875 	for (;;)
876 		cpu_relax();	/* For when BUG is null */
877 }
878 
879 EXPORT_SYMBOL_GPL(do_exit);
880 
881 void complete_and_exit(struct completion *comp, long code)
882 {
883 	if (comp)
884 		complete(comp);
885 
886 	do_exit(code);
887 }
888 
889 EXPORT_SYMBOL(complete_and_exit);
890 
891 SYSCALL_DEFINE1(exit, int, error_code)
892 {
893 	do_exit((error_code&0xff)<<8);
894 }
895 
896 /*
897  * Take down every thread in the group.  This is called by fatal signals
898  * as well as by sys_exit_group (below).
899  */
900 void
901 do_group_exit(int exit_code)
902 {
903 	struct signal_struct *sig = current->signal;
904 
905 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
906 
907 	if (signal_group_exit(sig))
908 		exit_code = sig->group_exit_code;
909 	else if (!thread_group_empty(current)) {
910 		struct sighand_struct *const sighand = current->sighand;
911 		spin_lock_irq(&sighand->siglock);
912 		if (signal_group_exit(sig))
913 			/* Another thread got here before we took the lock.  */
914 			exit_code = sig->group_exit_code;
915 		else {
916 			sig->group_exit_code = exit_code;
917 			sig->flags = SIGNAL_GROUP_EXIT;
918 			zap_other_threads(current);
919 		}
920 		spin_unlock_irq(&sighand->siglock);
921 	}
922 
923 	do_exit(exit_code);
924 	/* NOTREACHED */
925 }
926 
927 /*
928  * this kills every thread in the thread group. Note that any externally
929  * wait4()-ing process will get the correct exit code - even if this
930  * thread is not the thread group leader.
931  */
932 SYSCALL_DEFINE1(exit_group, int, error_code)
933 {
934 	do_group_exit((error_code & 0xff) << 8);
935 	/* NOTREACHED */
936 	return 0;
937 }
938 
939 struct wait_opts {
940 	enum pid_type		wo_type;
941 	int			wo_flags;
942 	struct pid		*wo_pid;
943 
944 	struct siginfo __user	*wo_info;
945 	int __user		*wo_stat;
946 	struct rusage __user	*wo_rusage;
947 
948 	wait_queue_t		child_wait;
949 	int			notask_error;
950 };
951 
952 static inline
953 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
954 {
955 	if (type != PIDTYPE_PID)
956 		task = task->group_leader;
957 	return task->pids[type].pid;
958 }
959 
960 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
961 {
962 	return	wo->wo_type == PIDTYPE_MAX ||
963 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
964 }
965 
966 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
967 {
968 	if (!eligible_pid(wo, p))
969 		return 0;
970 	/* Wait for all children (clone and not) if __WALL is set;
971 	 * otherwise, wait for clone children *only* if __WCLONE is
972 	 * set; otherwise, wait for non-clone children *only*.  (Note:
973 	 * A "clone" child here is one that reports to its parent
974 	 * using a signal other than SIGCHLD.) */
975 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
976 	    && !(wo->wo_flags & __WALL))
977 		return 0;
978 
979 	return 1;
980 }
981 
982 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
983 				pid_t pid, uid_t uid, int why, int status)
984 {
985 	struct siginfo __user *infop;
986 	int retval = wo->wo_rusage
987 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
988 
989 	put_task_struct(p);
990 	infop = wo->wo_info;
991 	if (infop) {
992 		if (!retval)
993 			retval = put_user(SIGCHLD, &infop->si_signo);
994 		if (!retval)
995 			retval = put_user(0, &infop->si_errno);
996 		if (!retval)
997 			retval = put_user((short)why, &infop->si_code);
998 		if (!retval)
999 			retval = put_user(pid, &infop->si_pid);
1000 		if (!retval)
1001 			retval = put_user(uid, &infop->si_uid);
1002 		if (!retval)
1003 			retval = put_user(status, &infop->si_status);
1004 	}
1005 	if (!retval)
1006 		retval = pid;
1007 	return retval;
1008 }
1009 
1010 /*
1011  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1012  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1013  * the lock and this task is uninteresting.  If we return nonzero, we have
1014  * released the lock and the system call should return.
1015  */
1016 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1017 {
1018 	unsigned long state;
1019 	int retval, status, traced;
1020 	pid_t pid = task_pid_vnr(p);
1021 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1022 	struct siginfo __user *infop;
1023 
1024 	if (!likely(wo->wo_flags & WEXITED))
1025 		return 0;
1026 
1027 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1028 		int exit_code = p->exit_code;
1029 		int why;
1030 
1031 		get_task_struct(p);
1032 		read_unlock(&tasklist_lock);
1033 		if ((exit_code & 0x7f) == 0) {
1034 			why = CLD_EXITED;
1035 			status = exit_code >> 8;
1036 		} else {
1037 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1038 			status = exit_code & 0x7f;
1039 		}
1040 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1041 	}
1042 
1043 	traced = ptrace_reparented(p);
1044 	/*
1045 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1046 	 */
1047 	state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1048 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1049 		return 0;
1050 	/*
1051 	 * It can be ptraced but not reparented, check
1052 	 * thread_group_leader() to filter out sub-threads.
1053 	 */
1054 	if (likely(!traced) && thread_group_leader(p)) {
1055 		struct signal_struct *psig;
1056 		struct signal_struct *sig;
1057 		unsigned long maxrss;
1058 		cputime_t tgutime, tgstime;
1059 
1060 		/*
1061 		 * The resource counters for the group leader are in its
1062 		 * own task_struct.  Those for dead threads in the group
1063 		 * are in its signal_struct, as are those for the child
1064 		 * processes it has previously reaped.  All these
1065 		 * accumulate in the parent's signal_struct c* fields.
1066 		 *
1067 		 * We don't bother to take a lock here to protect these
1068 		 * p->signal fields, because they are only touched by
1069 		 * __exit_signal, which runs with tasklist_lock
1070 		 * write-locked anyway, and so is excluded here.  We do
1071 		 * need to protect the access to parent->signal fields,
1072 		 * as other threads in the parent group can be right
1073 		 * here reaping other children at the same time.
1074 		 *
1075 		 * We use thread_group_cputime_adjusted() to get times for the thread
1076 		 * group, which consolidates times for all threads in the
1077 		 * group including the group leader.
1078 		 */
1079 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1080 		spin_lock_irq(&p->real_parent->sighand->siglock);
1081 		psig = p->real_parent->signal;
1082 		sig = p->signal;
1083 		psig->cutime += tgutime + sig->cutime;
1084 		psig->cstime += tgstime + sig->cstime;
1085 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1086 		psig->cmin_flt +=
1087 			p->min_flt + sig->min_flt + sig->cmin_flt;
1088 		psig->cmaj_flt +=
1089 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1090 		psig->cnvcsw +=
1091 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1092 		psig->cnivcsw +=
1093 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1094 		psig->cinblock +=
1095 			task_io_get_inblock(p) +
1096 			sig->inblock + sig->cinblock;
1097 		psig->coublock +=
1098 			task_io_get_oublock(p) +
1099 			sig->oublock + sig->coublock;
1100 		maxrss = max(sig->maxrss, sig->cmaxrss);
1101 		if (psig->cmaxrss < maxrss)
1102 			psig->cmaxrss = maxrss;
1103 		task_io_accounting_add(&psig->ioac, &p->ioac);
1104 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1105 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1106 	}
1107 
1108 	/*
1109 	 * Now we are sure this task is interesting, and no other
1110 	 * thread can reap it because we its state == DEAD/TRACE.
1111 	 */
1112 	read_unlock(&tasklist_lock);
1113 
1114 	retval = wo->wo_rusage
1115 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1116 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1117 		? p->signal->group_exit_code : p->exit_code;
1118 	if (!retval && wo->wo_stat)
1119 		retval = put_user(status, wo->wo_stat);
1120 
1121 	infop = wo->wo_info;
1122 	if (!retval && infop)
1123 		retval = put_user(SIGCHLD, &infop->si_signo);
1124 	if (!retval && infop)
1125 		retval = put_user(0, &infop->si_errno);
1126 	if (!retval && infop) {
1127 		int why;
1128 
1129 		if ((status & 0x7f) == 0) {
1130 			why = CLD_EXITED;
1131 			status >>= 8;
1132 		} else {
1133 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1134 			status &= 0x7f;
1135 		}
1136 		retval = put_user((short)why, &infop->si_code);
1137 		if (!retval)
1138 			retval = put_user(status, &infop->si_status);
1139 	}
1140 	if (!retval && infop)
1141 		retval = put_user(pid, &infop->si_pid);
1142 	if (!retval && infop)
1143 		retval = put_user(uid, &infop->si_uid);
1144 	if (!retval)
1145 		retval = pid;
1146 
1147 	if (state == EXIT_TRACE) {
1148 		write_lock_irq(&tasklist_lock);
1149 		/* We dropped tasklist, ptracer could die and untrace */
1150 		ptrace_unlink(p);
1151 
1152 		/* If parent wants a zombie, don't release it now */
1153 		state = EXIT_ZOMBIE;
1154 		if (do_notify_parent(p, p->exit_signal))
1155 			state = EXIT_DEAD;
1156 		p->exit_state = state;
1157 		write_unlock_irq(&tasklist_lock);
1158 	}
1159 	if (state == EXIT_DEAD)
1160 		release_task(p);
1161 
1162 	return retval;
1163 }
1164 
1165 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1166 {
1167 	if (ptrace) {
1168 		if (task_is_stopped_or_traced(p) &&
1169 		    !(p->jobctl & JOBCTL_LISTENING))
1170 			return &p->exit_code;
1171 	} else {
1172 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1173 			return &p->signal->group_exit_code;
1174 	}
1175 	return NULL;
1176 }
1177 
1178 /**
1179  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1180  * @wo: wait options
1181  * @ptrace: is the wait for ptrace
1182  * @p: task to wait for
1183  *
1184  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1185  *
1186  * CONTEXT:
1187  * read_lock(&tasklist_lock), which is released if return value is
1188  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1189  *
1190  * RETURNS:
1191  * 0 if wait condition didn't exist and search for other wait conditions
1192  * should continue.  Non-zero return, -errno on failure and @p's pid on
1193  * success, implies that tasklist_lock is released and wait condition
1194  * search should terminate.
1195  */
1196 static int wait_task_stopped(struct wait_opts *wo,
1197 				int ptrace, struct task_struct *p)
1198 {
1199 	struct siginfo __user *infop;
1200 	int retval, exit_code, *p_code, why;
1201 	uid_t uid = 0; /* unneeded, required by compiler */
1202 	pid_t pid;
1203 
1204 	/*
1205 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1206 	 */
1207 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1208 		return 0;
1209 
1210 	if (!task_stopped_code(p, ptrace))
1211 		return 0;
1212 
1213 	exit_code = 0;
1214 	spin_lock_irq(&p->sighand->siglock);
1215 
1216 	p_code = task_stopped_code(p, ptrace);
1217 	if (unlikely(!p_code))
1218 		goto unlock_sig;
1219 
1220 	exit_code = *p_code;
1221 	if (!exit_code)
1222 		goto unlock_sig;
1223 
1224 	if (!unlikely(wo->wo_flags & WNOWAIT))
1225 		*p_code = 0;
1226 
1227 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1228 unlock_sig:
1229 	spin_unlock_irq(&p->sighand->siglock);
1230 	if (!exit_code)
1231 		return 0;
1232 
1233 	/*
1234 	 * Now we are pretty sure this task is interesting.
1235 	 * Make sure it doesn't get reaped out from under us while we
1236 	 * give up the lock and then examine it below.  We don't want to
1237 	 * keep holding onto the tasklist_lock while we call getrusage and
1238 	 * possibly take page faults for user memory.
1239 	 */
1240 	get_task_struct(p);
1241 	pid = task_pid_vnr(p);
1242 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1243 	read_unlock(&tasklist_lock);
1244 
1245 	if (unlikely(wo->wo_flags & WNOWAIT))
1246 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1247 
1248 	retval = wo->wo_rusage
1249 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1250 	if (!retval && wo->wo_stat)
1251 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1252 
1253 	infop = wo->wo_info;
1254 	if (!retval && infop)
1255 		retval = put_user(SIGCHLD, &infop->si_signo);
1256 	if (!retval && infop)
1257 		retval = put_user(0, &infop->si_errno);
1258 	if (!retval && infop)
1259 		retval = put_user((short)why, &infop->si_code);
1260 	if (!retval && infop)
1261 		retval = put_user(exit_code, &infop->si_status);
1262 	if (!retval && infop)
1263 		retval = put_user(pid, &infop->si_pid);
1264 	if (!retval && infop)
1265 		retval = put_user(uid, &infop->si_uid);
1266 	if (!retval)
1267 		retval = pid;
1268 	put_task_struct(p);
1269 
1270 	BUG_ON(!retval);
1271 	return retval;
1272 }
1273 
1274 /*
1275  * Handle do_wait work for one task in a live, non-stopped state.
1276  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1277  * the lock and this task is uninteresting.  If we return nonzero, we have
1278  * released the lock and the system call should return.
1279  */
1280 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1281 {
1282 	int retval;
1283 	pid_t pid;
1284 	uid_t uid;
1285 
1286 	if (!unlikely(wo->wo_flags & WCONTINUED))
1287 		return 0;
1288 
1289 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1290 		return 0;
1291 
1292 	spin_lock_irq(&p->sighand->siglock);
1293 	/* Re-check with the lock held.  */
1294 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1295 		spin_unlock_irq(&p->sighand->siglock);
1296 		return 0;
1297 	}
1298 	if (!unlikely(wo->wo_flags & WNOWAIT))
1299 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1300 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1301 	spin_unlock_irq(&p->sighand->siglock);
1302 
1303 	pid = task_pid_vnr(p);
1304 	get_task_struct(p);
1305 	read_unlock(&tasklist_lock);
1306 
1307 	if (!wo->wo_info) {
1308 		retval = wo->wo_rusage
1309 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1310 		put_task_struct(p);
1311 		if (!retval && wo->wo_stat)
1312 			retval = put_user(0xffff, wo->wo_stat);
1313 		if (!retval)
1314 			retval = pid;
1315 	} else {
1316 		retval = wait_noreap_copyout(wo, p, pid, uid,
1317 					     CLD_CONTINUED, SIGCONT);
1318 		BUG_ON(retval == 0);
1319 	}
1320 
1321 	return retval;
1322 }
1323 
1324 /*
1325  * Consider @p for a wait by @parent.
1326  *
1327  * -ECHILD should be in ->notask_error before the first call.
1328  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1329  * Returns zero if the search for a child should continue;
1330  * then ->notask_error is 0 if @p is an eligible child,
1331  * or another error from security_task_wait(), or still -ECHILD.
1332  */
1333 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1334 				struct task_struct *p)
1335 {
1336 	int ret;
1337 
1338 	if (unlikely(p->exit_state == EXIT_DEAD))
1339 		return 0;
1340 
1341 	ret = eligible_child(wo, p);
1342 	if (!ret)
1343 		return ret;
1344 
1345 	ret = security_task_wait(p);
1346 	if (unlikely(ret < 0)) {
1347 		/*
1348 		 * If we have not yet seen any eligible child,
1349 		 * then let this error code replace -ECHILD.
1350 		 * A permission error will give the user a clue
1351 		 * to look for security policy problems, rather
1352 		 * than for mysterious wait bugs.
1353 		 */
1354 		if (wo->notask_error)
1355 			wo->notask_error = ret;
1356 		return 0;
1357 	}
1358 
1359 	if (unlikely(p->exit_state == EXIT_TRACE)) {
1360 		/*
1361 		 * ptrace == 0 means we are the natural parent. In this case
1362 		 * we should clear notask_error, debugger will notify us.
1363 		 */
1364 		if (likely(!ptrace))
1365 			wo->notask_error = 0;
1366 		return 0;
1367 	}
1368 
1369 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1370 		/*
1371 		 * If it is traced by its real parent's group, just pretend
1372 		 * the caller is ptrace_do_wait() and reap this child if it
1373 		 * is zombie.
1374 		 *
1375 		 * This also hides group stop state from real parent; otherwise
1376 		 * a single stop can be reported twice as group and ptrace stop.
1377 		 * If a ptracer wants to distinguish these two events for its
1378 		 * own children it should create a separate process which takes
1379 		 * the role of real parent.
1380 		 */
1381 		if (!ptrace_reparented(p))
1382 			ptrace = 1;
1383 	}
1384 
1385 	/* slay zombie? */
1386 	if (p->exit_state == EXIT_ZOMBIE) {
1387 		/* we don't reap group leaders with subthreads */
1388 		if (!delay_group_leader(p)) {
1389 			/*
1390 			 * A zombie ptracee is only visible to its ptracer.
1391 			 * Notification and reaping will be cascaded to the
1392 			 * real parent when the ptracer detaches.
1393 			 */
1394 			if (unlikely(ptrace) || likely(!p->ptrace))
1395 				return wait_task_zombie(wo, p);
1396 		}
1397 
1398 		/*
1399 		 * Allow access to stopped/continued state via zombie by
1400 		 * falling through.  Clearing of notask_error is complex.
1401 		 *
1402 		 * When !@ptrace:
1403 		 *
1404 		 * If WEXITED is set, notask_error should naturally be
1405 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1406 		 * so, if there are live subthreads, there are events to
1407 		 * wait for.  If all subthreads are dead, it's still safe
1408 		 * to clear - this function will be called again in finite
1409 		 * amount time once all the subthreads are released and
1410 		 * will then return without clearing.
1411 		 *
1412 		 * When @ptrace:
1413 		 *
1414 		 * Stopped state is per-task and thus can't change once the
1415 		 * target task dies.  Only continued and exited can happen.
1416 		 * Clear notask_error if WCONTINUED | WEXITED.
1417 		 */
1418 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1419 			wo->notask_error = 0;
1420 	} else {
1421 		/*
1422 		 * @p is alive and it's gonna stop, continue or exit, so
1423 		 * there always is something to wait for.
1424 		 */
1425 		wo->notask_error = 0;
1426 	}
1427 
1428 	/*
1429 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1430 	 * is used and the two don't interact with each other.
1431 	 */
1432 	ret = wait_task_stopped(wo, ptrace, p);
1433 	if (ret)
1434 		return ret;
1435 
1436 	/*
1437 	 * Wait for continued.  There's only one continued state and the
1438 	 * ptracer can consume it which can confuse the real parent.  Don't
1439 	 * use WCONTINUED from ptracer.  You don't need or want it.
1440 	 */
1441 	return wait_task_continued(wo, p);
1442 }
1443 
1444 /*
1445  * Do the work of do_wait() for one thread in the group, @tsk.
1446  *
1447  * -ECHILD should be in ->notask_error before the first call.
1448  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1449  * Returns zero if the search for a child should continue; then
1450  * ->notask_error is 0 if there were any eligible children,
1451  * or another error from security_task_wait(), or still -ECHILD.
1452  */
1453 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1454 {
1455 	struct task_struct *p;
1456 
1457 	list_for_each_entry(p, &tsk->children, sibling) {
1458 		int ret = wait_consider_task(wo, 0, p);
1459 		if (ret)
1460 			return ret;
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1467 {
1468 	struct task_struct *p;
1469 
1470 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1471 		int ret = wait_consider_task(wo, 1, p);
1472 		if (ret)
1473 			return ret;
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1480 				int sync, void *key)
1481 {
1482 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1483 						child_wait);
1484 	struct task_struct *p = key;
1485 
1486 	if (!eligible_pid(wo, p))
1487 		return 0;
1488 
1489 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1490 		return 0;
1491 
1492 	return default_wake_function(wait, mode, sync, key);
1493 }
1494 
1495 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1496 {
1497 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1498 				TASK_INTERRUPTIBLE, 1, p);
1499 }
1500 
1501 static long do_wait(struct wait_opts *wo)
1502 {
1503 	struct task_struct *tsk;
1504 	int retval;
1505 
1506 	trace_sched_process_wait(wo->wo_pid);
1507 
1508 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1509 	wo->child_wait.private = current;
1510 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1511 repeat:
1512 	/*
1513 	 * If there is nothing that can match our critiera just get out.
1514 	 * We will clear ->notask_error to zero if we see any child that
1515 	 * might later match our criteria, even if we are not able to reap
1516 	 * it yet.
1517 	 */
1518 	wo->notask_error = -ECHILD;
1519 	if ((wo->wo_type < PIDTYPE_MAX) &&
1520 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1521 		goto notask;
1522 
1523 	set_current_state(TASK_INTERRUPTIBLE);
1524 	read_lock(&tasklist_lock);
1525 	tsk = current;
1526 	do {
1527 		retval = do_wait_thread(wo, tsk);
1528 		if (retval)
1529 			goto end;
1530 
1531 		retval = ptrace_do_wait(wo, tsk);
1532 		if (retval)
1533 			goto end;
1534 
1535 		if (wo->wo_flags & __WNOTHREAD)
1536 			break;
1537 	} while_each_thread(current, tsk);
1538 	read_unlock(&tasklist_lock);
1539 
1540 notask:
1541 	retval = wo->notask_error;
1542 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1543 		retval = -ERESTARTSYS;
1544 		if (!signal_pending(current)) {
1545 			schedule();
1546 			goto repeat;
1547 		}
1548 	}
1549 end:
1550 	__set_current_state(TASK_RUNNING);
1551 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1552 	return retval;
1553 }
1554 
1555 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1556 		infop, int, options, struct rusage __user *, ru)
1557 {
1558 	struct wait_opts wo;
1559 	struct pid *pid = NULL;
1560 	enum pid_type type;
1561 	long ret;
1562 
1563 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1564 		return -EINVAL;
1565 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1566 		return -EINVAL;
1567 
1568 	switch (which) {
1569 	case P_ALL:
1570 		type = PIDTYPE_MAX;
1571 		break;
1572 	case P_PID:
1573 		type = PIDTYPE_PID;
1574 		if (upid <= 0)
1575 			return -EINVAL;
1576 		break;
1577 	case P_PGID:
1578 		type = PIDTYPE_PGID;
1579 		if (upid <= 0)
1580 			return -EINVAL;
1581 		break;
1582 	default:
1583 		return -EINVAL;
1584 	}
1585 
1586 	if (type < PIDTYPE_MAX)
1587 		pid = find_get_pid(upid);
1588 
1589 	wo.wo_type	= type;
1590 	wo.wo_pid	= pid;
1591 	wo.wo_flags	= options;
1592 	wo.wo_info	= infop;
1593 	wo.wo_stat	= NULL;
1594 	wo.wo_rusage	= ru;
1595 	ret = do_wait(&wo);
1596 
1597 	if (ret > 0) {
1598 		ret = 0;
1599 	} else if (infop) {
1600 		/*
1601 		 * For a WNOHANG return, clear out all the fields
1602 		 * we would set so the user can easily tell the
1603 		 * difference.
1604 		 */
1605 		if (!ret)
1606 			ret = put_user(0, &infop->si_signo);
1607 		if (!ret)
1608 			ret = put_user(0, &infop->si_errno);
1609 		if (!ret)
1610 			ret = put_user(0, &infop->si_code);
1611 		if (!ret)
1612 			ret = put_user(0, &infop->si_pid);
1613 		if (!ret)
1614 			ret = put_user(0, &infop->si_uid);
1615 		if (!ret)
1616 			ret = put_user(0, &infop->si_status);
1617 	}
1618 
1619 	put_pid(pid);
1620 	return ret;
1621 }
1622 
1623 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1624 		int, options, struct rusage __user *, ru)
1625 {
1626 	struct wait_opts wo;
1627 	struct pid *pid = NULL;
1628 	enum pid_type type;
1629 	long ret;
1630 
1631 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1632 			__WNOTHREAD|__WCLONE|__WALL))
1633 		return -EINVAL;
1634 
1635 	if (upid == -1)
1636 		type = PIDTYPE_MAX;
1637 	else if (upid < 0) {
1638 		type = PIDTYPE_PGID;
1639 		pid = find_get_pid(-upid);
1640 	} else if (upid == 0) {
1641 		type = PIDTYPE_PGID;
1642 		pid = get_task_pid(current, PIDTYPE_PGID);
1643 	} else /* upid > 0 */ {
1644 		type = PIDTYPE_PID;
1645 		pid = find_get_pid(upid);
1646 	}
1647 
1648 	wo.wo_type	= type;
1649 	wo.wo_pid	= pid;
1650 	wo.wo_flags	= options | WEXITED;
1651 	wo.wo_info	= NULL;
1652 	wo.wo_stat	= stat_addr;
1653 	wo.wo_rusage	= ru;
1654 	ret = do_wait(&wo);
1655 	put_pid(pid);
1656 
1657 	return ret;
1658 }
1659 
1660 #ifdef __ARCH_WANT_SYS_WAITPID
1661 
1662 /*
1663  * sys_waitpid() remains for compatibility. waitpid() should be
1664  * implemented by calling sys_wait4() from libc.a.
1665  */
1666 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1667 {
1668 	return sys_wait4(pid, stat_addr, options, NULL);
1669 }
1670 
1671 #endif
1672