xref: /openbmc/linux/kernel/exit.c (revision 82ced6fd)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <trace/sched.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
58 
59 DEFINE_TRACE(sched_process_free);
60 DEFINE_TRACE(sched_process_exit);
61 DEFINE_TRACE(sched_process_wait);
62 
63 static void exit_mm(struct task_struct * tsk);
64 
65 static void __unhash_process(struct task_struct *p)
66 {
67 	nr_threads--;
68 	detach_pid(p, PIDTYPE_PID);
69 	if (thread_group_leader(p)) {
70 		detach_pid(p, PIDTYPE_PGID);
71 		detach_pid(p, PIDTYPE_SID);
72 
73 		list_del_rcu(&p->tasks);
74 		__get_cpu_var(process_counts)--;
75 	}
76 	list_del_rcu(&p->thread_group);
77 	list_del_init(&p->sibling);
78 }
79 
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 	struct signal_struct *sig = tsk->signal;
86 	struct sighand_struct *sighand;
87 
88 	BUG_ON(!sig);
89 	BUG_ON(!atomic_read(&sig->count));
90 
91 	sighand = rcu_dereference(tsk->sighand);
92 	spin_lock(&sighand->siglock);
93 
94 	posix_cpu_timers_exit(tsk);
95 	if (atomic_dec_and_test(&sig->count))
96 		posix_cpu_timers_exit_group(tsk);
97 	else {
98 		/*
99 		 * If there is any task waiting for the group exit
100 		 * then notify it:
101 		 */
102 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
103 			wake_up_process(sig->group_exit_task);
104 
105 		if (tsk == sig->curr_target)
106 			sig->curr_target = next_thread(tsk);
107 		/*
108 		 * Accumulate here the counters for all threads but the
109 		 * group leader as they die, so they can be added into
110 		 * the process-wide totals when those are taken.
111 		 * The group leader stays around as a zombie as long
112 		 * as there are other threads.  When it gets reaped,
113 		 * the exit.c code will add its counts into these totals.
114 		 * We won't ever get here for the group leader, since it
115 		 * will have been the last reference on the signal_struct.
116 		 */
117 		sig->utime = cputime_add(sig->utime, task_utime(tsk));
118 		sig->stime = cputime_add(sig->stime, task_stime(tsk));
119 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
120 		sig->min_flt += tsk->min_flt;
121 		sig->maj_flt += tsk->maj_flt;
122 		sig->nvcsw += tsk->nvcsw;
123 		sig->nivcsw += tsk->nivcsw;
124 		sig->inblock += task_io_get_inblock(tsk);
125 		sig->oublock += task_io_get_oublock(tsk);
126 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
127 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
128 		sig = NULL; /* Marker for below. */
129 	}
130 
131 	__unhash_process(tsk);
132 
133 	/*
134 	 * Do this under ->siglock, we can race with another thread
135 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
136 	 */
137 	flush_sigqueue(&tsk->pending);
138 
139 	tsk->signal = NULL;
140 	tsk->sighand = NULL;
141 	spin_unlock(&sighand->siglock);
142 
143 	__cleanup_sighand(sighand);
144 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
145 	if (sig) {
146 		flush_sigqueue(&sig->shared_pending);
147 		taskstats_tgid_free(sig);
148 		/*
149 		 * Make sure ->signal can't go away under rq->lock,
150 		 * see account_group_exec_runtime().
151 		 */
152 		task_rq_unlock_wait(tsk);
153 		__cleanup_signal(sig);
154 	}
155 }
156 
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160 
161 	trace_sched_process_free(tsk);
162 	put_task_struct(tsk);
163 }
164 
165 
166 void release_task(struct task_struct * p)
167 {
168 	struct task_struct *leader;
169 	int zap_leader;
170 repeat:
171 	tracehook_prepare_release_task(p);
172 	/* don't need to get the RCU readlock here - the process is dead and
173 	 * can't be modifying its own credentials */
174 	atomic_dec(&__task_cred(p)->user->processes);
175 
176 	proc_flush_task(p);
177 	write_lock_irq(&tasklist_lock);
178 	tracehook_finish_release_task(p);
179 	__exit_signal(p);
180 
181 	/*
182 	 * If we are the last non-leader member of the thread
183 	 * group, and the leader is zombie, then notify the
184 	 * group leader's parent process. (if it wants notification.)
185 	 */
186 	zap_leader = 0;
187 	leader = p->group_leader;
188 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
189 		BUG_ON(task_detached(leader));
190 		do_notify_parent(leader, leader->exit_signal);
191 		/*
192 		 * If we were the last child thread and the leader has
193 		 * exited already, and the leader's parent ignores SIGCHLD,
194 		 * then we are the one who should release the leader.
195 		 *
196 		 * do_notify_parent() will have marked it self-reaping in
197 		 * that case.
198 		 */
199 		zap_leader = task_detached(leader);
200 
201 		/*
202 		 * This maintains the invariant that release_task()
203 		 * only runs on a task in EXIT_DEAD, just for sanity.
204 		 */
205 		if (zap_leader)
206 			leader->exit_state = EXIT_DEAD;
207 	}
208 
209 	write_unlock_irq(&tasklist_lock);
210 	release_thread(p);
211 	call_rcu(&p->rcu, delayed_put_task_struct);
212 
213 	p = leader;
214 	if (unlikely(zap_leader))
215 		goto repeat;
216 }
217 
218 /*
219  * This checks not only the pgrp, but falls back on the pid if no
220  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
221  * without this...
222  *
223  * The caller must hold rcu lock or the tasklist lock.
224  */
225 struct pid *session_of_pgrp(struct pid *pgrp)
226 {
227 	struct task_struct *p;
228 	struct pid *sid = NULL;
229 
230 	p = pid_task(pgrp, PIDTYPE_PGID);
231 	if (p == NULL)
232 		p = pid_task(pgrp, PIDTYPE_PID);
233 	if (p != NULL)
234 		sid = task_session(p);
235 
236 	return sid;
237 }
238 
239 /*
240  * Determine if a process group is "orphaned", according to the POSIX
241  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
242  * by terminal-generated stop signals.  Newly orphaned process groups are
243  * to receive a SIGHUP and a SIGCONT.
244  *
245  * "I ask you, have you ever known what it is to be an orphan?"
246  */
247 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
248 {
249 	struct task_struct *p;
250 
251 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 		if ((p == ignored_task) ||
253 		    (p->exit_state && thread_group_empty(p)) ||
254 		    is_global_init(p->real_parent))
255 			continue;
256 
257 		if (task_pgrp(p->real_parent) != pgrp &&
258 		    task_session(p->real_parent) == task_session(p))
259 			return 0;
260 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261 
262 	return 1;
263 }
264 
265 int is_current_pgrp_orphaned(void)
266 {
267 	int retval;
268 
269 	read_lock(&tasklist_lock);
270 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271 	read_unlock(&tasklist_lock);
272 
273 	return retval;
274 }
275 
276 static int has_stopped_jobs(struct pid *pgrp)
277 {
278 	int retval = 0;
279 	struct task_struct *p;
280 
281 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
282 		if (!task_is_stopped(p))
283 			continue;
284 		retval = 1;
285 		break;
286 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
287 	return retval;
288 }
289 
290 /*
291  * Check to see if any process groups have become orphaned as
292  * a result of our exiting, and if they have any stopped jobs,
293  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
294  */
295 static void
296 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
297 {
298 	struct pid *pgrp = task_pgrp(tsk);
299 	struct task_struct *ignored_task = tsk;
300 
301 	if (!parent)
302 		 /* exit: our father is in a different pgrp than
303 		  * we are and we were the only connection outside.
304 		  */
305 		parent = tsk->real_parent;
306 	else
307 		/* reparent: our child is in a different pgrp than
308 		 * we are, and it was the only connection outside.
309 		 */
310 		ignored_task = NULL;
311 
312 	if (task_pgrp(parent) != pgrp &&
313 	    task_session(parent) == task_session(tsk) &&
314 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
315 	    has_stopped_jobs(pgrp)) {
316 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
317 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
318 	}
319 }
320 
321 /**
322  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
323  *
324  * If a kernel thread is launched as a result of a system call, or if
325  * it ever exits, it should generally reparent itself to kthreadd so it
326  * isn't in the way of other processes and is correctly cleaned up on exit.
327  *
328  * The various task state such as scheduling policy and priority may have
329  * been inherited from a user process, so we reset them to sane values here.
330  *
331  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
332  */
333 static void reparent_to_kthreadd(void)
334 {
335 	write_lock_irq(&tasklist_lock);
336 
337 	ptrace_unlink(current);
338 	/* Reparent to init */
339 	current->real_parent = current->parent = kthreadd_task;
340 	list_move_tail(&current->sibling, &current->real_parent->children);
341 
342 	/* Set the exit signal to SIGCHLD so we signal init on exit */
343 	current->exit_signal = SIGCHLD;
344 
345 	if (task_nice(current) < 0)
346 		set_user_nice(current, 0);
347 	/* cpus_allowed? */
348 	/* rt_priority? */
349 	/* signals? */
350 	memcpy(current->signal->rlim, init_task.signal->rlim,
351 	       sizeof(current->signal->rlim));
352 
353 	atomic_inc(&init_cred.usage);
354 	commit_creds(&init_cred);
355 	write_unlock_irq(&tasklist_lock);
356 }
357 
358 void __set_special_pids(struct pid *pid)
359 {
360 	struct task_struct *curr = current->group_leader;
361 
362 	if (task_session(curr) != pid)
363 		change_pid(curr, PIDTYPE_SID, pid);
364 
365 	if (task_pgrp(curr) != pid)
366 		change_pid(curr, PIDTYPE_PGID, pid);
367 }
368 
369 static void set_special_pids(struct pid *pid)
370 {
371 	write_lock_irq(&tasklist_lock);
372 	__set_special_pids(pid);
373 	write_unlock_irq(&tasklist_lock);
374 }
375 
376 /*
377  * Let kernel threads use this to say that they
378  * allow a certain signal (since daemonize() will
379  * have disabled all of them by default).
380  */
381 int allow_signal(int sig)
382 {
383 	if (!valid_signal(sig) || sig < 1)
384 		return -EINVAL;
385 
386 	spin_lock_irq(&current->sighand->siglock);
387 	sigdelset(&current->blocked, sig);
388 	if (!current->mm) {
389 		/* Kernel threads handle their own signals.
390 		   Let the signal code know it'll be handled, so
391 		   that they don't get converted to SIGKILL or
392 		   just silently dropped */
393 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
394 	}
395 	recalc_sigpending();
396 	spin_unlock_irq(&current->sighand->siglock);
397 	return 0;
398 }
399 
400 EXPORT_SYMBOL(allow_signal);
401 
402 int disallow_signal(int sig)
403 {
404 	if (!valid_signal(sig) || sig < 1)
405 		return -EINVAL;
406 
407 	spin_lock_irq(&current->sighand->siglock);
408 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
409 	recalc_sigpending();
410 	spin_unlock_irq(&current->sighand->siglock);
411 	return 0;
412 }
413 
414 EXPORT_SYMBOL(disallow_signal);
415 
416 /*
417  *	Put all the gunge required to become a kernel thread without
418  *	attached user resources in one place where it belongs.
419  */
420 
421 void daemonize(const char *name, ...)
422 {
423 	va_list args;
424 	sigset_t blocked;
425 
426 	va_start(args, name);
427 	vsnprintf(current->comm, sizeof(current->comm), name, args);
428 	va_end(args);
429 
430 	/*
431 	 * If we were started as result of loading a module, close all of the
432 	 * user space pages.  We don't need them, and if we didn't close them
433 	 * they would be locked into memory.
434 	 */
435 	exit_mm(current);
436 	/*
437 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
438 	 * or suspend transition begins right now.
439 	 */
440 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
441 
442 	if (current->nsproxy != &init_nsproxy) {
443 		get_nsproxy(&init_nsproxy);
444 		switch_task_namespaces(current, &init_nsproxy);
445 	}
446 	set_special_pids(&init_struct_pid);
447 	proc_clear_tty(current);
448 
449 	/* Block and flush all signals */
450 	sigfillset(&blocked);
451 	sigprocmask(SIG_BLOCK, &blocked, NULL);
452 	flush_signals(current);
453 
454 	/* Become as one with the init task */
455 
456 	daemonize_fs_struct();
457 	exit_files(current);
458 	current->files = init_task.files;
459 	atomic_inc(&current->files->count);
460 
461 	reparent_to_kthreadd();
462 }
463 
464 EXPORT_SYMBOL(daemonize);
465 
466 static void close_files(struct files_struct * files)
467 {
468 	int i, j;
469 	struct fdtable *fdt;
470 
471 	j = 0;
472 
473 	/*
474 	 * It is safe to dereference the fd table without RCU or
475 	 * ->file_lock because this is the last reference to the
476 	 * files structure.
477 	 */
478 	fdt = files_fdtable(files);
479 	for (;;) {
480 		unsigned long set;
481 		i = j * __NFDBITS;
482 		if (i >= fdt->max_fds)
483 			break;
484 		set = fdt->open_fds->fds_bits[j++];
485 		while (set) {
486 			if (set & 1) {
487 				struct file * file = xchg(&fdt->fd[i], NULL);
488 				if (file) {
489 					filp_close(file, files);
490 					cond_resched();
491 				}
492 			}
493 			i++;
494 			set >>= 1;
495 		}
496 	}
497 }
498 
499 struct files_struct *get_files_struct(struct task_struct *task)
500 {
501 	struct files_struct *files;
502 
503 	task_lock(task);
504 	files = task->files;
505 	if (files)
506 		atomic_inc(&files->count);
507 	task_unlock(task);
508 
509 	return files;
510 }
511 
512 void put_files_struct(struct files_struct *files)
513 {
514 	struct fdtable *fdt;
515 
516 	if (atomic_dec_and_test(&files->count)) {
517 		close_files(files);
518 		/*
519 		 * Free the fd and fdset arrays if we expanded them.
520 		 * If the fdtable was embedded, pass files for freeing
521 		 * at the end of the RCU grace period. Otherwise,
522 		 * you can free files immediately.
523 		 */
524 		fdt = files_fdtable(files);
525 		if (fdt != &files->fdtab)
526 			kmem_cache_free(files_cachep, files);
527 		free_fdtable(fdt);
528 	}
529 }
530 
531 void reset_files_struct(struct files_struct *files)
532 {
533 	struct task_struct *tsk = current;
534 	struct files_struct *old;
535 
536 	old = tsk->files;
537 	task_lock(tsk);
538 	tsk->files = files;
539 	task_unlock(tsk);
540 	put_files_struct(old);
541 }
542 
543 void exit_files(struct task_struct *tsk)
544 {
545 	struct files_struct * files = tsk->files;
546 
547 	if (files) {
548 		task_lock(tsk);
549 		tsk->files = NULL;
550 		task_unlock(tsk);
551 		put_files_struct(files);
552 	}
553 }
554 
555 #ifdef CONFIG_MM_OWNER
556 /*
557  * Task p is exiting and it owned mm, lets find a new owner for it
558  */
559 static inline int
560 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
561 {
562 	/*
563 	 * If there are other users of the mm and the owner (us) is exiting
564 	 * we need to find a new owner to take on the responsibility.
565 	 */
566 	if (atomic_read(&mm->mm_users) <= 1)
567 		return 0;
568 	if (mm->owner != p)
569 		return 0;
570 	return 1;
571 }
572 
573 void mm_update_next_owner(struct mm_struct *mm)
574 {
575 	struct task_struct *c, *g, *p = current;
576 
577 retry:
578 	if (!mm_need_new_owner(mm, p))
579 		return;
580 
581 	read_lock(&tasklist_lock);
582 	/*
583 	 * Search in the children
584 	 */
585 	list_for_each_entry(c, &p->children, sibling) {
586 		if (c->mm == mm)
587 			goto assign_new_owner;
588 	}
589 
590 	/*
591 	 * Search in the siblings
592 	 */
593 	list_for_each_entry(c, &p->parent->children, sibling) {
594 		if (c->mm == mm)
595 			goto assign_new_owner;
596 	}
597 
598 	/*
599 	 * Search through everything else. We should not get
600 	 * here often
601 	 */
602 	do_each_thread(g, c) {
603 		if (c->mm == mm)
604 			goto assign_new_owner;
605 	} while_each_thread(g, c);
606 
607 	read_unlock(&tasklist_lock);
608 	/*
609 	 * We found no owner yet mm_users > 1: this implies that we are
610 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
611 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
612 	 */
613 	mm->owner = NULL;
614 	return;
615 
616 assign_new_owner:
617 	BUG_ON(c == p);
618 	get_task_struct(c);
619 	/*
620 	 * The task_lock protects c->mm from changing.
621 	 * We always want mm->owner->mm == mm
622 	 */
623 	task_lock(c);
624 	/*
625 	 * Delay read_unlock() till we have the task_lock()
626 	 * to ensure that c does not slip away underneath us
627 	 */
628 	read_unlock(&tasklist_lock);
629 	if (c->mm != mm) {
630 		task_unlock(c);
631 		put_task_struct(c);
632 		goto retry;
633 	}
634 	mm->owner = c;
635 	task_unlock(c);
636 	put_task_struct(c);
637 }
638 #endif /* CONFIG_MM_OWNER */
639 
640 /*
641  * Turn us into a lazy TLB process if we
642  * aren't already..
643  */
644 static void exit_mm(struct task_struct * tsk)
645 {
646 	struct mm_struct *mm = tsk->mm;
647 	struct core_state *core_state;
648 
649 	mm_release(tsk, mm);
650 	if (!mm)
651 		return;
652 	/*
653 	 * Serialize with any possible pending coredump.
654 	 * We must hold mmap_sem around checking core_state
655 	 * and clearing tsk->mm.  The core-inducing thread
656 	 * will increment ->nr_threads for each thread in the
657 	 * group with ->mm != NULL.
658 	 */
659 	down_read(&mm->mmap_sem);
660 	core_state = mm->core_state;
661 	if (core_state) {
662 		struct core_thread self;
663 		up_read(&mm->mmap_sem);
664 
665 		self.task = tsk;
666 		self.next = xchg(&core_state->dumper.next, &self);
667 		/*
668 		 * Implies mb(), the result of xchg() must be visible
669 		 * to core_state->dumper.
670 		 */
671 		if (atomic_dec_and_test(&core_state->nr_threads))
672 			complete(&core_state->startup);
673 
674 		for (;;) {
675 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
676 			if (!self.task) /* see coredump_finish() */
677 				break;
678 			schedule();
679 		}
680 		__set_task_state(tsk, TASK_RUNNING);
681 		down_read(&mm->mmap_sem);
682 	}
683 	atomic_inc(&mm->mm_count);
684 	BUG_ON(mm != tsk->active_mm);
685 	/* more a memory barrier than a real lock */
686 	task_lock(tsk);
687 	tsk->mm = NULL;
688 	up_read(&mm->mmap_sem);
689 	enter_lazy_tlb(mm, current);
690 	/* We don't want this task to be frozen prematurely */
691 	clear_freeze_flag(tsk);
692 	task_unlock(tsk);
693 	mm_update_next_owner(mm);
694 	mmput(mm);
695 }
696 
697 /*
698  * When we die, we re-parent all our children.
699  * Try to give them to another thread in our thread
700  * group, and if no such member exists, give it to
701  * the child reaper process (ie "init") in our pid
702  * space.
703  */
704 static struct task_struct *find_new_reaper(struct task_struct *father)
705 {
706 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
707 	struct task_struct *thread;
708 
709 	thread = father;
710 	while_each_thread(father, thread) {
711 		if (thread->flags & PF_EXITING)
712 			continue;
713 		if (unlikely(pid_ns->child_reaper == father))
714 			pid_ns->child_reaper = thread;
715 		return thread;
716 	}
717 
718 	if (unlikely(pid_ns->child_reaper == father)) {
719 		write_unlock_irq(&tasklist_lock);
720 		if (unlikely(pid_ns == &init_pid_ns))
721 			panic("Attempted to kill init!");
722 
723 		zap_pid_ns_processes(pid_ns);
724 		write_lock_irq(&tasklist_lock);
725 		/*
726 		 * We can not clear ->child_reaper or leave it alone.
727 		 * There may by stealth EXIT_DEAD tasks on ->children,
728 		 * forget_original_parent() must move them somewhere.
729 		 */
730 		pid_ns->child_reaper = init_pid_ns.child_reaper;
731 	}
732 
733 	return pid_ns->child_reaper;
734 }
735 
736 /*
737 * Any that need to be release_task'd are put on the @dead list.
738  */
739 static void reparent_thread(struct task_struct *father, struct task_struct *p,
740 				struct list_head *dead)
741 {
742 	if (p->pdeath_signal)
743 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
744 
745 	list_move_tail(&p->sibling, &p->real_parent->children);
746 
747 	if (task_detached(p))
748 		return;
749 	/*
750 	 * If this is a threaded reparent there is no need to
751 	 * notify anyone anything has happened.
752 	 */
753 	if (same_thread_group(p->real_parent, father))
754 		return;
755 
756 	/* We don't want people slaying init.  */
757 	p->exit_signal = SIGCHLD;
758 
759 	/* If it has exited notify the new parent about this child's death. */
760 	if (!p->ptrace &&
761 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
762 		do_notify_parent(p, p->exit_signal);
763 		if (task_detached(p)) {
764 			p->exit_state = EXIT_DEAD;
765 			list_move_tail(&p->sibling, dead);
766 		}
767 	}
768 
769 	kill_orphaned_pgrp(p, father);
770 }
771 
772 static void forget_original_parent(struct task_struct *father)
773 {
774 	struct task_struct *p, *n, *reaper;
775 	LIST_HEAD(dead_children);
776 
777 	exit_ptrace(father);
778 
779 	write_lock_irq(&tasklist_lock);
780 	reaper = find_new_reaper(father);
781 
782 	list_for_each_entry_safe(p, n, &father->children, sibling) {
783 		p->real_parent = reaper;
784 		if (p->parent == father) {
785 			BUG_ON(p->ptrace);
786 			p->parent = p->real_parent;
787 		}
788 		reparent_thread(father, p, &dead_children);
789 	}
790 	write_unlock_irq(&tasklist_lock);
791 
792 	BUG_ON(!list_empty(&father->children));
793 
794 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
795 		list_del_init(&p->sibling);
796 		release_task(p);
797 	}
798 }
799 
800 /*
801  * Send signals to all our closest relatives so that they know
802  * to properly mourn us..
803  */
804 static void exit_notify(struct task_struct *tsk, int group_dead)
805 {
806 	int signal;
807 	void *cookie;
808 
809 	/*
810 	 * This does two things:
811 	 *
812   	 * A.  Make init inherit all the child processes
813 	 * B.  Check to see if any process groups have become orphaned
814 	 *	as a result of our exiting, and if they have any stopped
815 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
816 	 */
817 	forget_original_parent(tsk);
818 	exit_task_namespaces(tsk);
819 
820 	write_lock_irq(&tasklist_lock);
821 	if (group_dead)
822 		kill_orphaned_pgrp(tsk->group_leader, NULL);
823 
824 	/* Let father know we died
825 	 *
826 	 * Thread signals are configurable, but you aren't going to use
827 	 * that to send signals to arbitary processes.
828 	 * That stops right now.
829 	 *
830 	 * If the parent exec id doesn't match the exec id we saved
831 	 * when we started then we know the parent has changed security
832 	 * domain.
833 	 *
834 	 * If our self_exec id doesn't match our parent_exec_id then
835 	 * we have changed execution domain as these two values started
836 	 * the same after a fork.
837 	 */
838 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
839 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
840 	     tsk->self_exec_id != tsk->parent_exec_id))
841 		tsk->exit_signal = SIGCHLD;
842 
843 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
844 	if (signal >= 0)
845 		signal = do_notify_parent(tsk, signal);
846 
847 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
848 
849 	/* mt-exec, de_thread() is waiting for us */
850 	if (thread_group_leader(tsk) &&
851 	    tsk->signal->group_exit_task &&
852 	    tsk->signal->notify_count < 0)
853 		wake_up_process(tsk->signal->group_exit_task);
854 
855 	write_unlock_irq(&tasklist_lock);
856 
857 	tracehook_report_death(tsk, signal, cookie, group_dead);
858 
859 	/* If the process is dead, release it - nobody will wait for it */
860 	if (signal == DEATH_REAP)
861 		release_task(tsk);
862 }
863 
864 #ifdef CONFIG_DEBUG_STACK_USAGE
865 static void check_stack_usage(void)
866 {
867 	static DEFINE_SPINLOCK(low_water_lock);
868 	static int lowest_to_date = THREAD_SIZE;
869 	unsigned long free;
870 
871 	free = stack_not_used(current);
872 
873 	if (free >= lowest_to_date)
874 		return;
875 
876 	spin_lock(&low_water_lock);
877 	if (free < lowest_to_date) {
878 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
879 				"left\n",
880 				current->comm, free);
881 		lowest_to_date = free;
882 	}
883 	spin_unlock(&low_water_lock);
884 }
885 #else
886 static inline void check_stack_usage(void) {}
887 #endif
888 
889 NORET_TYPE void do_exit(long code)
890 {
891 	struct task_struct *tsk = current;
892 	int group_dead;
893 
894 	profile_task_exit(tsk);
895 
896 	WARN_ON(atomic_read(&tsk->fs_excl));
897 
898 	if (unlikely(in_interrupt()))
899 		panic("Aiee, killing interrupt handler!");
900 	if (unlikely(!tsk->pid))
901 		panic("Attempted to kill the idle task!");
902 
903 	tracehook_report_exit(&code);
904 
905 	/*
906 	 * We're taking recursive faults here in do_exit. Safest is to just
907 	 * leave this task alone and wait for reboot.
908 	 */
909 	if (unlikely(tsk->flags & PF_EXITING)) {
910 		printk(KERN_ALERT
911 			"Fixing recursive fault but reboot is needed!\n");
912 		/*
913 		 * We can do this unlocked here. The futex code uses
914 		 * this flag just to verify whether the pi state
915 		 * cleanup has been done or not. In the worst case it
916 		 * loops once more. We pretend that the cleanup was
917 		 * done as there is no way to return. Either the
918 		 * OWNER_DIED bit is set by now or we push the blocked
919 		 * task into the wait for ever nirwana as well.
920 		 */
921 		tsk->flags |= PF_EXITPIDONE;
922 		set_current_state(TASK_UNINTERRUPTIBLE);
923 		schedule();
924 	}
925 
926 	exit_irq_thread();
927 
928 	exit_signals(tsk);  /* sets PF_EXITING */
929 	/*
930 	 * tsk->flags are checked in the futex code to protect against
931 	 * an exiting task cleaning up the robust pi futexes.
932 	 */
933 	smp_mb();
934 	spin_unlock_wait(&tsk->pi_lock);
935 
936 	if (unlikely(in_atomic()))
937 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
938 				current->comm, task_pid_nr(current),
939 				preempt_count());
940 
941 	acct_update_integrals(tsk);
942 
943 	group_dead = atomic_dec_and_test(&tsk->signal->live);
944 	if (group_dead) {
945 		hrtimer_cancel(&tsk->signal->real_timer);
946 		exit_itimers(tsk->signal);
947 	}
948 	acct_collect(code, group_dead);
949 	if (group_dead)
950 		tty_audit_exit();
951 	if (unlikely(tsk->audit_context))
952 		audit_free(tsk);
953 
954 	tsk->exit_code = code;
955 	taskstats_exit(tsk, group_dead);
956 
957 	exit_mm(tsk);
958 
959 	if (group_dead)
960 		acct_process();
961 	trace_sched_process_exit(tsk);
962 
963 	exit_sem(tsk);
964 	exit_files(tsk);
965 	exit_fs(tsk);
966 	check_stack_usage();
967 	exit_thread();
968 	cgroup_exit(tsk, 1);
969 
970 	if (group_dead && tsk->signal->leader)
971 		disassociate_ctty(1);
972 
973 	module_put(task_thread_info(tsk)->exec_domain->module);
974 	if (tsk->binfmt)
975 		module_put(tsk->binfmt->module);
976 
977 	proc_exit_connector(tsk);
978 	exit_notify(tsk, group_dead);
979 #ifdef CONFIG_NUMA
980 	mpol_put(tsk->mempolicy);
981 	tsk->mempolicy = NULL;
982 #endif
983 #ifdef CONFIG_FUTEX
984 	/*
985 	 * This must happen late, after the PID is not
986 	 * hashed anymore:
987 	 */
988 	if (unlikely(!list_empty(&tsk->pi_state_list)))
989 		exit_pi_state_list(tsk);
990 	if (unlikely(current->pi_state_cache))
991 		kfree(current->pi_state_cache);
992 #endif
993 	/*
994 	 * Make sure we are holding no locks:
995 	 */
996 	debug_check_no_locks_held(tsk);
997 	/*
998 	 * We can do this unlocked here. The futex code uses this flag
999 	 * just to verify whether the pi state cleanup has been done
1000 	 * or not. In the worst case it loops once more.
1001 	 */
1002 	tsk->flags |= PF_EXITPIDONE;
1003 
1004 	if (tsk->io_context)
1005 		exit_io_context();
1006 
1007 	if (tsk->splice_pipe)
1008 		__free_pipe_info(tsk->splice_pipe);
1009 
1010 	preempt_disable();
1011 	/* causes final put_task_struct in finish_task_switch(). */
1012 	tsk->state = TASK_DEAD;
1013 	schedule();
1014 	BUG();
1015 	/* Avoid "noreturn function does return".  */
1016 	for (;;)
1017 		cpu_relax();	/* For when BUG is null */
1018 }
1019 
1020 EXPORT_SYMBOL_GPL(do_exit);
1021 
1022 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1023 {
1024 	if (comp)
1025 		complete(comp);
1026 
1027 	do_exit(code);
1028 }
1029 
1030 EXPORT_SYMBOL(complete_and_exit);
1031 
1032 SYSCALL_DEFINE1(exit, int, error_code)
1033 {
1034 	do_exit((error_code&0xff)<<8);
1035 }
1036 
1037 /*
1038  * Take down every thread in the group.  This is called by fatal signals
1039  * as well as by sys_exit_group (below).
1040  */
1041 NORET_TYPE void
1042 do_group_exit(int exit_code)
1043 {
1044 	struct signal_struct *sig = current->signal;
1045 
1046 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1047 
1048 	if (signal_group_exit(sig))
1049 		exit_code = sig->group_exit_code;
1050 	else if (!thread_group_empty(current)) {
1051 		struct sighand_struct *const sighand = current->sighand;
1052 		spin_lock_irq(&sighand->siglock);
1053 		if (signal_group_exit(sig))
1054 			/* Another thread got here before we took the lock.  */
1055 			exit_code = sig->group_exit_code;
1056 		else {
1057 			sig->group_exit_code = exit_code;
1058 			sig->flags = SIGNAL_GROUP_EXIT;
1059 			zap_other_threads(current);
1060 		}
1061 		spin_unlock_irq(&sighand->siglock);
1062 	}
1063 
1064 	do_exit(exit_code);
1065 	/* NOTREACHED */
1066 }
1067 
1068 /*
1069  * this kills every thread in the thread group. Note that any externally
1070  * wait4()-ing process will get the correct exit code - even if this
1071  * thread is not the thread group leader.
1072  */
1073 SYSCALL_DEFINE1(exit_group, int, error_code)
1074 {
1075 	do_group_exit((error_code & 0xff) << 8);
1076 	/* NOTREACHED */
1077 	return 0;
1078 }
1079 
1080 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1081 {
1082 	struct pid *pid = NULL;
1083 	if (type == PIDTYPE_PID)
1084 		pid = task->pids[type].pid;
1085 	else if (type < PIDTYPE_MAX)
1086 		pid = task->group_leader->pids[type].pid;
1087 	return pid;
1088 }
1089 
1090 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1091 			  struct task_struct *p)
1092 {
1093 	int err;
1094 
1095 	if (type < PIDTYPE_MAX) {
1096 		if (task_pid_type(p, type) != pid)
1097 			return 0;
1098 	}
1099 
1100 	/* Wait for all children (clone and not) if __WALL is set;
1101 	 * otherwise, wait for clone children *only* if __WCLONE is
1102 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1103 	 * A "clone" child here is one that reports to its parent
1104 	 * using a signal other than SIGCHLD.) */
1105 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1106 	    && !(options & __WALL))
1107 		return 0;
1108 
1109 	err = security_task_wait(p);
1110 	if (err)
1111 		return err;
1112 
1113 	return 1;
1114 }
1115 
1116 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1117 			       int why, int status,
1118 			       struct siginfo __user *infop,
1119 			       struct rusage __user *rusagep)
1120 {
1121 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1122 
1123 	put_task_struct(p);
1124 	if (!retval)
1125 		retval = put_user(SIGCHLD, &infop->si_signo);
1126 	if (!retval)
1127 		retval = put_user(0, &infop->si_errno);
1128 	if (!retval)
1129 		retval = put_user((short)why, &infop->si_code);
1130 	if (!retval)
1131 		retval = put_user(pid, &infop->si_pid);
1132 	if (!retval)
1133 		retval = put_user(uid, &infop->si_uid);
1134 	if (!retval)
1135 		retval = put_user(status, &infop->si_status);
1136 	if (!retval)
1137 		retval = pid;
1138 	return retval;
1139 }
1140 
1141 /*
1142  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1143  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1144  * the lock and this task is uninteresting.  If we return nonzero, we have
1145  * released the lock and the system call should return.
1146  */
1147 static int wait_task_zombie(struct task_struct *p, int options,
1148 			    struct siginfo __user *infop,
1149 			    int __user *stat_addr, struct rusage __user *ru)
1150 {
1151 	unsigned long state;
1152 	int retval, status, traced;
1153 	pid_t pid = task_pid_vnr(p);
1154 	uid_t uid = __task_cred(p)->uid;
1155 
1156 	if (!likely(options & WEXITED))
1157 		return 0;
1158 
1159 	if (unlikely(options & WNOWAIT)) {
1160 		int exit_code = p->exit_code;
1161 		int why, status;
1162 
1163 		get_task_struct(p);
1164 		read_unlock(&tasklist_lock);
1165 		if ((exit_code & 0x7f) == 0) {
1166 			why = CLD_EXITED;
1167 			status = exit_code >> 8;
1168 		} else {
1169 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1170 			status = exit_code & 0x7f;
1171 		}
1172 		return wait_noreap_copyout(p, pid, uid, why,
1173 					   status, infop, ru);
1174 	}
1175 
1176 	/*
1177 	 * Try to move the task's state to DEAD
1178 	 * only one thread is allowed to do this:
1179 	 */
1180 	state = xchg(&p->exit_state, EXIT_DEAD);
1181 	if (state != EXIT_ZOMBIE) {
1182 		BUG_ON(state != EXIT_DEAD);
1183 		return 0;
1184 	}
1185 
1186 	traced = ptrace_reparented(p);
1187 
1188 	if (likely(!traced)) {
1189 		struct signal_struct *psig;
1190 		struct signal_struct *sig;
1191 		struct task_cputime cputime;
1192 
1193 		/*
1194 		 * The resource counters for the group leader are in its
1195 		 * own task_struct.  Those for dead threads in the group
1196 		 * are in its signal_struct, as are those for the child
1197 		 * processes it has previously reaped.  All these
1198 		 * accumulate in the parent's signal_struct c* fields.
1199 		 *
1200 		 * We don't bother to take a lock here to protect these
1201 		 * p->signal fields, because they are only touched by
1202 		 * __exit_signal, which runs with tasklist_lock
1203 		 * write-locked anyway, and so is excluded here.  We do
1204 		 * need to protect the access to p->parent->signal fields,
1205 		 * as other threads in the parent group can be right
1206 		 * here reaping other children at the same time.
1207 		 *
1208 		 * We use thread_group_cputime() to get times for the thread
1209 		 * group, which consolidates times for all threads in the
1210 		 * group including the group leader.
1211 		 */
1212 		thread_group_cputime(p, &cputime);
1213 		spin_lock_irq(&p->parent->sighand->siglock);
1214 		psig = p->parent->signal;
1215 		sig = p->signal;
1216 		psig->cutime =
1217 			cputime_add(psig->cutime,
1218 			cputime_add(cputime.utime,
1219 				    sig->cutime));
1220 		psig->cstime =
1221 			cputime_add(psig->cstime,
1222 			cputime_add(cputime.stime,
1223 				    sig->cstime));
1224 		psig->cgtime =
1225 			cputime_add(psig->cgtime,
1226 			cputime_add(p->gtime,
1227 			cputime_add(sig->gtime,
1228 				    sig->cgtime)));
1229 		psig->cmin_flt +=
1230 			p->min_flt + sig->min_flt + sig->cmin_flt;
1231 		psig->cmaj_flt +=
1232 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1233 		psig->cnvcsw +=
1234 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1235 		psig->cnivcsw +=
1236 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1237 		psig->cinblock +=
1238 			task_io_get_inblock(p) +
1239 			sig->inblock + sig->cinblock;
1240 		psig->coublock +=
1241 			task_io_get_oublock(p) +
1242 			sig->oublock + sig->coublock;
1243 		task_io_accounting_add(&psig->ioac, &p->ioac);
1244 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1245 		spin_unlock_irq(&p->parent->sighand->siglock);
1246 	}
1247 
1248 	/*
1249 	 * Now we are sure this task is interesting, and no other
1250 	 * thread can reap it because we set its state to EXIT_DEAD.
1251 	 */
1252 	read_unlock(&tasklist_lock);
1253 
1254 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1255 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1256 		? p->signal->group_exit_code : p->exit_code;
1257 	if (!retval && stat_addr)
1258 		retval = put_user(status, stat_addr);
1259 	if (!retval && infop)
1260 		retval = put_user(SIGCHLD, &infop->si_signo);
1261 	if (!retval && infop)
1262 		retval = put_user(0, &infop->si_errno);
1263 	if (!retval && infop) {
1264 		int why;
1265 
1266 		if ((status & 0x7f) == 0) {
1267 			why = CLD_EXITED;
1268 			status >>= 8;
1269 		} else {
1270 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1271 			status &= 0x7f;
1272 		}
1273 		retval = put_user((short)why, &infop->si_code);
1274 		if (!retval)
1275 			retval = put_user(status, &infop->si_status);
1276 	}
1277 	if (!retval && infop)
1278 		retval = put_user(pid, &infop->si_pid);
1279 	if (!retval && infop)
1280 		retval = put_user(uid, &infop->si_uid);
1281 	if (!retval)
1282 		retval = pid;
1283 
1284 	if (traced) {
1285 		write_lock_irq(&tasklist_lock);
1286 		/* We dropped tasklist, ptracer could die and untrace */
1287 		ptrace_unlink(p);
1288 		/*
1289 		 * If this is not a detached task, notify the parent.
1290 		 * If it's still not detached after that, don't release
1291 		 * it now.
1292 		 */
1293 		if (!task_detached(p)) {
1294 			do_notify_parent(p, p->exit_signal);
1295 			if (!task_detached(p)) {
1296 				p->exit_state = EXIT_ZOMBIE;
1297 				p = NULL;
1298 			}
1299 		}
1300 		write_unlock_irq(&tasklist_lock);
1301 	}
1302 	if (p != NULL)
1303 		release_task(p);
1304 
1305 	return retval;
1306 }
1307 
1308 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1309 {
1310 	if (ptrace) {
1311 		if (task_is_stopped_or_traced(p))
1312 			return &p->exit_code;
1313 	} else {
1314 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1315 			return &p->signal->group_exit_code;
1316 	}
1317 	return NULL;
1318 }
1319 
1320 /*
1321  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1322  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1323  * the lock and this task is uninteresting.  If we return nonzero, we have
1324  * released the lock and the system call should return.
1325  */
1326 static int wait_task_stopped(int ptrace, struct task_struct *p,
1327 			     int options, struct siginfo __user *infop,
1328 			     int __user *stat_addr, struct rusage __user *ru)
1329 {
1330 	int retval, exit_code, *p_code, why;
1331 	uid_t uid = 0; /* unneeded, required by compiler */
1332 	pid_t pid;
1333 
1334 	if (!(options & WUNTRACED))
1335 		return 0;
1336 
1337 	exit_code = 0;
1338 	spin_lock_irq(&p->sighand->siglock);
1339 
1340 	p_code = task_stopped_code(p, ptrace);
1341 	if (unlikely(!p_code))
1342 		goto unlock_sig;
1343 
1344 	exit_code = *p_code;
1345 	if (!exit_code)
1346 		goto unlock_sig;
1347 
1348 	if (!unlikely(options & WNOWAIT))
1349 		*p_code = 0;
1350 
1351 	/* don't need the RCU readlock here as we're holding a spinlock */
1352 	uid = __task_cred(p)->uid;
1353 unlock_sig:
1354 	spin_unlock_irq(&p->sighand->siglock);
1355 	if (!exit_code)
1356 		return 0;
1357 
1358 	/*
1359 	 * Now we are pretty sure this task is interesting.
1360 	 * Make sure it doesn't get reaped out from under us while we
1361 	 * give up the lock and then examine it below.  We don't want to
1362 	 * keep holding onto the tasklist_lock while we call getrusage and
1363 	 * possibly take page faults for user memory.
1364 	 */
1365 	get_task_struct(p);
1366 	pid = task_pid_vnr(p);
1367 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1368 	read_unlock(&tasklist_lock);
1369 
1370 	if (unlikely(options & WNOWAIT))
1371 		return wait_noreap_copyout(p, pid, uid,
1372 					   why, exit_code,
1373 					   infop, ru);
1374 
1375 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1376 	if (!retval && stat_addr)
1377 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1378 	if (!retval && infop)
1379 		retval = put_user(SIGCHLD, &infop->si_signo);
1380 	if (!retval && infop)
1381 		retval = put_user(0, &infop->si_errno);
1382 	if (!retval && infop)
1383 		retval = put_user((short)why, &infop->si_code);
1384 	if (!retval && infop)
1385 		retval = put_user(exit_code, &infop->si_status);
1386 	if (!retval && infop)
1387 		retval = put_user(pid, &infop->si_pid);
1388 	if (!retval && infop)
1389 		retval = put_user(uid, &infop->si_uid);
1390 	if (!retval)
1391 		retval = pid;
1392 	put_task_struct(p);
1393 
1394 	BUG_ON(!retval);
1395 	return retval;
1396 }
1397 
1398 /*
1399  * Handle do_wait work for one task in a live, non-stopped state.
1400  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1401  * the lock and this task is uninteresting.  If we return nonzero, we have
1402  * released the lock and the system call should return.
1403  */
1404 static int wait_task_continued(struct task_struct *p, int options,
1405 			       struct siginfo __user *infop,
1406 			       int __user *stat_addr, struct rusage __user *ru)
1407 {
1408 	int retval;
1409 	pid_t pid;
1410 	uid_t uid;
1411 
1412 	if (!unlikely(options & WCONTINUED))
1413 		return 0;
1414 
1415 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1416 		return 0;
1417 
1418 	spin_lock_irq(&p->sighand->siglock);
1419 	/* Re-check with the lock held.  */
1420 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1421 		spin_unlock_irq(&p->sighand->siglock);
1422 		return 0;
1423 	}
1424 	if (!unlikely(options & WNOWAIT))
1425 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1426 	uid = __task_cred(p)->uid;
1427 	spin_unlock_irq(&p->sighand->siglock);
1428 
1429 	pid = task_pid_vnr(p);
1430 	get_task_struct(p);
1431 	read_unlock(&tasklist_lock);
1432 
1433 	if (!infop) {
1434 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1435 		put_task_struct(p);
1436 		if (!retval && stat_addr)
1437 			retval = put_user(0xffff, stat_addr);
1438 		if (!retval)
1439 			retval = pid;
1440 	} else {
1441 		retval = wait_noreap_copyout(p, pid, uid,
1442 					     CLD_CONTINUED, SIGCONT,
1443 					     infop, ru);
1444 		BUG_ON(retval == 0);
1445 	}
1446 
1447 	return retval;
1448 }
1449 
1450 /*
1451  * Consider @p for a wait by @parent.
1452  *
1453  * -ECHILD should be in *@notask_error before the first call.
1454  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1455  * Returns zero if the search for a child should continue;
1456  * then *@notask_error is 0 if @p is an eligible child,
1457  * or another error from security_task_wait(), or still -ECHILD.
1458  */
1459 static int wait_consider_task(struct task_struct *parent, int ptrace,
1460 			      struct task_struct *p, int *notask_error,
1461 			      enum pid_type type, struct pid *pid, int options,
1462 			      struct siginfo __user *infop,
1463 			      int __user *stat_addr, struct rusage __user *ru)
1464 {
1465 	int ret = eligible_child(type, pid, options, p);
1466 	if (!ret)
1467 		return ret;
1468 
1469 	if (unlikely(ret < 0)) {
1470 		/*
1471 		 * If we have not yet seen any eligible child,
1472 		 * then let this error code replace -ECHILD.
1473 		 * A permission error will give the user a clue
1474 		 * to look for security policy problems, rather
1475 		 * than for mysterious wait bugs.
1476 		 */
1477 		if (*notask_error)
1478 			*notask_error = ret;
1479 	}
1480 
1481 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1482 		/*
1483 		 * This child is hidden by ptrace.
1484 		 * We aren't allowed to see it now, but eventually we will.
1485 		 */
1486 		*notask_error = 0;
1487 		return 0;
1488 	}
1489 
1490 	if (p->exit_state == EXIT_DEAD)
1491 		return 0;
1492 
1493 	/*
1494 	 * We don't reap group leaders with subthreads.
1495 	 */
1496 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1497 		return wait_task_zombie(p, options, infop, stat_addr, ru);
1498 
1499 	/*
1500 	 * It's stopped or running now, so it might
1501 	 * later continue, exit, or stop again.
1502 	 */
1503 	*notask_error = 0;
1504 
1505 	if (task_stopped_code(p, ptrace))
1506 		return wait_task_stopped(ptrace, p, options,
1507 					 infop, stat_addr, ru);
1508 
1509 	return wait_task_continued(p, options, infop, stat_addr, ru);
1510 }
1511 
1512 /*
1513  * Do the work of do_wait() for one thread in the group, @tsk.
1514  *
1515  * -ECHILD should be in *@notask_error before the first call.
1516  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1517  * Returns zero if the search for a child should continue; then
1518  * *@notask_error is 0 if there were any eligible children,
1519  * or another error from security_task_wait(), or still -ECHILD.
1520  */
1521 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1522 			  enum pid_type type, struct pid *pid, int options,
1523 			  struct siginfo __user *infop, int __user *stat_addr,
1524 			  struct rusage __user *ru)
1525 {
1526 	struct task_struct *p;
1527 
1528 	list_for_each_entry(p, &tsk->children, sibling) {
1529 		/*
1530 		 * Do not consider detached threads.
1531 		 */
1532 		if (!task_detached(p)) {
1533 			int ret = wait_consider_task(tsk, 0, p, notask_error,
1534 						     type, pid, options,
1535 						     infop, stat_addr, ru);
1536 			if (ret)
1537 				return ret;
1538 		}
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1545 			  enum pid_type type, struct pid *pid, int options,
1546 			  struct siginfo __user *infop, int __user *stat_addr,
1547 			  struct rusage __user *ru)
1548 {
1549 	struct task_struct *p;
1550 
1551 	/*
1552 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1553 	 */
1554 	options |= WUNTRACED;
1555 
1556 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1557 		int ret = wait_consider_task(tsk, 1, p, notask_error,
1558 					     type, pid, options,
1559 					     infop, stat_addr, ru);
1560 		if (ret)
1561 			return ret;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 static long do_wait(enum pid_type type, struct pid *pid, int options,
1568 		    struct siginfo __user *infop, int __user *stat_addr,
1569 		    struct rusage __user *ru)
1570 {
1571 	DECLARE_WAITQUEUE(wait, current);
1572 	struct task_struct *tsk;
1573 	int retval;
1574 
1575 	trace_sched_process_wait(pid);
1576 
1577 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1578 repeat:
1579 	/*
1580 	 * If there is nothing that can match our critiera just get out.
1581 	 * We will clear @retval to zero if we see any child that might later
1582 	 * match our criteria, even if we are not able to reap it yet.
1583 	 */
1584 	retval = -ECHILD;
1585 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1586 		goto end;
1587 
1588 	current->state = TASK_INTERRUPTIBLE;
1589 	read_lock(&tasklist_lock);
1590 	tsk = current;
1591 	do {
1592 		int tsk_result = do_wait_thread(tsk, &retval,
1593 						type, pid, options,
1594 						infop, stat_addr, ru);
1595 		if (!tsk_result)
1596 			tsk_result = ptrace_do_wait(tsk, &retval,
1597 						    type, pid, options,
1598 						    infop, stat_addr, ru);
1599 		if (tsk_result) {
1600 			/*
1601 			 * tasklist_lock is unlocked and we have a final result.
1602 			 */
1603 			retval = tsk_result;
1604 			goto end;
1605 		}
1606 
1607 		if (options & __WNOTHREAD)
1608 			break;
1609 		tsk = next_thread(tsk);
1610 		BUG_ON(tsk->signal != current->signal);
1611 	} while (tsk != current);
1612 	read_unlock(&tasklist_lock);
1613 
1614 	if (!retval && !(options & WNOHANG)) {
1615 		retval = -ERESTARTSYS;
1616 		if (!signal_pending(current)) {
1617 			schedule();
1618 			goto repeat;
1619 		}
1620 	}
1621 
1622 end:
1623 	current->state = TASK_RUNNING;
1624 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1625 	if (infop) {
1626 		if (retval > 0)
1627 			retval = 0;
1628 		else {
1629 			/*
1630 			 * For a WNOHANG return, clear out all the fields
1631 			 * we would set so the user can easily tell the
1632 			 * difference.
1633 			 */
1634 			if (!retval)
1635 				retval = put_user(0, &infop->si_signo);
1636 			if (!retval)
1637 				retval = put_user(0, &infop->si_errno);
1638 			if (!retval)
1639 				retval = put_user(0, &infop->si_code);
1640 			if (!retval)
1641 				retval = put_user(0, &infop->si_pid);
1642 			if (!retval)
1643 				retval = put_user(0, &infop->si_uid);
1644 			if (!retval)
1645 				retval = put_user(0, &infop->si_status);
1646 		}
1647 	}
1648 	return retval;
1649 }
1650 
1651 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1652 		infop, int, options, struct rusage __user *, ru)
1653 {
1654 	struct pid *pid = NULL;
1655 	enum pid_type type;
1656 	long ret;
1657 
1658 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1659 		return -EINVAL;
1660 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1661 		return -EINVAL;
1662 
1663 	switch (which) {
1664 	case P_ALL:
1665 		type = PIDTYPE_MAX;
1666 		break;
1667 	case P_PID:
1668 		type = PIDTYPE_PID;
1669 		if (upid <= 0)
1670 			return -EINVAL;
1671 		break;
1672 	case P_PGID:
1673 		type = PIDTYPE_PGID;
1674 		if (upid <= 0)
1675 			return -EINVAL;
1676 		break;
1677 	default:
1678 		return -EINVAL;
1679 	}
1680 
1681 	if (type < PIDTYPE_MAX)
1682 		pid = find_get_pid(upid);
1683 	ret = do_wait(type, pid, options, infop, NULL, ru);
1684 	put_pid(pid);
1685 
1686 	/* avoid REGPARM breakage on x86: */
1687 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1688 	return ret;
1689 }
1690 
1691 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1692 		int, options, struct rusage __user *, ru)
1693 {
1694 	struct pid *pid = NULL;
1695 	enum pid_type type;
1696 	long ret;
1697 
1698 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1699 			__WNOTHREAD|__WCLONE|__WALL))
1700 		return -EINVAL;
1701 
1702 	if (upid == -1)
1703 		type = PIDTYPE_MAX;
1704 	else if (upid < 0) {
1705 		type = PIDTYPE_PGID;
1706 		pid = find_get_pid(-upid);
1707 	} else if (upid == 0) {
1708 		type = PIDTYPE_PGID;
1709 		pid = get_task_pid(current, PIDTYPE_PGID);
1710 	} else /* upid > 0 */ {
1711 		type = PIDTYPE_PID;
1712 		pid = find_get_pid(upid);
1713 	}
1714 
1715 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1716 	put_pid(pid);
1717 
1718 	/* avoid REGPARM breakage on x86: */
1719 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1720 	return ret;
1721 }
1722 
1723 #ifdef __ARCH_WANT_SYS_WAITPID
1724 
1725 /*
1726  * sys_waitpid() remains for compatibility. waitpid() should be
1727  * implemented by calling sys_wait4() from libc.a.
1728  */
1729 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1730 {
1731 	return sys_wait4(pid, stat_addr, options, NULL);
1732 }
1733 
1734 #endif
1735