1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/iocontext.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/fdtable.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/freezer.h> 36 #include <linux/cgroup.h> 37 #include <linux/syscalls.h> 38 #include <linux/signal.h> 39 #include <linux/posix-timers.h> 40 #include <linux/cn_proc.h> 41 #include <linux/mutex.h> 42 #include <linux/futex.h> 43 #include <linux/pipe_fs_i.h> 44 #include <linux/audit.h> /* for audit_free() */ 45 #include <linux/resource.h> 46 #include <linux/blkdev.h> 47 #include <linux/task_io_accounting_ops.h> 48 #include <linux/tracehook.h> 49 #include <linux/fs_struct.h> 50 #include <linux/init_task.h> 51 #include <linux/perf_counter.h> 52 #include <trace/events/sched.h> 53 54 #include <asm/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/pgtable.h> 57 #include <asm/mmu_context.h> 58 #include "cred-internals.h" 59 60 static void exit_mm(struct task_struct * tsk); 61 62 static void __unhash_process(struct task_struct *p) 63 { 64 nr_threads--; 65 detach_pid(p, PIDTYPE_PID); 66 if (thread_group_leader(p)) { 67 detach_pid(p, PIDTYPE_PGID); 68 detach_pid(p, PIDTYPE_SID); 69 70 list_del_rcu(&p->tasks); 71 __get_cpu_var(process_counts)--; 72 } 73 list_del_rcu(&p->thread_group); 74 list_del_init(&p->sibling); 75 } 76 77 /* 78 * This function expects the tasklist_lock write-locked. 79 */ 80 static void __exit_signal(struct task_struct *tsk) 81 { 82 struct signal_struct *sig = tsk->signal; 83 struct sighand_struct *sighand; 84 85 BUG_ON(!sig); 86 BUG_ON(!atomic_read(&sig->count)); 87 88 sighand = rcu_dereference(tsk->sighand); 89 spin_lock(&sighand->siglock); 90 91 posix_cpu_timers_exit(tsk); 92 if (atomic_dec_and_test(&sig->count)) 93 posix_cpu_timers_exit_group(tsk); 94 else { 95 /* 96 * If there is any task waiting for the group exit 97 * then notify it: 98 */ 99 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 100 wake_up_process(sig->group_exit_task); 101 102 if (tsk == sig->curr_target) 103 sig->curr_target = next_thread(tsk); 104 /* 105 * Accumulate here the counters for all threads but the 106 * group leader as they die, so they can be added into 107 * the process-wide totals when those are taken. 108 * The group leader stays around as a zombie as long 109 * as there are other threads. When it gets reaped, 110 * the exit.c code will add its counts into these totals. 111 * We won't ever get here for the group leader, since it 112 * will have been the last reference on the signal_struct. 113 */ 114 sig->utime = cputime_add(sig->utime, task_utime(tsk)); 115 sig->stime = cputime_add(sig->stime, task_stime(tsk)); 116 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 117 sig->min_flt += tsk->min_flt; 118 sig->maj_flt += tsk->maj_flt; 119 sig->nvcsw += tsk->nvcsw; 120 sig->nivcsw += tsk->nivcsw; 121 sig->inblock += task_io_get_inblock(tsk); 122 sig->oublock += task_io_get_oublock(tsk); 123 task_io_accounting_add(&sig->ioac, &tsk->ioac); 124 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 125 sig = NULL; /* Marker for below. */ 126 } 127 128 __unhash_process(tsk); 129 130 /* 131 * Do this under ->siglock, we can race with another thread 132 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 133 */ 134 flush_sigqueue(&tsk->pending); 135 136 tsk->signal = NULL; 137 tsk->sighand = NULL; 138 spin_unlock(&sighand->siglock); 139 140 __cleanup_sighand(sighand); 141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 142 if (sig) { 143 flush_sigqueue(&sig->shared_pending); 144 taskstats_tgid_free(sig); 145 /* 146 * Make sure ->signal can't go away under rq->lock, 147 * see account_group_exec_runtime(). 148 */ 149 task_rq_unlock_wait(tsk); 150 __cleanup_signal(sig); 151 } 152 } 153 154 static void delayed_put_task_struct(struct rcu_head *rhp) 155 { 156 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 157 158 #ifdef CONFIG_PERF_COUNTERS 159 WARN_ON_ONCE(tsk->perf_counter_ctxp); 160 #endif 161 trace_sched_process_free(tsk); 162 put_task_struct(tsk); 163 } 164 165 166 void release_task(struct task_struct * p) 167 { 168 struct task_struct *leader; 169 int zap_leader; 170 repeat: 171 tracehook_prepare_release_task(p); 172 /* don't need to get the RCU readlock here - the process is dead and 173 * can't be modifying its own credentials */ 174 atomic_dec(&__task_cred(p)->user->processes); 175 176 proc_flush_task(p); 177 178 write_lock_irq(&tasklist_lock); 179 tracehook_finish_release_task(p); 180 __exit_signal(p); 181 182 /* 183 * If we are the last non-leader member of the thread 184 * group, and the leader is zombie, then notify the 185 * group leader's parent process. (if it wants notification.) 186 */ 187 zap_leader = 0; 188 leader = p->group_leader; 189 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 190 BUG_ON(task_detached(leader)); 191 do_notify_parent(leader, leader->exit_signal); 192 /* 193 * If we were the last child thread and the leader has 194 * exited already, and the leader's parent ignores SIGCHLD, 195 * then we are the one who should release the leader. 196 * 197 * do_notify_parent() will have marked it self-reaping in 198 * that case. 199 */ 200 zap_leader = task_detached(leader); 201 202 /* 203 * This maintains the invariant that release_task() 204 * only runs on a task in EXIT_DEAD, just for sanity. 205 */ 206 if (zap_leader) 207 leader->exit_state = EXIT_DEAD; 208 } 209 210 write_unlock_irq(&tasklist_lock); 211 release_thread(p); 212 call_rcu(&p->rcu, delayed_put_task_struct); 213 214 p = leader; 215 if (unlikely(zap_leader)) 216 goto repeat; 217 } 218 219 /* 220 * This checks not only the pgrp, but falls back on the pid if no 221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 222 * without this... 223 * 224 * The caller must hold rcu lock or the tasklist lock. 225 */ 226 struct pid *session_of_pgrp(struct pid *pgrp) 227 { 228 struct task_struct *p; 229 struct pid *sid = NULL; 230 231 p = pid_task(pgrp, PIDTYPE_PGID); 232 if (p == NULL) 233 p = pid_task(pgrp, PIDTYPE_PID); 234 if (p != NULL) 235 sid = task_session(p); 236 237 return sid; 238 } 239 240 /* 241 * Determine if a process group is "orphaned", according to the POSIX 242 * definition in 2.2.2.52. Orphaned process groups are not to be affected 243 * by terminal-generated stop signals. Newly orphaned process groups are 244 * to receive a SIGHUP and a SIGCONT. 245 * 246 * "I ask you, have you ever known what it is to be an orphan?" 247 */ 248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 249 { 250 struct task_struct *p; 251 252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 253 if ((p == ignored_task) || 254 (p->exit_state && thread_group_empty(p)) || 255 is_global_init(p->real_parent)) 256 continue; 257 258 if (task_pgrp(p->real_parent) != pgrp && 259 task_session(p->real_parent) == task_session(p)) 260 return 0; 261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 262 263 return 1; 264 } 265 266 int is_current_pgrp_orphaned(void) 267 { 268 int retval; 269 270 read_lock(&tasklist_lock); 271 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 272 read_unlock(&tasklist_lock); 273 274 return retval; 275 } 276 277 static int has_stopped_jobs(struct pid *pgrp) 278 { 279 int retval = 0; 280 struct task_struct *p; 281 282 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 283 if (!task_is_stopped(p)) 284 continue; 285 retval = 1; 286 break; 287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 288 return retval; 289 } 290 291 /* 292 * Check to see if any process groups have become orphaned as 293 * a result of our exiting, and if they have any stopped jobs, 294 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 295 */ 296 static void 297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 298 { 299 struct pid *pgrp = task_pgrp(tsk); 300 struct task_struct *ignored_task = tsk; 301 302 if (!parent) 303 /* exit: our father is in a different pgrp than 304 * we are and we were the only connection outside. 305 */ 306 parent = tsk->real_parent; 307 else 308 /* reparent: our child is in a different pgrp than 309 * we are, and it was the only connection outside. 310 */ 311 ignored_task = NULL; 312 313 if (task_pgrp(parent) != pgrp && 314 task_session(parent) == task_session(tsk) && 315 will_become_orphaned_pgrp(pgrp, ignored_task) && 316 has_stopped_jobs(pgrp)) { 317 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 318 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 319 } 320 } 321 322 /** 323 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 324 * 325 * If a kernel thread is launched as a result of a system call, or if 326 * it ever exits, it should generally reparent itself to kthreadd so it 327 * isn't in the way of other processes and is correctly cleaned up on exit. 328 * 329 * The various task state such as scheduling policy and priority may have 330 * been inherited from a user process, so we reset them to sane values here. 331 * 332 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 333 */ 334 static void reparent_to_kthreadd(void) 335 { 336 write_lock_irq(&tasklist_lock); 337 338 ptrace_unlink(current); 339 /* Reparent to init */ 340 current->real_parent = current->parent = kthreadd_task; 341 list_move_tail(¤t->sibling, ¤t->real_parent->children); 342 343 /* Set the exit signal to SIGCHLD so we signal init on exit */ 344 current->exit_signal = SIGCHLD; 345 346 if (task_nice(current) < 0) 347 set_user_nice(current, 0); 348 /* cpus_allowed? */ 349 /* rt_priority? */ 350 /* signals? */ 351 memcpy(current->signal->rlim, init_task.signal->rlim, 352 sizeof(current->signal->rlim)); 353 354 atomic_inc(&init_cred.usage); 355 commit_creds(&init_cred); 356 write_unlock_irq(&tasklist_lock); 357 } 358 359 void __set_special_pids(struct pid *pid) 360 { 361 struct task_struct *curr = current->group_leader; 362 363 if (task_session(curr) != pid) 364 change_pid(curr, PIDTYPE_SID, pid); 365 366 if (task_pgrp(curr) != pid) 367 change_pid(curr, PIDTYPE_PGID, pid); 368 } 369 370 static void set_special_pids(struct pid *pid) 371 { 372 write_lock_irq(&tasklist_lock); 373 __set_special_pids(pid); 374 write_unlock_irq(&tasklist_lock); 375 } 376 377 /* 378 * Let kernel threads use this to say that they 379 * allow a certain signal (since daemonize() will 380 * have disabled all of them by default). 381 */ 382 int allow_signal(int sig) 383 { 384 if (!valid_signal(sig) || sig < 1) 385 return -EINVAL; 386 387 spin_lock_irq(¤t->sighand->siglock); 388 sigdelset(¤t->blocked, sig); 389 if (!current->mm) { 390 /* Kernel threads handle their own signals. 391 Let the signal code know it'll be handled, so 392 that they don't get converted to SIGKILL or 393 just silently dropped */ 394 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 395 } 396 recalc_sigpending(); 397 spin_unlock_irq(¤t->sighand->siglock); 398 return 0; 399 } 400 401 EXPORT_SYMBOL(allow_signal); 402 403 int disallow_signal(int sig) 404 { 405 if (!valid_signal(sig) || sig < 1) 406 return -EINVAL; 407 408 spin_lock_irq(¤t->sighand->siglock); 409 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 410 recalc_sigpending(); 411 spin_unlock_irq(¤t->sighand->siglock); 412 return 0; 413 } 414 415 EXPORT_SYMBOL(disallow_signal); 416 417 /* 418 * Put all the gunge required to become a kernel thread without 419 * attached user resources in one place where it belongs. 420 */ 421 422 void daemonize(const char *name, ...) 423 { 424 va_list args; 425 sigset_t blocked; 426 427 va_start(args, name); 428 vsnprintf(current->comm, sizeof(current->comm), name, args); 429 va_end(args); 430 431 /* 432 * If we were started as result of loading a module, close all of the 433 * user space pages. We don't need them, and if we didn't close them 434 * they would be locked into memory. 435 */ 436 exit_mm(current); 437 /* 438 * We don't want to have TIF_FREEZE set if the system-wide hibernation 439 * or suspend transition begins right now. 440 */ 441 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 442 443 if (current->nsproxy != &init_nsproxy) { 444 get_nsproxy(&init_nsproxy); 445 switch_task_namespaces(current, &init_nsproxy); 446 } 447 set_special_pids(&init_struct_pid); 448 proc_clear_tty(current); 449 450 /* Block and flush all signals */ 451 sigfillset(&blocked); 452 sigprocmask(SIG_BLOCK, &blocked, NULL); 453 flush_signals(current); 454 455 /* Become as one with the init task */ 456 457 daemonize_fs_struct(); 458 exit_files(current); 459 current->files = init_task.files; 460 atomic_inc(¤t->files->count); 461 462 reparent_to_kthreadd(); 463 } 464 465 EXPORT_SYMBOL(daemonize); 466 467 static void close_files(struct files_struct * files) 468 { 469 int i, j; 470 struct fdtable *fdt; 471 472 j = 0; 473 474 /* 475 * It is safe to dereference the fd table without RCU or 476 * ->file_lock because this is the last reference to the 477 * files structure. 478 */ 479 fdt = files_fdtable(files); 480 for (;;) { 481 unsigned long set; 482 i = j * __NFDBITS; 483 if (i >= fdt->max_fds) 484 break; 485 set = fdt->open_fds->fds_bits[j++]; 486 while (set) { 487 if (set & 1) { 488 struct file * file = xchg(&fdt->fd[i], NULL); 489 if (file) { 490 filp_close(file, files); 491 cond_resched(); 492 } 493 } 494 i++; 495 set >>= 1; 496 } 497 } 498 } 499 500 struct files_struct *get_files_struct(struct task_struct *task) 501 { 502 struct files_struct *files; 503 504 task_lock(task); 505 files = task->files; 506 if (files) 507 atomic_inc(&files->count); 508 task_unlock(task); 509 510 return files; 511 } 512 513 void put_files_struct(struct files_struct *files) 514 { 515 struct fdtable *fdt; 516 517 if (atomic_dec_and_test(&files->count)) { 518 close_files(files); 519 /* 520 * Free the fd and fdset arrays if we expanded them. 521 * If the fdtable was embedded, pass files for freeing 522 * at the end of the RCU grace period. Otherwise, 523 * you can free files immediately. 524 */ 525 fdt = files_fdtable(files); 526 if (fdt != &files->fdtab) 527 kmem_cache_free(files_cachep, files); 528 free_fdtable(fdt); 529 } 530 } 531 532 void reset_files_struct(struct files_struct *files) 533 { 534 struct task_struct *tsk = current; 535 struct files_struct *old; 536 537 old = tsk->files; 538 task_lock(tsk); 539 tsk->files = files; 540 task_unlock(tsk); 541 put_files_struct(old); 542 } 543 544 void exit_files(struct task_struct *tsk) 545 { 546 struct files_struct * files = tsk->files; 547 548 if (files) { 549 task_lock(tsk); 550 tsk->files = NULL; 551 task_unlock(tsk); 552 put_files_struct(files); 553 } 554 } 555 556 #ifdef CONFIG_MM_OWNER 557 /* 558 * Task p is exiting and it owned mm, lets find a new owner for it 559 */ 560 static inline int 561 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 562 { 563 /* 564 * If there are other users of the mm and the owner (us) is exiting 565 * we need to find a new owner to take on the responsibility. 566 */ 567 if (atomic_read(&mm->mm_users) <= 1) 568 return 0; 569 if (mm->owner != p) 570 return 0; 571 return 1; 572 } 573 574 void mm_update_next_owner(struct mm_struct *mm) 575 { 576 struct task_struct *c, *g, *p = current; 577 578 retry: 579 if (!mm_need_new_owner(mm, p)) 580 return; 581 582 read_lock(&tasklist_lock); 583 /* 584 * Search in the children 585 */ 586 list_for_each_entry(c, &p->children, sibling) { 587 if (c->mm == mm) 588 goto assign_new_owner; 589 } 590 591 /* 592 * Search in the siblings 593 */ 594 list_for_each_entry(c, &p->parent->children, sibling) { 595 if (c->mm == mm) 596 goto assign_new_owner; 597 } 598 599 /* 600 * Search through everything else. We should not get 601 * here often 602 */ 603 do_each_thread(g, c) { 604 if (c->mm == mm) 605 goto assign_new_owner; 606 } while_each_thread(g, c); 607 608 read_unlock(&tasklist_lock); 609 /* 610 * We found no owner yet mm_users > 1: this implies that we are 611 * most likely racing with swapoff (try_to_unuse()) or /proc or 612 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 613 */ 614 mm->owner = NULL; 615 return; 616 617 assign_new_owner: 618 BUG_ON(c == p); 619 get_task_struct(c); 620 /* 621 * The task_lock protects c->mm from changing. 622 * We always want mm->owner->mm == mm 623 */ 624 task_lock(c); 625 /* 626 * Delay read_unlock() till we have the task_lock() 627 * to ensure that c does not slip away underneath us 628 */ 629 read_unlock(&tasklist_lock); 630 if (c->mm != mm) { 631 task_unlock(c); 632 put_task_struct(c); 633 goto retry; 634 } 635 mm->owner = c; 636 task_unlock(c); 637 put_task_struct(c); 638 } 639 #endif /* CONFIG_MM_OWNER */ 640 641 /* 642 * Turn us into a lazy TLB process if we 643 * aren't already.. 644 */ 645 static void exit_mm(struct task_struct * tsk) 646 { 647 struct mm_struct *mm = tsk->mm; 648 struct core_state *core_state; 649 650 mm_release(tsk, mm); 651 if (!mm) 652 return; 653 /* 654 * Serialize with any possible pending coredump. 655 * We must hold mmap_sem around checking core_state 656 * and clearing tsk->mm. The core-inducing thread 657 * will increment ->nr_threads for each thread in the 658 * group with ->mm != NULL. 659 */ 660 down_read(&mm->mmap_sem); 661 core_state = mm->core_state; 662 if (core_state) { 663 struct core_thread self; 664 up_read(&mm->mmap_sem); 665 666 self.task = tsk; 667 self.next = xchg(&core_state->dumper.next, &self); 668 /* 669 * Implies mb(), the result of xchg() must be visible 670 * to core_state->dumper. 671 */ 672 if (atomic_dec_and_test(&core_state->nr_threads)) 673 complete(&core_state->startup); 674 675 for (;;) { 676 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 677 if (!self.task) /* see coredump_finish() */ 678 break; 679 schedule(); 680 } 681 __set_task_state(tsk, TASK_RUNNING); 682 down_read(&mm->mmap_sem); 683 } 684 atomic_inc(&mm->mm_count); 685 BUG_ON(mm != tsk->active_mm); 686 /* more a memory barrier than a real lock */ 687 task_lock(tsk); 688 tsk->mm = NULL; 689 up_read(&mm->mmap_sem); 690 enter_lazy_tlb(mm, current); 691 /* We don't want this task to be frozen prematurely */ 692 clear_freeze_flag(tsk); 693 task_unlock(tsk); 694 mm_update_next_owner(mm); 695 mmput(mm); 696 } 697 698 /* 699 * When we die, we re-parent all our children. 700 * Try to give them to another thread in our thread 701 * group, and if no such member exists, give it to 702 * the child reaper process (ie "init") in our pid 703 * space. 704 */ 705 static struct task_struct *find_new_reaper(struct task_struct *father) 706 { 707 struct pid_namespace *pid_ns = task_active_pid_ns(father); 708 struct task_struct *thread; 709 710 thread = father; 711 while_each_thread(father, thread) { 712 if (thread->flags & PF_EXITING) 713 continue; 714 if (unlikely(pid_ns->child_reaper == father)) 715 pid_ns->child_reaper = thread; 716 return thread; 717 } 718 719 if (unlikely(pid_ns->child_reaper == father)) { 720 write_unlock_irq(&tasklist_lock); 721 if (unlikely(pid_ns == &init_pid_ns)) 722 panic("Attempted to kill init!"); 723 724 zap_pid_ns_processes(pid_ns); 725 write_lock_irq(&tasklist_lock); 726 /* 727 * We can not clear ->child_reaper or leave it alone. 728 * There may by stealth EXIT_DEAD tasks on ->children, 729 * forget_original_parent() must move them somewhere. 730 */ 731 pid_ns->child_reaper = init_pid_ns.child_reaper; 732 } 733 734 return pid_ns->child_reaper; 735 } 736 737 /* 738 * Any that need to be release_task'd are put on the @dead list. 739 */ 740 static void reparent_thread(struct task_struct *father, struct task_struct *p, 741 struct list_head *dead) 742 { 743 if (p->pdeath_signal) 744 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 745 746 list_move_tail(&p->sibling, &p->real_parent->children); 747 748 if (task_detached(p)) 749 return; 750 /* 751 * If this is a threaded reparent there is no need to 752 * notify anyone anything has happened. 753 */ 754 if (same_thread_group(p->real_parent, father)) 755 return; 756 757 /* We don't want people slaying init. */ 758 p->exit_signal = SIGCHLD; 759 760 /* If it has exited notify the new parent about this child's death. */ 761 if (!p->ptrace && 762 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 763 do_notify_parent(p, p->exit_signal); 764 if (task_detached(p)) { 765 p->exit_state = EXIT_DEAD; 766 list_move_tail(&p->sibling, dead); 767 } 768 } 769 770 kill_orphaned_pgrp(p, father); 771 } 772 773 static void forget_original_parent(struct task_struct *father) 774 { 775 struct task_struct *p, *n, *reaper; 776 LIST_HEAD(dead_children); 777 778 exit_ptrace(father); 779 780 write_lock_irq(&tasklist_lock); 781 reaper = find_new_reaper(father); 782 783 list_for_each_entry_safe(p, n, &father->children, sibling) { 784 p->real_parent = reaper; 785 if (p->parent == father) { 786 BUG_ON(p->ptrace); 787 p->parent = p->real_parent; 788 } 789 reparent_thread(father, p, &dead_children); 790 } 791 write_unlock_irq(&tasklist_lock); 792 793 BUG_ON(!list_empty(&father->children)); 794 795 list_for_each_entry_safe(p, n, &dead_children, sibling) { 796 list_del_init(&p->sibling); 797 release_task(p); 798 } 799 } 800 801 /* 802 * Send signals to all our closest relatives so that they know 803 * to properly mourn us.. 804 */ 805 static void exit_notify(struct task_struct *tsk, int group_dead) 806 { 807 int signal; 808 void *cookie; 809 810 /* 811 * This does two things: 812 * 813 * A. Make init inherit all the child processes 814 * B. Check to see if any process groups have become orphaned 815 * as a result of our exiting, and if they have any stopped 816 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 817 */ 818 forget_original_parent(tsk); 819 exit_task_namespaces(tsk); 820 821 write_lock_irq(&tasklist_lock); 822 if (group_dead) 823 kill_orphaned_pgrp(tsk->group_leader, NULL); 824 825 /* Let father know we died 826 * 827 * Thread signals are configurable, but you aren't going to use 828 * that to send signals to arbitary processes. 829 * That stops right now. 830 * 831 * If the parent exec id doesn't match the exec id we saved 832 * when we started then we know the parent has changed security 833 * domain. 834 * 835 * If our self_exec id doesn't match our parent_exec_id then 836 * we have changed execution domain as these two values started 837 * the same after a fork. 838 */ 839 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 840 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 841 tsk->self_exec_id != tsk->parent_exec_id)) 842 tsk->exit_signal = SIGCHLD; 843 844 signal = tracehook_notify_death(tsk, &cookie, group_dead); 845 if (signal >= 0) 846 signal = do_notify_parent(tsk, signal); 847 848 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 849 850 /* mt-exec, de_thread() is waiting for us */ 851 if (thread_group_leader(tsk) && 852 tsk->signal->group_exit_task && 853 tsk->signal->notify_count < 0) 854 wake_up_process(tsk->signal->group_exit_task); 855 856 write_unlock_irq(&tasklist_lock); 857 858 tracehook_report_death(tsk, signal, cookie, group_dead); 859 860 /* If the process is dead, release it - nobody will wait for it */ 861 if (signal == DEATH_REAP) 862 release_task(tsk); 863 } 864 865 #ifdef CONFIG_DEBUG_STACK_USAGE 866 static void check_stack_usage(void) 867 { 868 static DEFINE_SPINLOCK(low_water_lock); 869 static int lowest_to_date = THREAD_SIZE; 870 unsigned long free; 871 872 free = stack_not_used(current); 873 874 if (free >= lowest_to_date) 875 return; 876 877 spin_lock(&low_water_lock); 878 if (free < lowest_to_date) { 879 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 880 "left\n", 881 current->comm, free); 882 lowest_to_date = free; 883 } 884 spin_unlock(&low_water_lock); 885 } 886 #else 887 static inline void check_stack_usage(void) {} 888 #endif 889 890 NORET_TYPE void do_exit(long code) 891 { 892 struct task_struct *tsk = current; 893 int group_dead; 894 895 profile_task_exit(tsk); 896 897 WARN_ON(atomic_read(&tsk->fs_excl)); 898 899 if (unlikely(in_interrupt())) 900 panic("Aiee, killing interrupt handler!"); 901 if (unlikely(!tsk->pid)) 902 panic("Attempted to kill the idle task!"); 903 904 tracehook_report_exit(&code); 905 906 /* 907 * We're taking recursive faults here in do_exit. Safest is to just 908 * leave this task alone and wait for reboot. 909 */ 910 if (unlikely(tsk->flags & PF_EXITING)) { 911 printk(KERN_ALERT 912 "Fixing recursive fault but reboot is needed!\n"); 913 /* 914 * We can do this unlocked here. The futex code uses 915 * this flag just to verify whether the pi state 916 * cleanup has been done or not. In the worst case it 917 * loops once more. We pretend that the cleanup was 918 * done as there is no way to return. Either the 919 * OWNER_DIED bit is set by now or we push the blocked 920 * task into the wait for ever nirwana as well. 921 */ 922 tsk->flags |= PF_EXITPIDONE; 923 set_current_state(TASK_UNINTERRUPTIBLE); 924 schedule(); 925 } 926 927 exit_irq_thread(); 928 929 exit_signals(tsk); /* sets PF_EXITING */ 930 /* 931 * tsk->flags are checked in the futex code to protect against 932 * an exiting task cleaning up the robust pi futexes. 933 */ 934 smp_mb(); 935 spin_unlock_wait(&tsk->pi_lock); 936 937 if (unlikely(in_atomic())) 938 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 939 current->comm, task_pid_nr(current), 940 preempt_count()); 941 942 acct_update_integrals(tsk); 943 944 group_dead = atomic_dec_and_test(&tsk->signal->live); 945 if (group_dead) { 946 hrtimer_cancel(&tsk->signal->real_timer); 947 exit_itimers(tsk->signal); 948 } 949 acct_collect(code, group_dead); 950 if (group_dead) 951 tty_audit_exit(); 952 if (unlikely(tsk->audit_context)) 953 audit_free(tsk); 954 955 tsk->exit_code = code; 956 taskstats_exit(tsk, group_dead); 957 958 exit_mm(tsk); 959 960 if (group_dead) 961 acct_process(); 962 trace_sched_process_exit(tsk); 963 964 exit_sem(tsk); 965 exit_files(tsk); 966 exit_fs(tsk); 967 check_stack_usage(); 968 exit_thread(); 969 cgroup_exit(tsk, 1); 970 971 if (group_dead && tsk->signal->leader) 972 disassociate_ctty(1); 973 974 module_put(task_thread_info(tsk)->exec_domain->module); 975 if (tsk->binfmt) 976 module_put(tsk->binfmt->module); 977 978 proc_exit_connector(tsk); 979 980 /* 981 * Flush inherited counters to the parent - before the parent 982 * gets woken up by child-exit notifications. 983 */ 984 perf_counter_exit_task(tsk); 985 986 exit_notify(tsk, group_dead); 987 #ifdef CONFIG_NUMA 988 mpol_put(tsk->mempolicy); 989 tsk->mempolicy = NULL; 990 #endif 991 #ifdef CONFIG_FUTEX 992 if (unlikely(!list_empty(&tsk->pi_state_list))) 993 exit_pi_state_list(tsk); 994 if (unlikely(current->pi_state_cache)) 995 kfree(current->pi_state_cache); 996 #endif 997 /* 998 * Make sure we are holding no locks: 999 */ 1000 debug_check_no_locks_held(tsk); 1001 /* 1002 * We can do this unlocked here. The futex code uses this flag 1003 * just to verify whether the pi state cleanup has been done 1004 * or not. In the worst case it loops once more. 1005 */ 1006 tsk->flags |= PF_EXITPIDONE; 1007 1008 if (tsk->io_context) 1009 exit_io_context(); 1010 1011 if (tsk->splice_pipe) 1012 __free_pipe_info(tsk->splice_pipe); 1013 1014 preempt_disable(); 1015 /* causes final put_task_struct in finish_task_switch(). */ 1016 tsk->state = TASK_DEAD; 1017 schedule(); 1018 BUG(); 1019 /* Avoid "noreturn function does return". */ 1020 for (;;) 1021 cpu_relax(); /* For when BUG is null */ 1022 } 1023 1024 EXPORT_SYMBOL_GPL(do_exit); 1025 1026 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1027 { 1028 if (comp) 1029 complete(comp); 1030 1031 do_exit(code); 1032 } 1033 1034 EXPORT_SYMBOL(complete_and_exit); 1035 1036 SYSCALL_DEFINE1(exit, int, error_code) 1037 { 1038 do_exit((error_code&0xff)<<8); 1039 } 1040 1041 /* 1042 * Take down every thread in the group. This is called by fatal signals 1043 * as well as by sys_exit_group (below). 1044 */ 1045 NORET_TYPE void 1046 do_group_exit(int exit_code) 1047 { 1048 struct signal_struct *sig = current->signal; 1049 1050 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1051 1052 if (signal_group_exit(sig)) 1053 exit_code = sig->group_exit_code; 1054 else if (!thread_group_empty(current)) { 1055 struct sighand_struct *const sighand = current->sighand; 1056 spin_lock_irq(&sighand->siglock); 1057 if (signal_group_exit(sig)) 1058 /* Another thread got here before we took the lock. */ 1059 exit_code = sig->group_exit_code; 1060 else { 1061 sig->group_exit_code = exit_code; 1062 sig->flags = SIGNAL_GROUP_EXIT; 1063 zap_other_threads(current); 1064 } 1065 spin_unlock_irq(&sighand->siglock); 1066 } 1067 1068 do_exit(exit_code); 1069 /* NOTREACHED */ 1070 } 1071 1072 /* 1073 * this kills every thread in the thread group. Note that any externally 1074 * wait4()-ing process will get the correct exit code - even if this 1075 * thread is not the thread group leader. 1076 */ 1077 SYSCALL_DEFINE1(exit_group, int, error_code) 1078 { 1079 do_group_exit((error_code & 0xff) << 8); 1080 /* NOTREACHED */ 1081 return 0; 1082 } 1083 1084 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1085 { 1086 struct pid *pid = NULL; 1087 if (type == PIDTYPE_PID) 1088 pid = task->pids[type].pid; 1089 else if (type < PIDTYPE_MAX) 1090 pid = task->group_leader->pids[type].pid; 1091 return pid; 1092 } 1093 1094 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1095 struct task_struct *p) 1096 { 1097 int err; 1098 1099 if (type < PIDTYPE_MAX) { 1100 if (task_pid_type(p, type) != pid) 1101 return 0; 1102 } 1103 1104 /* Wait for all children (clone and not) if __WALL is set; 1105 * otherwise, wait for clone children *only* if __WCLONE is 1106 * set; otherwise, wait for non-clone children *only*. (Note: 1107 * A "clone" child here is one that reports to its parent 1108 * using a signal other than SIGCHLD.) */ 1109 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1110 && !(options & __WALL)) 1111 return 0; 1112 1113 err = security_task_wait(p); 1114 if (err) 1115 return err; 1116 1117 return 1; 1118 } 1119 1120 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1121 int why, int status, 1122 struct siginfo __user *infop, 1123 struct rusage __user *rusagep) 1124 { 1125 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1126 1127 put_task_struct(p); 1128 if (!retval) 1129 retval = put_user(SIGCHLD, &infop->si_signo); 1130 if (!retval) 1131 retval = put_user(0, &infop->si_errno); 1132 if (!retval) 1133 retval = put_user((short)why, &infop->si_code); 1134 if (!retval) 1135 retval = put_user(pid, &infop->si_pid); 1136 if (!retval) 1137 retval = put_user(uid, &infop->si_uid); 1138 if (!retval) 1139 retval = put_user(status, &infop->si_status); 1140 if (!retval) 1141 retval = pid; 1142 return retval; 1143 } 1144 1145 /* 1146 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1147 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1148 * the lock and this task is uninteresting. If we return nonzero, we have 1149 * released the lock and the system call should return. 1150 */ 1151 static int wait_task_zombie(struct task_struct *p, int options, 1152 struct siginfo __user *infop, 1153 int __user *stat_addr, struct rusage __user *ru) 1154 { 1155 unsigned long state; 1156 int retval, status, traced; 1157 pid_t pid = task_pid_vnr(p); 1158 uid_t uid = __task_cred(p)->uid; 1159 1160 if (!likely(options & WEXITED)) 1161 return 0; 1162 1163 if (unlikely(options & WNOWAIT)) { 1164 int exit_code = p->exit_code; 1165 int why, status; 1166 1167 get_task_struct(p); 1168 read_unlock(&tasklist_lock); 1169 if ((exit_code & 0x7f) == 0) { 1170 why = CLD_EXITED; 1171 status = exit_code >> 8; 1172 } else { 1173 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1174 status = exit_code & 0x7f; 1175 } 1176 return wait_noreap_copyout(p, pid, uid, why, 1177 status, infop, ru); 1178 } 1179 1180 /* 1181 * Try to move the task's state to DEAD 1182 * only one thread is allowed to do this: 1183 */ 1184 state = xchg(&p->exit_state, EXIT_DEAD); 1185 if (state != EXIT_ZOMBIE) { 1186 BUG_ON(state != EXIT_DEAD); 1187 return 0; 1188 } 1189 1190 traced = ptrace_reparented(p); 1191 1192 if (likely(!traced)) { 1193 struct signal_struct *psig; 1194 struct signal_struct *sig; 1195 struct task_cputime cputime; 1196 1197 /* 1198 * The resource counters for the group leader are in its 1199 * own task_struct. Those for dead threads in the group 1200 * are in its signal_struct, as are those for the child 1201 * processes it has previously reaped. All these 1202 * accumulate in the parent's signal_struct c* fields. 1203 * 1204 * We don't bother to take a lock here to protect these 1205 * p->signal fields, because they are only touched by 1206 * __exit_signal, which runs with tasklist_lock 1207 * write-locked anyway, and so is excluded here. We do 1208 * need to protect the access to p->parent->signal fields, 1209 * as other threads in the parent group can be right 1210 * here reaping other children at the same time. 1211 * 1212 * We use thread_group_cputime() to get times for the thread 1213 * group, which consolidates times for all threads in the 1214 * group including the group leader. 1215 */ 1216 thread_group_cputime(p, &cputime); 1217 spin_lock_irq(&p->parent->sighand->siglock); 1218 psig = p->parent->signal; 1219 sig = p->signal; 1220 psig->cutime = 1221 cputime_add(psig->cutime, 1222 cputime_add(cputime.utime, 1223 sig->cutime)); 1224 psig->cstime = 1225 cputime_add(psig->cstime, 1226 cputime_add(cputime.stime, 1227 sig->cstime)); 1228 psig->cgtime = 1229 cputime_add(psig->cgtime, 1230 cputime_add(p->gtime, 1231 cputime_add(sig->gtime, 1232 sig->cgtime))); 1233 psig->cmin_flt += 1234 p->min_flt + sig->min_flt + sig->cmin_flt; 1235 psig->cmaj_flt += 1236 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1237 psig->cnvcsw += 1238 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1239 psig->cnivcsw += 1240 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1241 psig->cinblock += 1242 task_io_get_inblock(p) + 1243 sig->inblock + sig->cinblock; 1244 psig->coublock += 1245 task_io_get_oublock(p) + 1246 sig->oublock + sig->coublock; 1247 task_io_accounting_add(&psig->ioac, &p->ioac); 1248 task_io_accounting_add(&psig->ioac, &sig->ioac); 1249 spin_unlock_irq(&p->parent->sighand->siglock); 1250 } 1251 1252 /* 1253 * Now we are sure this task is interesting, and no other 1254 * thread can reap it because we set its state to EXIT_DEAD. 1255 */ 1256 read_unlock(&tasklist_lock); 1257 1258 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1259 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1260 ? p->signal->group_exit_code : p->exit_code; 1261 if (!retval && stat_addr) 1262 retval = put_user(status, stat_addr); 1263 if (!retval && infop) 1264 retval = put_user(SIGCHLD, &infop->si_signo); 1265 if (!retval && infop) 1266 retval = put_user(0, &infop->si_errno); 1267 if (!retval && infop) { 1268 int why; 1269 1270 if ((status & 0x7f) == 0) { 1271 why = CLD_EXITED; 1272 status >>= 8; 1273 } else { 1274 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1275 status &= 0x7f; 1276 } 1277 retval = put_user((short)why, &infop->si_code); 1278 if (!retval) 1279 retval = put_user(status, &infop->si_status); 1280 } 1281 if (!retval && infop) 1282 retval = put_user(pid, &infop->si_pid); 1283 if (!retval && infop) 1284 retval = put_user(uid, &infop->si_uid); 1285 if (!retval) 1286 retval = pid; 1287 1288 if (traced) { 1289 write_lock_irq(&tasklist_lock); 1290 /* We dropped tasklist, ptracer could die and untrace */ 1291 ptrace_unlink(p); 1292 /* 1293 * If this is not a detached task, notify the parent. 1294 * If it's still not detached after that, don't release 1295 * it now. 1296 */ 1297 if (!task_detached(p)) { 1298 do_notify_parent(p, p->exit_signal); 1299 if (!task_detached(p)) { 1300 p->exit_state = EXIT_ZOMBIE; 1301 p = NULL; 1302 } 1303 } 1304 write_unlock_irq(&tasklist_lock); 1305 } 1306 if (p != NULL) 1307 release_task(p); 1308 1309 return retval; 1310 } 1311 1312 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1313 { 1314 if (ptrace) { 1315 if (task_is_stopped_or_traced(p)) 1316 return &p->exit_code; 1317 } else { 1318 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1319 return &p->signal->group_exit_code; 1320 } 1321 return NULL; 1322 } 1323 1324 /* 1325 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1326 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1327 * the lock and this task is uninteresting. If we return nonzero, we have 1328 * released the lock and the system call should return. 1329 */ 1330 static int wait_task_stopped(int ptrace, struct task_struct *p, 1331 int options, struct siginfo __user *infop, 1332 int __user *stat_addr, struct rusage __user *ru) 1333 { 1334 int retval, exit_code, *p_code, why; 1335 uid_t uid = 0; /* unneeded, required by compiler */ 1336 pid_t pid; 1337 1338 if (!(options & WUNTRACED)) 1339 return 0; 1340 1341 exit_code = 0; 1342 spin_lock_irq(&p->sighand->siglock); 1343 1344 p_code = task_stopped_code(p, ptrace); 1345 if (unlikely(!p_code)) 1346 goto unlock_sig; 1347 1348 exit_code = *p_code; 1349 if (!exit_code) 1350 goto unlock_sig; 1351 1352 if (!unlikely(options & WNOWAIT)) 1353 *p_code = 0; 1354 1355 /* don't need the RCU readlock here as we're holding a spinlock */ 1356 uid = __task_cred(p)->uid; 1357 unlock_sig: 1358 spin_unlock_irq(&p->sighand->siglock); 1359 if (!exit_code) 1360 return 0; 1361 1362 /* 1363 * Now we are pretty sure this task is interesting. 1364 * Make sure it doesn't get reaped out from under us while we 1365 * give up the lock and then examine it below. We don't want to 1366 * keep holding onto the tasklist_lock while we call getrusage and 1367 * possibly take page faults for user memory. 1368 */ 1369 get_task_struct(p); 1370 pid = task_pid_vnr(p); 1371 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1372 read_unlock(&tasklist_lock); 1373 1374 if (unlikely(options & WNOWAIT)) 1375 return wait_noreap_copyout(p, pid, uid, 1376 why, exit_code, 1377 infop, ru); 1378 1379 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1380 if (!retval && stat_addr) 1381 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1382 if (!retval && infop) 1383 retval = put_user(SIGCHLD, &infop->si_signo); 1384 if (!retval && infop) 1385 retval = put_user(0, &infop->si_errno); 1386 if (!retval && infop) 1387 retval = put_user((short)why, &infop->si_code); 1388 if (!retval && infop) 1389 retval = put_user(exit_code, &infop->si_status); 1390 if (!retval && infop) 1391 retval = put_user(pid, &infop->si_pid); 1392 if (!retval && infop) 1393 retval = put_user(uid, &infop->si_uid); 1394 if (!retval) 1395 retval = pid; 1396 put_task_struct(p); 1397 1398 BUG_ON(!retval); 1399 return retval; 1400 } 1401 1402 /* 1403 * Handle do_wait work for one task in a live, non-stopped state. 1404 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1405 * the lock and this task is uninteresting. If we return nonzero, we have 1406 * released the lock and the system call should return. 1407 */ 1408 static int wait_task_continued(struct task_struct *p, int options, 1409 struct siginfo __user *infop, 1410 int __user *stat_addr, struct rusage __user *ru) 1411 { 1412 int retval; 1413 pid_t pid; 1414 uid_t uid; 1415 1416 if (!unlikely(options & WCONTINUED)) 1417 return 0; 1418 1419 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1420 return 0; 1421 1422 spin_lock_irq(&p->sighand->siglock); 1423 /* Re-check with the lock held. */ 1424 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1425 spin_unlock_irq(&p->sighand->siglock); 1426 return 0; 1427 } 1428 if (!unlikely(options & WNOWAIT)) 1429 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1430 uid = __task_cred(p)->uid; 1431 spin_unlock_irq(&p->sighand->siglock); 1432 1433 pid = task_pid_vnr(p); 1434 get_task_struct(p); 1435 read_unlock(&tasklist_lock); 1436 1437 if (!infop) { 1438 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1439 put_task_struct(p); 1440 if (!retval && stat_addr) 1441 retval = put_user(0xffff, stat_addr); 1442 if (!retval) 1443 retval = pid; 1444 } else { 1445 retval = wait_noreap_copyout(p, pid, uid, 1446 CLD_CONTINUED, SIGCONT, 1447 infop, ru); 1448 BUG_ON(retval == 0); 1449 } 1450 1451 return retval; 1452 } 1453 1454 /* 1455 * Consider @p for a wait by @parent. 1456 * 1457 * -ECHILD should be in *@notask_error before the first call. 1458 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1459 * Returns zero if the search for a child should continue; 1460 * then *@notask_error is 0 if @p is an eligible child, 1461 * or another error from security_task_wait(), or still -ECHILD. 1462 */ 1463 static int wait_consider_task(struct task_struct *parent, int ptrace, 1464 struct task_struct *p, int *notask_error, 1465 enum pid_type type, struct pid *pid, int options, 1466 struct siginfo __user *infop, 1467 int __user *stat_addr, struct rusage __user *ru) 1468 { 1469 int ret = eligible_child(type, pid, options, p); 1470 if (!ret) 1471 return ret; 1472 1473 if (unlikely(ret < 0)) { 1474 /* 1475 * If we have not yet seen any eligible child, 1476 * then let this error code replace -ECHILD. 1477 * A permission error will give the user a clue 1478 * to look for security policy problems, rather 1479 * than for mysterious wait bugs. 1480 */ 1481 if (*notask_error) 1482 *notask_error = ret; 1483 return 0; 1484 } 1485 1486 if (likely(!ptrace) && unlikely(p->ptrace)) { 1487 /* 1488 * This child is hidden by ptrace. 1489 * We aren't allowed to see it now, but eventually we will. 1490 */ 1491 *notask_error = 0; 1492 return 0; 1493 } 1494 1495 if (p->exit_state == EXIT_DEAD) 1496 return 0; 1497 1498 /* 1499 * We don't reap group leaders with subthreads. 1500 */ 1501 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1502 return wait_task_zombie(p, options, infop, stat_addr, ru); 1503 1504 /* 1505 * It's stopped or running now, so it might 1506 * later continue, exit, or stop again. 1507 */ 1508 *notask_error = 0; 1509 1510 if (task_stopped_code(p, ptrace)) 1511 return wait_task_stopped(ptrace, p, options, 1512 infop, stat_addr, ru); 1513 1514 return wait_task_continued(p, options, infop, stat_addr, ru); 1515 } 1516 1517 /* 1518 * Do the work of do_wait() for one thread in the group, @tsk. 1519 * 1520 * -ECHILD should be in *@notask_error before the first call. 1521 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1522 * Returns zero if the search for a child should continue; then 1523 * *@notask_error is 0 if there were any eligible children, 1524 * or another error from security_task_wait(), or still -ECHILD. 1525 */ 1526 static int do_wait_thread(struct task_struct *tsk, int *notask_error, 1527 enum pid_type type, struct pid *pid, int options, 1528 struct siginfo __user *infop, int __user *stat_addr, 1529 struct rusage __user *ru) 1530 { 1531 struct task_struct *p; 1532 1533 list_for_each_entry(p, &tsk->children, sibling) { 1534 /* 1535 * Do not consider detached threads. 1536 */ 1537 if (!task_detached(p)) { 1538 int ret = wait_consider_task(tsk, 0, p, notask_error, 1539 type, pid, options, 1540 infop, stat_addr, ru); 1541 if (ret) 1542 return ret; 1543 } 1544 } 1545 1546 return 0; 1547 } 1548 1549 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, 1550 enum pid_type type, struct pid *pid, int options, 1551 struct siginfo __user *infop, int __user *stat_addr, 1552 struct rusage __user *ru) 1553 { 1554 struct task_struct *p; 1555 1556 /* 1557 * Traditionally we see ptrace'd stopped tasks regardless of options. 1558 */ 1559 options |= WUNTRACED; 1560 1561 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1562 int ret = wait_consider_task(tsk, 1, p, notask_error, 1563 type, pid, options, 1564 infop, stat_addr, ru); 1565 if (ret) 1566 return ret; 1567 } 1568 1569 return 0; 1570 } 1571 1572 static long do_wait(enum pid_type type, struct pid *pid, int options, 1573 struct siginfo __user *infop, int __user *stat_addr, 1574 struct rusage __user *ru) 1575 { 1576 DECLARE_WAITQUEUE(wait, current); 1577 struct task_struct *tsk; 1578 int retval; 1579 1580 trace_sched_process_wait(pid); 1581 1582 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1583 repeat: 1584 /* 1585 * If there is nothing that can match our critiera just get out. 1586 * We will clear @retval to zero if we see any child that might later 1587 * match our criteria, even if we are not able to reap it yet. 1588 */ 1589 retval = -ECHILD; 1590 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1591 goto end; 1592 1593 current->state = TASK_INTERRUPTIBLE; 1594 read_lock(&tasklist_lock); 1595 tsk = current; 1596 do { 1597 int tsk_result = do_wait_thread(tsk, &retval, 1598 type, pid, options, 1599 infop, stat_addr, ru); 1600 if (!tsk_result) 1601 tsk_result = ptrace_do_wait(tsk, &retval, 1602 type, pid, options, 1603 infop, stat_addr, ru); 1604 if (tsk_result) { 1605 /* 1606 * tasklist_lock is unlocked and we have a final result. 1607 */ 1608 retval = tsk_result; 1609 goto end; 1610 } 1611 1612 if (options & __WNOTHREAD) 1613 break; 1614 tsk = next_thread(tsk); 1615 BUG_ON(tsk->signal != current->signal); 1616 } while (tsk != current); 1617 read_unlock(&tasklist_lock); 1618 1619 if (!retval && !(options & WNOHANG)) { 1620 retval = -ERESTARTSYS; 1621 if (!signal_pending(current)) { 1622 schedule(); 1623 goto repeat; 1624 } 1625 } 1626 1627 end: 1628 current->state = TASK_RUNNING; 1629 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1630 if (infop) { 1631 if (retval > 0) 1632 retval = 0; 1633 else { 1634 /* 1635 * For a WNOHANG return, clear out all the fields 1636 * we would set so the user can easily tell the 1637 * difference. 1638 */ 1639 if (!retval) 1640 retval = put_user(0, &infop->si_signo); 1641 if (!retval) 1642 retval = put_user(0, &infop->si_errno); 1643 if (!retval) 1644 retval = put_user(0, &infop->si_code); 1645 if (!retval) 1646 retval = put_user(0, &infop->si_pid); 1647 if (!retval) 1648 retval = put_user(0, &infop->si_uid); 1649 if (!retval) 1650 retval = put_user(0, &infop->si_status); 1651 } 1652 } 1653 return retval; 1654 } 1655 1656 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1657 infop, int, options, struct rusage __user *, ru) 1658 { 1659 struct pid *pid = NULL; 1660 enum pid_type type; 1661 long ret; 1662 1663 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1664 return -EINVAL; 1665 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1666 return -EINVAL; 1667 1668 switch (which) { 1669 case P_ALL: 1670 type = PIDTYPE_MAX; 1671 break; 1672 case P_PID: 1673 type = PIDTYPE_PID; 1674 if (upid <= 0) 1675 return -EINVAL; 1676 break; 1677 case P_PGID: 1678 type = PIDTYPE_PGID; 1679 if (upid <= 0) 1680 return -EINVAL; 1681 break; 1682 default: 1683 return -EINVAL; 1684 } 1685 1686 if (type < PIDTYPE_MAX) 1687 pid = find_get_pid(upid); 1688 ret = do_wait(type, pid, options, infop, NULL, ru); 1689 put_pid(pid); 1690 1691 /* avoid REGPARM breakage on x86: */ 1692 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1693 return ret; 1694 } 1695 1696 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1697 int, options, struct rusage __user *, ru) 1698 { 1699 struct pid *pid = NULL; 1700 enum pid_type type; 1701 long ret; 1702 1703 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1704 __WNOTHREAD|__WCLONE|__WALL)) 1705 return -EINVAL; 1706 1707 if (upid == -1) 1708 type = PIDTYPE_MAX; 1709 else if (upid < 0) { 1710 type = PIDTYPE_PGID; 1711 pid = find_get_pid(-upid); 1712 } else if (upid == 0) { 1713 type = PIDTYPE_PGID; 1714 pid = get_task_pid(current, PIDTYPE_PGID); 1715 } else /* upid > 0 */ { 1716 type = PIDTYPE_PID; 1717 pid = find_get_pid(upid); 1718 } 1719 1720 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1721 put_pid(pid); 1722 1723 /* avoid REGPARM breakage on x86: */ 1724 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1725 return ret; 1726 } 1727 1728 #ifdef __ARCH_WANT_SYS_WAITPID 1729 1730 /* 1731 * sys_waitpid() remains for compatibility. waitpid() should be 1732 * implemented by calling sys_wait4() from libc.a. 1733 */ 1734 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1735 { 1736 return sys_wait4(pid, stat_addr, options, NULL); 1737 } 1738 1739 #endif 1740