xref: /openbmc/linux/kernel/exit.c (revision 78c99ba1)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <linux/perf_counter.h>
52 #include <trace/events/sched.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58 #include "cred-internals.h"
59 
60 static void exit_mm(struct task_struct * tsk);
61 
62 static void __unhash_process(struct task_struct *p)
63 {
64 	nr_threads--;
65 	detach_pid(p, PIDTYPE_PID);
66 	if (thread_group_leader(p)) {
67 		detach_pid(p, PIDTYPE_PGID);
68 		detach_pid(p, PIDTYPE_SID);
69 
70 		list_del_rcu(&p->tasks);
71 		__get_cpu_var(process_counts)--;
72 	}
73 	list_del_rcu(&p->thread_group);
74 	list_del_init(&p->sibling);
75 }
76 
77 /*
78  * This function expects the tasklist_lock write-locked.
79  */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 	struct signal_struct *sig = tsk->signal;
83 	struct sighand_struct *sighand;
84 
85 	BUG_ON(!sig);
86 	BUG_ON(!atomic_read(&sig->count));
87 
88 	sighand = rcu_dereference(tsk->sighand);
89 	spin_lock(&sighand->siglock);
90 
91 	posix_cpu_timers_exit(tsk);
92 	if (atomic_dec_and_test(&sig->count))
93 		posix_cpu_timers_exit_group(tsk);
94 	else {
95 		/*
96 		 * If there is any task waiting for the group exit
97 		 * then notify it:
98 		 */
99 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100 			wake_up_process(sig->group_exit_task);
101 
102 		if (tsk == sig->curr_target)
103 			sig->curr_target = next_thread(tsk);
104 		/*
105 		 * Accumulate here the counters for all threads but the
106 		 * group leader as they die, so they can be added into
107 		 * the process-wide totals when those are taken.
108 		 * The group leader stays around as a zombie as long
109 		 * as there are other threads.  When it gets reaped,
110 		 * the exit.c code will add its counts into these totals.
111 		 * We won't ever get here for the group leader, since it
112 		 * will have been the last reference on the signal_struct.
113 		 */
114 		sig->utime = cputime_add(sig->utime, task_utime(tsk));
115 		sig->stime = cputime_add(sig->stime, task_stime(tsk));
116 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
117 		sig->min_flt += tsk->min_flt;
118 		sig->maj_flt += tsk->maj_flt;
119 		sig->nvcsw += tsk->nvcsw;
120 		sig->nivcsw += tsk->nivcsw;
121 		sig->inblock += task_io_get_inblock(tsk);
122 		sig->oublock += task_io_get_oublock(tsk);
123 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
124 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
125 		sig = NULL; /* Marker for below. */
126 	}
127 
128 	__unhash_process(tsk);
129 
130 	/*
131 	 * Do this under ->siglock, we can race with another thread
132 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 	 */
134 	flush_sigqueue(&tsk->pending);
135 
136 	tsk->signal = NULL;
137 	tsk->sighand = NULL;
138 	spin_unlock(&sighand->siglock);
139 
140 	__cleanup_sighand(sighand);
141 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 	if (sig) {
143 		flush_sigqueue(&sig->shared_pending);
144 		taskstats_tgid_free(sig);
145 		/*
146 		 * Make sure ->signal can't go away under rq->lock,
147 		 * see account_group_exec_runtime().
148 		 */
149 		task_rq_unlock_wait(tsk);
150 		__cleanup_signal(sig);
151 	}
152 }
153 
154 static void delayed_put_task_struct(struct rcu_head *rhp)
155 {
156 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
157 
158 #ifdef CONFIG_PERF_COUNTERS
159 	WARN_ON_ONCE(tsk->perf_counter_ctxp);
160 #endif
161 	trace_sched_process_free(tsk);
162 	put_task_struct(tsk);
163 }
164 
165 
166 void release_task(struct task_struct * p)
167 {
168 	struct task_struct *leader;
169 	int zap_leader;
170 repeat:
171 	tracehook_prepare_release_task(p);
172 	/* don't need to get the RCU readlock here - the process is dead and
173 	 * can't be modifying its own credentials */
174 	atomic_dec(&__task_cred(p)->user->processes);
175 
176 	proc_flush_task(p);
177 
178 	write_lock_irq(&tasklist_lock);
179 	tracehook_finish_release_task(p);
180 	__exit_signal(p);
181 
182 	/*
183 	 * If we are the last non-leader member of the thread
184 	 * group, and the leader is zombie, then notify the
185 	 * group leader's parent process. (if it wants notification.)
186 	 */
187 	zap_leader = 0;
188 	leader = p->group_leader;
189 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
190 		BUG_ON(task_detached(leader));
191 		do_notify_parent(leader, leader->exit_signal);
192 		/*
193 		 * If we were the last child thread and the leader has
194 		 * exited already, and the leader's parent ignores SIGCHLD,
195 		 * then we are the one who should release the leader.
196 		 *
197 		 * do_notify_parent() will have marked it self-reaping in
198 		 * that case.
199 		 */
200 		zap_leader = task_detached(leader);
201 
202 		/*
203 		 * This maintains the invariant that release_task()
204 		 * only runs on a task in EXIT_DEAD, just for sanity.
205 		 */
206 		if (zap_leader)
207 			leader->exit_state = EXIT_DEAD;
208 	}
209 
210 	write_unlock_irq(&tasklist_lock);
211 	release_thread(p);
212 	call_rcu(&p->rcu, delayed_put_task_struct);
213 
214 	p = leader;
215 	if (unlikely(zap_leader))
216 		goto repeat;
217 }
218 
219 /*
220  * This checks not only the pgrp, but falls back on the pid if no
221  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222  * without this...
223  *
224  * The caller must hold rcu lock or the tasklist lock.
225  */
226 struct pid *session_of_pgrp(struct pid *pgrp)
227 {
228 	struct task_struct *p;
229 	struct pid *sid = NULL;
230 
231 	p = pid_task(pgrp, PIDTYPE_PGID);
232 	if (p == NULL)
233 		p = pid_task(pgrp, PIDTYPE_PID);
234 	if (p != NULL)
235 		sid = task_session(p);
236 
237 	return sid;
238 }
239 
240 /*
241  * Determine if a process group is "orphaned", according to the POSIX
242  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
243  * by terminal-generated stop signals.  Newly orphaned process groups are
244  * to receive a SIGHUP and a SIGCONT.
245  *
246  * "I ask you, have you ever known what it is to be an orphan?"
247  */
248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
249 {
250 	struct task_struct *p;
251 
252 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 		if ((p == ignored_task) ||
254 		    (p->exit_state && thread_group_empty(p)) ||
255 		    is_global_init(p->real_parent))
256 			continue;
257 
258 		if (task_pgrp(p->real_parent) != pgrp &&
259 		    task_session(p->real_parent) == task_session(p))
260 			return 0;
261 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
262 
263 	return 1;
264 }
265 
266 int is_current_pgrp_orphaned(void)
267 {
268 	int retval;
269 
270 	read_lock(&tasklist_lock);
271 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
272 	read_unlock(&tasklist_lock);
273 
274 	return retval;
275 }
276 
277 static int has_stopped_jobs(struct pid *pgrp)
278 {
279 	int retval = 0;
280 	struct task_struct *p;
281 
282 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
283 		if (!task_is_stopped(p))
284 			continue;
285 		retval = 1;
286 		break;
287 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288 	return retval;
289 }
290 
291 /*
292  * Check to see if any process groups have become orphaned as
293  * a result of our exiting, and if they have any stopped jobs,
294  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
295  */
296 static void
297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
298 {
299 	struct pid *pgrp = task_pgrp(tsk);
300 	struct task_struct *ignored_task = tsk;
301 
302 	if (!parent)
303 		 /* exit: our father is in a different pgrp than
304 		  * we are and we were the only connection outside.
305 		  */
306 		parent = tsk->real_parent;
307 	else
308 		/* reparent: our child is in a different pgrp than
309 		 * we are, and it was the only connection outside.
310 		 */
311 		ignored_task = NULL;
312 
313 	if (task_pgrp(parent) != pgrp &&
314 	    task_session(parent) == task_session(tsk) &&
315 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
316 	    has_stopped_jobs(pgrp)) {
317 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
318 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
319 	}
320 }
321 
322 /**
323  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
324  *
325  * If a kernel thread is launched as a result of a system call, or if
326  * it ever exits, it should generally reparent itself to kthreadd so it
327  * isn't in the way of other processes and is correctly cleaned up on exit.
328  *
329  * The various task state such as scheduling policy and priority may have
330  * been inherited from a user process, so we reset them to sane values here.
331  *
332  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
333  */
334 static void reparent_to_kthreadd(void)
335 {
336 	write_lock_irq(&tasklist_lock);
337 
338 	ptrace_unlink(current);
339 	/* Reparent to init */
340 	current->real_parent = current->parent = kthreadd_task;
341 	list_move_tail(&current->sibling, &current->real_parent->children);
342 
343 	/* Set the exit signal to SIGCHLD so we signal init on exit */
344 	current->exit_signal = SIGCHLD;
345 
346 	if (task_nice(current) < 0)
347 		set_user_nice(current, 0);
348 	/* cpus_allowed? */
349 	/* rt_priority? */
350 	/* signals? */
351 	memcpy(current->signal->rlim, init_task.signal->rlim,
352 	       sizeof(current->signal->rlim));
353 
354 	atomic_inc(&init_cred.usage);
355 	commit_creds(&init_cred);
356 	write_unlock_irq(&tasklist_lock);
357 }
358 
359 void __set_special_pids(struct pid *pid)
360 {
361 	struct task_struct *curr = current->group_leader;
362 
363 	if (task_session(curr) != pid)
364 		change_pid(curr, PIDTYPE_SID, pid);
365 
366 	if (task_pgrp(curr) != pid)
367 		change_pid(curr, PIDTYPE_PGID, pid);
368 }
369 
370 static void set_special_pids(struct pid *pid)
371 {
372 	write_lock_irq(&tasklist_lock);
373 	__set_special_pids(pid);
374 	write_unlock_irq(&tasklist_lock);
375 }
376 
377 /*
378  * Let kernel threads use this to say that they
379  * allow a certain signal (since daemonize() will
380  * have disabled all of them by default).
381  */
382 int allow_signal(int sig)
383 {
384 	if (!valid_signal(sig) || sig < 1)
385 		return -EINVAL;
386 
387 	spin_lock_irq(&current->sighand->siglock);
388 	sigdelset(&current->blocked, sig);
389 	if (!current->mm) {
390 		/* Kernel threads handle their own signals.
391 		   Let the signal code know it'll be handled, so
392 		   that they don't get converted to SIGKILL or
393 		   just silently dropped */
394 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
395 	}
396 	recalc_sigpending();
397 	spin_unlock_irq(&current->sighand->siglock);
398 	return 0;
399 }
400 
401 EXPORT_SYMBOL(allow_signal);
402 
403 int disallow_signal(int sig)
404 {
405 	if (!valid_signal(sig) || sig < 1)
406 		return -EINVAL;
407 
408 	spin_lock_irq(&current->sighand->siglock);
409 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
410 	recalc_sigpending();
411 	spin_unlock_irq(&current->sighand->siglock);
412 	return 0;
413 }
414 
415 EXPORT_SYMBOL(disallow_signal);
416 
417 /*
418  *	Put all the gunge required to become a kernel thread without
419  *	attached user resources in one place where it belongs.
420  */
421 
422 void daemonize(const char *name, ...)
423 {
424 	va_list args;
425 	sigset_t blocked;
426 
427 	va_start(args, name);
428 	vsnprintf(current->comm, sizeof(current->comm), name, args);
429 	va_end(args);
430 
431 	/*
432 	 * If we were started as result of loading a module, close all of the
433 	 * user space pages.  We don't need them, and if we didn't close them
434 	 * they would be locked into memory.
435 	 */
436 	exit_mm(current);
437 	/*
438 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
439 	 * or suspend transition begins right now.
440 	 */
441 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
442 
443 	if (current->nsproxy != &init_nsproxy) {
444 		get_nsproxy(&init_nsproxy);
445 		switch_task_namespaces(current, &init_nsproxy);
446 	}
447 	set_special_pids(&init_struct_pid);
448 	proc_clear_tty(current);
449 
450 	/* Block and flush all signals */
451 	sigfillset(&blocked);
452 	sigprocmask(SIG_BLOCK, &blocked, NULL);
453 	flush_signals(current);
454 
455 	/* Become as one with the init task */
456 
457 	daemonize_fs_struct();
458 	exit_files(current);
459 	current->files = init_task.files;
460 	atomic_inc(&current->files->count);
461 
462 	reparent_to_kthreadd();
463 }
464 
465 EXPORT_SYMBOL(daemonize);
466 
467 static void close_files(struct files_struct * files)
468 {
469 	int i, j;
470 	struct fdtable *fdt;
471 
472 	j = 0;
473 
474 	/*
475 	 * It is safe to dereference the fd table without RCU or
476 	 * ->file_lock because this is the last reference to the
477 	 * files structure.
478 	 */
479 	fdt = files_fdtable(files);
480 	for (;;) {
481 		unsigned long set;
482 		i = j * __NFDBITS;
483 		if (i >= fdt->max_fds)
484 			break;
485 		set = fdt->open_fds->fds_bits[j++];
486 		while (set) {
487 			if (set & 1) {
488 				struct file * file = xchg(&fdt->fd[i], NULL);
489 				if (file) {
490 					filp_close(file, files);
491 					cond_resched();
492 				}
493 			}
494 			i++;
495 			set >>= 1;
496 		}
497 	}
498 }
499 
500 struct files_struct *get_files_struct(struct task_struct *task)
501 {
502 	struct files_struct *files;
503 
504 	task_lock(task);
505 	files = task->files;
506 	if (files)
507 		atomic_inc(&files->count);
508 	task_unlock(task);
509 
510 	return files;
511 }
512 
513 void put_files_struct(struct files_struct *files)
514 {
515 	struct fdtable *fdt;
516 
517 	if (atomic_dec_and_test(&files->count)) {
518 		close_files(files);
519 		/*
520 		 * Free the fd and fdset arrays if we expanded them.
521 		 * If the fdtable was embedded, pass files for freeing
522 		 * at the end of the RCU grace period. Otherwise,
523 		 * you can free files immediately.
524 		 */
525 		fdt = files_fdtable(files);
526 		if (fdt != &files->fdtab)
527 			kmem_cache_free(files_cachep, files);
528 		free_fdtable(fdt);
529 	}
530 }
531 
532 void reset_files_struct(struct files_struct *files)
533 {
534 	struct task_struct *tsk = current;
535 	struct files_struct *old;
536 
537 	old = tsk->files;
538 	task_lock(tsk);
539 	tsk->files = files;
540 	task_unlock(tsk);
541 	put_files_struct(old);
542 }
543 
544 void exit_files(struct task_struct *tsk)
545 {
546 	struct files_struct * files = tsk->files;
547 
548 	if (files) {
549 		task_lock(tsk);
550 		tsk->files = NULL;
551 		task_unlock(tsk);
552 		put_files_struct(files);
553 	}
554 }
555 
556 #ifdef CONFIG_MM_OWNER
557 /*
558  * Task p is exiting and it owned mm, lets find a new owner for it
559  */
560 static inline int
561 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
562 {
563 	/*
564 	 * If there are other users of the mm and the owner (us) is exiting
565 	 * we need to find a new owner to take on the responsibility.
566 	 */
567 	if (atomic_read(&mm->mm_users) <= 1)
568 		return 0;
569 	if (mm->owner != p)
570 		return 0;
571 	return 1;
572 }
573 
574 void mm_update_next_owner(struct mm_struct *mm)
575 {
576 	struct task_struct *c, *g, *p = current;
577 
578 retry:
579 	if (!mm_need_new_owner(mm, p))
580 		return;
581 
582 	read_lock(&tasklist_lock);
583 	/*
584 	 * Search in the children
585 	 */
586 	list_for_each_entry(c, &p->children, sibling) {
587 		if (c->mm == mm)
588 			goto assign_new_owner;
589 	}
590 
591 	/*
592 	 * Search in the siblings
593 	 */
594 	list_for_each_entry(c, &p->parent->children, sibling) {
595 		if (c->mm == mm)
596 			goto assign_new_owner;
597 	}
598 
599 	/*
600 	 * Search through everything else. We should not get
601 	 * here often
602 	 */
603 	do_each_thread(g, c) {
604 		if (c->mm == mm)
605 			goto assign_new_owner;
606 	} while_each_thread(g, c);
607 
608 	read_unlock(&tasklist_lock);
609 	/*
610 	 * We found no owner yet mm_users > 1: this implies that we are
611 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
612 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
613 	 */
614 	mm->owner = NULL;
615 	return;
616 
617 assign_new_owner:
618 	BUG_ON(c == p);
619 	get_task_struct(c);
620 	/*
621 	 * The task_lock protects c->mm from changing.
622 	 * We always want mm->owner->mm == mm
623 	 */
624 	task_lock(c);
625 	/*
626 	 * Delay read_unlock() till we have the task_lock()
627 	 * to ensure that c does not slip away underneath us
628 	 */
629 	read_unlock(&tasklist_lock);
630 	if (c->mm != mm) {
631 		task_unlock(c);
632 		put_task_struct(c);
633 		goto retry;
634 	}
635 	mm->owner = c;
636 	task_unlock(c);
637 	put_task_struct(c);
638 }
639 #endif /* CONFIG_MM_OWNER */
640 
641 /*
642  * Turn us into a lazy TLB process if we
643  * aren't already..
644  */
645 static void exit_mm(struct task_struct * tsk)
646 {
647 	struct mm_struct *mm = tsk->mm;
648 	struct core_state *core_state;
649 
650 	mm_release(tsk, mm);
651 	if (!mm)
652 		return;
653 	/*
654 	 * Serialize with any possible pending coredump.
655 	 * We must hold mmap_sem around checking core_state
656 	 * and clearing tsk->mm.  The core-inducing thread
657 	 * will increment ->nr_threads for each thread in the
658 	 * group with ->mm != NULL.
659 	 */
660 	down_read(&mm->mmap_sem);
661 	core_state = mm->core_state;
662 	if (core_state) {
663 		struct core_thread self;
664 		up_read(&mm->mmap_sem);
665 
666 		self.task = tsk;
667 		self.next = xchg(&core_state->dumper.next, &self);
668 		/*
669 		 * Implies mb(), the result of xchg() must be visible
670 		 * to core_state->dumper.
671 		 */
672 		if (atomic_dec_and_test(&core_state->nr_threads))
673 			complete(&core_state->startup);
674 
675 		for (;;) {
676 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
677 			if (!self.task) /* see coredump_finish() */
678 				break;
679 			schedule();
680 		}
681 		__set_task_state(tsk, TASK_RUNNING);
682 		down_read(&mm->mmap_sem);
683 	}
684 	atomic_inc(&mm->mm_count);
685 	BUG_ON(mm != tsk->active_mm);
686 	/* more a memory barrier than a real lock */
687 	task_lock(tsk);
688 	tsk->mm = NULL;
689 	up_read(&mm->mmap_sem);
690 	enter_lazy_tlb(mm, current);
691 	/* We don't want this task to be frozen prematurely */
692 	clear_freeze_flag(tsk);
693 	task_unlock(tsk);
694 	mm_update_next_owner(mm);
695 	mmput(mm);
696 }
697 
698 /*
699  * When we die, we re-parent all our children.
700  * Try to give them to another thread in our thread
701  * group, and if no such member exists, give it to
702  * the child reaper process (ie "init") in our pid
703  * space.
704  */
705 static struct task_struct *find_new_reaper(struct task_struct *father)
706 {
707 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
708 	struct task_struct *thread;
709 
710 	thread = father;
711 	while_each_thread(father, thread) {
712 		if (thread->flags & PF_EXITING)
713 			continue;
714 		if (unlikely(pid_ns->child_reaper == father))
715 			pid_ns->child_reaper = thread;
716 		return thread;
717 	}
718 
719 	if (unlikely(pid_ns->child_reaper == father)) {
720 		write_unlock_irq(&tasklist_lock);
721 		if (unlikely(pid_ns == &init_pid_ns))
722 			panic("Attempted to kill init!");
723 
724 		zap_pid_ns_processes(pid_ns);
725 		write_lock_irq(&tasklist_lock);
726 		/*
727 		 * We can not clear ->child_reaper or leave it alone.
728 		 * There may by stealth EXIT_DEAD tasks on ->children,
729 		 * forget_original_parent() must move them somewhere.
730 		 */
731 		pid_ns->child_reaper = init_pid_ns.child_reaper;
732 	}
733 
734 	return pid_ns->child_reaper;
735 }
736 
737 /*
738 * Any that need to be release_task'd are put on the @dead list.
739  */
740 static void reparent_thread(struct task_struct *father, struct task_struct *p,
741 				struct list_head *dead)
742 {
743 	if (p->pdeath_signal)
744 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
745 
746 	list_move_tail(&p->sibling, &p->real_parent->children);
747 
748 	if (task_detached(p))
749 		return;
750 	/*
751 	 * If this is a threaded reparent there is no need to
752 	 * notify anyone anything has happened.
753 	 */
754 	if (same_thread_group(p->real_parent, father))
755 		return;
756 
757 	/* We don't want people slaying init.  */
758 	p->exit_signal = SIGCHLD;
759 
760 	/* If it has exited notify the new parent about this child's death. */
761 	if (!p->ptrace &&
762 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
763 		do_notify_parent(p, p->exit_signal);
764 		if (task_detached(p)) {
765 			p->exit_state = EXIT_DEAD;
766 			list_move_tail(&p->sibling, dead);
767 		}
768 	}
769 
770 	kill_orphaned_pgrp(p, father);
771 }
772 
773 static void forget_original_parent(struct task_struct *father)
774 {
775 	struct task_struct *p, *n, *reaper;
776 	LIST_HEAD(dead_children);
777 
778 	exit_ptrace(father);
779 
780 	write_lock_irq(&tasklist_lock);
781 	reaper = find_new_reaper(father);
782 
783 	list_for_each_entry_safe(p, n, &father->children, sibling) {
784 		p->real_parent = reaper;
785 		if (p->parent == father) {
786 			BUG_ON(p->ptrace);
787 			p->parent = p->real_parent;
788 		}
789 		reparent_thread(father, p, &dead_children);
790 	}
791 	write_unlock_irq(&tasklist_lock);
792 
793 	BUG_ON(!list_empty(&father->children));
794 
795 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
796 		list_del_init(&p->sibling);
797 		release_task(p);
798 	}
799 }
800 
801 /*
802  * Send signals to all our closest relatives so that they know
803  * to properly mourn us..
804  */
805 static void exit_notify(struct task_struct *tsk, int group_dead)
806 {
807 	int signal;
808 	void *cookie;
809 
810 	/*
811 	 * This does two things:
812 	 *
813   	 * A.  Make init inherit all the child processes
814 	 * B.  Check to see if any process groups have become orphaned
815 	 *	as a result of our exiting, and if they have any stopped
816 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
817 	 */
818 	forget_original_parent(tsk);
819 	exit_task_namespaces(tsk);
820 
821 	write_lock_irq(&tasklist_lock);
822 	if (group_dead)
823 		kill_orphaned_pgrp(tsk->group_leader, NULL);
824 
825 	/* Let father know we died
826 	 *
827 	 * Thread signals are configurable, but you aren't going to use
828 	 * that to send signals to arbitary processes.
829 	 * That stops right now.
830 	 *
831 	 * If the parent exec id doesn't match the exec id we saved
832 	 * when we started then we know the parent has changed security
833 	 * domain.
834 	 *
835 	 * If our self_exec id doesn't match our parent_exec_id then
836 	 * we have changed execution domain as these two values started
837 	 * the same after a fork.
838 	 */
839 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
840 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
841 	     tsk->self_exec_id != tsk->parent_exec_id))
842 		tsk->exit_signal = SIGCHLD;
843 
844 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
845 	if (signal >= 0)
846 		signal = do_notify_parent(tsk, signal);
847 
848 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
849 
850 	/* mt-exec, de_thread() is waiting for us */
851 	if (thread_group_leader(tsk) &&
852 	    tsk->signal->group_exit_task &&
853 	    tsk->signal->notify_count < 0)
854 		wake_up_process(tsk->signal->group_exit_task);
855 
856 	write_unlock_irq(&tasklist_lock);
857 
858 	tracehook_report_death(tsk, signal, cookie, group_dead);
859 
860 	/* If the process is dead, release it - nobody will wait for it */
861 	if (signal == DEATH_REAP)
862 		release_task(tsk);
863 }
864 
865 #ifdef CONFIG_DEBUG_STACK_USAGE
866 static void check_stack_usage(void)
867 {
868 	static DEFINE_SPINLOCK(low_water_lock);
869 	static int lowest_to_date = THREAD_SIZE;
870 	unsigned long free;
871 
872 	free = stack_not_used(current);
873 
874 	if (free >= lowest_to_date)
875 		return;
876 
877 	spin_lock(&low_water_lock);
878 	if (free < lowest_to_date) {
879 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
880 				"left\n",
881 				current->comm, free);
882 		lowest_to_date = free;
883 	}
884 	spin_unlock(&low_water_lock);
885 }
886 #else
887 static inline void check_stack_usage(void) {}
888 #endif
889 
890 NORET_TYPE void do_exit(long code)
891 {
892 	struct task_struct *tsk = current;
893 	int group_dead;
894 
895 	profile_task_exit(tsk);
896 
897 	WARN_ON(atomic_read(&tsk->fs_excl));
898 
899 	if (unlikely(in_interrupt()))
900 		panic("Aiee, killing interrupt handler!");
901 	if (unlikely(!tsk->pid))
902 		panic("Attempted to kill the idle task!");
903 
904 	tracehook_report_exit(&code);
905 
906 	/*
907 	 * We're taking recursive faults here in do_exit. Safest is to just
908 	 * leave this task alone and wait for reboot.
909 	 */
910 	if (unlikely(tsk->flags & PF_EXITING)) {
911 		printk(KERN_ALERT
912 			"Fixing recursive fault but reboot is needed!\n");
913 		/*
914 		 * We can do this unlocked here. The futex code uses
915 		 * this flag just to verify whether the pi state
916 		 * cleanup has been done or not. In the worst case it
917 		 * loops once more. We pretend that the cleanup was
918 		 * done as there is no way to return. Either the
919 		 * OWNER_DIED bit is set by now or we push the blocked
920 		 * task into the wait for ever nirwana as well.
921 		 */
922 		tsk->flags |= PF_EXITPIDONE;
923 		set_current_state(TASK_UNINTERRUPTIBLE);
924 		schedule();
925 	}
926 
927 	exit_irq_thread();
928 
929 	exit_signals(tsk);  /* sets PF_EXITING */
930 	/*
931 	 * tsk->flags are checked in the futex code to protect against
932 	 * an exiting task cleaning up the robust pi futexes.
933 	 */
934 	smp_mb();
935 	spin_unlock_wait(&tsk->pi_lock);
936 
937 	if (unlikely(in_atomic()))
938 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
939 				current->comm, task_pid_nr(current),
940 				preempt_count());
941 
942 	acct_update_integrals(tsk);
943 
944 	group_dead = atomic_dec_and_test(&tsk->signal->live);
945 	if (group_dead) {
946 		hrtimer_cancel(&tsk->signal->real_timer);
947 		exit_itimers(tsk->signal);
948 	}
949 	acct_collect(code, group_dead);
950 	if (group_dead)
951 		tty_audit_exit();
952 	if (unlikely(tsk->audit_context))
953 		audit_free(tsk);
954 
955 	tsk->exit_code = code;
956 	taskstats_exit(tsk, group_dead);
957 
958 	exit_mm(tsk);
959 
960 	if (group_dead)
961 		acct_process();
962 	trace_sched_process_exit(tsk);
963 
964 	exit_sem(tsk);
965 	exit_files(tsk);
966 	exit_fs(tsk);
967 	check_stack_usage();
968 	exit_thread();
969 	cgroup_exit(tsk, 1);
970 
971 	if (group_dead && tsk->signal->leader)
972 		disassociate_ctty(1);
973 
974 	module_put(task_thread_info(tsk)->exec_domain->module);
975 	if (tsk->binfmt)
976 		module_put(tsk->binfmt->module);
977 
978 	proc_exit_connector(tsk);
979 
980 	/*
981 	 * Flush inherited counters to the parent - before the parent
982 	 * gets woken up by child-exit notifications.
983 	 */
984 	perf_counter_exit_task(tsk);
985 
986 	exit_notify(tsk, group_dead);
987 #ifdef CONFIG_NUMA
988 	mpol_put(tsk->mempolicy);
989 	tsk->mempolicy = NULL;
990 #endif
991 #ifdef CONFIG_FUTEX
992 	if (unlikely(!list_empty(&tsk->pi_state_list)))
993 		exit_pi_state_list(tsk);
994 	if (unlikely(current->pi_state_cache))
995 		kfree(current->pi_state_cache);
996 #endif
997 	/*
998 	 * Make sure we are holding no locks:
999 	 */
1000 	debug_check_no_locks_held(tsk);
1001 	/*
1002 	 * We can do this unlocked here. The futex code uses this flag
1003 	 * just to verify whether the pi state cleanup has been done
1004 	 * or not. In the worst case it loops once more.
1005 	 */
1006 	tsk->flags |= PF_EXITPIDONE;
1007 
1008 	if (tsk->io_context)
1009 		exit_io_context();
1010 
1011 	if (tsk->splice_pipe)
1012 		__free_pipe_info(tsk->splice_pipe);
1013 
1014 	preempt_disable();
1015 	/* causes final put_task_struct in finish_task_switch(). */
1016 	tsk->state = TASK_DEAD;
1017 	schedule();
1018 	BUG();
1019 	/* Avoid "noreturn function does return".  */
1020 	for (;;)
1021 		cpu_relax();	/* For when BUG is null */
1022 }
1023 
1024 EXPORT_SYMBOL_GPL(do_exit);
1025 
1026 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1027 {
1028 	if (comp)
1029 		complete(comp);
1030 
1031 	do_exit(code);
1032 }
1033 
1034 EXPORT_SYMBOL(complete_and_exit);
1035 
1036 SYSCALL_DEFINE1(exit, int, error_code)
1037 {
1038 	do_exit((error_code&0xff)<<8);
1039 }
1040 
1041 /*
1042  * Take down every thread in the group.  This is called by fatal signals
1043  * as well as by sys_exit_group (below).
1044  */
1045 NORET_TYPE void
1046 do_group_exit(int exit_code)
1047 {
1048 	struct signal_struct *sig = current->signal;
1049 
1050 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1051 
1052 	if (signal_group_exit(sig))
1053 		exit_code = sig->group_exit_code;
1054 	else if (!thread_group_empty(current)) {
1055 		struct sighand_struct *const sighand = current->sighand;
1056 		spin_lock_irq(&sighand->siglock);
1057 		if (signal_group_exit(sig))
1058 			/* Another thread got here before we took the lock.  */
1059 			exit_code = sig->group_exit_code;
1060 		else {
1061 			sig->group_exit_code = exit_code;
1062 			sig->flags = SIGNAL_GROUP_EXIT;
1063 			zap_other_threads(current);
1064 		}
1065 		spin_unlock_irq(&sighand->siglock);
1066 	}
1067 
1068 	do_exit(exit_code);
1069 	/* NOTREACHED */
1070 }
1071 
1072 /*
1073  * this kills every thread in the thread group. Note that any externally
1074  * wait4()-ing process will get the correct exit code - even if this
1075  * thread is not the thread group leader.
1076  */
1077 SYSCALL_DEFINE1(exit_group, int, error_code)
1078 {
1079 	do_group_exit((error_code & 0xff) << 8);
1080 	/* NOTREACHED */
1081 	return 0;
1082 }
1083 
1084 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1085 {
1086 	struct pid *pid = NULL;
1087 	if (type == PIDTYPE_PID)
1088 		pid = task->pids[type].pid;
1089 	else if (type < PIDTYPE_MAX)
1090 		pid = task->group_leader->pids[type].pid;
1091 	return pid;
1092 }
1093 
1094 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1095 			  struct task_struct *p)
1096 {
1097 	int err;
1098 
1099 	if (type < PIDTYPE_MAX) {
1100 		if (task_pid_type(p, type) != pid)
1101 			return 0;
1102 	}
1103 
1104 	/* Wait for all children (clone and not) if __WALL is set;
1105 	 * otherwise, wait for clone children *only* if __WCLONE is
1106 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1107 	 * A "clone" child here is one that reports to its parent
1108 	 * using a signal other than SIGCHLD.) */
1109 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1110 	    && !(options & __WALL))
1111 		return 0;
1112 
1113 	err = security_task_wait(p);
1114 	if (err)
1115 		return err;
1116 
1117 	return 1;
1118 }
1119 
1120 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1121 			       int why, int status,
1122 			       struct siginfo __user *infop,
1123 			       struct rusage __user *rusagep)
1124 {
1125 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1126 
1127 	put_task_struct(p);
1128 	if (!retval)
1129 		retval = put_user(SIGCHLD, &infop->si_signo);
1130 	if (!retval)
1131 		retval = put_user(0, &infop->si_errno);
1132 	if (!retval)
1133 		retval = put_user((short)why, &infop->si_code);
1134 	if (!retval)
1135 		retval = put_user(pid, &infop->si_pid);
1136 	if (!retval)
1137 		retval = put_user(uid, &infop->si_uid);
1138 	if (!retval)
1139 		retval = put_user(status, &infop->si_status);
1140 	if (!retval)
1141 		retval = pid;
1142 	return retval;
1143 }
1144 
1145 /*
1146  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1147  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1148  * the lock and this task is uninteresting.  If we return nonzero, we have
1149  * released the lock and the system call should return.
1150  */
1151 static int wait_task_zombie(struct task_struct *p, int options,
1152 			    struct siginfo __user *infop,
1153 			    int __user *stat_addr, struct rusage __user *ru)
1154 {
1155 	unsigned long state;
1156 	int retval, status, traced;
1157 	pid_t pid = task_pid_vnr(p);
1158 	uid_t uid = __task_cred(p)->uid;
1159 
1160 	if (!likely(options & WEXITED))
1161 		return 0;
1162 
1163 	if (unlikely(options & WNOWAIT)) {
1164 		int exit_code = p->exit_code;
1165 		int why, status;
1166 
1167 		get_task_struct(p);
1168 		read_unlock(&tasklist_lock);
1169 		if ((exit_code & 0x7f) == 0) {
1170 			why = CLD_EXITED;
1171 			status = exit_code >> 8;
1172 		} else {
1173 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1174 			status = exit_code & 0x7f;
1175 		}
1176 		return wait_noreap_copyout(p, pid, uid, why,
1177 					   status, infop, ru);
1178 	}
1179 
1180 	/*
1181 	 * Try to move the task's state to DEAD
1182 	 * only one thread is allowed to do this:
1183 	 */
1184 	state = xchg(&p->exit_state, EXIT_DEAD);
1185 	if (state != EXIT_ZOMBIE) {
1186 		BUG_ON(state != EXIT_DEAD);
1187 		return 0;
1188 	}
1189 
1190 	traced = ptrace_reparented(p);
1191 
1192 	if (likely(!traced)) {
1193 		struct signal_struct *psig;
1194 		struct signal_struct *sig;
1195 		struct task_cputime cputime;
1196 
1197 		/*
1198 		 * The resource counters for the group leader are in its
1199 		 * own task_struct.  Those for dead threads in the group
1200 		 * are in its signal_struct, as are those for the child
1201 		 * processes it has previously reaped.  All these
1202 		 * accumulate in the parent's signal_struct c* fields.
1203 		 *
1204 		 * We don't bother to take a lock here to protect these
1205 		 * p->signal fields, because they are only touched by
1206 		 * __exit_signal, which runs with tasklist_lock
1207 		 * write-locked anyway, and so is excluded here.  We do
1208 		 * need to protect the access to p->parent->signal fields,
1209 		 * as other threads in the parent group can be right
1210 		 * here reaping other children at the same time.
1211 		 *
1212 		 * We use thread_group_cputime() to get times for the thread
1213 		 * group, which consolidates times for all threads in the
1214 		 * group including the group leader.
1215 		 */
1216 		thread_group_cputime(p, &cputime);
1217 		spin_lock_irq(&p->parent->sighand->siglock);
1218 		psig = p->parent->signal;
1219 		sig = p->signal;
1220 		psig->cutime =
1221 			cputime_add(psig->cutime,
1222 			cputime_add(cputime.utime,
1223 				    sig->cutime));
1224 		psig->cstime =
1225 			cputime_add(psig->cstime,
1226 			cputime_add(cputime.stime,
1227 				    sig->cstime));
1228 		psig->cgtime =
1229 			cputime_add(psig->cgtime,
1230 			cputime_add(p->gtime,
1231 			cputime_add(sig->gtime,
1232 				    sig->cgtime)));
1233 		psig->cmin_flt +=
1234 			p->min_flt + sig->min_flt + sig->cmin_flt;
1235 		psig->cmaj_flt +=
1236 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1237 		psig->cnvcsw +=
1238 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1239 		psig->cnivcsw +=
1240 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1241 		psig->cinblock +=
1242 			task_io_get_inblock(p) +
1243 			sig->inblock + sig->cinblock;
1244 		psig->coublock +=
1245 			task_io_get_oublock(p) +
1246 			sig->oublock + sig->coublock;
1247 		task_io_accounting_add(&psig->ioac, &p->ioac);
1248 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1249 		spin_unlock_irq(&p->parent->sighand->siglock);
1250 	}
1251 
1252 	/*
1253 	 * Now we are sure this task is interesting, and no other
1254 	 * thread can reap it because we set its state to EXIT_DEAD.
1255 	 */
1256 	read_unlock(&tasklist_lock);
1257 
1258 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1259 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1260 		? p->signal->group_exit_code : p->exit_code;
1261 	if (!retval && stat_addr)
1262 		retval = put_user(status, stat_addr);
1263 	if (!retval && infop)
1264 		retval = put_user(SIGCHLD, &infop->si_signo);
1265 	if (!retval && infop)
1266 		retval = put_user(0, &infop->si_errno);
1267 	if (!retval && infop) {
1268 		int why;
1269 
1270 		if ((status & 0x7f) == 0) {
1271 			why = CLD_EXITED;
1272 			status >>= 8;
1273 		} else {
1274 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1275 			status &= 0x7f;
1276 		}
1277 		retval = put_user((short)why, &infop->si_code);
1278 		if (!retval)
1279 			retval = put_user(status, &infop->si_status);
1280 	}
1281 	if (!retval && infop)
1282 		retval = put_user(pid, &infop->si_pid);
1283 	if (!retval && infop)
1284 		retval = put_user(uid, &infop->si_uid);
1285 	if (!retval)
1286 		retval = pid;
1287 
1288 	if (traced) {
1289 		write_lock_irq(&tasklist_lock);
1290 		/* We dropped tasklist, ptracer could die and untrace */
1291 		ptrace_unlink(p);
1292 		/*
1293 		 * If this is not a detached task, notify the parent.
1294 		 * If it's still not detached after that, don't release
1295 		 * it now.
1296 		 */
1297 		if (!task_detached(p)) {
1298 			do_notify_parent(p, p->exit_signal);
1299 			if (!task_detached(p)) {
1300 				p->exit_state = EXIT_ZOMBIE;
1301 				p = NULL;
1302 			}
1303 		}
1304 		write_unlock_irq(&tasklist_lock);
1305 	}
1306 	if (p != NULL)
1307 		release_task(p);
1308 
1309 	return retval;
1310 }
1311 
1312 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1313 {
1314 	if (ptrace) {
1315 		if (task_is_stopped_or_traced(p))
1316 			return &p->exit_code;
1317 	} else {
1318 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1319 			return &p->signal->group_exit_code;
1320 	}
1321 	return NULL;
1322 }
1323 
1324 /*
1325  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1326  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1327  * the lock and this task is uninteresting.  If we return nonzero, we have
1328  * released the lock and the system call should return.
1329  */
1330 static int wait_task_stopped(int ptrace, struct task_struct *p,
1331 			     int options, struct siginfo __user *infop,
1332 			     int __user *stat_addr, struct rusage __user *ru)
1333 {
1334 	int retval, exit_code, *p_code, why;
1335 	uid_t uid = 0; /* unneeded, required by compiler */
1336 	pid_t pid;
1337 
1338 	if (!(options & WUNTRACED))
1339 		return 0;
1340 
1341 	exit_code = 0;
1342 	spin_lock_irq(&p->sighand->siglock);
1343 
1344 	p_code = task_stopped_code(p, ptrace);
1345 	if (unlikely(!p_code))
1346 		goto unlock_sig;
1347 
1348 	exit_code = *p_code;
1349 	if (!exit_code)
1350 		goto unlock_sig;
1351 
1352 	if (!unlikely(options & WNOWAIT))
1353 		*p_code = 0;
1354 
1355 	/* don't need the RCU readlock here as we're holding a spinlock */
1356 	uid = __task_cred(p)->uid;
1357 unlock_sig:
1358 	spin_unlock_irq(&p->sighand->siglock);
1359 	if (!exit_code)
1360 		return 0;
1361 
1362 	/*
1363 	 * Now we are pretty sure this task is interesting.
1364 	 * Make sure it doesn't get reaped out from under us while we
1365 	 * give up the lock and then examine it below.  We don't want to
1366 	 * keep holding onto the tasklist_lock while we call getrusage and
1367 	 * possibly take page faults for user memory.
1368 	 */
1369 	get_task_struct(p);
1370 	pid = task_pid_vnr(p);
1371 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1372 	read_unlock(&tasklist_lock);
1373 
1374 	if (unlikely(options & WNOWAIT))
1375 		return wait_noreap_copyout(p, pid, uid,
1376 					   why, exit_code,
1377 					   infop, ru);
1378 
1379 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1380 	if (!retval && stat_addr)
1381 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1382 	if (!retval && infop)
1383 		retval = put_user(SIGCHLD, &infop->si_signo);
1384 	if (!retval && infop)
1385 		retval = put_user(0, &infop->si_errno);
1386 	if (!retval && infop)
1387 		retval = put_user((short)why, &infop->si_code);
1388 	if (!retval && infop)
1389 		retval = put_user(exit_code, &infop->si_status);
1390 	if (!retval && infop)
1391 		retval = put_user(pid, &infop->si_pid);
1392 	if (!retval && infop)
1393 		retval = put_user(uid, &infop->si_uid);
1394 	if (!retval)
1395 		retval = pid;
1396 	put_task_struct(p);
1397 
1398 	BUG_ON(!retval);
1399 	return retval;
1400 }
1401 
1402 /*
1403  * Handle do_wait work for one task in a live, non-stopped state.
1404  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1405  * the lock and this task is uninteresting.  If we return nonzero, we have
1406  * released the lock and the system call should return.
1407  */
1408 static int wait_task_continued(struct task_struct *p, int options,
1409 			       struct siginfo __user *infop,
1410 			       int __user *stat_addr, struct rusage __user *ru)
1411 {
1412 	int retval;
1413 	pid_t pid;
1414 	uid_t uid;
1415 
1416 	if (!unlikely(options & WCONTINUED))
1417 		return 0;
1418 
1419 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1420 		return 0;
1421 
1422 	spin_lock_irq(&p->sighand->siglock);
1423 	/* Re-check with the lock held.  */
1424 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1425 		spin_unlock_irq(&p->sighand->siglock);
1426 		return 0;
1427 	}
1428 	if (!unlikely(options & WNOWAIT))
1429 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1430 	uid = __task_cred(p)->uid;
1431 	spin_unlock_irq(&p->sighand->siglock);
1432 
1433 	pid = task_pid_vnr(p);
1434 	get_task_struct(p);
1435 	read_unlock(&tasklist_lock);
1436 
1437 	if (!infop) {
1438 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1439 		put_task_struct(p);
1440 		if (!retval && stat_addr)
1441 			retval = put_user(0xffff, stat_addr);
1442 		if (!retval)
1443 			retval = pid;
1444 	} else {
1445 		retval = wait_noreap_copyout(p, pid, uid,
1446 					     CLD_CONTINUED, SIGCONT,
1447 					     infop, ru);
1448 		BUG_ON(retval == 0);
1449 	}
1450 
1451 	return retval;
1452 }
1453 
1454 /*
1455  * Consider @p for a wait by @parent.
1456  *
1457  * -ECHILD should be in *@notask_error before the first call.
1458  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1459  * Returns zero if the search for a child should continue;
1460  * then *@notask_error is 0 if @p is an eligible child,
1461  * or another error from security_task_wait(), or still -ECHILD.
1462  */
1463 static int wait_consider_task(struct task_struct *parent, int ptrace,
1464 			      struct task_struct *p, int *notask_error,
1465 			      enum pid_type type, struct pid *pid, int options,
1466 			      struct siginfo __user *infop,
1467 			      int __user *stat_addr, struct rusage __user *ru)
1468 {
1469 	int ret = eligible_child(type, pid, options, p);
1470 	if (!ret)
1471 		return ret;
1472 
1473 	if (unlikely(ret < 0)) {
1474 		/*
1475 		 * If we have not yet seen any eligible child,
1476 		 * then let this error code replace -ECHILD.
1477 		 * A permission error will give the user a clue
1478 		 * to look for security policy problems, rather
1479 		 * than for mysterious wait bugs.
1480 		 */
1481 		if (*notask_error)
1482 			*notask_error = ret;
1483 		return 0;
1484 	}
1485 
1486 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1487 		/*
1488 		 * This child is hidden by ptrace.
1489 		 * We aren't allowed to see it now, but eventually we will.
1490 		 */
1491 		*notask_error = 0;
1492 		return 0;
1493 	}
1494 
1495 	if (p->exit_state == EXIT_DEAD)
1496 		return 0;
1497 
1498 	/*
1499 	 * We don't reap group leaders with subthreads.
1500 	 */
1501 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1502 		return wait_task_zombie(p, options, infop, stat_addr, ru);
1503 
1504 	/*
1505 	 * It's stopped or running now, so it might
1506 	 * later continue, exit, or stop again.
1507 	 */
1508 	*notask_error = 0;
1509 
1510 	if (task_stopped_code(p, ptrace))
1511 		return wait_task_stopped(ptrace, p, options,
1512 					 infop, stat_addr, ru);
1513 
1514 	return wait_task_continued(p, options, infop, stat_addr, ru);
1515 }
1516 
1517 /*
1518  * Do the work of do_wait() for one thread in the group, @tsk.
1519  *
1520  * -ECHILD should be in *@notask_error before the first call.
1521  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1522  * Returns zero if the search for a child should continue; then
1523  * *@notask_error is 0 if there were any eligible children,
1524  * or another error from security_task_wait(), or still -ECHILD.
1525  */
1526 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1527 			  enum pid_type type, struct pid *pid, int options,
1528 			  struct siginfo __user *infop, int __user *stat_addr,
1529 			  struct rusage __user *ru)
1530 {
1531 	struct task_struct *p;
1532 
1533 	list_for_each_entry(p, &tsk->children, sibling) {
1534 		/*
1535 		 * Do not consider detached threads.
1536 		 */
1537 		if (!task_detached(p)) {
1538 			int ret = wait_consider_task(tsk, 0, p, notask_error,
1539 						     type, pid, options,
1540 						     infop, stat_addr, ru);
1541 			if (ret)
1542 				return ret;
1543 		}
1544 	}
1545 
1546 	return 0;
1547 }
1548 
1549 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1550 			  enum pid_type type, struct pid *pid, int options,
1551 			  struct siginfo __user *infop, int __user *stat_addr,
1552 			  struct rusage __user *ru)
1553 {
1554 	struct task_struct *p;
1555 
1556 	/*
1557 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1558 	 */
1559 	options |= WUNTRACED;
1560 
1561 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1562 		int ret = wait_consider_task(tsk, 1, p, notask_error,
1563 					     type, pid, options,
1564 					     infop, stat_addr, ru);
1565 		if (ret)
1566 			return ret;
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static long do_wait(enum pid_type type, struct pid *pid, int options,
1573 		    struct siginfo __user *infop, int __user *stat_addr,
1574 		    struct rusage __user *ru)
1575 {
1576 	DECLARE_WAITQUEUE(wait, current);
1577 	struct task_struct *tsk;
1578 	int retval;
1579 
1580 	trace_sched_process_wait(pid);
1581 
1582 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1583 repeat:
1584 	/*
1585 	 * If there is nothing that can match our critiera just get out.
1586 	 * We will clear @retval to zero if we see any child that might later
1587 	 * match our criteria, even if we are not able to reap it yet.
1588 	 */
1589 	retval = -ECHILD;
1590 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1591 		goto end;
1592 
1593 	current->state = TASK_INTERRUPTIBLE;
1594 	read_lock(&tasklist_lock);
1595 	tsk = current;
1596 	do {
1597 		int tsk_result = do_wait_thread(tsk, &retval,
1598 						type, pid, options,
1599 						infop, stat_addr, ru);
1600 		if (!tsk_result)
1601 			tsk_result = ptrace_do_wait(tsk, &retval,
1602 						    type, pid, options,
1603 						    infop, stat_addr, ru);
1604 		if (tsk_result) {
1605 			/*
1606 			 * tasklist_lock is unlocked and we have a final result.
1607 			 */
1608 			retval = tsk_result;
1609 			goto end;
1610 		}
1611 
1612 		if (options & __WNOTHREAD)
1613 			break;
1614 		tsk = next_thread(tsk);
1615 		BUG_ON(tsk->signal != current->signal);
1616 	} while (tsk != current);
1617 	read_unlock(&tasklist_lock);
1618 
1619 	if (!retval && !(options & WNOHANG)) {
1620 		retval = -ERESTARTSYS;
1621 		if (!signal_pending(current)) {
1622 			schedule();
1623 			goto repeat;
1624 		}
1625 	}
1626 
1627 end:
1628 	current->state = TASK_RUNNING;
1629 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1630 	if (infop) {
1631 		if (retval > 0)
1632 			retval = 0;
1633 		else {
1634 			/*
1635 			 * For a WNOHANG return, clear out all the fields
1636 			 * we would set so the user can easily tell the
1637 			 * difference.
1638 			 */
1639 			if (!retval)
1640 				retval = put_user(0, &infop->si_signo);
1641 			if (!retval)
1642 				retval = put_user(0, &infop->si_errno);
1643 			if (!retval)
1644 				retval = put_user(0, &infop->si_code);
1645 			if (!retval)
1646 				retval = put_user(0, &infop->si_pid);
1647 			if (!retval)
1648 				retval = put_user(0, &infop->si_uid);
1649 			if (!retval)
1650 				retval = put_user(0, &infop->si_status);
1651 		}
1652 	}
1653 	return retval;
1654 }
1655 
1656 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1657 		infop, int, options, struct rusage __user *, ru)
1658 {
1659 	struct pid *pid = NULL;
1660 	enum pid_type type;
1661 	long ret;
1662 
1663 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1664 		return -EINVAL;
1665 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1666 		return -EINVAL;
1667 
1668 	switch (which) {
1669 	case P_ALL:
1670 		type = PIDTYPE_MAX;
1671 		break;
1672 	case P_PID:
1673 		type = PIDTYPE_PID;
1674 		if (upid <= 0)
1675 			return -EINVAL;
1676 		break;
1677 	case P_PGID:
1678 		type = PIDTYPE_PGID;
1679 		if (upid <= 0)
1680 			return -EINVAL;
1681 		break;
1682 	default:
1683 		return -EINVAL;
1684 	}
1685 
1686 	if (type < PIDTYPE_MAX)
1687 		pid = find_get_pid(upid);
1688 	ret = do_wait(type, pid, options, infop, NULL, ru);
1689 	put_pid(pid);
1690 
1691 	/* avoid REGPARM breakage on x86: */
1692 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1693 	return ret;
1694 }
1695 
1696 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1697 		int, options, struct rusage __user *, ru)
1698 {
1699 	struct pid *pid = NULL;
1700 	enum pid_type type;
1701 	long ret;
1702 
1703 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1704 			__WNOTHREAD|__WCLONE|__WALL))
1705 		return -EINVAL;
1706 
1707 	if (upid == -1)
1708 		type = PIDTYPE_MAX;
1709 	else if (upid < 0) {
1710 		type = PIDTYPE_PGID;
1711 		pid = find_get_pid(-upid);
1712 	} else if (upid == 0) {
1713 		type = PIDTYPE_PGID;
1714 		pid = get_task_pid(current, PIDTYPE_PGID);
1715 	} else /* upid > 0 */ {
1716 		type = PIDTYPE_PID;
1717 		pid = find_get_pid(upid);
1718 	}
1719 
1720 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1721 	put_pid(pid);
1722 
1723 	/* avoid REGPARM breakage on x86: */
1724 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1725 	return ret;
1726 }
1727 
1728 #ifdef __ARCH_WANT_SYS_WAITPID
1729 
1730 /*
1731  * sys_waitpid() remains for compatibility. waitpid() should be
1732  * implemented by calling sys_wait4() from libc.a.
1733  */
1734 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1735 {
1736 	return sys_wait4(pid, stat_addr, options, NULL);
1737 }
1738 
1739 #endif
1740