xref: /openbmc/linux/kernel/exit.c (revision 8456066a)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 
58 #include <asm/uaccess.h>
59 #include <asm/unistd.h>
60 #include <asm/pgtable.h>
61 #include <asm/mmu_context.h>
62 
63 static void __unhash_process(struct task_struct *p, bool group_dead)
64 {
65 	nr_threads--;
66 	detach_pid(p, PIDTYPE_PID);
67 	if (group_dead) {
68 		detach_pid(p, PIDTYPE_PGID);
69 		detach_pid(p, PIDTYPE_SID);
70 
71 		list_del_rcu(&p->tasks);
72 		list_del_init(&p->sibling);
73 		__this_cpu_dec(process_counts);
74 	}
75 	list_del_rcu(&p->thread_group);
76 	list_del_rcu(&p->thread_node);
77 }
78 
79 /*
80  * This function expects the tasklist_lock write-locked.
81  */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 	struct signal_struct *sig = tsk->signal;
85 	bool group_dead = thread_group_leader(tsk);
86 	struct sighand_struct *sighand;
87 	struct tty_struct *uninitialized_var(tty);
88 	cputime_t utime, stime;
89 
90 	sighand = rcu_dereference_check(tsk->sighand,
91 					lockdep_tasklist_lock_is_held());
92 	spin_lock(&sighand->siglock);
93 
94 	posix_cpu_timers_exit(tsk);
95 	if (group_dead) {
96 		posix_cpu_timers_exit_group(tsk);
97 		tty = sig->tty;
98 		sig->tty = NULL;
99 	} else {
100 		/*
101 		 * This can only happen if the caller is de_thread().
102 		 * FIXME: this is the temporary hack, we should teach
103 		 * posix-cpu-timers to handle this case correctly.
104 		 */
105 		if (unlikely(has_group_leader_pid(tsk)))
106 			posix_cpu_timers_exit_group(tsk);
107 
108 		/*
109 		 * If there is any task waiting for the group exit
110 		 * then notify it:
111 		 */
112 		if (sig->notify_count > 0 && !--sig->notify_count)
113 			wake_up_process(sig->group_exit_task);
114 
115 		if (tsk == sig->curr_target)
116 			sig->curr_target = next_thread(tsk);
117 	}
118 
119 	/*
120 	 * Accumulate here the counters for all threads as they die. We could
121 	 * skip the group leader because it is the last user of signal_struct,
122 	 * but we want to avoid the race with thread_group_cputime() which can
123 	 * see the empty ->thread_head list.
124 	 */
125 	task_cputime(tsk, &utime, &stime);
126 	write_seqlock(&sig->stats_lock);
127 	sig->utime += utime;
128 	sig->stime += stime;
129 	sig->gtime += task_gtime(tsk);
130 	sig->min_flt += tsk->min_flt;
131 	sig->maj_flt += tsk->maj_flt;
132 	sig->nvcsw += tsk->nvcsw;
133 	sig->nivcsw += tsk->nivcsw;
134 	sig->inblock += task_io_get_inblock(tsk);
135 	sig->oublock += task_io_get_oublock(tsk);
136 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
137 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
138 	sig->nr_threads--;
139 	__unhash_process(tsk, group_dead);
140 	write_sequnlock(&sig->stats_lock);
141 
142 	/*
143 	 * Do this under ->siglock, we can race with another thread
144 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 	 */
146 	flush_sigqueue(&tsk->pending);
147 	tsk->sighand = NULL;
148 	spin_unlock(&sighand->siglock);
149 
150 	__cleanup_sighand(sighand);
151 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
152 	if (group_dead) {
153 		flush_sigqueue(&sig->shared_pending);
154 		tty_kref_put(tty);
155 	}
156 }
157 
158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 
162 	perf_event_delayed_put(tsk);
163 	trace_sched_process_free(tsk);
164 	put_task_struct(tsk);
165 }
166 
167 
168 void release_task(struct task_struct *p)
169 {
170 	struct task_struct *leader;
171 	int zap_leader;
172 repeat:
173 	/* don't need to get the RCU readlock here - the process is dead and
174 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 	rcu_read_lock();
176 	atomic_dec(&__task_cred(p)->user->processes);
177 	rcu_read_unlock();
178 
179 	proc_flush_task(p);
180 
181 	write_lock_irq(&tasklist_lock);
182 	ptrace_release_task(p);
183 	__exit_signal(p);
184 
185 	/*
186 	 * If we are the last non-leader member of the thread
187 	 * group, and the leader is zombie, then notify the
188 	 * group leader's parent process. (if it wants notification.)
189 	 */
190 	zap_leader = 0;
191 	leader = p->group_leader;
192 	if (leader != p && thread_group_empty(leader)
193 			&& leader->exit_state == EXIT_ZOMBIE) {
194 		/*
195 		 * If we were the last child thread and the leader has
196 		 * exited already, and the leader's parent ignores SIGCHLD,
197 		 * then we are the one who should release the leader.
198 		 */
199 		zap_leader = do_notify_parent(leader, leader->exit_signal);
200 		if (zap_leader)
201 			leader->exit_state = EXIT_DEAD;
202 	}
203 
204 	write_unlock_irq(&tasklist_lock);
205 	release_thread(p);
206 	call_rcu(&p->rcu, delayed_put_task_struct);
207 
208 	p = leader;
209 	if (unlikely(zap_leader))
210 		goto repeat;
211 }
212 
213 /*
214  * Note that if this function returns a valid task_struct pointer (!NULL)
215  * task->usage must remain >0 for the duration of the RCU critical section.
216  */
217 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
218 {
219 	struct sighand_struct *sighand;
220 	struct task_struct *task;
221 
222 	/*
223 	 * We need to verify that release_task() was not called and thus
224 	 * delayed_put_task_struct() can't run and drop the last reference
225 	 * before rcu_read_unlock(). We check task->sighand != NULL,
226 	 * but we can read the already freed and reused memory.
227 	 */
228 retry:
229 	task = rcu_dereference(*ptask);
230 	if (!task)
231 		return NULL;
232 
233 	probe_kernel_address(&task->sighand, sighand);
234 
235 	/*
236 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
237 	 * was already freed we can not miss the preceding update of this
238 	 * pointer.
239 	 */
240 	smp_rmb();
241 	if (unlikely(task != READ_ONCE(*ptask)))
242 		goto retry;
243 
244 	/*
245 	 * We've re-checked that "task == *ptask", now we have two different
246 	 * cases:
247 	 *
248 	 * 1. This is actually the same task/task_struct. In this case
249 	 *    sighand != NULL tells us it is still alive.
250 	 *
251 	 * 2. This is another task which got the same memory for task_struct.
252 	 *    We can't know this of course, and we can not trust
253 	 *    sighand != NULL.
254 	 *
255 	 *    In this case we actually return a random value, but this is
256 	 *    correct.
257 	 *
258 	 *    If we return NULL - we can pretend that we actually noticed that
259 	 *    *ptask was updated when the previous task has exited. Or pretend
260 	 *    that probe_slab_address(&sighand) reads NULL.
261 	 *
262 	 *    If we return the new task (because sighand is not NULL for any
263 	 *    reason) - this is fine too. This (new) task can't go away before
264 	 *    another gp pass.
265 	 *
266 	 *    And note: We could even eliminate the false positive if re-read
267 	 *    task->sighand once again to avoid the falsely NULL. But this case
268 	 *    is very unlikely so we don't care.
269 	 */
270 	if (!sighand)
271 		return NULL;
272 
273 	return task;
274 }
275 
276 struct task_struct *try_get_task_struct(struct task_struct **ptask)
277 {
278 	struct task_struct *task;
279 
280 	rcu_read_lock();
281 	task = task_rcu_dereference(ptask);
282 	if (task)
283 		get_task_struct(task);
284 	rcu_read_unlock();
285 
286 	return task;
287 }
288 
289 /*
290  * Determine if a process group is "orphaned", according to the POSIX
291  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
292  * by terminal-generated stop signals.  Newly orphaned process groups are
293  * to receive a SIGHUP and a SIGCONT.
294  *
295  * "I ask you, have you ever known what it is to be an orphan?"
296  */
297 static int will_become_orphaned_pgrp(struct pid *pgrp,
298 					struct task_struct *ignored_task)
299 {
300 	struct task_struct *p;
301 
302 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
303 		if ((p == ignored_task) ||
304 		    (p->exit_state && thread_group_empty(p)) ||
305 		    is_global_init(p->real_parent))
306 			continue;
307 
308 		if (task_pgrp(p->real_parent) != pgrp &&
309 		    task_session(p->real_parent) == task_session(p))
310 			return 0;
311 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
312 
313 	return 1;
314 }
315 
316 int is_current_pgrp_orphaned(void)
317 {
318 	int retval;
319 
320 	read_lock(&tasklist_lock);
321 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
322 	read_unlock(&tasklist_lock);
323 
324 	return retval;
325 }
326 
327 static bool has_stopped_jobs(struct pid *pgrp)
328 {
329 	struct task_struct *p;
330 
331 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
333 			return true;
334 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
335 
336 	return false;
337 }
338 
339 /*
340  * Check to see if any process groups have become orphaned as
341  * a result of our exiting, and if they have any stopped jobs,
342  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
343  */
344 static void
345 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
346 {
347 	struct pid *pgrp = task_pgrp(tsk);
348 	struct task_struct *ignored_task = tsk;
349 
350 	if (!parent)
351 		/* exit: our father is in a different pgrp than
352 		 * we are and we were the only connection outside.
353 		 */
354 		parent = tsk->real_parent;
355 	else
356 		/* reparent: our child is in a different pgrp than
357 		 * we are, and it was the only connection outside.
358 		 */
359 		ignored_task = NULL;
360 
361 	if (task_pgrp(parent) != pgrp &&
362 	    task_session(parent) == task_session(tsk) &&
363 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
364 	    has_stopped_jobs(pgrp)) {
365 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
366 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
367 	}
368 }
369 
370 #ifdef CONFIG_MEMCG
371 /*
372  * A task is exiting.   If it owned this mm, find a new owner for the mm.
373  */
374 void mm_update_next_owner(struct mm_struct *mm)
375 {
376 	struct task_struct *c, *g, *p = current;
377 
378 retry:
379 	/*
380 	 * If the exiting or execing task is not the owner, it's
381 	 * someone else's problem.
382 	 */
383 	if (mm->owner != p)
384 		return;
385 	/*
386 	 * The current owner is exiting/execing and there are no other
387 	 * candidates.  Do not leave the mm pointing to a possibly
388 	 * freed task structure.
389 	 */
390 	if (atomic_read(&mm->mm_users) <= 1) {
391 		mm->owner = NULL;
392 		return;
393 	}
394 
395 	read_lock(&tasklist_lock);
396 	/*
397 	 * Search in the children
398 	 */
399 	list_for_each_entry(c, &p->children, sibling) {
400 		if (c->mm == mm)
401 			goto assign_new_owner;
402 	}
403 
404 	/*
405 	 * Search in the siblings
406 	 */
407 	list_for_each_entry(c, &p->real_parent->children, sibling) {
408 		if (c->mm == mm)
409 			goto assign_new_owner;
410 	}
411 
412 	/*
413 	 * Search through everything else, we should not get here often.
414 	 */
415 	for_each_process(g) {
416 		if (g->flags & PF_KTHREAD)
417 			continue;
418 		for_each_thread(g, c) {
419 			if (c->mm == mm)
420 				goto assign_new_owner;
421 			if (c->mm)
422 				break;
423 		}
424 	}
425 	read_unlock(&tasklist_lock);
426 	/*
427 	 * We found no owner yet mm_users > 1: this implies that we are
428 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
429 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
430 	 */
431 	mm->owner = NULL;
432 	return;
433 
434 assign_new_owner:
435 	BUG_ON(c == p);
436 	get_task_struct(c);
437 	/*
438 	 * The task_lock protects c->mm from changing.
439 	 * We always want mm->owner->mm == mm
440 	 */
441 	task_lock(c);
442 	/*
443 	 * Delay read_unlock() till we have the task_lock()
444 	 * to ensure that c does not slip away underneath us
445 	 */
446 	read_unlock(&tasklist_lock);
447 	if (c->mm != mm) {
448 		task_unlock(c);
449 		put_task_struct(c);
450 		goto retry;
451 	}
452 	mm->owner = c;
453 	task_unlock(c);
454 	put_task_struct(c);
455 }
456 #endif /* CONFIG_MEMCG */
457 
458 /*
459  * Turn us into a lazy TLB process if we
460  * aren't already..
461  */
462 static void exit_mm(struct task_struct *tsk)
463 {
464 	struct mm_struct *mm = tsk->mm;
465 	struct core_state *core_state;
466 
467 	mm_release(tsk, mm);
468 	if (!mm)
469 		return;
470 	sync_mm_rss(mm);
471 	/*
472 	 * Serialize with any possible pending coredump.
473 	 * We must hold mmap_sem around checking core_state
474 	 * and clearing tsk->mm.  The core-inducing thread
475 	 * will increment ->nr_threads for each thread in the
476 	 * group with ->mm != NULL.
477 	 */
478 	down_read(&mm->mmap_sem);
479 	core_state = mm->core_state;
480 	if (core_state) {
481 		struct core_thread self;
482 
483 		up_read(&mm->mmap_sem);
484 
485 		self.task = tsk;
486 		self.next = xchg(&core_state->dumper.next, &self);
487 		/*
488 		 * Implies mb(), the result of xchg() must be visible
489 		 * to core_state->dumper.
490 		 */
491 		if (atomic_dec_and_test(&core_state->nr_threads))
492 			complete(&core_state->startup);
493 
494 		for (;;) {
495 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
496 			if (!self.task) /* see coredump_finish() */
497 				break;
498 			freezable_schedule();
499 		}
500 		__set_task_state(tsk, TASK_RUNNING);
501 		down_read(&mm->mmap_sem);
502 	}
503 	atomic_inc(&mm->mm_count);
504 	BUG_ON(mm != tsk->active_mm);
505 	/* more a memory barrier than a real lock */
506 	task_lock(tsk);
507 	tsk->mm = NULL;
508 	up_read(&mm->mmap_sem);
509 	enter_lazy_tlb(mm, current);
510 	task_unlock(tsk);
511 	mm_update_next_owner(mm);
512 	mmput(mm);
513 	if (test_thread_flag(TIF_MEMDIE))
514 		exit_oom_victim();
515 }
516 
517 static struct task_struct *find_alive_thread(struct task_struct *p)
518 {
519 	struct task_struct *t;
520 
521 	for_each_thread(p, t) {
522 		if (!(t->flags & PF_EXITING))
523 			return t;
524 	}
525 	return NULL;
526 }
527 
528 static struct task_struct *find_child_reaper(struct task_struct *father)
529 	__releases(&tasklist_lock)
530 	__acquires(&tasklist_lock)
531 {
532 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
533 	struct task_struct *reaper = pid_ns->child_reaper;
534 
535 	if (likely(reaper != father))
536 		return reaper;
537 
538 	reaper = find_alive_thread(father);
539 	if (reaper) {
540 		pid_ns->child_reaper = reaper;
541 		return reaper;
542 	}
543 
544 	write_unlock_irq(&tasklist_lock);
545 	if (unlikely(pid_ns == &init_pid_ns)) {
546 		panic("Attempted to kill init! exitcode=0x%08x\n",
547 			father->signal->group_exit_code ?: father->exit_code);
548 	}
549 	zap_pid_ns_processes(pid_ns);
550 	write_lock_irq(&tasklist_lock);
551 
552 	return father;
553 }
554 
555 /*
556  * When we die, we re-parent all our children, and try to:
557  * 1. give them to another thread in our thread group, if such a member exists
558  * 2. give it to the first ancestor process which prctl'd itself as a
559  *    child_subreaper for its children (like a service manager)
560  * 3. give it to the init process (PID 1) in our pid namespace
561  */
562 static struct task_struct *find_new_reaper(struct task_struct *father,
563 					   struct task_struct *child_reaper)
564 {
565 	struct task_struct *thread, *reaper;
566 
567 	thread = find_alive_thread(father);
568 	if (thread)
569 		return thread;
570 
571 	if (father->signal->has_child_subreaper) {
572 		/*
573 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
574 		 * We start from father to ensure we can not look into another
575 		 * namespace, this is safe because all its threads are dead.
576 		 */
577 		for (reaper = father;
578 		     !same_thread_group(reaper, child_reaper);
579 		     reaper = reaper->real_parent) {
580 			/* call_usermodehelper() descendants need this check */
581 			if (reaper == &init_task)
582 				break;
583 			if (!reaper->signal->is_child_subreaper)
584 				continue;
585 			thread = find_alive_thread(reaper);
586 			if (thread)
587 				return thread;
588 		}
589 	}
590 
591 	return child_reaper;
592 }
593 
594 /*
595 * Any that need to be release_task'd are put on the @dead list.
596  */
597 static void reparent_leader(struct task_struct *father, struct task_struct *p,
598 				struct list_head *dead)
599 {
600 	if (unlikely(p->exit_state == EXIT_DEAD))
601 		return;
602 
603 	/* We don't want people slaying init. */
604 	p->exit_signal = SIGCHLD;
605 
606 	/* If it has exited notify the new parent about this child's death. */
607 	if (!p->ptrace &&
608 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
609 		if (do_notify_parent(p, p->exit_signal)) {
610 			p->exit_state = EXIT_DEAD;
611 			list_add(&p->ptrace_entry, dead);
612 		}
613 	}
614 
615 	kill_orphaned_pgrp(p, father);
616 }
617 
618 /*
619  * This does two things:
620  *
621  * A.  Make init inherit all the child processes
622  * B.  Check to see if any process groups have become orphaned
623  *	as a result of our exiting, and if they have any stopped
624  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
625  */
626 static void forget_original_parent(struct task_struct *father,
627 					struct list_head *dead)
628 {
629 	struct task_struct *p, *t, *reaper;
630 
631 	if (unlikely(!list_empty(&father->ptraced)))
632 		exit_ptrace(father, dead);
633 
634 	/* Can drop and reacquire tasklist_lock */
635 	reaper = find_child_reaper(father);
636 	if (list_empty(&father->children))
637 		return;
638 
639 	reaper = find_new_reaper(father, reaper);
640 	list_for_each_entry(p, &father->children, sibling) {
641 		for_each_thread(p, t) {
642 			t->real_parent = reaper;
643 			BUG_ON((!t->ptrace) != (t->parent == father));
644 			if (likely(!t->ptrace))
645 				t->parent = t->real_parent;
646 			if (t->pdeath_signal)
647 				group_send_sig_info(t->pdeath_signal,
648 						    SEND_SIG_NOINFO, t);
649 		}
650 		/*
651 		 * If this is a threaded reparent there is no need to
652 		 * notify anyone anything has happened.
653 		 */
654 		if (!same_thread_group(reaper, father))
655 			reparent_leader(father, p, dead);
656 	}
657 	list_splice_tail_init(&father->children, &reaper->children);
658 }
659 
660 /*
661  * Send signals to all our closest relatives so that they know
662  * to properly mourn us..
663  */
664 static void exit_notify(struct task_struct *tsk, int group_dead)
665 {
666 	bool autoreap;
667 	struct task_struct *p, *n;
668 	LIST_HEAD(dead);
669 
670 	write_lock_irq(&tasklist_lock);
671 	forget_original_parent(tsk, &dead);
672 
673 	if (group_dead)
674 		kill_orphaned_pgrp(tsk->group_leader, NULL);
675 
676 	if (unlikely(tsk->ptrace)) {
677 		int sig = thread_group_leader(tsk) &&
678 				thread_group_empty(tsk) &&
679 				!ptrace_reparented(tsk) ?
680 			tsk->exit_signal : SIGCHLD;
681 		autoreap = do_notify_parent(tsk, sig);
682 	} else if (thread_group_leader(tsk)) {
683 		autoreap = thread_group_empty(tsk) &&
684 			do_notify_parent(tsk, tsk->exit_signal);
685 	} else {
686 		autoreap = true;
687 	}
688 
689 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
690 	if (tsk->exit_state == EXIT_DEAD)
691 		list_add(&tsk->ptrace_entry, &dead);
692 
693 	/* mt-exec, de_thread() is waiting for group leader */
694 	if (unlikely(tsk->signal->notify_count < 0))
695 		wake_up_process(tsk->signal->group_exit_task);
696 	write_unlock_irq(&tasklist_lock);
697 
698 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
699 		list_del_init(&p->ptrace_entry);
700 		release_task(p);
701 	}
702 }
703 
704 #ifdef CONFIG_DEBUG_STACK_USAGE
705 static void check_stack_usage(void)
706 {
707 	static DEFINE_SPINLOCK(low_water_lock);
708 	static int lowest_to_date = THREAD_SIZE;
709 	unsigned long free;
710 
711 	free = stack_not_used(current);
712 
713 	if (free >= lowest_to_date)
714 		return;
715 
716 	spin_lock(&low_water_lock);
717 	if (free < lowest_to_date) {
718 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
719 			current->comm, task_pid_nr(current), free);
720 		lowest_to_date = free;
721 	}
722 	spin_unlock(&low_water_lock);
723 }
724 #else
725 static inline void check_stack_usage(void) {}
726 #endif
727 
728 void __noreturn do_exit(long code)
729 {
730 	struct task_struct *tsk = current;
731 	int group_dead;
732 	TASKS_RCU(int tasks_rcu_i);
733 
734 	profile_task_exit(tsk);
735 	kcov_task_exit(tsk);
736 
737 	WARN_ON(blk_needs_flush_plug(tsk));
738 
739 	if (unlikely(in_interrupt()))
740 		panic("Aiee, killing interrupt handler!");
741 	if (unlikely(!tsk->pid))
742 		panic("Attempted to kill the idle task!");
743 
744 	/*
745 	 * If do_exit is called because this processes oopsed, it's possible
746 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
747 	 * continuing. Amongst other possible reasons, this is to prevent
748 	 * mm_release()->clear_child_tid() from writing to a user-controlled
749 	 * kernel address.
750 	 */
751 	set_fs(USER_DS);
752 
753 	ptrace_event(PTRACE_EVENT_EXIT, code);
754 
755 	validate_creds_for_do_exit(tsk);
756 
757 	/*
758 	 * We're taking recursive faults here in do_exit. Safest is to just
759 	 * leave this task alone and wait for reboot.
760 	 */
761 	if (unlikely(tsk->flags & PF_EXITING)) {
762 		pr_alert("Fixing recursive fault but reboot is needed!\n");
763 		/*
764 		 * We can do this unlocked here. The futex code uses
765 		 * this flag just to verify whether the pi state
766 		 * cleanup has been done or not. In the worst case it
767 		 * loops once more. We pretend that the cleanup was
768 		 * done as there is no way to return. Either the
769 		 * OWNER_DIED bit is set by now or we push the blocked
770 		 * task into the wait for ever nirwana as well.
771 		 */
772 		tsk->flags |= PF_EXITPIDONE;
773 		set_current_state(TASK_UNINTERRUPTIBLE);
774 		schedule();
775 	}
776 
777 	exit_signals(tsk);  /* sets PF_EXITING */
778 	/*
779 	 * Ensure that all new tsk->pi_lock acquisitions must observe
780 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
781 	 */
782 	smp_mb();
783 	/*
784 	 * Ensure that we must observe the pi_state in exit_mm() ->
785 	 * mm_release() -> exit_pi_state_list().
786 	 */
787 	raw_spin_unlock_wait(&tsk->pi_lock);
788 
789 	if (unlikely(in_atomic())) {
790 		pr_info("note: %s[%d] exited with preempt_count %d\n",
791 			current->comm, task_pid_nr(current),
792 			preempt_count());
793 		preempt_count_set(PREEMPT_ENABLED);
794 	}
795 
796 	/* sync mm's RSS info before statistics gathering */
797 	if (tsk->mm)
798 		sync_mm_rss(tsk->mm);
799 	acct_update_integrals(tsk);
800 	group_dead = atomic_dec_and_test(&tsk->signal->live);
801 	if (group_dead) {
802 		hrtimer_cancel(&tsk->signal->real_timer);
803 		exit_itimers(tsk->signal);
804 		if (tsk->mm)
805 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
806 	}
807 	acct_collect(code, group_dead);
808 	if (group_dead)
809 		tty_audit_exit();
810 	audit_free(tsk);
811 
812 	tsk->exit_code = code;
813 	taskstats_exit(tsk, group_dead);
814 
815 	exit_mm(tsk);
816 
817 	if (group_dead)
818 		acct_process();
819 	trace_sched_process_exit(tsk);
820 
821 	exit_sem(tsk);
822 	exit_shm(tsk);
823 	exit_files(tsk);
824 	exit_fs(tsk);
825 	if (group_dead)
826 		disassociate_ctty(1);
827 	exit_task_namespaces(tsk);
828 	exit_task_work(tsk);
829 	exit_thread(tsk);
830 
831 	/*
832 	 * Flush inherited counters to the parent - before the parent
833 	 * gets woken up by child-exit notifications.
834 	 *
835 	 * because of cgroup mode, must be called before cgroup_exit()
836 	 */
837 	perf_event_exit_task(tsk);
838 
839 	sched_autogroup_exit_task(tsk);
840 	cgroup_exit(tsk);
841 
842 	/*
843 	 * FIXME: do that only when needed, using sched_exit tracepoint
844 	 */
845 	flush_ptrace_hw_breakpoint(tsk);
846 
847 	TASKS_RCU(preempt_disable());
848 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
849 	TASKS_RCU(preempt_enable());
850 	exit_notify(tsk, group_dead);
851 	proc_exit_connector(tsk);
852 	mpol_put_task_policy(tsk);
853 #ifdef CONFIG_FUTEX
854 	if (unlikely(current->pi_state_cache))
855 		kfree(current->pi_state_cache);
856 #endif
857 	/*
858 	 * Make sure we are holding no locks:
859 	 */
860 	debug_check_no_locks_held();
861 	/*
862 	 * We can do this unlocked here. The futex code uses this flag
863 	 * just to verify whether the pi state cleanup has been done
864 	 * or not. In the worst case it loops once more.
865 	 */
866 	tsk->flags |= PF_EXITPIDONE;
867 
868 	if (tsk->io_context)
869 		exit_io_context(tsk);
870 
871 	if (tsk->splice_pipe)
872 		free_pipe_info(tsk->splice_pipe);
873 
874 	if (tsk->task_frag.page)
875 		put_page(tsk->task_frag.page);
876 
877 	validate_creds_for_do_exit(tsk);
878 
879 	check_stack_usage();
880 	preempt_disable();
881 	if (tsk->nr_dirtied)
882 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
883 	exit_rcu();
884 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
885 
886 	do_task_dead();
887 }
888 EXPORT_SYMBOL_GPL(do_exit);
889 
890 void complete_and_exit(struct completion *comp, long code)
891 {
892 	if (comp)
893 		complete(comp);
894 
895 	do_exit(code);
896 }
897 EXPORT_SYMBOL(complete_and_exit);
898 
899 SYSCALL_DEFINE1(exit, int, error_code)
900 {
901 	do_exit((error_code&0xff)<<8);
902 }
903 
904 /*
905  * Take down every thread in the group.  This is called by fatal signals
906  * as well as by sys_exit_group (below).
907  */
908 void
909 do_group_exit(int exit_code)
910 {
911 	struct signal_struct *sig = current->signal;
912 
913 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
914 
915 	if (signal_group_exit(sig))
916 		exit_code = sig->group_exit_code;
917 	else if (!thread_group_empty(current)) {
918 		struct sighand_struct *const sighand = current->sighand;
919 
920 		spin_lock_irq(&sighand->siglock);
921 		if (signal_group_exit(sig))
922 			/* Another thread got here before we took the lock.  */
923 			exit_code = sig->group_exit_code;
924 		else {
925 			sig->group_exit_code = exit_code;
926 			sig->flags = SIGNAL_GROUP_EXIT;
927 			zap_other_threads(current);
928 		}
929 		spin_unlock_irq(&sighand->siglock);
930 	}
931 
932 	do_exit(exit_code);
933 	/* NOTREACHED */
934 }
935 
936 /*
937  * this kills every thread in the thread group. Note that any externally
938  * wait4()-ing process will get the correct exit code - even if this
939  * thread is not the thread group leader.
940  */
941 SYSCALL_DEFINE1(exit_group, int, error_code)
942 {
943 	do_group_exit((error_code & 0xff) << 8);
944 	/* NOTREACHED */
945 	return 0;
946 }
947 
948 struct wait_opts {
949 	enum pid_type		wo_type;
950 	int			wo_flags;
951 	struct pid		*wo_pid;
952 
953 	struct siginfo __user	*wo_info;
954 	int __user		*wo_stat;
955 	struct rusage __user	*wo_rusage;
956 
957 	wait_queue_t		child_wait;
958 	int			notask_error;
959 };
960 
961 static inline
962 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
963 {
964 	if (type != PIDTYPE_PID)
965 		task = task->group_leader;
966 	return task->pids[type].pid;
967 }
968 
969 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
970 {
971 	return	wo->wo_type == PIDTYPE_MAX ||
972 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
973 }
974 
975 static int
976 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
977 {
978 	if (!eligible_pid(wo, p))
979 		return 0;
980 
981 	/*
982 	 * Wait for all children (clone and not) if __WALL is set or
983 	 * if it is traced by us.
984 	 */
985 	if (ptrace || (wo->wo_flags & __WALL))
986 		return 1;
987 
988 	/*
989 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
990 	 * otherwise, wait for non-clone children *only*.
991 	 *
992 	 * Note: a "clone" child here is one that reports to its parent
993 	 * using a signal other than SIGCHLD, or a non-leader thread which
994 	 * we can only see if it is traced by us.
995 	 */
996 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
997 		return 0;
998 
999 	return 1;
1000 }
1001 
1002 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1003 				pid_t pid, uid_t uid, int why, int status)
1004 {
1005 	struct siginfo __user *infop;
1006 	int retval = wo->wo_rusage
1007 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1008 
1009 	put_task_struct(p);
1010 	infop = wo->wo_info;
1011 	if (infop) {
1012 		if (!retval)
1013 			retval = put_user(SIGCHLD, &infop->si_signo);
1014 		if (!retval)
1015 			retval = put_user(0, &infop->si_errno);
1016 		if (!retval)
1017 			retval = put_user((short)why, &infop->si_code);
1018 		if (!retval)
1019 			retval = put_user(pid, &infop->si_pid);
1020 		if (!retval)
1021 			retval = put_user(uid, &infop->si_uid);
1022 		if (!retval)
1023 			retval = put_user(status, &infop->si_status);
1024 	}
1025 	if (!retval)
1026 		retval = pid;
1027 	return retval;
1028 }
1029 
1030 /*
1031  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1032  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1033  * the lock and this task is uninteresting.  If we return nonzero, we have
1034  * released the lock and the system call should return.
1035  */
1036 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1037 {
1038 	int state, retval, status;
1039 	pid_t pid = task_pid_vnr(p);
1040 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1041 	struct siginfo __user *infop;
1042 
1043 	if (!likely(wo->wo_flags & WEXITED))
1044 		return 0;
1045 
1046 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1047 		int exit_code = p->exit_code;
1048 		int why;
1049 
1050 		get_task_struct(p);
1051 		read_unlock(&tasklist_lock);
1052 		sched_annotate_sleep();
1053 
1054 		if ((exit_code & 0x7f) == 0) {
1055 			why = CLD_EXITED;
1056 			status = exit_code >> 8;
1057 		} else {
1058 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1059 			status = exit_code & 0x7f;
1060 		}
1061 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1062 	}
1063 	/*
1064 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1065 	 */
1066 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1067 		EXIT_TRACE : EXIT_DEAD;
1068 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1069 		return 0;
1070 	/*
1071 	 * We own this thread, nobody else can reap it.
1072 	 */
1073 	read_unlock(&tasklist_lock);
1074 	sched_annotate_sleep();
1075 
1076 	/*
1077 	 * Check thread_group_leader() to exclude the traced sub-threads.
1078 	 */
1079 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1080 		struct signal_struct *sig = p->signal;
1081 		struct signal_struct *psig = current->signal;
1082 		unsigned long maxrss;
1083 		cputime_t tgutime, tgstime;
1084 
1085 		/*
1086 		 * The resource counters for the group leader are in its
1087 		 * own task_struct.  Those for dead threads in the group
1088 		 * are in its signal_struct, as are those for the child
1089 		 * processes it has previously reaped.  All these
1090 		 * accumulate in the parent's signal_struct c* fields.
1091 		 *
1092 		 * We don't bother to take a lock here to protect these
1093 		 * p->signal fields because the whole thread group is dead
1094 		 * and nobody can change them.
1095 		 *
1096 		 * psig->stats_lock also protects us from our sub-theads
1097 		 * which can reap other children at the same time. Until
1098 		 * we change k_getrusage()-like users to rely on this lock
1099 		 * we have to take ->siglock as well.
1100 		 *
1101 		 * We use thread_group_cputime_adjusted() to get times for
1102 		 * the thread group, which consolidates times for all threads
1103 		 * in the group including the group leader.
1104 		 */
1105 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1106 		spin_lock_irq(&current->sighand->siglock);
1107 		write_seqlock(&psig->stats_lock);
1108 		psig->cutime += tgutime + sig->cutime;
1109 		psig->cstime += tgstime + sig->cstime;
1110 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1111 		psig->cmin_flt +=
1112 			p->min_flt + sig->min_flt + sig->cmin_flt;
1113 		psig->cmaj_flt +=
1114 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1115 		psig->cnvcsw +=
1116 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1117 		psig->cnivcsw +=
1118 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1119 		psig->cinblock +=
1120 			task_io_get_inblock(p) +
1121 			sig->inblock + sig->cinblock;
1122 		psig->coublock +=
1123 			task_io_get_oublock(p) +
1124 			sig->oublock + sig->coublock;
1125 		maxrss = max(sig->maxrss, sig->cmaxrss);
1126 		if (psig->cmaxrss < maxrss)
1127 			psig->cmaxrss = maxrss;
1128 		task_io_accounting_add(&psig->ioac, &p->ioac);
1129 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1130 		write_sequnlock(&psig->stats_lock);
1131 		spin_unlock_irq(&current->sighand->siglock);
1132 	}
1133 
1134 	retval = wo->wo_rusage
1135 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1136 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1137 		? p->signal->group_exit_code : p->exit_code;
1138 	if (!retval && wo->wo_stat)
1139 		retval = put_user(status, wo->wo_stat);
1140 
1141 	infop = wo->wo_info;
1142 	if (!retval && infop)
1143 		retval = put_user(SIGCHLD, &infop->si_signo);
1144 	if (!retval && infop)
1145 		retval = put_user(0, &infop->si_errno);
1146 	if (!retval && infop) {
1147 		int why;
1148 
1149 		if ((status & 0x7f) == 0) {
1150 			why = CLD_EXITED;
1151 			status >>= 8;
1152 		} else {
1153 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1154 			status &= 0x7f;
1155 		}
1156 		retval = put_user((short)why, &infop->si_code);
1157 		if (!retval)
1158 			retval = put_user(status, &infop->si_status);
1159 	}
1160 	if (!retval && infop)
1161 		retval = put_user(pid, &infop->si_pid);
1162 	if (!retval && infop)
1163 		retval = put_user(uid, &infop->si_uid);
1164 	if (!retval)
1165 		retval = pid;
1166 
1167 	if (state == EXIT_TRACE) {
1168 		write_lock_irq(&tasklist_lock);
1169 		/* We dropped tasklist, ptracer could die and untrace */
1170 		ptrace_unlink(p);
1171 
1172 		/* If parent wants a zombie, don't release it now */
1173 		state = EXIT_ZOMBIE;
1174 		if (do_notify_parent(p, p->exit_signal))
1175 			state = EXIT_DEAD;
1176 		p->exit_state = state;
1177 		write_unlock_irq(&tasklist_lock);
1178 	}
1179 	if (state == EXIT_DEAD)
1180 		release_task(p);
1181 
1182 	return retval;
1183 }
1184 
1185 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1186 {
1187 	if (ptrace) {
1188 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1189 			return &p->exit_code;
1190 	} else {
1191 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1192 			return &p->signal->group_exit_code;
1193 	}
1194 	return NULL;
1195 }
1196 
1197 /**
1198  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1199  * @wo: wait options
1200  * @ptrace: is the wait for ptrace
1201  * @p: task to wait for
1202  *
1203  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1204  *
1205  * CONTEXT:
1206  * read_lock(&tasklist_lock), which is released if return value is
1207  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1208  *
1209  * RETURNS:
1210  * 0 if wait condition didn't exist and search for other wait conditions
1211  * should continue.  Non-zero return, -errno on failure and @p's pid on
1212  * success, implies that tasklist_lock is released and wait condition
1213  * search should terminate.
1214  */
1215 static int wait_task_stopped(struct wait_opts *wo,
1216 				int ptrace, struct task_struct *p)
1217 {
1218 	struct siginfo __user *infop;
1219 	int retval, exit_code, *p_code, why;
1220 	uid_t uid = 0; /* unneeded, required by compiler */
1221 	pid_t pid;
1222 
1223 	/*
1224 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1225 	 */
1226 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1227 		return 0;
1228 
1229 	if (!task_stopped_code(p, ptrace))
1230 		return 0;
1231 
1232 	exit_code = 0;
1233 	spin_lock_irq(&p->sighand->siglock);
1234 
1235 	p_code = task_stopped_code(p, ptrace);
1236 	if (unlikely(!p_code))
1237 		goto unlock_sig;
1238 
1239 	exit_code = *p_code;
1240 	if (!exit_code)
1241 		goto unlock_sig;
1242 
1243 	if (!unlikely(wo->wo_flags & WNOWAIT))
1244 		*p_code = 0;
1245 
1246 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1247 unlock_sig:
1248 	spin_unlock_irq(&p->sighand->siglock);
1249 	if (!exit_code)
1250 		return 0;
1251 
1252 	/*
1253 	 * Now we are pretty sure this task is interesting.
1254 	 * Make sure it doesn't get reaped out from under us while we
1255 	 * give up the lock and then examine it below.  We don't want to
1256 	 * keep holding onto the tasklist_lock while we call getrusage and
1257 	 * possibly take page faults for user memory.
1258 	 */
1259 	get_task_struct(p);
1260 	pid = task_pid_vnr(p);
1261 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1262 	read_unlock(&tasklist_lock);
1263 	sched_annotate_sleep();
1264 
1265 	if (unlikely(wo->wo_flags & WNOWAIT))
1266 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1267 
1268 	retval = wo->wo_rusage
1269 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1270 	if (!retval && wo->wo_stat)
1271 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1272 
1273 	infop = wo->wo_info;
1274 	if (!retval && infop)
1275 		retval = put_user(SIGCHLD, &infop->si_signo);
1276 	if (!retval && infop)
1277 		retval = put_user(0, &infop->si_errno);
1278 	if (!retval && infop)
1279 		retval = put_user((short)why, &infop->si_code);
1280 	if (!retval && infop)
1281 		retval = put_user(exit_code, &infop->si_status);
1282 	if (!retval && infop)
1283 		retval = put_user(pid, &infop->si_pid);
1284 	if (!retval && infop)
1285 		retval = put_user(uid, &infop->si_uid);
1286 	if (!retval)
1287 		retval = pid;
1288 	put_task_struct(p);
1289 
1290 	BUG_ON(!retval);
1291 	return retval;
1292 }
1293 
1294 /*
1295  * Handle do_wait work for one task in a live, non-stopped state.
1296  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1297  * the lock and this task is uninteresting.  If we return nonzero, we have
1298  * released the lock and the system call should return.
1299  */
1300 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1301 {
1302 	int retval;
1303 	pid_t pid;
1304 	uid_t uid;
1305 
1306 	if (!unlikely(wo->wo_flags & WCONTINUED))
1307 		return 0;
1308 
1309 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1310 		return 0;
1311 
1312 	spin_lock_irq(&p->sighand->siglock);
1313 	/* Re-check with the lock held.  */
1314 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1315 		spin_unlock_irq(&p->sighand->siglock);
1316 		return 0;
1317 	}
1318 	if (!unlikely(wo->wo_flags & WNOWAIT))
1319 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1320 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1321 	spin_unlock_irq(&p->sighand->siglock);
1322 
1323 	pid = task_pid_vnr(p);
1324 	get_task_struct(p);
1325 	read_unlock(&tasklist_lock);
1326 	sched_annotate_sleep();
1327 
1328 	if (!wo->wo_info) {
1329 		retval = wo->wo_rusage
1330 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1331 		put_task_struct(p);
1332 		if (!retval && wo->wo_stat)
1333 			retval = put_user(0xffff, wo->wo_stat);
1334 		if (!retval)
1335 			retval = pid;
1336 	} else {
1337 		retval = wait_noreap_copyout(wo, p, pid, uid,
1338 					     CLD_CONTINUED, SIGCONT);
1339 		BUG_ON(retval == 0);
1340 	}
1341 
1342 	return retval;
1343 }
1344 
1345 /*
1346  * Consider @p for a wait by @parent.
1347  *
1348  * -ECHILD should be in ->notask_error before the first call.
1349  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1350  * Returns zero if the search for a child should continue;
1351  * then ->notask_error is 0 if @p is an eligible child,
1352  * or another error from security_task_wait(), or still -ECHILD.
1353  */
1354 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1355 				struct task_struct *p)
1356 {
1357 	/*
1358 	 * We can race with wait_task_zombie() from another thread.
1359 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1360 	 * can't confuse the checks below.
1361 	 */
1362 	int exit_state = ACCESS_ONCE(p->exit_state);
1363 	int ret;
1364 
1365 	if (unlikely(exit_state == EXIT_DEAD))
1366 		return 0;
1367 
1368 	ret = eligible_child(wo, ptrace, p);
1369 	if (!ret)
1370 		return ret;
1371 
1372 	ret = security_task_wait(p);
1373 	if (unlikely(ret < 0)) {
1374 		/*
1375 		 * If we have not yet seen any eligible child,
1376 		 * then let this error code replace -ECHILD.
1377 		 * A permission error will give the user a clue
1378 		 * to look for security policy problems, rather
1379 		 * than for mysterious wait bugs.
1380 		 */
1381 		if (wo->notask_error)
1382 			wo->notask_error = ret;
1383 		return 0;
1384 	}
1385 
1386 	if (unlikely(exit_state == EXIT_TRACE)) {
1387 		/*
1388 		 * ptrace == 0 means we are the natural parent. In this case
1389 		 * we should clear notask_error, debugger will notify us.
1390 		 */
1391 		if (likely(!ptrace))
1392 			wo->notask_error = 0;
1393 		return 0;
1394 	}
1395 
1396 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1397 		/*
1398 		 * If it is traced by its real parent's group, just pretend
1399 		 * the caller is ptrace_do_wait() and reap this child if it
1400 		 * is zombie.
1401 		 *
1402 		 * This also hides group stop state from real parent; otherwise
1403 		 * a single stop can be reported twice as group and ptrace stop.
1404 		 * If a ptracer wants to distinguish these two events for its
1405 		 * own children it should create a separate process which takes
1406 		 * the role of real parent.
1407 		 */
1408 		if (!ptrace_reparented(p))
1409 			ptrace = 1;
1410 	}
1411 
1412 	/* slay zombie? */
1413 	if (exit_state == EXIT_ZOMBIE) {
1414 		/* we don't reap group leaders with subthreads */
1415 		if (!delay_group_leader(p)) {
1416 			/*
1417 			 * A zombie ptracee is only visible to its ptracer.
1418 			 * Notification and reaping will be cascaded to the
1419 			 * real parent when the ptracer detaches.
1420 			 */
1421 			if (unlikely(ptrace) || likely(!p->ptrace))
1422 				return wait_task_zombie(wo, p);
1423 		}
1424 
1425 		/*
1426 		 * Allow access to stopped/continued state via zombie by
1427 		 * falling through.  Clearing of notask_error is complex.
1428 		 *
1429 		 * When !@ptrace:
1430 		 *
1431 		 * If WEXITED is set, notask_error should naturally be
1432 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1433 		 * so, if there are live subthreads, there are events to
1434 		 * wait for.  If all subthreads are dead, it's still safe
1435 		 * to clear - this function will be called again in finite
1436 		 * amount time once all the subthreads are released and
1437 		 * will then return without clearing.
1438 		 *
1439 		 * When @ptrace:
1440 		 *
1441 		 * Stopped state is per-task and thus can't change once the
1442 		 * target task dies.  Only continued and exited can happen.
1443 		 * Clear notask_error if WCONTINUED | WEXITED.
1444 		 */
1445 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1446 			wo->notask_error = 0;
1447 	} else {
1448 		/*
1449 		 * @p is alive and it's gonna stop, continue or exit, so
1450 		 * there always is something to wait for.
1451 		 */
1452 		wo->notask_error = 0;
1453 	}
1454 
1455 	/*
1456 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1457 	 * is used and the two don't interact with each other.
1458 	 */
1459 	ret = wait_task_stopped(wo, ptrace, p);
1460 	if (ret)
1461 		return ret;
1462 
1463 	/*
1464 	 * Wait for continued.  There's only one continued state and the
1465 	 * ptracer can consume it which can confuse the real parent.  Don't
1466 	 * use WCONTINUED from ptracer.  You don't need or want it.
1467 	 */
1468 	return wait_task_continued(wo, p);
1469 }
1470 
1471 /*
1472  * Do the work of do_wait() for one thread in the group, @tsk.
1473  *
1474  * -ECHILD should be in ->notask_error before the first call.
1475  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1476  * Returns zero if the search for a child should continue; then
1477  * ->notask_error is 0 if there were any eligible children,
1478  * or another error from security_task_wait(), or still -ECHILD.
1479  */
1480 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1481 {
1482 	struct task_struct *p;
1483 
1484 	list_for_each_entry(p, &tsk->children, sibling) {
1485 		int ret = wait_consider_task(wo, 0, p);
1486 
1487 		if (ret)
1488 			return ret;
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1495 {
1496 	struct task_struct *p;
1497 
1498 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1499 		int ret = wait_consider_task(wo, 1, p);
1500 
1501 		if (ret)
1502 			return ret;
1503 	}
1504 
1505 	return 0;
1506 }
1507 
1508 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1509 				int sync, void *key)
1510 {
1511 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1512 						child_wait);
1513 	struct task_struct *p = key;
1514 
1515 	if (!eligible_pid(wo, p))
1516 		return 0;
1517 
1518 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1519 		return 0;
1520 
1521 	return default_wake_function(wait, mode, sync, key);
1522 }
1523 
1524 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1525 {
1526 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1527 				TASK_INTERRUPTIBLE, 1, p);
1528 }
1529 
1530 static long do_wait(struct wait_opts *wo)
1531 {
1532 	struct task_struct *tsk;
1533 	int retval;
1534 
1535 	trace_sched_process_wait(wo->wo_pid);
1536 
1537 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1538 	wo->child_wait.private = current;
1539 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1540 repeat:
1541 	/*
1542 	 * If there is nothing that can match our criteria, just get out.
1543 	 * We will clear ->notask_error to zero if we see any child that
1544 	 * might later match our criteria, even if we are not able to reap
1545 	 * it yet.
1546 	 */
1547 	wo->notask_error = -ECHILD;
1548 	if ((wo->wo_type < PIDTYPE_MAX) &&
1549 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1550 		goto notask;
1551 
1552 	set_current_state(TASK_INTERRUPTIBLE);
1553 	read_lock(&tasklist_lock);
1554 	tsk = current;
1555 	do {
1556 		retval = do_wait_thread(wo, tsk);
1557 		if (retval)
1558 			goto end;
1559 
1560 		retval = ptrace_do_wait(wo, tsk);
1561 		if (retval)
1562 			goto end;
1563 
1564 		if (wo->wo_flags & __WNOTHREAD)
1565 			break;
1566 	} while_each_thread(current, tsk);
1567 	read_unlock(&tasklist_lock);
1568 
1569 notask:
1570 	retval = wo->notask_error;
1571 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1572 		retval = -ERESTARTSYS;
1573 		if (!signal_pending(current)) {
1574 			schedule();
1575 			goto repeat;
1576 		}
1577 	}
1578 end:
1579 	__set_current_state(TASK_RUNNING);
1580 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1581 	return retval;
1582 }
1583 
1584 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1585 		infop, int, options, struct rusage __user *, ru)
1586 {
1587 	struct wait_opts wo;
1588 	struct pid *pid = NULL;
1589 	enum pid_type type;
1590 	long ret;
1591 
1592 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1593 			__WNOTHREAD|__WCLONE|__WALL))
1594 		return -EINVAL;
1595 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1596 		return -EINVAL;
1597 
1598 	switch (which) {
1599 	case P_ALL:
1600 		type = PIDTYPE_MAX;
1601 		break;
1602 	case P_PID:
1603 		type = PIDTYPE_PID;
1604 		if (upid <= 0)
1605 			return -EINVAL;
1606 		break;
1607 	case P_PGID:
1608 		type = PIDTYPE_PGID;
1609 		if (upid <= 0)
1610 			return -EINVAL;
1611 		break;
1612 	default:
1613 		return -EINVAL;
1614 	}
1615 
1616 	if (type < PIDTYPE_MAX)
1617 		pid = find_get_pid(upid);
1618 
1619 	wo.wo_type	= type;
1620 	wo.wo_pid	= pid;
1621 	wo.wo_flags	= options;
1622 	wo.wo_info	= infop;
1623 	wo.wo_stat	= NULL;
1624 	wo.wo_rusage	= ru;
1625 	ret = do_wait(&wo);
1626 
1627 	if (ret > 0) {
1628 		ret = 0;
1629 	} else if (infop) {
1630 		/*
1631 		 * For a WNOHANG return, clear out all the fields
1632 		 * we would set so the user can easily tell the
1633 		 * difference.
1634 		 */
1635 		if (!ret)
1636 			ret = put_user(0, &infop->si_signo);
1637 		if (!ret)
1638 			ret = put_user(0, &infop->si_errno);
1639 		if (!ret)
1640 			ret = put_user(0, &infop->si_code);
1641 		if (!ret)
1642 			ret = put_user(0, &infop->si_pid);
1643 		if (!ret)
1644 			ret = put_user(0, &infop->si_uid);
1645 		if (!ret)
1646 			ret = put_user(0, &infop->si_status);
1647 	}
1648 
1649 	put_pid(pid);
1650 	return ret;
1651 }
1652 
1653 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1654 		int, options, struct rusage __user *, ru)
1655 {
1656 	struct wait_opts wo;
1657 	struct pid *pid = NULL;
1658 	enum pid_type type;
1659 	long ret;
1660 
1661 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1662 			__WNOTHREAD|__WCLONE|__WALL))
1663 		return -EINVAL;
1664 
1665 	if (upid == -1)
1666 		type = PIDTYPE_MAX;
1667 	else if (upid < 0) {
1668 		type = PIDTYPE_PGID;
1669 		pid = find_get_pid(-upid);
1670 	} else if (upid == 0) {
1671 		type = PIDTYPE_PGID;
1672 		pid = get_task_pid(current, PIDTYPE_PGID);
1673 	} else /* upid > 0 */ {
1674 		type = PIDTYPE_PID;
1675 		pid = find_get_pid(upid);
1676 	}
1677 
1678 	wo.wo_type	= type;
1679 	wo.wo_pid	= pid;
1680 	wo.wo_flags	= options | WEXITED;
1681 	wo.wo_info	= NULL;
1682 	wo.wo_stat	= stat_addr;
1683 	wo.wo_rusage	= ru;
1684 	ret = do_wait(&wo);
1685 	put_pid(pid);
1686 
1687 	return ret;
1688 }
1689 
1690 #ifdef __ARCH_WANT_SYS_WAITPID
1691 
1692 /*
1693  * sys_waitpid() remains for compatibility. waitpid() should be
1694  * implemented by calling sys_wait4() from libc.a.
1695  */
1696 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1697 {
1698 	return sys_wait4(pid, stat_addr, options, NULL);
1699 }
1700 
1701 #endif
1702