xref: /openbmc/linux/kernel/exit.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71 
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *uninitialized_var(tty);
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead)
107 		posix_cpu_timers_exit_group(tsk);
108 #endif
109 
110 	if (group_dead) {
111 		tty = sig->tty;
112 		sig->tty = NULL;
113 	} else {
114 		/*
115 		 * If there is any task waiting for the group exit
116 		 * then notify it:
117 		 */
118 		if (sig->notify_count > 0 && !--sig->notify_count)
119 			wake_up_process(sig->group_exit_task);
120 
121 		if (tsk == sig->curr_target)
122 			sig->curr_target = next_thread(tsk);
123 	}
124 
125 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 			      sizeof(unsigned long long));
127 
128 	/*
129 	 * Accumulate here the counters for all threads as they die. We could
130 	 * skip the group leader because it is the last user of signal_struct,
131 	 * but we want to avoid the race with thread_group_cputime() which can
132 	 * see the empty ->thread_head list.
133 	 */
134 	task_cputime(tsk, &utime, &stime);
135 	write_seqlock(&sig->stats_lock);
136 	sig->utime += utime;
137 	sig->stime += stime;
138 	sig->gtime += task_gtime(tsk);
139 	sig->min_flt += tsk->min_flt;
140 	sig->maj_flt += tsk->maj_flt;
141 	sig->nvcsw += tsk->nvcsw;
142 	sig->nivcsw += tsk->nivcsw;
143 	sig->inblock += task_io_get_inblock(tsk);
144 	sig->oublock += task_io_get_oublock(tsk);
145 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 	sig->nr_threads--;
148 	__unhash_process(tsk, group_dead);
149 	write_sequnlock(&sig->stats_lock);
150 
151 	/*
152 	 * Do this under ->siglock, we can race with another thread
153 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 	 */
155 	flush_sigqueue(&tsk->pending);
156 	tsk->sighand = NULL;
157 	spin_unlock(&sighand->siglock);
158 
159 	__cleanup_sighand(sighand);
160 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 	if (group_dead) {
162 		flush_sigqueue(&sig->shared_pending);
163 		tty_kref_put(tty);
164 	}
165 }
166 
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170 
171 	perf_event_delayed_put(tsk);
172 	trace_sched_process_free(tsk);
173 	put_task_struct(tsk);
174 }
175 
176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178 	if (refcount_dec_and_test(&task->rcu_users))
179 		call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181 
182 void release_task(struct task_struct *p)
183 {
184 	struct task_struct *leader;
185 	struct pid *thread_pid;
186 	int zap_leader;
187 repeat:
188 	/* don't need to get the RCU readlock here - the process is dead and
189 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
190 	rcu_read_lock();
191 	atomic_dec(&__task_cred(p)->user->processes);
192 	rcu_read_unlock();
193 
194 	cgroup_release(p);
195 
196 	write_lock_irq(&tasklist_lock);
197 	ptrace_release_task(p);
198 	thread_pid = get_pid(p->thread_pid);
199 	__exit_signal(p);
200 
201 	/*
202 	 * If we are the last non-leader member of the thread
203 	 * group, and the leader is zombie, then notify the
204 	 * group leader's parent process. (if it wants notification.)
205 	 */
206 	zap_leader = 0;
207 	leader = p->group_leader;
208 	if (leader != p && thread_group_empty(leader)
209 			&& leader->exit_state == EXIT_ZOMBIE) {
210 		/*
211 		 * If we were the last child thread and the leader has
212 		 * exited already, and the leader's parent ignores SIGCHLD,
213 		 * then we are the one who should release the leader.
214 		 */
215 		zap_leader = do_notify_parent(leader, leader->exit_signal);
216 		if (zap_leader)
217 			leader->exit_state = EXIT_DEAD;
218 	}
219 
220 	write_unlock_irq(&tasklist_lock);
221 	proc_flush_pid(thread_pid);
222 	put_pid(thread_pid);
223 	release_thread(p);
224 	put_task_struct_rcu_user(p);
225 
226 	p = leader;
227 	if (unlikely(zap_leader))
228 		goto repeat;
229 }
230 
231 void rcuwait_wake_up(struct rcuwait *w)
232 {
233 	struct task_struct *task;
234 
235 	rcu_read_lock();
236 
237 	/*
238 	 * Order condition vs @task, such that everything prior to the load
239 	 * of @task is visible. This is the condition as to why the user called
240 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
241 	 * barrier (A) in rcuwait_wait_event().
242 	 *
243 	 *    WAIT                WAKE
244 	 *    [S] tsk = current	  [S] cond = true
245 	 *        MB (A)	      MB (B)
246 	 *    [L] cond		  [L] tsk
247 	 */
248 	smp_mb(); /* (B) */
249 
250 	task = rcu_dereference(w->task);
251 	if (task)
252 		wake_up_process(task);
253 	rcu_read_unlock();
254 }
255 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
256 
257 /*
258  * Determine if a process group is "orphaned", according to the POSIX
259  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
260  * by terminal-generated stop signals.  Newly orphaned process groups are
261  * to receive a SIGHUP and a SIGCONT.
262  *
263  * "I ask you, have you ever known what it is to be an orphan?"
264  */
265 static int will_become_orphaned_pgrp(struct pid *pgrp,
266 					struct task_struct *ignored_task)
267 {
268 	struct task_struct *p;
269 
270 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
271 		if ((p == ignored_task) ||
272 		    (p->exit_state && thread_group_empty(p)) ||
273 		    is_global_init(p->real_parent))
274 			continue;
275 
276 		if (task_pgrp(p->real_parent) != pgrp &&
277 		    task_session(p->real_parent) == task_session(p))
278 			return 0;
279 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
280 
281 	return 1;
282 }
283 
284 int is_current_pgrp_orphaned(void)
285 {
286 	int retval;
287 
288 	read_lock(&tasklist_lock);
289 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
290 	read_unlock(&tasklist_lock);
291 
292 	return retval;
293 }
294 
295 static bool has_stopped_jobs(struct pid *pgrp)
296 {
297 	struct task_struct *p;
298 
299 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
300 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
301 			return true;
302 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
303 
304 	return false;
305 }
306 
307 /*
308  * Check to see if any process groups have become orphaned as
309  * a result of our exiting, and if they have any stopped jobs,
310  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
311  */
312 static void
313 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
314 {
315 	struct pid *pgrp = task_pgrp(tsk);
316 	struct task_struct *ignored_task = tsk;
317 
318 	if (!parent)
319 		/* exit: our father is in a different pgrp than
320 		 * we are and we were the only connection outside.
321 		 */
322 		parent = tsk->real_parent;
323 	else
324 		/* reparent: our child is in a different pgrp than
325 		 * we are, and it was the only connection outside.
326 		 */
327 		ignored_task = NULL;
328 
329 	if (task_pgrp(parent) != pgrp &&
330 	    task_session(parent) == task_session(tsk) &&
331 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
332 	    has_stopped_jobs(pgrp)) {
333 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
334 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
335 	}
336 }
337 
338 #ifdef CONFIG_MEMCG
339 /*
340  * A task is exiting.   If it owned this mm, find a new owner for the mm.
341  */
342 void mm_update_next_owner(struct mm_struct *mm)
343 {
344 	struct task_struct *c, *g, *p = current;
345 
346 retry:
347 	/*
348 	 * If the exiting or execing task is not the owner, it's
349 	 * someone else's problem.
350 	 */
351 	if (mm->owner != p)
352 		return;
353 	/*
354 	 * The current owner is exiting/execing and there are no other
355 	 * candidates.  Do not leave the mm pointing to a possibly
356 	 * freed task structure.
357 	 */
358 	if (atomic_read(&mm->mm_users) <= 1) {
359 		WRITE_ONCE(mm->owner, NULL);
360 		return;
361 	}
362 
363 	read_lock(&tasklist_lock);
364 	/*
365 	 * Search in the children
366 	 */
367 	list_for_each_entry(c, &p->children, sibling) {
368 		if (c->mm == mm)
369 			goto assign_new_owner;
370 	}
371 
372 	/*
373 	 * Search in the siblings
374 	 */
375 	list_for_each_entry(c, &p->real_parent->children, sibling) {
376 		if (c->mm == mm)
377 			goto assign_new_owner;
378 	}
379 
380 	/*
381 	 * Search through everything else, we should not get here often.
382 	 */
383 	for_each_process(g) {
384 		if (g->flags & PF_KTHREAD)
385 			continue;
386 		for_each_thread(g, c) {
387 			if (c->mm == mm)
388 				goto assign_new_owner;
389 			if (c->mm)
390 				break;
391 		}
392 	}
393 	read_unlock(&tasklist_lock);
394 	/*
395 	 * We found no owner yet mm_users > 1: this implies that we are
396 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
397 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
398 	 */
399 	WRITE_ONCE(mm->owner, NULL);
400 	return;
401 
402 assign_new_owner:
403 	BUG_ON(c == p);
404 	get_task_struct(c);
405 	/*
406 	 * The task_lock protects c->mm from changing.
407 	 * We always want mm->owner->mm == mm
408 	 */
409 	task_lock(c);
410 	/*
411 	 * Delay read_unlock() till we have the task_lock()
412 	 * to ensure that c does not slip away underneath us
413 	 */
414 	read_unlock(&tasklist_lock);
415 	if (c->mm != mm) {
416 		task_unlock(c);
417 		put_task_struct(c);
418 		goto retry;
419 	}
420 	WRITE_ONCE(mm->owner, c);
421 	task_unlock(c);
422 	put_task_struct(c);
423 }
424 #endif /* CONFIG_MEMCG */
425 
426 /*
427  * Turn us into a lazy TLB process if we
428  * aren't already..
429  */
430 static void exit_mm(void)
431 {
432 	struct mm_struct *mm = current->mm;
433 	struct core_state *core_state;
434 
435 	exit_mm_release(current, mm);
436 	if (!mm)
437 		return;
438 	sync_mm_rss(mm);
439 	/*
440 	 * Serialize with any possible pending coredump.
441 	 * We must hold mmap_sem around checking core_state
442 	 * and clearing tsk->mm.  The core-inducing thread
443 	 * will increment ->nr_threads for each thread in the
444 	 * group with ->mm != NULL.
445 	 */
446 	down_read(&mm->mmap_sem);
447 	core_state = mm->core_state;
448 	if (core_state) {
449 		struct core_thread self;
450 
451 		up_read(&mm->mmap_sem);
452 
453 		self.task = current;
454 		self.next = xchg(&core_state->dumper.next, &self);
455 		/*
456 		 * Implies mb(), the result of xchg() must be visible
457 		 * to core_state->dumper.
458 		 */
459 		if (atomic_dec_and_test(&core_state->nr_threads))
460 			complete(&core_state->startup);
461 
462 		for (;;) {
463 			set_current_state(TASK_UNINTERRUPTIBLE);
464 			if (!self.task) /* see coredump_finish() */
465 				break;
466 			freezable_schedule();
467 		}
468 		__set_current_state(TASK_RUNNING);
469 		down_read(&mm->mmap_sem);
470 	}
471 	mmgrab(mm);
472 	BUG_ON(mm != current->active_mm);
473 	/* more a memory barrier than a real lock */
474 	task_lock(current);
475 	current->mm = NULL;
476 	up_read(&mm->mmap_sem);
477 	enter_lazy_tlb(mm, current);
478 	task_unlock(current);
479 	mm_update_next_owner(mm);
480 	mmput(mm);
481 	if (test_thread_flag(TIF_MEMDIE))
482 		exit_oom_victim();
483 }
484 
485 static struct task_struct *find_alive_thread(struct task_struct *p)
486 {
487 	struct task_struct *t;
488 
489 	for_each_thread(p, t) {
490 		if (!(t->flags & PF_EXITING))
491 			return t;
492 	}
493 	return NULL;
494 }
495 
496 static struct task_struct *find_child_reaper(struct task_struct *father,
497 						struct list_head *dead)
498 	__releases(&tasklist_lock)
499 	__acquires(&tasklist_lock)
500 {
501 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
502 	struct task_struct *reaper = pid_ns->child_reaper;
503 	struct task_struct *p, *n;
504 
505 	if (likely(reaper != father))
506 		return reaper;
507 
508 	reaper = find_alive_thread(father);
509 	if (reaper) {
510 		pid_ns->child_reaper = reaper;
511 		return reaper;
512 	}
513 
514 	write_unlock_irq(&tasklist_lock);
515 
516 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
517 		list_del_init(&p->ptrace_entry);
518 		release_task(p);
519 	}
520 
521 	zap_pid_ns_processes(pid_ns);
522 	write_lock_irq(&tasklist_lock);
523 
524 	return father;
525 }
526 
527 /*
528  * When we die, we re-parent all our children, and try to:
529  * 1. give them to another thread in our thread group, if such a member exists
530  * 2. give it to the first ancestor process which prctl'd itself as a
531  *    child_subreaper for its children (like a service manager)
532  * 3. give it to the init process (PID 1) in our pid namespace
533  */
534 static struct task_struct *find_new_reaper(struct task_struct *father,
535 					   struct task_struct *child_reaper)
536 {
537 	struct task_struct *thread, *reaper;
538 
539 	thread = find_alive_thread(father);
540 	if (thread)
541 		return thread;
542 
543 	if (father->signal->has_child_subreaper) {
544 		unsigned int ns_level = task_pid(father)->level;
545 		/*
546 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
547 		 * We can't check reaper != child_reaper to ensure we do not
548 		 * cross the namespaces, the exiting parent could be injected
549 		 * by setns() + fork().
550 		 * We check pid->level, this is slightly more efficient than
551 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
552 		 */
553 		for (reaper = father->real_parent;
554 		     task_pid(reaper)->level == ns_level;
555 		     reaper = reaper->real_parent) {
556 			if (reaper == &init_task)
557 				break;
558 			if (!reaper->signal->is_child_subreaper)
559 				continue;
560 			thread = find_alive_thread(reaper);
561 			if (thread)
562 				return thread;
563 		}
564 	}
565 
566 	return child_reaper;
567 }
568 
569 /*
570 * Any that need to be release_task'd are put on the @dead list.
571  */
572 static void reparent_leader(struct task_struct *father, struct task_struct *p,
573 				struct list_head *dead)
574 {
575 	if (unlikely(p->exit_state == EXIT_DEAD))
576 		return;
577 
578 	/* We don't want people slaying init. */
579 	p->exit_signal = SIGCHLD;
580 
581 	/* If it has exited notify the new parent about this child's death. */
582 	if (!p->ptrace &&
583 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
584 		if (do_notify_parent(p, p->exit_signal)) {
585 			p->exit_state = EXIT_DEAD;
586 			list_add(&p->ptrace_entry, dead);
587 		}
588 	}
589 
590 	kill_orphaned_pgrp(p, father);
591 }
592 
593 /*
594  * This does two things:
595  *
596  * A.  Make init inherit all the child processes
597  * B.  Check to see if any process groups have become orphaned
598  *	as a result of our exiting, and if they have any stopped
599  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
600  */
601 static void forget_original_parent(struct task_struct *father,
602 					struct list_head *dead)
603 {
604 	struct task_struct *p, *t, *reaper;
605 
606 	if (unlikely(!list_empty(&father->ptraced)))
607 		exit_ptrace(father, dead);
608 
609 	/* Can drop and reacquire tasklist_lock */
610 	reaper = find_child_reaper(father, dead);
611 	if (list_empty(&father->children))
612 		return;
613 
614 	reaper = find_new_reaper(father, reaper);
615 	list_for_each_entry(p, &father->children, sibling) {
616 		for_each_thread(p, t) {
617 			RCU_INIT_POINTER(t->real_parent, reaper);
618 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
619 			if (likely(!t->ptrace))
620 				t->parent = t->real_parent;
621 			if (t->pdeath_signal)
622 				group_send_sig_info(t->pdeath_signal,
623 						    SEND_SIG_NOINFO, t,
624 						    PIDTYPE_TGID);
625 		}
626 		/*
627 		 * If this is a threaded reparent there is no need to
628 		 * notify anyone anything has happened.
629 		 */
630 		if (!same_thread_group(reaper, father))
631 			reparent_leader(father, p, dead);
632 	}
633 	list_splice_tail_init(&father->children, &reaper->children);
634 }
635 
636 /*
637  * Send signals to all our closest relatives so that they know
638  * to properly mourn us..
639  */
640 static void exit_notify(struct task_struct *tsk, int group_dead)
641 {
642 	bool autoreap;
643 	struct task_struct *p, *n;
644 	LIST_HEAD(dead);
645 
646 	write_lock_irq(&tasklist_lock);
647 	forget_original_parent(tsk, &dead);
648 
649 	if (group_dead)
650 		kill_orphaned_pgrp(tsk->group_leader, NULL);
651 
652 	tsk->exit_state = EXIT_ZOMBIE;
653 	if (unlikely(tsk->ptrace)) {
654 		int sig = thread_group_leader(tsk) &&
655 				thread_group_empty(tsk) &&
656 				!ptrace_reparented(tsk) ?
657 			tsk->exit_signal : SIGCHLD;
658 		autoreap = do_notify_parent(tsk, sig);
659 	} else if (thread_group_leader(tsk)) {
660 		autoreap = thread_group_empty(tsk) &&
661 			do_notify_parent(tsk, tsk->exit_signal);
662 	} else {
663 		autoreap = true;
664 	}
665 
666 	if (autoreap) {
667 		tsk->exit_state = EXIT_DEAD;
668 		list_add(&tsk->ptrace_entry, &dead);
669 	}
670 
671 	/* mt-exec, de_thread() is waiting for group leader */
672 	if (unlikely(tsk->signal->notify_count < 0))
673 		wake_up_process(tsk->signal->group_exit_task);
674 	write_unlock_irq(&tasklist_lock);
675 
676 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
677 		list_del_init(&p->ptrace_entry);
678 		release_task(p);
679 	}
680 }
681 
682 #ifdef CONFIG_DEBUG_STACK_USAGE
683 static void check_stack_usage(void)
684 {
685 	static DEFINE_SPINLOCK(low_water_lock);
686 	static int lowest_to_date = THREAD_SIZE;
687 	unsigned long free;
688 
689 	free = stack_not_used(current);
690 
691 	if (free >= lowest_to_date)
692 		return;
693 
694 	spin_lock(&low_water_lock);
695 	if (free < lowest_to_date) {
696 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
697 			current->comm, task_pid_nr(current), free);
698 		lowest_to_date = free;
699 	}
700 	spin_unlock(&low_water_lock);
701 }
702 #else
703 static inline void check_stack_usage(void) {}
704 #endif
705 
706 void __noreturn do_exit(long code)
707 {
708 	struct task_struct *tsk = current;
709 	int group_dead;
710 
711 	profile_task_exit(tsk);
712 	kcov_task_exit(tsk);
713 
714 	WARN_ON(blk_needs_flush_plug(tsk));
715 
716 	if (unlikely(in_interrupt()))
717 		panic("Aiee, killing interrupt handler!");
718 	if (unlikely(!tsk->pid))
719 		panic("Attempted to kill the idle task!");
720 
721 	/*
722 	 * If do_exit is called because this processes oopsed, it's possible
723 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
724 	 * continuing. Amongst other possible reasons, this is to prevent
725 	 * mm_release()->clear_child_tid() from writing to a user-controlled
726 	 * kernel address.
727 	 */
728 	set_fs(USER_DS);
729 
730 	ptrace_event(PTRACE_EVENT_EXIT, code);
731 
732 	validate_creds_for_do_exit(tsk);
733 
734 	/*
735 	 * We're taking recursive faults here in do_exit. Safest is to just
736 	 * leave this task alone and wait for reboot.
737 	 */
738 	if (unlikely(tsk->flags & PF_EXITING)) {
739 		pr_alert("Fixing recursive fault but reboot is needed!\n");
740 		futex_exit_recursive(tsk);
741 		set_current_state(TASK_UNINTERRUPTIBLE);
742 		schedule();
743 	}
744 
745 	exit_signals(tsk);  /* sets PF_EXITING */
746 
747 	if (unlikely(in_atomic())) {
748 		pr_info("note: %s[%d] exited with preempt_count %d\n",
749 			current->comm, task_pid_nr(current),
750 			preempt_count());
751 		preempt_count_set(PREEMPT_ENABLED);
752 	}
753 
754 	/* sync mm's RSS info before statistics gathering */
755 	if (tsk->mm)
756 		sync_mm_rss(tsk->mm);
757 	acct_update_integrals(tsk);
758 	group_dead = atomic_dec_and_test(&tsk->signal->live);
759 	if (group_dead) {
760 		/*
761 		 * If the last thread of global init has exited, panic
762 		 * immediately to get a useable coredump.
763 		 */
764 		if (unlikely(is_global_init(tsk)))
765 			panic("Attempted to kill init! exitcode=0x%08x\n",
766 				tsk->signal->group_exit_code ?: (int)code);
767 
768 #ifdef CONFIG_POSIX_TIMERS
769 		hrtimer_cancel(&tsk->signal->real_timer);
770 		exit_itimers(tsk->signal);
771 #endif
772 		if (tsk->mm)
773 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
774 	}
775 	acct_collect(code, group_dead);
776 	if (group_dead)
777 		tty_audit_exit();
778 	audit_free(tsk);
779 
780 	tsk->exit_code = code;
781 	taskstats_exit(tsk, group_dead);
782 
783 	exit_mm();
784 
785 	if (group_dead)
786 		acct_process();
787 	trace_sched_process_exit(tsk);
788 
789 	exit_sem(tsk);
790 	exit_shm(tsk);
791 	exit_files(tsk);
792 	exit_fs(tsk);
793 	if (group_dead)
794 		disassociate_ctty(1);
795 	exit_task_namespaces(tsk);
796 	exit_task_work(tsk);
797 	exit_thread(tsk);
798 	exit_umh(tsk);
799 
800 	/*
801 	 * Flush inherited counters to the parent - before the parent
802 	 * gets woken up by child-exit notifications.
803 	 *
804 	 * because of cgroup mode, must be called before cgroup_exit()
805 	 */
806 	perf_event_exit_task(tsk);
807 
808 	sched_autogroup_exit_task(tsk);
809 	cgroup_exit(tsk);
810 
811 	/*
812 	 * FIXME: do that only when needed, using sched_exit tracepoint
813 	 */
814 	flush_ptrace_hw_breakpoint(tsk);
815 
816 	exit_tasks_rcu_start();
817 	exit_notify(tsk, group_dead);
818 	proc_exit_connector(tsk);
819 	mpol_put_task_policy(tsk);
820 #ifdef CONFIG_FUTEX
821 	if (unlikely(current->pi_state_cache))
822 		kfree(current->pi_state_cache);
823 #endif
824 	/*
825 	 * Make sure we are holding no locks:
826 	 */
827 	debug_check_no_locks_held();
828 
829 	if (tsk->io_context)
830 		exit_io_context(tsk);
831 
832 	if (tsk->splice_pipe)
833 		free_pipe_info(tsk->splice_pipe);
834 
835 	if (tsk->task_frag.page)
836 		put_page(tsk->task_frag.page);
837 
838 	validate_creds_for_do_exit(tsk);
839 
840 	check_stack_usage();
841 	preempt_disable();
842 	if (tsk->nr_dirtied)
843 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
844 	exit_rcu();
845 	exit_tasks_rcu_finish();
846 
847 	lockdep_free_task(tsk);
848 	do_task_dead();
849 }
850 EXPORT_SYMBOL_GPL(do_exit);
851 
852 void complete_and_exit(struct completion *comp, long code)
853 {
854 	if (comp)
855 		complete(comp);
856 
857 	do_exit(code);
858 }
859 EXPORT_SYMBOL(complete_and_exit);
860 
861 SYSCALL_DEFINE1(exit, int, error_code)
862 {
863 	do_exit((error_code&0xff)<<8);
864 }
865 
866 /*
867  * Take down every thread in the group.  This is called by fatal signals
868  * as well as by sys_exit_group (below).
869  */
870 void
871 do_group_exit(int exit_code)
872 {
873 	struct signal_struct *sig = current->signal;
874 
875 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
876 
877 	if (signal_group_exit(sig))
878 		exit_code = sig->group_exit_code;
879 	else if (!thread_group_empty(current)) {
880 		struct sighand_struct *const sighand = current->sighand;
881 
882 		spin_lock_irq(&sighand->siglock);
883 		if (signal_group_exit(sig))
884 			/* Another thread got here before we took the lock.  */
885 			exit_code = sig->group_exit_code;
886 		else {
887 			sig->group_exit_code = exit_code;
888 			sig->flags = SIGNAL_GROUP_EXIT;
889 			zap_other_threads(current);
890 		}
891 		spin_unlock_irq(&sighand->siglock);
892 	}
893 
894 	do_exit(exit_code);
895 	/* NOTREACHED */
896 }
897 
898 /*
899  * this kills every thread in the thread group. Note that any externally
900  * wait4()-ing process will get the correct exit code - even if this
901  * thread is not the thread group leader.
902  */
903 SYSCALL_DEFINE1(exit_group, int, error_code)
904 {
905 	do_group_exit((error_code & 0xff) << 8);
906 	/* NOTREACHED */
907 	return 0;
908 }
909 
910 struct waitid_info {
911 	pid_t pid;
912 	uid_t uid;
913 	int status;
914 	int cause;
915 };
916 
917 struct wait_opts {
918 	enum pid_type		wo_type;
919 	int			wo_flags;
920 	struct pid		*wo_pid;
921 
922 	struct waitid_info	*wo_info;
923 	int			wo_stat;
924 	struct rusage		*wo_rusage;
925 
926 	wait_queue_entry_t		child_wait;
927 	int			notask_error;
928 };
929 
930 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
931 {
932 	return	wo->wo_type == PIDTYPE_MAX ||
933 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
934 }
935 
936 static int
937 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
938 {
939 	if (!eligible_pid(wo, p))
940 		return 0;
941 
942 	/*
943 	 * Wait for all children (clone and not) if __WALL is set or
944 	 * if it is traced by us.
945 	 */
946 	if (ptrace || (wo->wo_flags & __WALL))
947 		return 1;
948 
949 	/*
950 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
951 	 * otherwise, wait for non-clone children *only*.
952 	 *
953 	 * Note: a "clone" child here is one that reports to its parent
954 	 * using a signal other than SIGCHLD, or a non-leader thread which
955 	 * we can only see if it is traced by us.
956 	 */
957 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
958 		return 0;
959 
960 	return 1;
961 }
962 
963 /*
964  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
965  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
966  * the lock and this task is uninteresting.  If we return nonzero, we have
967  * released the lock and the system call should return.
968  */
969 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
970 {
971 	int state, status;
972 	pid_t pid = task_pid_vnr(p);
973 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
974 	struct waitid_info *infop;
975 
976 	if (!likely(wo->wo_flags & WEXITED))
977 		return 0;
978 
979 	if (unlikely(wo->wo_flags & WNOWAIT)) {
980 		status = p->exit_code;
981 		get_task_struct(p);
982 		read_unlock(&tasklist_lock);
983 		sched_annotate_sleep();
984 		if (wo->wo_rusage)
985 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
986 		put_task_struct(p);
987 		goto out_info;
988 	}
989 	/*
990 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
991 	 */
992 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
993 		EXIT_TRACE : EXIT_DEAD;
994 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
995 		return 0;
996 	/*
997 	 * We own this thread, nobody else can reap it.
998 	 */
999 	read_unlock(&tasklist_lock);
1000 	sched_annotate_sleep();
1001 
1002 	/*
1003 	 * Check thread_group_leader() to exclude the traced sub-threads.
1004 	 */
1005 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1006 		struct signal_struct *sig = p->signal;
1007 		struct signal_struct *psig = current->signal;
1008 		unsigned long maxrss;
1009 		u64 tgutime, tgstime;
1010 
1011 		/*
1012 		 * The resource counters for the group leader are in its
1013 		 * own task_struct.  Those for dead threads in the group
1014 		 * are in its signal_struct, as are those for the child
1015 		 * processes it has previously reaped.  All these
1016 		 * accumulate in the parent's signal_struct c* fields.
1017 		 *
1018 		 * We don't bother to take a lock here to protect these
1019 		 * p->signal fields because the whole thread group is dead
1020 		 * and nobody can change them.
1021 		 *
1022 		 * psig->stats_lock also protects us from our sub-theads
1023 		 * which can reap other children at the same time. Until
1024 		 * we change k_getrusage()-like users to rely on this lock
1025 		 * we have to take ->siglock as well.
1026 		 *
1027 		 * We use thread_group_cputime_adjusted() to get times for
1028 		 * the thread group, which consolidates times for all threads
1029 		 * in the group including the group leader.
1030 		 */
1031 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1032 		spin_lock_irq(&current->sighand->siglock);
1033 		write_seqlock(&psig->stats_lock);
1034 		psig->cutime += tgutime + sig->cutime;
1035 		psig->cstime += tgstime + sig->cstime;
1036 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1037 		psig->cmin_flt +=
1038 			p->min_flt + sig->min_flt + sig->cmin_flt;
1039 		psig->cmaj_flt +=
1040 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1041 		psig->cnvcsw +=
1042 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1043 		psig->cnivcsw +=
1044 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1045 		psig->cinblock +=
1046 			task_io_get_inblock(p) +
1047 			sig->inblock + sig->cinblock;
1048 		psig->coublock +=
1049 			task_io_get_oublock(p) +
1050 			sig->oublock + sig->coublock;
1051 		maxrss = max(sig->maxrss, sig->cmaxrss);
1052 		if (psig->cmaxrss < maxrss)
1053 			psig->cmaxrss = maxrss;
1054 		task_io_accounting_add(&psig->ioac, &p->ioac);
1055 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1056 		write_sequnlock(&psig->stats_lock);
1057 		spin_unlock_irq(&current->sighand->siglock);
1058 	}
1059 
1060 	if (wo->wo_rusage)
1061 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1062 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1063 		? p->signal->group_exit_code : p->exit_code;
1064 	wo->wo_stat = status;
1065 
1066 	if (state == EXIT_TRACE) {
1067 		write_lock_irq(&tasklist_lock);
1068 		/* We dropped tasklist, ptracer could die and untrace */
1069 		ptrace_unlink(p);
1070 
1071 		/* If parent wants a zombie, don't release it now */
1072 		state = EXIT_ZOMBIE;
1073 		if (do_notify_parent(p, p->exit_signal))
1074 			state = EXIT_DEAD;
1075 		p->exit_state = state;
1076 		write_unlock_irq(&tasklist_lock);
1077 	}
1078 	if (state == EXIT_DEAD)
1079 		release_task(p);
1080 
1081 out_info:
1082 	infop = wo->wo_info;
1083 	if (infop) {
1084 		if ((status & 0x7f) == 0) {
1085 			infop->cause = CLD_EXITED;
1086 			infop->status = status >> 8;
1087 		} else {
1088 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1089 			infop->status = status & 0x7f;
1090 		}
1091 		infop->pid = pid;
1092 		infop->uid = uid;
1093 	}
1094 
1095 	return pid;
1096 }
1097 
1098 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1099 {
1100 	if (ptrace) {
1101 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1102 			return &p->exit_code;
1103 	} else {
1104 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1105 			return &p->signal->group_exit_code;
1106 	}
1107 	return NULL;
1108 }
1109 
1110 /**
1111  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1112  * @wo: wait options
1113  * @ptrace: is the wait for ptrace
1114  * @p: task to wait for
1115  *
1116  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1117  *
1118  * CONTEXT:
1119  * read_lock(&tasklist_lock), which is released if return value is
1120  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1121  *
1122  * RETURNS:
1123  * 0 if wait condition didn't exist and search for other wait conditions
1124  * should continue.  Non-zero return, -errno on failure and @p's pid on
1125  * success, implies that tasklist_lock is released and wait condition
1126  * search should terminate.
1127  */
1128 static int wait_task_stopped(struct wait_opts *wo,
1129 				int ptrace, struct task_struct *p)
1130 {
1131 	struct waitid_info *infop;
1132 	int exit_code, *p_code, why;
1133 	uid_t uid = 0; /* unneeded, required by compiler */
1134 	pid_t pid;
1135 
1136 	/*
1137 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1138 	 */
1139 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1140 		return 0;
1141 
1142 	if (!task_stopped_code(p, ptrace))
1143 		return 0;
1144 
1145 	exit_code = 0;
1146 	spin_lock_irq(&p->sighand->siglock);
1147 
1148 	p_code = task_stopped_code(p, ptrace);
1149 	if (unlikely(!p_code))
1150 		goto unlock_sig;
1151 
1152 	exit_code = *p_code;
1153 	if (!exit_code)
1154 		goto unlock_sig;
1155 
1156 	if (!unlikely(wo->wo_flags & WNOWAIT))
1157 		*p_code = 0;
1158 
1159 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1160 unlock_sig:
1161 	spin_unlock_irq(&p->sighand->siglock);
1162 	if (!exit_code)
1163 		return 0;
1164 
1165 	/*
1166 	 * Now we are pretty sure this task is interesting.
1167 	 * Make sure it doesn't get reaped out from under us while we
1168 	 * give up the lock and then examine it below.  We don't want to
1169 	 * keep holding onto the tasklist_lock while we call getrusage and
1170 	 * possibly take page faults for user memory.
1171 	 */
1172 	get_task_struct(p);
1173 	pid = task_pid_vnr(p);
1174 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1175 	read_unlock(&tasklist_lock);
1176 	sched_annotate_sleep();
1177 	if (wo->wo_rusage)
1178 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1179 	put_task_struct(p);
1180 
1181 	if (likely(!(wo->wo_flags & WNOWAIT)))
1182 		wo->wo_stat = (exit_code << 8) | 0x7f;
1183 
1184 	infop = wo->wo_info;
1185 	if (infop) {
1186 		infop->cause = why;
1187 		infop->status = exit_code;
1188 		infop->pid = pid;
1189 		infop->uid = uid;
1190 	}
1191 	return pid;
1192 }
1193 
1194 /*
1195  * Handle do_wait work for one task in a live, non-stopped state.
1196  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1197  * the lock and this task is uninteresting.  If we return nonzero, we have
1198  * released the lock and the system call should return.
1199  */
1200 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1201 {
1202 	struct waitid_info *infop;
1203 	pid_t pid;
1204 	uid_t uid;
1205 
1206 	if (!unlikely(wo->wo_flags & WCONTINUED))
1207 		return 0;
1208 
1209 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1210 		return 0;
1211 
1212 	spin_lock_irq(&p->sighand->siglock);
1213 	/* Re-check with the lock held.  */
1214 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1215 		spin_unlock_irq(&p->sighand->siglock);
1216 		return 0;
1217 	}
1218 	if (!unlikely(wo->wo_flags & WNOWAIT))
1219 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1220 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1221 	spin_unlock_irq(&p->sighand->siglock);
1222 
1223 	pid = task_pid_vnr(p);
1224 	get_task_struct(p);
1225 	read_unlock(&tasklist_lock);
1226 	sched_annotate_sleep();
1227 	if (wo->wo_rusage)
1228 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1229 	put_task_struct(p);
1230 
1231 	infop = wo->wo_info;
1232 	if (!infop) {
1233 		wo->wo_stat = 0xffff;
1234 	} else {
1235 		infop->cause = CLD_CONTINUED;
1236 		infop->pid = pid;
1237 		infop->uid = uid;
1238 		infop->status = SIGCONT;
1239 	}
1240 	return pid;
1241 }
1242 
1243 /*
1244  * Consider @p for a wait by @parent.
1245  *
1246  * -ECHILD should be in ->notask_error before the first call.
1247  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1248  * Returns zero if the search for a child should continue;
1249  * then ->notask_error is 0 if @p is an eligible child,
1250  * or still -ECHILD.
1251  */
1252 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1253 				struct task_struct *p)
1254 {
1255 	/*
1256 	 * We can race with wait_task_zombie() from another thread.
1257 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1258 	 * can't confuse the checks below.
1259 	 */
1260 	int exit_state = READ_ONCE(p->exit_state);
1261 	int ret;
1262 
1263 	if (unlikely(exit_state == EXIT_DEAD))
1264 		return 0;
1265 
1266 	ret = eligible_child(wo, ptrace, p);
1267 	if (!ret)
1268 		return ret;
1269 
1270 	if (unlikely(exit_state == EXIT_TRACE)) {
1271 		/*
1272 		 * ptrace == 0 means we are the natural parent. In this case
1273 		 * we should clear notask_error, debugger will notify us.
1274 		 */
1275 		if (likely(!ptrace))
1276 			wo->notask_error = 0;
1277 		return 0;
1278 	}
1279 
1280 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1281 		/*
1282 		 * If it is traced by its real parent's group, just pretend
1283 		 * the caller is ptrace_do_wait() and reap this child if it
1284 		 * is zombie.
1285 		 *
1286 		 * This also hides group stop state from real parent; otherwise
1287 		 * a single stop can be reported twice as group and ptrace stop.
1288 		 * If a ptracer wants to distinguish these two events for its
1289 		 * own children it should create a separate process which takes
1290 		 * the role of real parent.
1291 		 */
1292 		if (!ptrace_reparented(p))
1293 			ptrace = 1;
1294 	}
1295 
1296 	/* slay zombie? */
1297 	if (exit_state == EXIT_ZOMBIE) {
1298 		/* we don't reap group leaders with subthreads */
1299 		if (!delay_group_leader(p)) {
1300 			/*
1301 			 * A zombie ptracee is only visible to its ptracer.
1302 			 * Notification and reaping will be cascaded to the
1303 			 * real parent when the ptracer detaches.
1304 			 */
1305 			if (unlikely(ptrace) || likely(!p->ptrace))
1306 				return wait_task_zombie(wo, p);
1307 		}
1308 
1309 		/*
1310 		 * Allow access to stopped/continued state via zombie by
1311 		 * falling through.  Clearing of notask_error is complex.
1312 		 *
1313 		 * When !@ptrace:
1314 		 *
1315 		 * If WEXITED is set, notask_error should naturally be
1316 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1317 		 * so, if there are live subthreads, there are events to
1318 		 * wait for.  If all subthreads are dead, it's still safe
1319 		 * to clear - this function will be called again in finite
1320 		 * amount time once all the subthreads are released and
1321 		 * will then return without clearing.
1322 		 *
1323 		 * When @ptrace:
1324 		 *
1325 		 * Stopped state is per-task and thus can't change once the
1326 		 * target task dies.  Only continued and exited can happen.
1327 		 * Clear notask_error if WCONTINUED | WEXITED.
1328 		 */
1329 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1330 			wo->notask_error = 0;
1331 	} else {
1332 		/*
1333 		 * @p is alive and it's gonna stop, continue or exit, so
1334 		 * there always is something to wait for.
1335 		 */
1336 		wo->notask_error = 0;
1337 	}
1338 
1339 	/*
1340 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1341 	 * is used and the two don't interact with each other.
1342 	 */
1343 	ret = wait_task_stopped(wo, ptrace, p);
1344 	if (ret)
1345 		return ret;
1346 
1347 	/*
1348 	 * Wait for continued.  There's only one continued state and the
1349 	 * ptracer can consume it which can confuse the real parent.  Don't
1350 	 * use WCONTINUED from ptracer.  You don't need or want it.
1351 	 */
1352 	return wait_task_continued(wo, p);
1353 }
1354 
1355 /*
1356  * Do the work of do_wait() for one thread in the group, @tsk.
1357  *
1358  * -ECHILD should be in ->notask_error before the first call.
1359  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1360  * Returns zero if the search for a child should continue; then
1361  * ->notask_error is 0 if there were any eligible children,
1362  * or still -ECHILD.
1363  */
1364 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1365 {
1366 	struct task_struct *p;
1367 
1368 	list_for_each_entry(p, &tsk->children, sibling) {
1369 		int ret = wait_consider_task(wo, 0, p);
1370 
1371 		if (ret)
1372 			return ret;
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1379 {
1380 	struct task_struct *p;
1381 
1382 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1383 		int ret = wait_consider_task(wo, 1, p);
1384 
1385 		if (ret)
1386 			return ret;
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1393 				int sync, void *key)
1394 {
1395 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1396 						child_wait);
1397 	struct task_struct *p = key;
1398 
1399 	if (!eligible_pid(wo, p))
1400 		return 0;
1401 
1402 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1403 		return 0;
1404 
1405 	return default_wake_function(wait, mode, sync, key);
1406 }
1407 
1408 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1409 {
1410 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1411 			   TASK_INTERRUPTIBLE, p);
1412 }
1413 
1414 static long do_wait(struct wait_opts *wo)
1415 {
1416 	struct task_struct *tsk;
1417 	int retval;
1418 
1419 	trace_sched_process_wait(wo->wo_pid);
1420 
1421 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1422 	wo->child_wait.private = current;
1423 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1424 repeat:
1425 	/*
1426 	 * If there is nothing that can match our criteria, just get out.
1427 	 * We will clear ->notask_error to zero if we see any child that
1428 	 * might later match our criteria, even if we are not able to reap
1429 	 * it yet.
1430 	 */
1431 	wo->notask_error = -ECHILD;
1432 	if ((wo->wo_type < PIDTYPE_MAX) &&
1433 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1434 		goto notask;
1435 
1436 	set_current_state(TASK_INTERRUPTIBLE);
1437 	read_lock(&tasklist_lock);
1438 	tsk = current;
1439 	do {
1440 		retval = do_wait_thread(wo, tsk);
1441 		if (retval)
1442 			goto end;
1443 
1444 		retval = ptrace_do_wait(wo, tsk);
1445 		if (retval)
1446 			goto end;
1447 
1448 		if (wo->wo_flags & __WNOTHREAD)
1449 			break;
1450 	} while_each_thread(current, tsk);
1451 	read_unlock(&tasklist_lock);
1452 
1453 notask:
1454 	retval = wo->notask_error;
1455 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1456 		retval = -ERESTARTSYS;
1457 		if (!signal_pending(current)) {
1458 			schedule();
1459 			goto repeat;
1460 		}
1461 	}
1462 end:
1463 	__set_current_state(TASK_RUNNING);
1464 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1465 	return retval;
1466 }
1467 
1468 static struct pid *pidfd_get_pid(unsigned int fd)
1469 {
1470 	struct fd f;
1471 	struct pid *pid;
1472 
1473 	f = fdget(fd);
1474 	if (!f.file)
1475 		return ERR_PTR(-EBADF);
1476 
1477 	pid = pidfd_pid(f.file);
1478 	if (!IS_ERR(pid))
1479 		get_pid(pid);
1480 
1481 	fdput(f);
1482 	return pid;
1483 }
1484 
1485 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1486 			  int options, struct rusage *ru)
1487 {
1488 	struct wait_opts wo;
1489 	struct pid *pid = NULL;
1490 	enum pid_type type;
1491 	long ret;
1492 
1493 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1494 			__WNOTHREAD|__WCLONE|__WALL))
1495 		return -EINVAL;
1496 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1497 		return -EINVAL;
1498 
1499 	switch (which) {
1500 	case P_ALL:
1501 		type = PIDTYPE_MAX;
1502 		break;
1503 	case P_PID:
1504 		type = PIDTYPE_PID;
1505 		if (upid <= 0)
1506 			return -EINVAL;
1507 
1508 		pid = find_get_pid(upid);
1509 		break;
1510 	case P_PGID:
1511 		type = PIDTYPE_PGID;
1512 		if (upid < 0)
1513 			return -EINVAL;
1514 
1515 		if (upid)
1516 			pid = find_get_pid(upid);
1517 		else
1518 			pid = get_task_pid(current, PIDTYPE_PGID);
1519 		break;
1520 	case P_PIDFD:
1521 		type = PIDTYPE_PID;
1522 		if (upid < 0)
1523 			return -EINVAL;
1524 
1525 		pid = pidfd_get_pid(upid);
1526 		if (IS_ERR(pid))
1527 			return PTR_ERR(pid);
1528 		break;
1529 	default:
1530 		return -EINVAL;
1531 	}
1532 
1533 	wo.wo_type	= type;
1534 	wo.wo_pid	= pid;
1535 	wo.wo_flags	= options;
1536 	wo.wo_info	= infop;
1537 	wo.wo_rusage	= ru;
1538 	ret = do_wait(&wo);
1539 
1540 	put_pid(pid);
1541 	return ret;
1542 }
1543 
1544 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1545 		infop, int, options, struct rusage __user *, ru)
1546 {
1547 	struct rusage r;
1548 	struct waitid_info info = {.status = 0};
1549 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1550 	int signo = 0;
1551 
1552 	if (err > 0) {
1553 		signo = SIGCHLD;
1554 		err = 0;
1555 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1556 			return -EFAULT;
1557 	}
1558 	if (!infop)
1559 		return err;
1560 
1561 	if (!user_access_begin(infop, sizeof(*infop)))
1562 		return -EFAULT;
1563 
1564 	unsafe_put_user(signo, &infop->si_signo, Efault);
1565 	unsafe_put_user(0, &infop->si_errno, Efault);
1566 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1567 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1568 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1569 	unsafe_put_user(info.status, &infop->si_status, Efault);
1570 	user_access_end();
1571 	return err;
1572 Efault:
1573 	user_access_end();
1574 	return -EFAULT;
1575 }
1576 
1577 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1578 		  struct rusage *ru)
1579 {
1580 	struct wait_opts wo;
1581 	struct pid *pid = NULL;
1582 	enum pid_type type;
1583 	long ret;
1584 
1585 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1586 			__WNOTHREAD|__WCLONE|__WALL))
1587 		return -EINVAL;
1588 
1589 	/* -INT_MIN is not defined */
1590 	if (upid == INT_MIN)
1591 		return -ESRCH;
1592 
1593 	if (upid == -1)
1594 		type = PIDTYPE_MAX;
1595 	else if (upid < 0) {
1596 		type = PIDTYPE_PGID;
1597 		pid = find_get_pid(-upid);
1598 	} else if (upid == 0) {
1599 		type = PIDTYPE_PGID;
1600 		pid = get_task_pid(current, PIDTYPE_PGID);
1601 	} else /* upid > 0 */ {
1602 		type = PIDTYPE_PID;
1603 		pid = find_get_pid(upid);
1604 	}
1605 
1606 	wo.wo_type	= type;
1607 	wo.wo_pid	= pid;
1608 	wo.wo_flags	= options | WEXITED;
1609 	wo.wo_info	= NULL;
1610 	wo.wo_stat	= 0;
1611 	wo.wo_rusage	= ru;
1612 	ret = do_wait(&wo);
1613 	put_pid(pid);
1614 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1615 		ret = -EFAULT;
1616 
1617 	return ret;
1618 }
1619 
1620 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1621 		int, options, struct rusage __user *, ru)
1622 {
1623 	struct rusage r;
1624 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1625 
1626 	if (err > 0) {
1627 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1628 			return -EFAULT;
1629 	}
1630 	return err;
1631 }
1632 
1633 #ifdef __ARCH_WANT_SYS_WAITPID
1634 
1635 /*
1636  * sys_waitpid() remains for compatibility. waitpid() should be
1637  * implemented by calling sys_wait4() from libc.a.
1638  */
1639 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1640 {
1641 	return kernel_wait4(pid, stat_addr, options, NULL);
1642 }
1643 
1644 #endif
1645 
1646 #ifdef CONFIG_COMPAT
1647 COMPAT_SYSCALL_DEFINE4(wait4,
1648 	compat_pid_t, pid,
1649 	compat_uint_t __user *, stat_addr,
1650 	int, options,
1651 	struct compat_rusage __user *, ru)
1652 {
1653 	struct rusage r;
1654 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1655 	if (err > 0) {
1656 		if (ru && put_compat_rusage(&r, ru))
1657 			return -EFAULT;
1658 	}
1659 	return err;
1660 }
1661 
1662 COMPAT_SYSCALL_DEFINE5(waitid,
1663 		int, which, compat_pid_t, pid,
1664 		struct compat_siginfo __user *, infop, int, options,
1665 		struct compat_rusage __user *, uru)
1666 {
1667 	struct rusage ru;
1668 	struct waitid_info info = {.status = 0};
1669 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1670 	int signo = 0;
1671 	if (err > 0) {
1672 		signo = SIGCHLD;
1673 		err = 0;
1674 		if (uru) {
1675 			/* kernel_waitid() overwrites everything in ru */
1676 			if (COMPAT_USE_64BIT_TIME)
1677 				err = copy_to_user(uru, &ru, sizeof(ru));
1678 			else
1679 				err = put_compat_rusage(&ru, uru);
1680 			if (err)
1681 				return -EFAULT;
1682 		}
1683 	}
1684 
1685 	if (!infop)
1686 		return err;
1687 
1688 	if (!user_access_begin(infop, sizeof(*infop)))
1689 		return -EFAULT;
1690 
1691 	unsafe_put_user(signo, &infop->si_signo, Efault);
1692 	unsafe_put_user(0, &infop->si_errno, Efault);
1693 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1694 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1695 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1696 	unsafe_put_user(info.status, &infop->si_status, Efault);
1697 	user_access_end();
1698 	return err;
1699 Efault:
1700 	user_access_end();
1701 	return -EFAULT;
1702 }
1703 #endif
1704 
1705 __weak void abort(void)
1706 {
1707 	BUG();
1708 
1709 	/* if that doesn't kill us, halt */
1710 	panic("Oops failed to kill thread");
1711 }
1712 EXPORT_SYMBOL(abort);
1713