1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/iocontext.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/fdtable.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/freezer.h> 36 #include <linux/cgroup.h> 37 #include <linux/syscalls.h> 38 #include <linux/signal.h> 39 #include <linux/posix-timers.h> 40 #include <linux/cn_proc.h> 41 #include <linux/mutex.h> 42 #include <linux/futex.h> 43 #include <linux/pipe_fs_i.h> 44 #include <linux/audit.h> /* for audit_free() */ 45 #include <linux/resource.h> 46 #include <linux/blkdev.h> 47 #include <linux/task_io_accounting_ops.h> 48 #include <linux/tracehook.h> 49 #include <linux/fs_struct.h> 50 #include <linux/init_task.h> 51 #include <trace/sched.h> 52 53 #include <asm/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/pgtable.h> 56 #include <asm/mmu_context.h> 57 #include "cred-internals.h" 58 59 DEFINE_TRACE(sched_process_free); 60 DEFINE_TRACE(sched_process_exit); 61 DEFINE_TRACE(sched_process_wait); 62 63 static void exit_mm(struct task_struct * tsk); 64 65 static void __unhash_process(struct task_struct *p) 66 { 67 nr_threads--; 68 detach_pid(p, PIDTYPE_PID); 69 if (thread_group_leader(p)) { 70 detach_pid(p, PIDTYPE_PGID); 71 detach_pid(p, PIDTYPE_SID); 72 73 list_del_rcu(&p->tasks); 74 __get_cpu_var(process_counts)--; 75 } 76 list_del_rcu(&p->thread_group); 77 list_del_init(&p->sibling); 78 } 79 80 /* 81 * This function expects the tasklist_lock write-locked. 82 */ 83 static void __exit_signal(struct task_struct *tsk) 84 { 85 struct signal_struct *sig = tsk->signal; 86 struct sighand_struct *sighand; 87 88 BUG_ON(!sig); 89 BUG_ON(!atomic_read(&sig->count)); 90 91 sighand = rcu_dereference(tsk->sighand); 92 spin_lock(&sighand->siglock); 93 94 posix_cpu_timers_exit(tsk); 95 if (atomic_dec_and_test(&sig->count)) 96 posix_cpu_timers_exit_group(tsk); 97 else { 98 /* 99 * If there is any task waiting for the group exit 100 * then notify it: 101 */ 102 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 103 wake_up_process(sig->group_exit_task); 104 105 if (tsk == sig->curr_target) 106 sig->curr_target = next_thread(tsk); 107 /* 108 * Accumulate here the counters for all threads but the 109 * group leader as they die, so they can be added into 110 * the process-wide totals when those are taken. 111 * The group leader stays around as a zombie as long 112 * as there are other threads. When it gets reaped, 113 * the exit.c code will add its counts into these totals. 114 * We won't ever get here for the group leader, since it 115 * will have been the last reference on the signal_struct. 116 */ 117 sig->utime = cputime_add(sig->utime, task_utime(tsk)); 118 sig->stime = cputime_add(sig->stime, task_stime(tsk)); 119 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 120 sig->min_flt += tsk->min_flt; 121 sig->maj_flt += tsk->maj_flt; 122 sig->nvcsw += tsk->nvcsw; 123 sig->nivcsw += tsk->nivcsw; 124 sig->inblock += task_io_get_inblock(tsk); 125 sig->oublock += task_io_get_oublock(tsk); 126 task_io_accounting_add(&sig->ioac, &tsk->ioac); 127 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 128 sig = NULL; /* Marker for below. */ 129 } 130 131 __unhash_process(tsk); 132 133 /* 134 * Do this under ->siglock, we can race with another thread 135 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 136 */ 137 flush_sigqueue(&tsk->pending); 138 139 tsk->signal = NULL; 140 tsk->sighand = NULL; 141 spin_unlock(&sighand->siglock); 142 143 __cleanup_sighand(sighand); 144 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 145 if (sig) { 146 flush_sigqueue(&sig->shared_pending); 147 taskstats_tgid_free(sig); 148 /* 149 * Make sure ->signal can't go away under rq->lock, 150 * see account_group_exec_runtime(). 151 */ 152 task_rq_unlock_wait(tsk); 153 __cleanup_signal(sig); 154 } 155 } 156 157 static void delayed_put_task_struct(struct rcu_head *rhp) 158 { 159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 160 161 trace_sched_process_free(tsk); 162 put_task_struct(tsk); 163 } 164 165 166 void release_task(struct task_struct * p) 167 { 168 struct task_struct *leader; 169 int zap_leader; 170 repeat: 171 tracehook_prepare_release_task(p); 172 /* don't need to get the RCU readlock here - the process is dead and 173 * can't be modifying its own credentials */ 174 atomic_dec(&__task_cred(p)->user->processes); 175 176 proc_flush_task(p); 177 write_lock_irq(&tasklist_lock); 178 tracehook_finish_release_task(p); 179 __exit_signal(p); 180 181 /* 182 * If we are the last non-leader member of the thread 183 * group, and the leader is zombie, then notify the 184 * group leader's parent process. (if it wants notification.) 185 */ 186 zap_leader = 0; 187 leader = p->group_leader; 188 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 189 BUG_ON(task_detached(leader)); 190 do_notify_parent(leader, leader->exit_signal); 191 /* 192 * If we were the last child thread and the leader has 193 * exited already, and the leader's parent ignores SIGCHLD, 194 * then we are the one who should release the leader. 195 * 196 * do_notify_parent() will have marked it self-reaping in 197 * that case. 198 */ 199 zap_leader = task_detached(leader); 200 201 /* 202 * This maintains the invariant that release_task() 203 * only runs on a task in EXIT_DEAD, just for sanity. 204 */ 205 if (zap_leader) 206 leader->exit_state = EXIT_DEAD; 207 } 208 209 write_unlock_irq(&tasklist_lock); 210 release_thread(p); 211 call_rcu(&p->rcu, delayed_put_task_struct); 212 213 p = leader; 214 if (unlikely(zap_leader)) 215 goto repeat; 216 } 217 218 /* 219 * This checks not only the pgrp, but falls back on the pid if no 220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 221 * without this... 222 * 223 * The caller must hold rcu lock or the tasklist lock. 224 */ 225 struct pid *session_of_pgrp(struct pid *pgrp) 226 { 227 struct task_struct *p; 228 struct pid *sid = NULL; 229 230 p = pid_task(pgrp, PIDTYPE_PGID); 231 if (p == NULL) 232 p = pid_task(pgrp, PIDTYPE_PID); 233 if (p != NULL) 234 sid = task_session(p); 235 236 return sid; 237 } 238 239 /* 240 * Determine if a process group is "orphaned", according to the POSIX 241 * definition in 2.2.2.52. Orphaned process groups are not to be affected 242 * by terminal-generated stop signals. Newly orphaned process groups are 243 * to receive a SIGHUP and a SIGCONT. 244 * 245 * "I ask you, have you ever known what it is to be an orphan?" 246 */ 247 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 248 { 249 struct task_struct *p; 250 251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 252 if ((p == ignored_task) || 253 (p->exit_state && thread_group_empty(p)) || 254 is_global_init(p->real_parent)) 255 continue; 256 257 if (task_pgrp(p->real_parent) != pgrp && 258 task_session(p->real_parent) == task_session(p)) 259 return 0; 260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 261 262 return 1; 263 } 264 265 int is_current_pgrp_orphaned(void) 266 { 267 int retval; 268 269 read_lock(&tasklist_lock); 270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 271 read_unlock(&tasklist_lock); 272 273 return retval; 274 } 275 276 static int has_stopped_jobs(struct pid *pgrp) 277 { 278 int retval = 0; 279 struct task_struct *p; 280 281 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 282 if (!task_is_stopped(p)) 283 continue; 284 retval = 1; 285 break; 286 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 287 return retval; 288 } 289 290 /* 291 * Check to see if any process groups have become orphaned as 292 * a result of our exiting, and if they have any stopped jobs, 293 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 294 */ 295 static void 296 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 297 { 298 struct pid *pgrp = task_pgrp(tsk); 299 struct task_struct *ignored_task = tsk; 300 301 if (!parent) 302 /* exit: our father is in a different pgrp than 303 * we are and we were the only connection outside. 304 */ 305 parent = tsk->real_parent; 306 else 307 /* reparent: our child is in a different pgrp than 308 * we are, and it was the only connection outside. 309 */ 310 ignored_task = NULL; 311 312 if (task_pgrp(parent) != pgrp && 313 task_session(parent) == task_session(tsk) && 314 will_become_orphaned_pgrp(pgrp, ignored_task) && 315 has_stopped_jobs(pgrp)) { 316 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 317 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 318 } 319 } 320 321 /** 322 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 323 * 324 * If a kernel thread is launched as a result of a system call, or if 325 * it ever exits, it should generally reparent itself to kthreadd so it 326 * isn't in the way of other processes and is correctly cleaned up on exit. 327 * 328 * The various task state such as scheduling policy and priority may have 329 * been inherited from a user process, so we reset them to sane values here. 330 * 331 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 332 */ 333 static void reparent_to_kthreadd(void) 334 { 335 write_lock_irq(&tasklist_lock); 336 337 ptrace_unlink(current); 338 /* Reparent to init */ 339 current->real_parent = current->parent = kthreadd_task; 340 list_move_tail(¤t->sibling, ¤t->real_parent->children); 341 342 /* Set the exit signal to SIGCHLD so we signal init on exit */ 343 current->exit_signal = SIGCHLD; 344 345 if (task_nice(current) < 0) 346 set_user_nice(current, 0); 347 /* cpus_allowed? */ 348 /* rt_priority? */ 349 /* signals? */ 350 memcpy(current->signal->rlim, init_task.signal->rlim, 351 sizeof(current->signal->rlim)); 352 353 atomic_inc(&init_cred.usage); 354 commit_creds(&init_cred); 355 write_unlock_irq(&tasklist_lock); 356 } 357 358 void __set_special_pids(struct pid *pid) 359 { 360 struct task_struct *curr = current->group_leader; 361 362 if (task_session(curr) != pid) 363 change_pid(curr, PIDTYPE_SID, pid); 364 365 if (task_pgrp(curr) != pid) 366 change_pid(curr, PIDTYPE_PGID, pid); 367 } 368 369 static void set_special_pids(struct pid *pid) 370 { 371 write_lock_irq(&tasklist_lock); 372 __set_special_pids(pid); 373 write_unlock_irq(&tasklist_lock); 374 } 375 376 /* 377 * Let kernel threads use this to say that they 378 * allow a certain signal (since daemonize() will 379 * have disabled all of them by default). 380 */ 381 int allow_signal(int sig) 382 { 383 if (!valid_signal(sig) || sig < 1) 384 return -EINVAL; 385 386 spin_lock_irq(¤t->sighand->siglock); 387 sigdelset(¤t->blocked, sig); 388 if (!current->mm) { 389 /* Kernel threads handle their own signals. 390 Let the signal code know it'll be handled, so 391 that they don't get converted to SIGKILL or 392 just silently dropped */ 393 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 394 } 395 recalc_sigpending(); 396 spin_unlock_irq(¤t->sighand->siglock); 397 return 0; 398 } 399 400 EXPORT_SYMBOL(allow_signal); 401 402 int disallow_signal(int sig) 403 { 404 if (!valid_signal(sig) || sig < 1) 405 return -EINVAL; 406 407 spin_lock_irq(¤t->sighand->siglock); 408 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 409 recalc_sigpending(); 410 spin_unlock_irq(¤t->sighand->siglock); 411 return 0; 412 } 413 414 EXPORT_SYMBOL(disallow_signal); 415 416 /* 417 * Put all the gunge required to become a kernel thread without 418 * attached user resources in one place where it belongs. 419 */ 420 421 void daemonize(const char *name, ...) 422 { 423 va_list args; 424 sigset_t blocked; 425 426 va_start(args, name); 427 vsnprintf(current->comm, sizeof(current->comm), name, args); 428 va_end(args); 429 430 /* 431 * If we were started as result of loading a module, close all of the 432 * user space pages. We don't need them, and if we didn't close them 433 * they would be locked into memory. 434 */ 435 exit_mm(current); 436 /* 437 * We don't want to have TIF_FREEZE set if the system-wide hibernation 438 * or suspend transition begins right now. 439 */ 440 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 441 442 if (current->nsproxy != &init_nsproxy) { 443 get_nsproxy(&init_nsproxy); 444 switch_task_namespaces(current, &init_nsproxy); 445 } 446 set_special_pids(&init_struct_pid); 447 proc_clear_tty(current); 448 449 /* Block and flush all signals */ 450 sigfillset(&blocked); 451 sigprocmask(SIG_BLOCK, &blocked, NULL); 452 flush_signals(current); 453 454 /* Become as one with the init task */ 455 456 daemonize_fs_struct(); 457 exit_files(current); 458 current->files = init_task.files; 459 atomic_inc(¤t->files->count); 460 461 reparent_to_kthreadd(); 462 } 463 464 EXPORT_SYMBOL(daemonize); 465 466 static void close_files(struct files_struct * files) 467 { 468 int i, j; 469 struct fdtable *fdt; 470 471 j = 0; 472 473 /* 474 * It is safe to dereference the fd table without RCU or 475 * ->file_lock because this is the last reference to the 476 * files structure. 477 */ 478 fdt = files_fdtable(files); 479 for (;;) { 480 unsigned long set; 481 i = j * __NFDBITS; 482 if (i >= fdt->max_fds) 483 break; 484 set = fdt->open_fds->fds_bits[j++]; 485 while (set) { 486 if (set & 1) { 487 struct file * file = xchg(&fdt->fd[i], NULL); 488 if (file) { 489 filp_close(file, files); 490 cond_resched(); 491 } 492 } 493 i++; 494 set >>= 1; 495 } 496 } 497 } 498 499 struct files_struct *get_files_struct(struct task_struct *task) 500 { 501 struct files_struct *files; 502 503 task_lock(task); 504 files = task->files; 505 if (files) 506 atomic_inc(&files->count); 507 task_unlock(task); 508 509 return files; 510 } 511 512 void put_files_struct(struct files_struct *files) 513 { 514 struct fdtable *fdt; 515 516 if (atomic_dec_and_test(&files->count)) { 517 close_files(files); 518 /* 519 * Free the fd and fdset arrays if we expanded them. 520 * If the fdtable was embedded, pass files for freeing 521 * at the end of the RCU grace period. Otherwise, 522 * you can free files immediately. 523 */ 524 fdt = files_fdtable(files); 525 if (fdt != &files->fdtab) 526 kmem_cache_free(files_cachep, files); 527 free_fdtable(fdt); 528 } 529 } 530 531 void reset_files_struct(struct files_struct *files) 532 { 533 struct task_struct *tsk = current; 534 struct files_struct *old; 535 536 old = tsk->files; 537 task_lock(tsk); 538 tsk->files = files; 539 task_unlock(tsk); 540 put_files_struct(old); 541 } 542 543 void exit_files(struct task_struct *tsk) 544 { 545 struct files_struct * files = tsk->files; 546 547 if (files) { 548 task_lock(tsk); 549 tsk->files = NULL; 550 task_unlock(tsk); 551 put_files_struct(files); 552 } 553 } 554 555 #ifdef CONFIG_MM_OWNER 556 /* 557 * Task p is exiting and it owned mm, lets find a new owner for it 558 */ 559 static inline int 560 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 561 { 562 /* 563 * If there are other users of the mm and the owner (us) is exiting 564 * we need to find a new owner to take on the responsibility. 565 */ 566 if (atomic_read(&mm->mm_users) <= 1) 567 return 0; 568 if (mm->owner != p) 569 return 0; 570 return 1; 571 } 572 573 void mm_update_next_owner(struct mm_struct *mm) 574 { 575 struct task_struct *c, *g, *p = current; 576 577 retry: 578 if (!mm_need_new_owner(mm, p)) 579 return; 580 581 read_lock(&tasklist_lock); 582 /* 583 * Search in the children 584 */ 585 list_for_each_entry(c, &p->children, sibling) { 586 if (c->mm == mm) 587 goto assign_new_owner; 588 } 589 590 /* 591 * Search in the siblings 592 */ 593 list_for_each_entry(c, &p->parent->children, sibling) { 594 if (c->mm == mm) 595 goto assign_new_owner; 596 } 597 598 /* 599 * Search through everything else. We should not get 600 * here often 601 */ 602 do_each_thread(g, c) { 603 if (c->mm == mm) 604 goto assign_new_owner; 605 } while_each_thread(g, c); 606 607 read_unlock(&tasklist_lock); 608 /* 609 * We found no owner yet mm_users > 1: this implies that we are 610 * most likely racing with swapoff (try_to_unuse()) or /proc or 611 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 612 */ 613 mm->owner = NULL; 614 return; 615 616 assign_new_owner: 617 BUG_ON(c == p); 618 get_task_struct(c); 619 /* 620 * The task_lock protects c->mm from changing. 621 * We always want mm->owner->mm == mm 622 */ 623 task_lock(c); 624 /* 625 * Delay read_unlock() till we have the task_lock() 626 * to ensure that c does not slip away underneath us 627 */ 628 read_unlock(&tasklist_lock); 629 if (c->mm != mm) { 630 task_unlock(c); 631 put_task_struct(c); 632 goto retry; 633 } 634 mm->owner = c; 635 task_unlock(c); 636 put_task_struct(c); 637 } 638 #endif /* CONFIG_MM_OWNER */ 639 640 /* 641 * Turn us into a lazy TLB process if we 642 * aren't already.. 643 */ 644 static void exit_mm(struct task_struct * tsk) 645 { 646 struct mm_struct *mm = tsk->mm; 647 struct core_state *core_state; 648 649 mm_release(tsk, mm); 650 if (!mm) 651 return; 652 /* 653 * Serialize with any possible pending coredump. 654 * We must hold mmap_sem around checking core_state 655 * and clearing tsk->mm. The core-inducing thread 656 * will increment ->nr_threads for each thread in the 657 * group with ->mm != NULL. 658 */ 659 down_read(&mm->mmap_sem); 660 core_state = mm->core_state; 661 if (core_state) { 662 struct core_thread self; 663 up_read(&mm->mmap_sem); 664 665 self.task = tsk; 666 self.next = xchg(&core_state->dumper.next, &self); 667 /* 668 * Implies mb(), the result of xchg() must be visible 669 * to core_state->dumper. 670 */ 671 if (atomic_dec_and_test(&core_state->nr_threads)) 672 complete(&core_state->startup); 673 674 for (;;) { 675 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 676 if (!self.task) /* see coredump_finish() */ 677 break; 678 schedule(); 679 } 680 __set_task_state(tsk, TASK_RUNNING); 681 down_read(&mm->mmap_sem); 682 } 683 atomic_inc(&mm->mm_count); 684 BUG_ON(mm != tsk->active_mm); 685 /* more a memory barrier than a real lock */ 686 task_lock(tsk); 687 tsk->mm = NULL; 688 up_read(&mm->mmap_sem); 689 enter_lazy_tlb(mm, current); 690 /* We don't want this task to be frozen prematurely */ 691 clear_freeze_flag(tsk); 692 task_unlock(tsk); 693 mm_update_next_owner(mm); 694 mmput(mm); 695 } 696 697 /* 698 * When we die, we re-parent all our children. 699 * Try to give them to another thread in our thread 700 * group, and if no such member exists, give it to 701 * the child reaper process (ie "init") in our pid 702 * space. 703 */ 704 static struct task_struct *find_new_reaper(struct task_struct *father) 705 { 706 struct pid_namespace *pid_ns = task_active_pid_ns(father); 707 struct task_struct *thread; 708 709 thread = father; 710 while_each_thread(father, thread) { 711 if (thread->flags & PF_EXITING) 712 continue; 713 if (unlikely(pid_ns->child_reaper == father)) 714 pid_ns->child_reaper = thread; 715 return thread; 716 } 717 718 if (unlikely(pid_ns->child_reaper == father)) { 719 write_unlock_irq(&tasklist_lock); 720 if (unlikely(pid_ns == &init_pid_ns)) 721 panic("Attempted to kill init!"); 722 723 zap_pid_ns_processes(pid_ns); 724 write_lock_irq(&tasklist_lock); 725 /* 726 * We can not clear ->child_reaper or leave it alone. 727 * There may by stealth EXIT_DEAD tasks on ->children, 728 * forget_original_parent() must move them somewhere. 729 */ 730 pid_ns->child_reaper = init_pid_ns.child_reaper; 731 } 732 733 return pid_ns->child_reaper; 734 } 735 736 /* 737 * Any that need to be release_task'd are put on the @dead list. 738 */ 739 static void reparent_thread(struct task_struct *father, struct task_struct *p, 740 struct list_head *dead) 741 { 742 if (p->pdeath_signal) 743 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 744 745 list_move_tail(&p->sibling, &p->real_parent->children); 746 747 if (task_detached(p)) 748 return; 749 /* 750 * If this is a threaded reparent there is no need to 751 * notify anyone anything has happened. 752 */ 753 if (same_thread_group(p->real_parent, father)) 754 return; 755 756 /* We don't want people slaying init. */ 757 p->exit_signal = SIGCHLD; 758 759 /* If it has exited notify the new parent about this child's death. */ 760 if (!p->ptrace && 761 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 762 do_notify_parent(p, p->exit_signal); 763 if (task_detached(p)) { 764 p->exit_state = EXIT_DEAD; 765 list_move_tail(&p->sibling, dead); 766 } 767 } 768 769 kill_orphaned_pgrp(p, father); 770 } 771 772 static void forget_original_parent(struct task_struct *father) 773 { 774 struct task_struct *p, *n, *reaper; 775 LIST_HEAD(dead_children); 776 777 exit_ptrace(father); 778 779 write_lock_irq(&tasklist_lock); 780 reaper = find_new_reaper(father); 781 782 list_for_each_entry_safe(p, n, &father->children, sibling) { 783 p->real_parent = reaper; 784 if (p->parent == father) { 785 BUG_ON(p->ptrace); 786 p->parent = p->real_parent; 787 } 788 reparent_thread(father, p, &dead_children); 789 } 790 write_unlock_irq(&tasklist_lock); 791 792 BUG_ON(!list_empty(&father->children)); 793 794 list_for_each_entry_safe(p, n, &dead_children, sibling) { 795 list_del_init(&p->sibling); 796 release_task(p); 797 } 798 } 799 800 /* 801 * Send signals to all our closest relatives so that they know 802 * to properly mourn us.. 803 */ 804 static void exit_notify(struct task_struct *tsk, int group_dead) 805 { 806 int signal; 807 void *cookie; 808 809 /* 810 * This does two things: 811 * 812 * A. Make init inherit all the child processes 813 * B. Check to see if any process groups have become orphaned 814 * as a result of our exiting, and if they have any stopped 815 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 816 */ 817 forget_original_parent(tsk); 818 exit_task_namespaces(tsk); 819 820 write_lock_irq(&tasklist_lock); 821 if (group_dead) 822 kill_orphaned_pgrp(tsk->group_leader, NULL); 823 824 /* Let father know we died 825 * 826 * Thread signals are configurable, but you aren't going to use 827 * that to send signals to arbitary processes. 828 * That stops right now. 829 * 830 * If the parent exec id doesn't match the exec id we saved 831 * when we started then we know the parent has changed security 832 * domain. 833 * 834 * If our self_exec id doesn't match our parent_exec_id then 835 * we have changed execution domain as these two values started 836 * the same after a fork. 837 */ 838 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 839 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 840 tsk->self_exec_id != tsk->parent_exec_id)) 841 tsk->exit_signal = SIGCHLD; 842 843 signal = tracehook_notify_death(tsk, &cookie, group_dead); 844 if (signal >= 0) 845 signal = do_notify_parent(tsk, signal); 846 847 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 848 849 /* mt-exec, de_thread() is waiting for us */ 850 if (thread_group_leader(tsk) && 851 tsk->signal->group_exit_task && 852 tsk->signal->notify_count < 0) 853 wake_up_process(tsk->signal->group_exit_task); 854 855 write_unlock_irq(&tasklist_lock); 856 857 tracehook_report_death(tsk, signal, cookie, group_dead); 858 859 /* If the process is dead, release it - nobody will wait for it */ 860 if (signal == DEATH_REAP) 861 release_task(tsk); 862 } 863 864 #ifdef CONFIG_DEBUG_STACK_USAGE 865 static void check_stack_usage(void) 866 { 867 static DEFINE_SPINLOCK(low_water_lock); 868 static int lowest_to_date = THREAD_SIZE; 869 unsigned long free; 870 871 free = stack_not_used(current); 872 873 if (free >= lowest_to_date) 874 return; 875 876 spin_lock(&low_water_lock); 877 if (free < lowest_to_date) { 878 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 879 "left\n", 880 current->comm, free); 881 lowest_to_date = free; 882 } 883 spin_unlock(&low_water_lock); 884 } 885 #else 886 static inline void check_stack_usage(void) {} 887 #endif 888 889 NORET_TYPE void do_exit(long code) 890 { 891 struct task_struct *tsk = current; 892 int group_dead; 893 894 profile_task_exit(tsk); 895 896 WARN_ON(atomic_read(&tsk->fs_excl)); 897 898 if (unlikely(in_interrupt())) 899 panic("Aiee, killing interrupt handler!"); 900 if (unlikely(!tsk->pid)) 901 panic("Attempted to kill the idle task!"); 902 903 tracehook_report_exit(&code); 904 905 /* 906 * We're taking recursive faults here in do_exit. Safest is to just 907 * leave this task alone and wait for reboot. 908 */ 909 if (unlikely(tsk->flags & PF_EXITING)) { 910 printk(KERN_ALERT 911 "Fixing recursive fault but reboot is needed!\n"); 912 /* 913 * We can do this unlocked here. The futex code uses 914 * this flag just to verify whether the pi state 915 * cleanup has been done or not. In the worst case it 916 * loops once more. We pretend that the cleanup was 917 * done as there is no way to return. Either the 918 * OWNER_DIED bit is set by now or we push the blocked 919 * task into the wait for ever nirwana as well. 920 */ 921 tsk->flags |= PF_EXITPIDONE; 922 set_current_state(TASK_UNINTERRUPTIBLE); 923 schedule(); 924 } 925 926 exit_irq_thread(); 927 928 exit_signals(tsk); /* sets PF_EXITING */ 929 /* 930 * tsk->flags are checked in the futex code to protect against 931 * an exiting task cleaning up the robust pi futexes. 932 */ 933 smp_mb(); 934 spin_unlock_wait(&tsk->pi_lock); 935 936 if (unlikely(in_atomic())) 937 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 938 current->comm, task_pid_nr(current), 939 preempt_count()); 940 941 acct_update_integrals(tsk); 942 943 group_dead = atomic_dec_and_test(&tsk->signal->live); 944 if (group_dead) { 945 hrtimer_cancel(&tsk->signal->real_timer); 946 exit_itimers(tsk->signal); 947 } 948 acct_collect(code, group_dead); 949 if (group_dead) 950 tty_audit_exit(); 951 if (unlikely(tsk->audit_context)) 952 audit_free(tsk); 953 954 tsk->exit_code = code; 955 taskstats_exit(tsk, group_dead); 956 957 exit_mm(tsk); 958 959 if (group_dead) 960 acct_process(); 961 trace_sched_process_exit(tsk); 962 963 exit_sem(tsk); 964 exit_files(tsk); 965 exit_fs(tsk); 966 check_stack_usage(); 967 exit_thread(); 968 cgroup_exit(tsk, 1); 969 970 if (group_dead && tsk->signal->leader) 971 disassociate_ctty(1); 972 973 module_put(task_thread_info(tsk)->exec_domain->module); 974 if (tsk->binfmt) 975 module_put(tsk->binfmt->module); 976 977 proc_exit_connector(tsk); 978 exit_notify(tsk, group_dead); 979 #ifdef CONFIG_NUMA 980 mpol_put(tsk->mempolicy); 981 tsk->mempolicy = NULL; 982 #endif 983 #ifdef CONFIG_FUTEX 984 /* 985 * This must happen late, after the PID is not 986 * hashed anymore: 987 */ 988 if (unlikely(!list_empty(&tsk->pi_state_list))) 989 exit_pi_state_list(tsk); 990 if (unlikely(current->pi_state_cache)) 991 kfree(current->pi_state_cache); 992 #endif 993 /* 994 * Make sure we are holding no locks: 995 */ 996 debug_check_no_locks_held(tsk); 997 /* 998 * We can do this unlocked here. The futex code uses this flag 999 * just to verify whether the pi state cleanup has been done 1000 * or not. In the worst case it loops once more. 1001 */ 1002 tsk->flags |= PF_EXITPIDONE; 1003 1004 if (tsk->io_context) 1005 exit_io_context(); 1006 1007 if (tsk->splice_pipe) 1008 __free_pipe_info(tsk->splice_pipe); 1009 1010 preempt_disable(); 1011 /* causes final put_task_struct in finish_task_switch(). */ 1012 tsk->state = TASK_DEAD; 1013 schedule(); 1014 BUG(); 1015 /* Avoid "noreturn function does return". */ 1016 for (;;) 1017 cpu_relax(); /* For when BUG is null */ 1018 } 1019 1020 EXPORT_SYMBOL_GPL(do_exit); 1021 1022 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1023 { 1024 if (comp) 1025 complete(comp); 1026 1027 do_exit(code); 1028 } 1029 1030 EXPORT_SYMBOL(complete_and_exit); 1031 1032 SYSCALL_DEFINE1(exit, int, error_code) 1033 { 1034 do_exit((error_code&0xff)<<8); 1035 } 1036 1037 /* 1038 * Take down every thread in the group. This is called by fatal signals 1039 * as well as by sys_exit_group (below). 1040 */ 1041 NORET_TYPE void 1042 do_group_exit(int exit_code) 1043 { 1044 struct signal_struct *sig = current->signal; 1045 1046 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1047 1048 if (signal_group_exit(sig)) 1049 exit_code = sig->group_exit_code; 1050 else if (!thread_group_empty(current)) { 1051 struct sighand_struct *const sighand = current->sighand; 1052 spin_lock_irq(&sighand->siglock); 1053 if (signal_group_exit(sig)) 1054 /* Another thread got here before we took the lock. */ 1055 exit_code = sig->group_exit_code; 1056 else { 1057 sig->group_exit_code = exit_code; 1058 sig->flags = SIGNAL_GROUP_EXIT; 1059 zap_other_threads(current); 1060 } 1061 spin_unlock_irq(&sighand->siglock); 1062 } 1063 1064 do_exit(exit_code); 1065 /* NOTREACHED */ 1066 } 1067 1068 /* 1069 * this kills every thread in the thread group. Note that any externally 1070 * wait4()-ing process will get the correct exit code - even if this 1071 * thread is not the thread group leader. 1072 */ 1073 SYSCALL_DEFINE1(exit_group, int, error_code) 1074 { 1075 do_group_exit((error_code & 0xff) << 8); 1076 /* NOTREACHED */ 1077 return 0; 1078 } 1079 1080 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1081 { 1082 struct pid *pid = NULL; 1083 if (type == PIDTYPE_PID) 1084 pid = task->pids[type].pid; 1085 else if (type < PIDTYPE_MAX) 1086 pid = task->group_leader->pids[type].pid; 1087 return pid; 1088 } 1089 1090 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1091 struct task_struct *p) 1092 { 1093 int err; 1094 1095 if (type < PIDTYPE_MAX) { 1096 if (task_pid_type(p, type) != pid) 1097 return 0; 1098 } 1099 1100 /* Wait for all children (clone and not) if __WALL is set; 1101 * otherwise, wait for clone children *only* if __WCLONE is 1102 * set; otherwise, wait for non-clone children *only*. (Note: 1103 * A "clone" child here is one that reports to its parent 1104 * using a signal other than SIGCHLD.) */ 1105 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1106 && !(options & __WALL)) 1107 return 0; 1108 1109 err = security_task_wait(p); 1110 if (err) 1111 return err; 1112 1113 return 1; 1114 } 1115 1116 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1117 int why, int status, 1118 struct siginfo __user *infop, 1119 struct rusage __user *rusagep) 1120 { 1121 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1122 1123 put_task_struct(p); 1124 if (!retval) 1125 retval = put_user(SIGCHLD, &infop->si_signo); 1126 if (!retval) 1127 retval = put_user(0, &infop->si_errno); 1128 if (!retval) 1129 retval = put_user((short)why, &infop->si_code); 1130 if (!retval) 1131 retval = put_user(pid, &infop->si_pid); 1132 if (!retval) 1133 retval = put_user(uid, &infop->si_uid); 1134 if (!retval) 1135 retval = put_user(status, &infop->si_status); 1136 if (!retval) 1137 retval = pid; 1138 return retval; 1139 } 1140 1141 /* 1142 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1143 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1144 * the lock and this task is uninteresting. If we return nonzero, we have 1145 * released the lock and the system call should return. 1146 */ 1147 static int wait_task_zombie(struct task_struct *p, int options, 1148 struct siginfo __user *infop, 1149 int __user *stat_addr, struct rusage __user *ru) 1150 { 1151 unsigned long state; 1152 int retval, status, traced; 1153 pid_t pid = task_pid_vnr(p); 1154 uid_t uid = __task_cred(p)->uid; 1155 1156 if (!likely(options & WEXITED)) 1157 return 0; 1158 1159 if (unlikely(options & WNOWAIT)) { 1160 int exit_code = p->exit_code; 1161 int why, status; 1162 1163 get_task_struct(p); 1164 read_unlock(&tasklist_lock); 1165 if ((exit_code & 0x7f) == 0) { 1166 why = CLD_EXITED; 1167 status = exit_code >> 8; 1168 } else { 1169 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1170 status = exit_code & 0x7f; 1171 } 1172 return wait_noreap_copyout(p, pid, uid, why, 1173 status, infop, ru); 1174 } 1175 1176 /* 1177 * Try to move the task's state to DEAD 1178 * only one thread is allowed to do this: 1179 */ 1180 state = xchg(&p->exit_state, EXIT_DEAD); 1181 if (state != EXIT_ZOMBIE) { 1182 BUG_ON(state != EXIT_DEAD); 1183 return 0; 1184 } 1185 1186 traced = ptrace_reparented(p); 1187 1188 if (likely(!traced)) { 1189 struct signal_struct *psig; 1190 struct signal_struct *sig; 1191 struct task_cputime cputime; 1192 1193 /* 1194 * The resource counters for the group leader are in its 1195 * own task_struct. Those for dead threads in the group 1196 * are in its signal_struct, as are those for the child 1197 * processes it has previously reaped. All these 1198 * accumulate in the parent's signal_struct c* fields. 1199 * 1200 * We don't bother to take a lock here to protect these 1201 * p->signal fields, because they are only touched by 1202 * __exit_signal, which runs with tasklist_lock 1203 * write-locked anyway, and so is excluded here. We do 1204 * need to protect the access to p->parent->signal fields, 1205 * as other threads in the parent group can be right 1206 * here reaping other children at the same time. 1207 * 1208 * We use thread_group_cputime() to get times for the thread 1209 * group, which consolidates times for all threads in the 1210 * group including the group leader. 1211 */ 1212 thread_group_cputime(p, &cputime); 1213 spin_lock_irq(&p->parent->sighand->siglock); 1214 psig = p->parent->signal; 1215 sig = p->signal; 1216 psig->cutime = 1217 cputime_add(psig->cutime, 1218 cputime_add(cputime.utime, 1219 sig->cutime)); 1220 psig->cstime = 1221 cputime_add(psig->cstime, 1222 cputime_add(cputime.stime, 1223 sig->cstime)); 1224 psig->cgtime = 1225 cputime_add(psig->cgtime, 1226 cputime_add(p->gtime, 1227 cputime_add(sig->gtime, 1228 sig->cgtime))); 1229 psig->cmin_flt += 1230 p->min_flt + sig->min_flt + sig->cmin_flt; 1231 psig->cmaj_flt += 1232 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1233 psig->cnvcsw += 1234 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1235 psig->cnivcsw += 1236 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1237 psig->cinblock += 1238 task_io_get_inblock(p) + 1239 sig->inblock + sig->cinblock; 1240 psig->coublock += 1241 task_io_get_oublock(p) + 1242 sig->oublock + sig->coublock; 1243 task_io_accounting_add(&psig->ioac, &p->ioac); 1244 task_io_accounting_add(&psig->ioac, &sig->ioac); 1245 spin_unlock_irq(&p->parent->sighand->siglock); 1246 } 1247 1248 /* 1249 * Now we are sure this task is interesting, and no other 1250 * thread can reap it because we set its state to EXIT_DEAD. 1251 */ 1252 read_unlock(&tasklist_lock); 1253 1254 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1255 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1256 ? p->signal->group_exit_code : p->exit_code; 1257 if (!retval && stat_addr) 1258 retval = put_user(status, stat_addr); 1259 if (!retval && infop) 1260 retval = put_user(SIGCHLD, &infop->si_signo); 1261 if (!retval && infop) 1262 retval = put_user(0, &infop->si_errno); 1263 if (!retval && infop) { 1264 int why; 1265 1266 if ((status & 0x7f) == 0) { 1267 why = CLD_EXITED; 1268 status >>= 8; 1269 } else { 1270 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1271 status &= 0x7f; 1272 } 1273 retval = put_user((short)why, &infop->si_code); 1274 if (!retval) 1275 retval = put_user(status, &infop->si_status); 1276 } 1277 if (!retval && infop) 1278 retval = put_user(pid, &infop->si_pid); 1279 if (!retval && infop) 1280 retval = put_user(uid, &infop->si_uid); 1281 if (!retval) 1282 retval = pid; 1283 1284 if (traced) { 1285 write_lock_irq(&tasklist_lock); 1286 /* We dropped tasklist, ptracer could die and untrace */ 1287 ptrace_unlink(p); 1288 /* 1289 * If this is not a detached task, notify the parent. 1290 * If it's still not detached after that, don't release 1291 * it now. 1292 */ 1293 if (!task_detached(p)) { 1294 do_notify_parent(p, p->exit_signal); 1295 if (!task_detached(p)) { 1296 p->exit_state = EXIT_ZOMBIE; 1297 p = NULL; 1298 } 1299 } 1300 write_unlock_irq(&tasklist_lock); 1301 } 1302 if (p != NULL) 1303 release_task(p); 1304 1305 return retval; 1306 } 1307 1308 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1309 { 1310 if (ptrace) { 1311 if (task_is_stopped_or_traced(p)) 1312 return &p->exit_code; 1313 } else { 1314 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1315 return &p->signal->group_exit_code; 1316 } 1317 return NULL; 1318 } 1319 1320 /* 1321 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1322 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1323 * the lock and this task is uninteresting. If we return nonzero, we have 1324 * released the lock and the system call should return. 1325 */ 1326 static int wait_task_stopped(int ptrace, struct task_struct *p, 1327 int options, struct siginfo __user *infop, 1328 int __user *stat_addr, struct rusage __user *ru) 1329 { 1330 int retval, exit_code, *p_code, why; 1331 uid_t uid = 0; /* unneeded, required by compiler */ 1332 pid_t pid; 1333 1334 if (!(options & WUNTRACED)) 1335 return 0; 1336 1337 exit_code = 0; 1338 spin_lock_irq(&p->sighand->siglock); 1339 1340 p_code = task_stopped_code(p, ptrace); 1341 if (unlikely(!p_code)) 1342 goto unlock_sig; 1343 1344 exit_code = *p_code; 1345 if (!exit_code) 1346 goto unlock_sig; 1347 1348 if (!unlikely(options & WNOWAIT)) 1349 *p_code = 0; 1350 1351 /* don't need the RCU readlock here as we're holding a spinlock */ 1352 uid = __task_cred(p)->uid; 1353 unlock_sig: 1354 spin_unlock_irq(&p->sighand->siglock); 1355 if (!exit_code) 1356 return 0; 1357 1358 /* 1359 * Now we are pretty sure this task is interesting. 1360 * Make sure it doesn't get reaped out from under us while we 1361 * give up the lock and then examine it below. We don't want to 1362 * keep holding onto the tasklist_lock while we call getrusage and 1363 * possibly take page faults for user memory. 1364 */ 1365 get_task_struct(p); 1366 pid = task_pid_vnr(p); 1367 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1368 read_unlock(&tasklist_lock); 1369 1370 if (unlikely(options & WNOWAIT)) 1371 return wait_noreap_copyout(p, pid, uid, 1372 why, exit_code, 1373 infop, ru); 1374 1375 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1376 if (!retval && stat_addr) 1377 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1378 if (!retval && infop) 1379 retval = put_user(SIGCHLD, &infop->si_signo); 1380 if (!retval && infop) 1381 retval = put_user(0, &infop->si_errno); 1382 if (!retval && infop) 1383 retval = put_user((short)why, &infop->si_code); 1384 if (!retval && infop) 1385 retval = put_user(exit_code, &infop->si_status); 1386 if (!retval && infop) 1387 retval = put_user(pid, &infop->si_pid); 1388 if (!retval && infop) 1389 retval = put_user(uid, &infop->si_uid); 1390 if (!retval) 1391 retval = pid; 1392 put_task_struct(p); 1393 1394 BUG_ON(!retval); 1395 return retval; 1396 } 1397 1398 /* 1399 * Handle do_wait work for one task in a live, non-stopped state. 1400 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1401 * the lock and this task is uninteresting. If we return nonzero, we have 1402 * released the lock and the system call should return. 1403 */ 1404 static int wait_task_continued(struct task_struct *p, int options, 1405 struct siginfo __user *infop, 1406 int __user *stat_addr, struct rusage __user *ru) 1407 { 1408 int retval; 1409 pid_t pid; 1410 uid_t uid; 1411 1412 if (!unlikely(options & WCONTINUED)) 1413 return 0; 1414 1415 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1416 return 0; 1417 1418 spin_lock_irq(&p->sighand->siglock); 1419 /* Re-check with the lock held. */ 1420 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1421 spin_unlock_irq(&p->sighand->siglock); 1422 return 0; 1423 } 1424 if (!unlikely(options & WNOWAIT)) 1425 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1426 uid = __task_cred(p)->uid; 1427 spin_unlock_irq(&p->sighand->siglock); 1428 1429 pid = task_pid_vnr(p); 1430 get_task_struct(p); 1431 read_unlock(&tasklist_lock); 1432 1433 if (!infop) { 1434 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1435 put_task_struct(p); 1436 if (!retval && stat_addr) 1437 retval = put_user(0xffff, stat_addr); 1438 if (!retval) 1439 retval = pid; 1440 } else { 1441 retval = wait_noreap_copyout(p, pid, uid, 1442 CLD_CONTINUED, SIGCONT, 1443 infop, ru); 1444 BUG_ON(retval == 0); 1445 } 1446 1447 return retval; 1448 } 1449 1450 /* 1451 * Consider @p for a wait by @parent. 1452 * 1453 * -ECHILD should be in *@notask_error before the first call. 1454 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1455 * Returns zero if the search for a child should continue; 1456 * then *@notask_error is 0 if @p is an eligible child, 1457 * or another error from security_task_wait(), or still -ECHILD. 1458 */ 1459 static int wait_consider_task(struct task_struct *parent, int ptrace, 1460 struct task_struct *p, int *notask_error, 1461 enum pid_type type, struct pid *pid, int options, 1462 struct siginfo __user *infop, 1463 int __user *stat_addr, struct rusage __user *ru) 1464 { 1465 int ret = eligible_child(type, pid, options, p); 1466 if (!ret) 1467 return ret; 1468 1469 if (unlikely(ret < 0)) { 1470 /* 1471 * If we have not yet seen any eligible child, 1472 * then let this error code replace -ECHILD. 1473 * A permission error will give the user a clue 1474 * to look for security policy problems, rather 1475 * than for mysterious wait bugs. 1476 */ 1477 if (*notask_error) 1478 *notask_error = ret; 1479 } 1480 1481 if (likely(!ptrace) && unlikely(p->ptrace)) { 1482 /* 1483 * This child is hidden by ptrace. 1484 * We aren't allowed to see it now, but eventually we will. 1485 */ 1486 *notask_error = 0; 1487 return 0; 1488 } 1489 1490 if (p->exit_state == EXIT_DEAD) 1491 return 0; 1492 1493 /* 1494 * We don't reap group leaders with subthreads. 1495 */ 1496 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1497 return wait_task_zombie(p, options, infop, stat_addr, ru); 1498 1499 /* 1500 * It's stopped or running now, so it might 1501 * later continue, exit, or stop again. 1502 */ 1503 *notask_error = 0; 1504 1505 if (task_stopped_code(p, ptrace)) 1506 return wait_task_stopped(ptrace, p, options, 1507 infop, stat_addr, ru); 1508 1509 return wait_task_continued(p, options, infop, stat_addr, ru); 1510 } 1511 1512 /* 1513 * Do the work of do_wait() for one thread in the group, @tsk. 1514 * 1515 * -ECHILD should be in *@notask_error before the first call. 1516 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1517 * Returns zero if the search for a child should continue; then 1518 * *@notask_error is 0 if there were any eligible children, 1519 * or another error from security_task_wait(), or still -ECHILD. 1520 */ 1521 static int do_wait_thread(struct task_struct *tsk, int *notask_error, 1522 enum pid_type type, struct pid *pid, int options, 1523 struct siginfo __user *infop, int __user *stat_addr, 1524 struct rusage __user *ru) 1525 { 1526 struct task_struct *p; 1527 1528 list_for_each_entry(p, &tsk->children, sibling) { 1529 /* 1530 * Do not consider detached threads. 1531 */ 1532 if (!task_detached(p)) { 1533 int ret = wait_consider_task(tsk, 0, p, notask_error, 1534 type, pid, options, 1535 infop, stat_addr, ru); 1536 if (ret) 1537 return ret; 1538 } 1539 } 1540 1541 return 0; 1542 } 1543 1544 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, 1545 enum pid_type type, struct pid *pid, int options, 1546 struct siginfo __user *infop, int __user *stat_addr, 1547 struct rusage __user *ru) 1548 { 1549 struct task_struct *p; 1550 1551 /* 1552 * Traditionally we see ptrace'd stopped tasks regardless of options. 1553 */ 1554 options |= WUNTRACED; 1555 1556 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1557 int ret = wait_consider_task(tsk, 1, p, notask_error, 1558 type, pid, options, 1559 infop, stat_addr, ru); 1560 if (ret) 1561 return ret; 1562 } 1563 1564 return 0; 1565 } 1566 1567 static long do_wait(enum pid_type type, struct pid *pid, int options, 1568 struct siginfo __user *infop, int __user *stat_addr, 1569 struct rusage __user *ru) 1570 { 1571 DECLARE_WAITQUEUE(wait, current); 1572 struct task_struct *tsk; 1573 int retval; 1574 1575 trace_sched_process_wait(pid); 1576 1577 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1578 repeat: 1579 /* 1580 * If there is nothing that can match our critiera just get out. 1581 * We will clear @retval to zero if we see any child that might later 1582 * match our criteria, even if we are not able to reap it yet. 1583 */ 1584 retval = -ECHILD; 1585 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1586 goto end; 1587 1588 current->state = TASK_INTERRUPTIBLE; 1589 read_lock(&tasklist_lock); 1590 tsk = current; 1591 do { 1592 int tsk_result = do_wait_thread(tsk, &retval, 1593 type, pid, options, 1594 infop, stat_addr, ru); 1595 if (!tsk_result) 1596 tsk_result = ptrace_do_wait(tsk, &retval, 1597 type, pid, options, 1598 infop, stat_addr, ru); 1599 if (tsk_result) { 1600 /* 1601 * tasklist_lock is unlocked and we have a final result. 1602 */ 1603 retval = tsk_result; 1604 goto end; 1605 } 1606 1607 if (options & __WNOTHREAD) 1608 break; 1609 tsk = next_thread(tsk); 1610 BUG_ON(tsk->signal != current->signal); 1611 } while (tsk != current); 1612 read_unlock(&tasklist_lock); 1613 1614 if (!retval && !(options & WNOHANG)) { 1615 retval = -ERESTARTSYS; 1616 if (!signal_pending(current)) { 1617 schedule(); 1618 goto repeat; 1619 } 1620 } 1621 1622 end: 1623 current->state = TASK_RUNNING; 1624 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1625 if (infop) { 1626 if (retval > 0) 1627 retval = 0; 1628 else { 1629 /* 1630 * For a WNOHANG return, clear out all the fields 1631 * we would set so the user can easily tell the 1632 * difference. 1633 */ 1634 if (!retval) 1635 retval = put_user(0, &infop->si_signo); 1636 if (!retval) 1637 retval = put_user(0, &infop->si_errno); 1638 if (!retval) 1639 retval = put_user(0, &infop->si_code); 1640 if (!retval) 1641 retval = put_user(0, &infop->si_pid); 1642 if (!retval) 1643 retval = put_user(0, &infop->si_uid); 1644 if (!retval) 1645 retval = put_user(0, &infop->si_status); 1646 } 1647 } 1648 return retval; 1649 } 1650 1651 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1652 infop, int, options, struct rusage __user *, ru) 1653 { 1654 struct pid *pid = NULL; 1655 enum pid_type type; 1656 long ret; 1657 1658 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1659 return -EINVAL; 1660 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1661 return -EINVAL; 1662 1663 switch (which) { 1664 case P_ALL: 1665 type = PIDTYPE_MAX; 1666 break; 1667 case P_PID: 1668 type = PIDTYPE_PID; 1669 if (upid <= 0) 1670 return -EINVAL; 1671 break; 1672 case P_PGID: 1673 type = PIDTYPE_PGID; 1674 if (upid <= 0) 1675 return -EINVAL; 1676 break; 1677 default: 1678 return -EINVAL; 1679 } 1680 1681 if (type < PIDTYPE_MAX) 1682 pid = find_get_pid(upid); 1683 ret = do_wait(type, pid, options, infop, NULL, ru); 1684 put_pid(pid); 1685 1686 /* avoid REGPARM breakage on x86: */ 1687 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1688 return ret; 1689 } 1690 1691 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1692 int, options, struct rusage __user *, ru) 1693 { 1694 struct pid *pid = NULL; 1695 enum pid_type type; 1696 long ret; 1697 1698 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1699 __WNOTHREAD|__WCLONE|__WALL)) 1700 return -EINVAL; 1701 1702 if (upid == -1) 1703 type = PIDTYPE_MAX; 1704 else if (upid < 0) { 1705 type = PIDTYPE_PGID; 1706 pid = find_get_pid(-upid); 1707 } else if (upid == 0) { 1708 type = PIDTYPE_PGID; 1709 pid = get_task_pid(current, PIDTYPE_PGID); 1710 } else /* upid > 0 */ { 1711 type = PIDTYPE_PID; 1712 pid = find_get_pid(upid); 1713 } 1714 1715 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1716 put_pid(pid); 1717 1718 /* avoid REGPARM breakage on x86: */ 1719 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1720 return ret; 1721 } 1722 1723 #ifdef __ARCH_WANT_SYS_WAITPID 1724 1725 /* 1726 * sys_waitpid() remains for compatibility. waitpid() should be 1727 * implemented by calling sys_wait4() from libc.a. 1728 */ 1729 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1730 { 1731 return sys_wait4(pid, stat_addr, options, NULL); 1732 } 1733 1734 #endif 1735