xref: /openbmc/linux/kernel/exit.c (revision 732a675a)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu_context.h>
53 
54 static void exit_mm(struct task_struct * tsk);
55 
56 static inline int task_detached(struct task_struct *p)
57 {
58 	return p->exit_signal == -1;
59 }
60 
61 static void __unhash_process(struct task_struct *p)
62 {
63 	nr_threads--;
64 	detach_pid(p, PIDTYPE_PID);
65 	if (thread_group_leader(p)) {
66 		detach_pid(p, PIDTYPE_PGID);
67 		detach_pid(p, PIDTYPE_SID);
68 
69 		list_del_rcu(&p->tasks);
70 		__get_cpu_var(process_counts)--;
71 	}
72 	list_del_rcu(&p->thread_group);
73 	remove_parent(p);
74 }
75 
76 /*
77  * This function expects the tasklist_lock write-locked.
78  */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 	struct signal_struct *sig = tsk->signal;
82 	struct sighand_struct *sighand;
83 
84 	BUG_ON(!sig);
85 	BUG_ON(!atomic_read(&sig->count));
86 
87 	rcu_read_lock();
88 	sighand = rcu_dereference(tsk->sighand);
89 	spin_lock(&sighand->siglock);
90 
91 	posix_cpu_timers_exit(tsk);
92 	if (atomic_dec_and_test(&sig->count))
93 		posix_cpu_timers_exit_group(tsk);
94 	else {
95 		/*
96 		 * If there is any task waiting for the group exit
97 		 * then notify it:
98 		 */
99 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100 			wake_up_process(sig->group_exit_task);
101 
102 		if (tsk == sig->curr_target)
103 			sig->curr_target = next_thread(tsk);
104 		/*
105 		 * Accumulate here the counters for all threads but the
106 		 * group leader as they die, so they can be added into
107 		 * the process-wide totals when those are taken.
108 		 * The group leader stays around as a zombie as long
109 		 * as there are other threads.  When it gets reaped,
110 		 * the exit.c code will add its counts into these totals.
111 		 * We won't ever get here for the group leader, since it
112 		 * will have been the last reference on the signal_struct.
113 		 */
114 		sig->utime = cputime_add(sig->utime, tsk->utime);
115 		sig->stime = cputime_add(sig->stime, tsk->stime);
116 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
117 		sig->min_flt += tsk->min_flt;
118 		sig->maj_flt += tsk->maj_flt;
119 		sig->nvcsw += tsk->nvcsw;
120 		sig->nivcsw += tsk->nivcsw;
121 		sig->inblock += task_io_get_inblock(tsk);
122 		sig->oublock += task_io_get_oublock(tsk);
123 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
124 		sig = NULL; /* Marker for below. */
125 	}
126 
127 	__unhash_process(tsk);
128 
129 	/*
130 	 * Do this under ->siglock, we can race with another thread
131 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
132 	 */
133 	flush_sigqueue(&tsk->pending);
134 
135 	tsk->signal = NULL;
136 	tsk->sighand = NULL;
137 	spin_unlock(&sighand->siglock);
138 	rcu_read_unlock();
139 
140 	__cleanup_sighand(sighand);
141 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 	if (sig) {
143 		flush_sigqueue(&sig->shared_pending);
144 		taskstats_tgid_free(sig);
145 		__cleanup_signal(sig);
146 	}
147 }
148 
149 static void delayed_put_task_struct(struct rcu_head *rhp)
150 {
151 	put_task_struct(container_of(rhp, struct task_struct, rcu));
152 }
153 
154 void release_task(struct task_struct * p)
155 {
156 	struct task_struct *leader;
157 	int zap_leader;
158 repeat:
159 	atomic_dec(&p->user->processes);
160 	proc_flush_task(p);
161 	write_lock_irq(&tasklist_lock);
162 	ptrace_unlink(p);
163 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
164 	__exit_signal(p);
165 
166 	/*
167 	 * If we are the last non-leader member of the thread
168 	 * group, and the leader is zombie, then notify the
169 	 * group leader's parent process. (if it wants notification.)
170 	 */
171 	zap_leader = 0;
172 	leader = p->group_leader;
173 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
174 		BUG_ON(task_detached(leader));
175 		do_notify_parent(leader, leader->exit_signal);
176 		/*
177 		 * If we were the last child thread and the leader has
178 		 * exited already, and the leader's parent ignores SIGCHLD,
179 		 * then we are the one who should release the leader.
180 		 *
181 		 * do_notify_parent() will have marked it self-reaping in
182 		 * that case.
183 		 */
184 		zap_leader = task_detached(leader);
185 	}
186 
187 	write_unlock_irq(&tasklist_lock);
188 	release_thread(p);
189 	call_rcu(&p->rcu, delayed_put_task_struct);
190 
191 	p = leader;
192 	if (unlikely(zap_leader))
193 		goto repeat;
194 }
195 
196 /*
197  * This checks not only the pgrp, but falls back on the pid if no
198  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
199  * without this...
200  *
201  * The caller must hold rcu lock or the tasklist lock.
202  */
203 struct pid *session_of_pgrp(struct pid *pgrp)
204 {
205 	struct task_struct *p;
206 	struct pid *sid = NULL;
207 
208 	p = pid_task(pgrp, PIDTYPE_PGID);
209 	if (p == NULL)
210 		p = pid_task(pgrp, PIDTYPE_PID);
211 	if (p != NULL)
212 		sid = task_session(p);
213 
214 	return sid;
215 }
216 
217 /*
218  * Determine if a process group is "orphaned", according to the POSIX
219  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
220  * by terminal-generated stop signals.  Newly orphaned process groups are
221  * to receive a SIGHUP and a SIGCONT.
222  *
223  * "I ask you, have you ever known what it is to be an orphan?"
224  */
225 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
226 {
227 	struct task_struct *p;
228 
229 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
230 		if ((p == ignored_task) ||
231 		    (p->exit_state && thread_group_empty(p)) ||
232 		    is_global_init(p->real_parent))
233 			continue;
234 
235 		if (task_pgrp(p->real_parent) != pgrp &&
236 		    task_session(p->real_parent) == task_session(p))
237 			return 0;
238 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
239 
240 	return 1;
241 }
242 
243 int is_current_pgrp_orphaned(void)
244 {
245 	int retval;
246 
247 	read_lock(&tasklist_lock);
248 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
249 	read_unlock(&tasklist_lock);
250 
251 	return retval;
252 }
253 
254 static int has_stopped_jobs(struct pid *pgrp)
255 {
256 	int retval = 0;
257 	struct task_struct *p;
258 
259 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
260 		if (!task_is_stopped(p))
261 			continue;
262 		retval = 1;
263 		break;
264 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265 	return retval;
266 }
267 
268 /*
269  * Check to see if any process groups have become orphaned as
270  * a result of our exiting, and if they have any stopped jobs,
271  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
272  */
273 static void
274 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
275 {
276 	struct pid *pgrp = task_pgrp(tsk);
277 	struct task_struct *ignored_task = tsk;
278 
279 	if (!parent)
280 		 /* exit: our father is in a different pgrp than
281 		  * we are and we were the only connection outside.
282 		  */
283 		parent = tsk->real_parent;
284 	else
285 		/* reparent: our child is in a different pgrp than
286 		 * we are, and it was the only connection outside.
287 		 */
288 		ignored_task = NULL;
289 
290 	if (task_pgrp(parent) != pgrp &&
291 	    task_session(parent) == task_session(tsk) &&
292 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
293 	    has_stopped_jobs(pgrp)) {
294 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
295 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
296 	}
297 }
298 
299 /**
300  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
301  *
302  * If a kernel thread is launched as a result of a system call, or if
303  * it ever exits, it should generally reparent itself to kthreadd so it
304  * isn't in the way of other processes and is correctly cleaned up on exit.
305  *
306  * The various task state such as scheduling policy and priority may have
307  * been inherited from a user process, so we reset them to sane values here.
308  *
309  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
310  */
311 static void reparent_to_kthreadd(void)
312 {
313 	write_lock_irq(&tasklist_lock);
314 
315 	ptrace_unlink(current);
316 	/* Reparent to init */
317 	remove_parent(current);
318 	current->real_parent = current->parent = kthreadd_task;
319 	add_parent(current);
320 
321 	/* Set the exit signal to SIGCHLD so we signal init on exit */
322 	current->exit_signal = SIGCHLD;
323 
324 	if (task_nice(current) < 0)
325 		set_user_nice(current, 0);
326 	/* cpus_allowed? */
327 	/* rt_priority? */
328 	/* signals? */
329 	security_task_reparent_to_init(current);
330 	memcpy(current->signal->rlim, init_task.signal->rlim,
331 	       sizeof(current->signal->rlim));
332 	atomic_inc(&(INIT_USER->__count));
333 	write_unlock_irq(&tasklist_lock);
334 	switch_uid(INIT_USER);
335 }
336 
337 void __set_special_pids(struct pid *pid)
338 {
339 	struct task_struct *curr = current->group_leader;
340 	pid_t nr = pid_nr(pid);
341 
342 	if (task_session(curr) != pid) {
343 		change_pid(curr, PIDTYPE_SID, pid);
344 		set_task_session(curr, nr);
345 	}
346 	if (task_pgrp(curr) != pid) {
347 		change_pid(curr, PIDTYPE_PGID, pid);
348 		set_task_pgrp(curr, nr);
349 	}
350 }
351 
352 static void set_special_pids(struct pid *pid)
353 {
354 	write_lock_irq(&tasklist_lock);
355 	__set_special_pids(pid);
356 	write_unlock_irq(&tasklist_lock);
357 }
358 
359 /*
360  * Let kernel threads use this to say that they
361  * allow a certain signal (since daemonize() will
362  * have disabled all of them by default).
363  */
364 int allow_signal(int sig)
365 {
366 	if (!valid_signal(sig) || sig < 1)
367 		return -EINVAL;
368 
369 	spin_lock_irq(&current->sighand->siglock);
370 	sigdelset(&current->blocked, sig);
371 	if (!current->mm) {
372 		/* Kernel threads handle their own signals.
373 		   Let the signal code know it'll be handled, so
374 		   that they don't get converted to SIGKILL or
375 		   just silently dropped */
376 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
377 	}
378 	recalc_sigpending();
379 	spin_unlock_irq(&current->sighand->siglock);
380 	return 0;
381 }
382 
383 EXPORT_SYMBOL(allow_signal);
384 
385 int disallow_signal(int sig)
386 {
387 	if (!valid_signal(sig) || sig < 1)
388 		return -EINVAL;
389 
390 	spin_lock_irq(&current->sighand->siglock);
391 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
392 	recalc_sigpending();
393 	spin_unlock_irq(&current->sighand->siglock);
394 	return 0;
395 }
396 
397 EXPORT_SYMBOL(disallow_signal);
398 
399 /*
400  *	Put all the gunge required to become a kernel thread without
401  *	attached user resources in one place where it belongs.
402  */
403 
404 void daemonize(const char *name, ...)
405 {
406 	va_list args;
407 	struct fs_struct *fs;
408 	sigset_t blocked;
409 
410 	va_start(args, name);
411 	vsnprintf(current->comm, sizeof(current->comm), name, args);
412 	va_end(args);
413 
414 	/*
415 	 * If we were started as result of loading a module, close all of the
416 	 * user space pages.  We don't need them, and if we didn't close them
417 	 * they would be locked into memory.
418 	 */
419 	exit_mm(current);
420 	/*
421 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
422 	 * or suspend transition begins right now.
423 	 */
424 	current->flags |= PF_NOFREEZE;
425 
426 	if (current->nsproxy != &init_nsproxy) {
427 		get_nsproxy(&init_nsproxy);
428 		switch_task_namespaces(current, &init_nsproxy);
429 	}
430 	set_special_pids(&init_struct_pid);
431 	proc_clear_tty(current);
432 
433 	/* Block and flush all signals */
434 	sigfillset(&blocked);
435 	sigprocmask(SIG_BLOCK, &blocked, NULL);
436 	flush_signals(current);
437 
438 	/* Become as one with the init task */
439 
440 	exit_fs(current);	/* current->fs->count--; */
441 	fs = init_task.fs;
442 	current->fs = fs;
443 	atomic_inc(&fs->count);
444 
445 	exit_files(current);
446 	current->files = init_task.files;
447 	atomic_inc(&current->files->count);
448 
449 	reparent_to_kthreadd();
450 }
451 
452 EXPORT_SYMBOL(daemonize);
453 
454 static void close_files(struct files_struct * files)
455 {
456 	int i, j;
457 	struct fdtable *fdt;
458 
459 	j = 0;
460 
461 	/*
462 	 * It is safe to dereference the fd table without RCU or
463 	 * ->file_lock because this is the last reference to the
464 	 * files structure.
465 	 */
466 	fdt = files_fdtable(files);
467 	for (;;) {
468 		unsigned long set;
469 		i = j * __NFDBITS;
470 		if (i >= fdt->max_fds)
471 			break;
472 		set = fdt->open_fds->fds_bits[j++];
473 		while (set) {
474 			if (set & 1) {
475 				struct file * file = xchg(&fdt->fd[i], NULL);
476 				if (file) {
477 					filp_close(file, files);
478 					cond_resched();
479 				}
480 			}
481 			i++;
482 			set >>= 1;
483 		}
484 	}
485 }
486 
487 struct files_struct *get_files_struct(struct task_struct *task)
488 {
489 	struct files_struct *files;
490 
491 	task_lock(task);
492 	files = task->files;
493 	if (files)
494 		atomic_inc(&files->count);
495 	task_unlock(task);
496 
497 	return files;
498 }
499 
500 void put_files_struct(struct files_struct *files)
501 {
502 	struct fdtable *fdt;
503 
504 	if (atomic_dec_and_test(&files->count)) {
505 		close_files(files);
506 		/*
507 		 * Free the fd and fdset arrays if we expanded them.
508 		 * If the fdtable was embedded, pass files for freeing
509 		 * at the end of the RCU grace period. Otherwise,
510 		 * you can free files immediately.
511 		 */
512 		fdt = files_fdtable(files);
513 		if (fdt != &files->fdtab)
514 			kmem_cache_free(files_cachep, files);
515 		free_fdtable(fdt);
516 	}
517 }
518 
519 void reset_files_struct(struct files_struct *files)
520 {
521 	struct task_struct *tsk = current;
522 	struct files_struct *old;
523 
524 	old = tsk->files;
525 	task_lock(tsk);
526 	tsk->files = files;
527 	task_unlock(tsk);
528 	put_files_struct(old);
529 }
530 
531 void exit_files(struct task_struct *tsk)
532 {
533 	struct files_struct * files = tsk->files;
534 
535 	if (files) {
536 		task_lock(tsk);
537 		tsk->files = NULL;
538 		task_unlock(tsk);
539 		put_files_struct(files);
540 	}
541 }
542 
543 void put_fs_struct(struct fs_struct *fs)
544 {
545 	/* No need to hold fs->lock if we are killing it */
546 	if (atomic_dec_and_test(&fs->count)) {
547 		path_put(&fs->root);
548 		path_put(&fs->pwd);
549 		if (fs->altroot.dentry)
550 			path_put(&fs->altroot);
551 		kmem_cache_free(fs_cachep, fs);
552 	}
553 }
554 
555 void exit_fs(struct task_struct *tsk)
556 {
557 	struct fs_struct * fs = tsk->fs;
558 
559 	if (fs) {
560 		task_lock(tsk);
561 		tsk->fs = NULL;
562 		task_unlock(tsk);
563 		put_fs_struct(fs);
564 	}
565 }
566 
567 EXPORT_SYMBOL_GPL(exit_fs);
568 
569 #ifdef CONFIG_MM_OWNER
570 /*
571  * Task p is exiting and it owned mm, lets find a new owner for it
572  */
573 static inline int
574 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
575 {
576 	/*
577 	 * If there are other users of the mm and the owner (us) is exiting
578 	 * we need to find a new owner to take on the responsibility.
579 	 */
580 	if (!mm)
581 		return 0;
582 	if (atomic_read(&mm->mm_users) <= 1)
583 		return 0;
584 	if (mm->owner != p)
585 		return 0;
586 	return 1;
587 }
588 
589 void mm_update_next_owner(struct mm_struct *mm)
590 {
591 	struct task_struct *c, *g, *p = current;
592 
593 retry:
594 	if (!mm_need_new_owner(mm, p))
595 		return;
596 
597 	read_lock(&tasklist_lock);
598 	/*
599 	 * Search in the children
600 	 */
601 	list_for_each_entry(c, &p->children, sibling) {
602 		if (c->mm == mm)
603 			goto assign_new_owner;
604 	}
605 
606 	/*
607 	 * Search in the siblings
608 	 */
609 	list_for_each_entry(c, &p->parent->children, sibling) {
610 		if (c->mm == mm)
611 			goto assign_new_owner;
612 	}
613 
614 	/*
615 	 * Search through everything else. We should not get
616 	 * here often
617 	 */
618 	do_each_thread(g, c) {
619 		if (c->mm == mm)
620 			goto assign_new_owner;
621 	} while_each_thread(g, c);
622 
623 	read_unlock(&tasklist_lock);
624 	return;
625 
626 assign_new_owner:
627 	BUG_ON(c == p);
628 	get_task_struct(c);
629 	/*
630 	 * The task_lock protects c->mm from changing.
631 	 * We always want mm->owner->mm == mm
632 	 */
633 	task_lock(c);
634 	/*
635 	 * Delay read_unlock() till we have the task_lock()
636 	 * to ensure that c does not slip away underneath us
637 	 */
638 	read_unlock(&tasklist_lock);
639 	if (c->mm != mm) {
640 		task_unlock(c);
641 		put_task_struct(c);
642 		goto retry;
643 	}
644 	cgroup_mm_owner_callbacks(mm->owner, c);
645 	mm->owner = c;
646 	task_unlock(c);
647 	put_task_struct(c);
648 }
649 #endif /* CONFIG_MM_OWNER */
650 
651 /*
652  * Turn us into a lazy TLB process if we
653  * aren't already..
654  */
655 static void exit_mm(struct task_struct * tsk)
656 {
657 	struct mm_struct *mm = tsk->mm;
658 
659 	mm_release(tsk, mm);
660 	if (!mm)
661 		return;
662 	/*
663 	 * Serialize with any possible pending coredump.
664 	 * We must hold mmap_sem around checking core_waiters
665 	 * and clearing tsk->mm.  The core-inducing thread
666 	 * will increment core_waiters for each thread in the
667 	 * group with ->mm != NULL.
668 	 */
669 	down_read(&mm->mmap_sem);
670 	if (mm->core_waiters) {
671 		up_read(&mm->mmap_sem);
672 		down_write(&mm->mmap_sem);
673 		if (!--mm->core_waiters)
674 			complete(mm->core_startup_done);
675 		up_write(&mm->mmap_sem);
676 
677 		wait_for_completion(&mm->core_done);
678 		down_read(&mm->mmap_sem);
679 	}
680 	atomic_inc(&mm->mm_count);
681 	BUG_ON(mm != tsk->active_mm);
682 	/* more a memory barrier than a real lock */
683 	task_lock(tsk);
684 	tsk->mm = NULL;
685 	up_read(&mm->mmap_sem);
686 	enter_lazy_tlb(mm, current);
687 	/* We don't want this task to be frozen prematurely */
688 	clear_freeze_flag(tsk);
689 	task_unlock(tsk);
690 	mm_update_next_owner(mm);
691 	mmput(mm);
692 }
693 
694 static void
695 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
696 {
697 	if (p->pdeath_signal)
698 		/* We already hold the tasklist_lock here.  */
699 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
700 
701 	/* Move the child from its dying parent to the new one.  */
702 	if (unlikely(traced)) {
703 		/* Preserve ptrace links if someone else is tracing this child.  */
704 		list_del_init(&p->ptrace_list);
705 		if (ptrace_reparented(p))
706 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
707 	} else {
708 		/* If this child is being traced, then we're the one tracing it
709 		 * anyway, so let go of it.
710 		 */
711 		p->ptrace = 0;
712 		remove_parent(p);
713 		p->parent = p->real_parent;
714 		add_parent(p);
715 
716 		if (task_is_traced(p)) {
717 			/*
718 			 * If it was at a trace stop, turn it into
719 			 * a normal stop since it's no longer being
720 			 * traced.
721 			 */
722 			ptrace_untrace(p);
723 		}
724 	}
725 
726 	/* If this is a threaded reparent there is no need to
727 	 * notify anyone anything has happened.
728 	 */
729 	if (same_thread_group(p->real_parent, father))
730 		return;
731 
732 	/* We don't want people slaying init.  */
733 	if (!task_detached(p))
734 		p->exit_signal = SIGCHLD;
735 
736 	/* If we'd notified the old parent about this child's death,
737 	 * also notify the new parent.
738 	 */
739 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
740 	    !task_detached(p) && thread_group_empty(p))
741 		do_notify_parent(p, p->exit_signal);
742 
743 	kill_orphaned_pgrp(p, father);
744 }
745 
746 /*
747  * When we die, we re-parent all our children.
748  * Try to give them to another thread in our thread
749  * group, and if no such member exists, give it to
750  * the child reaper process (ie "init") in our pid
751  * space.
752  */
753 static void forget_original_parent(struct task_struct *father)
754 {
755 	struct task_struct *p, *n, *reaper = father;
756 	struct list_head ptrace_dead;
757 
758 	INIT_LIST_HEAD(&ptrace_dead);
759 
760 	write_lock_irq(&tasklist_lock);
761 
762 	do {
763 		reaper = next_thread(reaper);
764 		if (reaper == father) {
765 			reaper = task_child_reaper(father);
766 			break;
767 		}
768 	} while (reaper->flags & PF_EXITING);
769 
770 	/*
771 	 * There are only two places where our children can be:
772 	 *
773 	 * - in our child list
774 	 * - in our ptraced child list
775 	 *
776 	 * Search them and reparent children.
777 	 */
778 	list_for_each_entry_safe(p, n, &father->children, sibling) {
779 		int ptrace;
780 
781 		ptrace = p->ptrace;
782 
783 		/* if father isn't the real parent, then ptrace must be enabled */
784 		BUG_ON(father != p->real_parent && !ptrace);
785 
786 		if (father == p->real_parent) {
787 			/* reparent with a reaper, real father it's us */
788 			p->real_parent = reaper;
789 			reparent_thread(p, father, 0);
790 		} else {
791 			/* reparent ptraced task to its real parent */
792 			__ptrace_unlink (p);
793 			if (p->exit_state == EXIT_ZOMBIE && !task_detached(p) &&
794 			    thread_group_empty(p))
795 				do_notify_parent(p, p->exit_signal);
796 		}
797 
798 		/*
799 		 * if the ptraced child is a detached zombie we must collect
800 		 * it before we exit, or it will remain zombie forever since
801 		 * we prevented it from self-reap itself while it was being
802 		 * traced by us, to be able to see it in wait4.
803 		 */
804 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && task_detached(p)))
805 			list_add(&p->ptrace_list, &ptrace_dead);
806 	}
807 
808 	list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
809 		p->real_parent = reaper;
810 		reparent_thread(p, father, 1);
811 	}
812 
813 	write_unlock_irq(&tasklist_lock);
814 	BUG_ON(!list_empty(&father->children));
815 	BUG_ON(!list_empty(&father->ptrace_children));
816 
817 	list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
818 		list_del_init(&p->ptrace_list);
819 		release_task(p);
820 	}
821 
822 }
823 
824 /*
825  * Send signals to all our closest relatives so that they know
826  * to properly mourn us..
827  */
828 static void exit_notify(struct task_struct *tsk, int group_dead)
829 {
830 	int state;
831 
832 	/*
833 	 * This does two things:
834 	 *
835   	 * A.  Make init inherit all the child processes
836 	 * B.  Check to see if any process groups have become orphaned
837 	 *	as a result of our exiting, and if they have any stopped
838 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
839 	 */
840 	forget_original_parent(tsk);
841 	exit_task_namespaces(tsk);
842 
843 	write_lock_irq(&tasklist_lock);
844 	if (group_dead)
845 		kill_orphaned_pgrp(tsk->group_leader, NULL);
846 
847 	/* Let father know we died
848 	 *
849 	 * Thread signals are configurable, but you aren't going to use
850 	 * that to send signals to arbitary processes.
851 	 * That stops right now.
852 	 *
853 	 * If the parent exec id doesn't match the exec id we saved
854 	 * when we started then we know the parent has changed security
855 	 * domain.
856 	 *
857 	 * If our self_exec id doesn't match our parent_exec_id then
858 	 * we have changed execution domain as these two values started
859 	 * the same after a fork.
860 	 */
861 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
862 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
863 	     tsk->self_exec_id != tsk->parent_exec_id) &&
864 	    !capable(CAP_KILL))
865 		tsk->exit_signal = SIGCHLD;
866 
867 	/* If something other than our normal parent is ptracing us, then
868 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
869 	 * only has special meaning to our real parent.
870 	 */
871 	if (!task_detached(tsk) && thread_group_empty(tsk)) {
872 		int signal = ptrace_reparented(tsk) ?
873 				SIGCHLD : tsk->exit_signal;
874 		do_notify_parent(tsk, signal);
875 	} else if (tsk->ptrace) {
876 		do_notify_parent(tsk, SIGCHLD);
877 	}
878 
879 	state = EXIT_ZOMBIE;
880 	if (task_detached(tsk) && likely(!tsk->ptrace))
881 		state = EXIT_DEAD;
882 	tsk->exit_state = state;
883 
884 	/* mt-exec, de_thread() is waiting for us */
885 	if (thread_group_leader(tsk) &&
886 	    tsk->signal->notify_count < 0 &&
887 	    tsk->signal->group_exit_task)
888 		wake_up_process(tsk->signal->group_exit_task);
889 
890 	write_unlock_irq(&tasklist_lock);
891 
892 	/* If the process is dead, release it - nobody will wait for it */
893 	if (state == EXIT_DEAD)
894 		release_task(tsk);
895 }
896 
897 #ifdef CONFIG_DEBUG_STACK_USAGE
898 static void check_stack_usage(void)
899 {
900 	static DEFINE_SPINLOCK(low_water_lock);
901 	static int lowest_to_date = THREAD_SIZE;
902 	unsigned long *n = end_of_stack(current);
903 	unsigned long free;
904 
905 	while (*n == 0)
906 		n++;
907 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
908 
909 	if (free >= lowest_to_date)
910 		return;
911 
912 	spin_lock(&low_water_lock);
913 	if (free < lowest_to_date) {
914 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
915 				"left\n",
916 				current->comm, free);
917 		lowest_to_date = free;
918 	}
919 	spin_unlock(&low_water_lock);
920 }
921 #else
922 static inline void check_stack_usage(void) {}
923 #endif
924 
925 static inline void exit_child_reaper(struct task_struct *tsk)
926 {
927 	if (likely(tsk->group_leader != task_child_reaper(tsk)))
928 		return;
929 
930 	if (tsk->nsproxy->pid_ns == &init_pid_ns)
931 		panic("Attempted to kill init!");
932 
933 	/*
934 	 * @tsk is the last thread in the 'cgroup-init' and is exiting.
935 	 * Terminate all remaining processes in the namespace and reap them
936 	 * before exiting @tsk.
937 	 *
938 	 * Note that @tsk (last thread of cgroup-init) may not necessarily
939 	 * be the child-reaper (i.e main thread of cgroup-init) of the
940 	 * namespace i.e the child_reaper may have already exited.
941 	 *
942 	 * Even after a child_reaper exits, we let it inherit orphaned children,
943 	 * because, pid_ns->child_reaper remains valid as long as there is
944 	 * at least one living sub-thread in the cgroup init.
945 
946 	 * This living sub-thread of the cgroup-init will be notified when
947 	 * a child inherited by the 'child-reaper' exits (do_notify_parent()
948 	 * uses __group_send_sig_info()). Further, when reaping child processes,
949 	 * do_wait() iterates over children of all living sub threads.
950 
951 	 * i.e even though 'child_reaper' thread is listed as the parent of the
952 	 * orphaned children, any living sub-thread in the cgroup-init can
953 	 * perform the role of the child_reaper.
954 	 */
955 	zap_pid_ns_processes(tsk->nsproxy->pid_ns);
956 }
957 
958 NORET_TYPE void do_exit(long code)
959 {
960 	struct task_struct *tsk = current;
961 	int group_dead;
962 
963 	profile_task_exit(tsk);
964 
965 	WARN_ON(atomic_read(&tsk->fs_excl));
966 
967 	if (unlikely(in_interrupt()))
968 		panic("Aiee, killing interrupt handler!");
969 	if (unlikely(!tsk->pid))
970 		panic("Attempted to kill the idle task!");
971 
972 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
973 		current->ptrace_message = code;
974 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
975 	}
976 
977 	/*
978 	 * We're taking recursive faults here in do_exit. Safest is to just
979 	 * leave this task alone and wait for reboot.
980 	 */
981 	if (unlikely(tsk->flags & PF_EXITING)) {
982 		printk(KERN_ALERT
983 			"Fixing recursive fault but reboot is needed!\n");
984 		/*
985 		 * We can do this unlocked here. The futex code uses
986 		 * this flag just to verify whether the pi state
987 		 * cleanup has been done or not. In the worst case it
988 		 * loops once more. We pretend that the cleanup was
989 		 * done as there is no way to return. Either the
990 		 * OWNER_DIED bit is set by now or we push the blocked
991 		 * task into the wait for ever nirwana as well.
992 		 */
993 		tsk->flags |= PF_EXITPIDONE;
994 		if (tsk->io_context)
995 			exit_io_context();
996 		set_current_state(TASK_UNINTERRUPTIBLE);
997 		schedule();
998 	}
999 
1000 	exit_signals(tsk);  /* sets PF_EXITING */
1001 	/*
1002 	 * tsk->flags are checked in the futex code to protect against
1003 	 * an exiting task cleaning up the robust pi futexes.
1004 	 */
1005 	smp_mb();
1006 	spin_unlock_wait(&tsk->pi_lock);
1007 
1008 	if (unlikely(in_atomic()))
1009 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1010 				current->comm, task_pid_nr(current),
1011 				preempt_count());
1012 
1013 	acct_update_integrals(tsk);
1014 	if (tsk->mm) {
1015 		update_hiwater_rss(tsk->mm);
1016 		update_hiwater_vm(tsk->mm);
1017 	}
1018 	group_dead = atomic_dec_and_test(&tsk->signal->live);
1019 	if (group_dead) {
1020 		exit_child_reaper(tsk);
1021 		hrtimer_cancel(&tsk->signal->real_timer);
1022 		exit_itimers(tsk->signal);
1023 	}
1024 	acct_collect(code, group_dead);
1025 #ifdef CONFIG_FUTEX
1026 	if (unlikely(tsk->robust_list))
1027 		exit_robust_list(tsk);
1028 #ifdef CONFIG_COMPAT
1029 	if (unlikely(tsk->compat_robust_list))
1030 		compat_exit_robust_list(tsk);
1031 #endif
1032 #endif
1033 	if (group_dead)
1034 		tty_audit_exit();
1035 	if (unlikely(tsk->audit_context))
1036 		audit_free(tsk);
1037 
1038 	tsk->exit_code = code;
1039 	taskstats_exit(tsk, group_dead);
1040 
1041 	exit_mm(tsk);
1042 
1043 	if (group_dead)
1044 		acct_process();
1045 	exit_sem(tsk);
1046 	exit_files(tsk);
1047 	exit_fs(tsk);
1048 	check_stack_usage();
1049 	exit_thread();
1050 	cgroup_exit(tsk, 1);
1051 	exit_keys(tsk);
1052 
1053 	if (group_dead && tsk->signal->leader)
1054 		disassociate_ctty(1);
1055 
1056 	module_put(task_thread_info(tsk)->exec_domain->module);
1057 	if (tsk->binfmt)
1058 		module_put(tsk->binfmt->module);
1059 
1060 	proc_exit_connector(tsk);
1061 	exit_notify(tsk, group_dead);
1062 #ifdef CONFIG_NUMA
1063 	mpol_put(tsk->mempolicy);
1064 	tsk->mempolicy = NULL;
1065 #endif
1066 #ifdef CONFIG_FUTEX
1067 	/*
1068 	 * This must happen late, after the PID is not
1069 	 * hashed anymore:
1070 	 */
1071 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1072 		exit_pi_state_list(tsk);
1073 	if (unlikely(current->pi_state_cache))
1074 		kfree(current->pi_state_cache);
1075 #endif
1076 	/*
1077 	 * Make sure we are holding no locks:
1078 	 */
1079 	debug_check_no_locks_held(tsk);
1080 	/*
1081 	 * We can do this unlocked here. The futex code uses this flag
1082 	 * just to verify whether the pi state cleanup has been done
1083 	 * or not. In the worst case it loops once more.
1084 	 */
1085 	tsk->flags |= PF_EXITPIDONE;
1086 
1087 	if (tsk->io_context)
1088 		exit_io_context();
1089 
1090 	if (tsk->splice_pipe)
1091 		__free_pipe_info(tsk->splice_pipe);
1092 
1093 	preempt_disable();
1094 	/* causes final put_task_struct in finish_task_switch(). */
1095 	tsk->state = TASK_DEAD;
1096 
1097 	schedule();
1098 	BUG();
1099 	/* Avoid "noreturn function does return".  */
1100 	for (;;)
1101 		cpu_relax();	/* For when BUG is null */
1102 }
1103 
1104 EXPORT_SYMBOL_GPL(do_exit);
1105 
1106 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1107 {
1108 	if (comp)
1109 		complete(comp);
1110 
1111 	do_exit(code);
1112 }
1113 
1114 EXPORT_SYMBOL(complete_and_exit);
1115 
1116 asmlinkage long sys_exit(int error_code)
1117 {
1118 	do_exit((error_code&0xff)<<8);
1119 }
1120 
1121 /*
1122  * Take down every thread in the group.  This is called by fatal signals
1123  * as well as by sys_exit_group (below).
1124  */
1125 NORET_TYPE void
1126 do_group_exit(int exit_code)
1127 {
1128 	struct signal_struct *sig = current->signal;
1129 
1130 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1131 
1132 	if (signal_group_exit(sig))
1133 		exit_code = sig->group_exit_code;
1134 	else if (!thread_group_empty(current)) {
1135 		struct sighand_struct *const sighand = current->sighand;
1136 		spin_lock_irq(&sighand->siglock);
1137 		if (signal_group_exit(sig))
1138 			/* Another thread got here before we took the lock.  */
1139 			exit_code = sig->group_exit_code;
1140 		else {
1141 			sig->group_exit_code = exit_code;
1142 			sig->flags = SIGNAL_GROUP_EXIT;
1143 			zap_other_threads(current);
1144 		}
1145 		spin_unlock_irq(&sighand->siglock);
1146 	}
1147 
1148 	do_exit(exit_code);
1149 	/* NOTREACHED */
1150 }
1151 
1152 /*
1153  * this kills every thread in the thread group. Note that any externally
1154  * wait4()-ing process will get the correct exit code - even if this
1155  * thread is not the thread group leader.
1156  */
1157 asmlinkage void sys_exit_group(int error_code)
1158 {
1159 	do_group_exit((error_code & 0xff) << 8);
1160 }
1161 
1162 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1163 {
1164 	struct pid *pid = NULL;
1165 	if (type == PIDTYPE_PID)
1166 		pid = task->pids[type].pid;
1167 	else if (type < PIDTYPE_MAX)
1168 		pid = task->group_leader->pids[type].pid;
1169 	return pid;
1170 }
1171 
1172 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1173 			  struct task_struct *p)
1174 {
1175 	int err;
1176 
1177 	if (type < PIDTYPE_MAX) {
1178 		if (task_pid_type(p, type) != pid)
1179 			return 0;
1180 	}
1181 
1182 	/*
1183 	 * Do not consider detached threads that are
1184 	 * not ptraced:
1185 	 */
1186 	if (task_detached(p) && !p->ptrace)
1187 		return 0;
1188 
1189 	/* Wait for all children (clone and not) if __WALL is set;
1190 	 * otherwise, wait for clone children *only* if __WCLONE is
1191 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1192 	 * A "clone" child here is one that reports to its parent
1193 	 * using a signal other than SIGCHLD.) */
1194 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1195 	    && !(options & __WALL))
1196 		return 0;
1197 
1198 	err = security_task_wait(p);
1199 	if (likely(!err))
1200 		return 1;
1201 
1202 	if (type != PIDTYPE_PID)
1203 		return 0;
1204 	/* This child was explicitly requested, abort */
1205 	read_unlock(&tasklist_lock);
1206 	return err;
1207 }
1208 
1209 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1210 			       int why, int status,
1211 			       struct siginfo __user *infop,
1212 			       struct rusage __user *rusagep)
1213 {
1214 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1215 
1216 	put_task_struct(p);
1217 	if (!retval)
1218 		retval = put_user(SIGCHLD, &infop->si_signo);
1219 	if (!retval)
1220 		retval = put_user(0, &infop->si_errno);
1221 	if (!retval)
1222 		retval = put_user((short)why, &infop->si_code);
1223 	if (!retval)
1224 		retval = put_user(pid, &infop->si_pid);
1225 	if (!retval)
1226 		retval = put_user(uid, &infop->si_uid);
1227 	if (!retval)
1228 		retval = put_user(status, &infop->si_status);
1229 	if (!retval)
1230 		retval = pid;
1231 	return retval;
1232 }
1233 
1234 /*
1235  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1236  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1237  * the lock and this task is uninteresting.  If we return nonzero, we have
1238  * released the lock and the system call should return.
1239  */
1240 static int wait_task_zombie(struct task_struct *p, int noreap,
1241 			    struct siginfo __user *infop,
1242 			    int __user *stat_addr, struct rusage __user *ru)
1243 {
1244 	unsigned long state;
1245 	int retval, status, traced;
1246 	pid_t pid = task_pid_vnr(p);
1247 
1248 	if (unlikely(noreap)) {
1249 		uid_t uid = p->uid;
1250 		int exit_code = p->exit_code;
1251 		int why, status;
1252 
1253 		get_task_struct(p);
1254 		read_unlock(&tasklist_lock);
1255 		if ((exit_code & 0x7f) == 0) {
1256 			why = CLD_EXITED;
1257 			status = exit_code >> 8;
1258 		} else {
1259 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1260 			status = exit_code & 0x7f;
1261 		}
1262 		return wait_noreap_copyout(p, pid, uid, why,
1263 					   status, infop, ru);
1264 	}
1265 
1266 	/*
1267 	 * Try to move the task's state to DEAD
1268 	 * only one thread is allowed to do this:
1269 	 */
1270 	state = xchg(&p->exit_state, EXIT_DEAD);
1271 	if (state != EXIT_ZOMBIE) {
1272 		BUG_ON(state != EXIT_DEAD);
1273 		return 0;
1274 	}
1275 
1276 	traced = ptrace_reparented(p);
1277 
1278 	if (likely(!traced)) {
1279 		struct signal_struct *psig;
1280 		struct signal_struct *sig;
1281 
1282 		/*
1283 		 * The resource counters for the group leader are in its
1284 		 * own task_struct.  Those for dead threads in the group
1285 		 * are in its signal_struct, as are those for the child
1286 		 * processes it has previously reaped.  All these
1287 		 * accumulate in the parent's signal_struct c* fields.
1288 		 *
1289 		 * We don't bother to take a lock here to protect these
1290 		 * p->signal fields, because they are only touched by
1291 		 * __exit_signal, which runs with tasklist_lock
1292 		 * write-locked anyway, and so is excluded here.  We do
1293 		 * need to protect the access to p->parent->signal fields,
1294 		 * as other threads in the parent group can be right
1295 		 * here reaping other children at the same time.
1296 		 */
1297 		spin_lock_irq(&p->parent->sighand->siglock);
1298 		psig = p->parent->signal;
1299 		sig = p->signal;
1300 		psig->cutime =
1301 			cputime_add(psig->cutime,
1302 			cputime_add(p->utime,
1303 			cputime_add(sig->utime,
1304 				    sig->cutime)));
1305 		psig->cstime =
1306 			cputime_add(psig->cstime,
1307 			cputime_add(p->stime,
1308 			cputime_add(sig->stime,
1309 				    sig->cstime)));
1310 		psig->cgtime =
1311 			cputime_add(psig->cgtime,
1312 			cputime_add(p->gtime,
1313 			cputime_add(sig->gtime,
1314 				    sig->cgtime)));
1315 		psig->cmin_flt +=
1316 			p->min_flt + sig->min_flt + sig->cmin_flt;
1317 		psig->cmaj_flt +=
1318 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1319 		psig->cnvcsw +=
1320 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1321 		psig->cnivcsw +=
1322 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1323 		psig->cinblock +=
1324 			task_io_get_inblock(p) +
1325 			sig->inblock + sig->cinblock;
1326 		psig->coublock +=
1327 			task_io_get_oublock(p) +
1328 			sig->oublock + sig->coublock;
1329 		spin_unlock_irq(&p->parent->sighand->siglock);
1330 	}
1331 
1332 	/*
1333 	 * Now we are sure this task is interesting, and no other
1334 	 * thread can reap it because we set its state to EXIT_DEAD.
1335 	 */
1336 	read_unlock(&tasklist_lock);
1337 
1338 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1339 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1340 		? p->signal->group_exit_code : p->exit_code;
1341 	if (!retval && stat_addr)
1342 		retval = put_user(status, stat_addr);
1343 	if (!retval && infop)
1344 		retval = put_user(SIGCHLD, &infop->si_signo);
1345 	if (!retval && infop)
1346 		retval = put_user(0, &infop->si_errno);
1347 	if (!retval && infop) {
1348 		int why;
1349 
1350 		if ((status & 0x7f) == 0) {
1351 			why = CLD_EXITED;
1352 			status >>= 8;
1353 		} else {
1354 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1355 			status &= 0x7f;
1356 		}
1357 		retval = put_user((short)why, &infop->si_code);
1358 		if (!retval)
1359 			retval = put_user(status, &infop->si_status);
1360 	}
1361 	if (!retval && infop)
1362 		retval = put_user(pid, &infop->si_pid);
1363 	if (!retval && infop)
1364 		retval = put_user(p->uid, &infop->si_uid);
1365 	if (!retval)
1366 		retval = pid;
1367 
1368 	if (traced) {
1369 		write_lock_irq(&tasklist_lock);
1370 		/* We dropped tasklist, ptracer could die and untrace */
1371 		ptrace_unlink(p);
1372 		/*
1373 		 * If this is not a detached task, notify the parent.
1374 		 * If it's still not detached after that, don't release
1375 		 * it now.
1376 		 */
1377 		if (!task_detached(p)) {
1378 			do_notify_parent(p, p->exit_signal);
1379 			if (!task_detached(p)) {
1380 				p->exit_state = EXIT_ZOMBIE;
1381 				p = NULL;
1382 			}
1383 		}
1384 		write_unlock_irq(&tasklist_lock);
1385 	}
1386 	if (p != NULL)
1387 		release_task(p);
1388 
1389 	return retval;
1390 }
1391 
1392 /*
1393  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1394  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1395  * the lock and this task is uninteresting.  If we return nonzero, we have
1396  * released the lock and the system call should return.
1397  */
1398 static int wait_task_stopped(struct task_struct *p,
1399 			     int noreap, struct siginfo __user *infop,
1400 			     int __user *stat_addr, struct rusage __user *ru)
1401 {
1402 	int retval, exit_code, why;
1403 	uid_t uid = 0; /* unneeded, required by compiler */
1404 	pid_t pid;
1405 
1406 	exit_code = 0;
1407 	spin_lock_irq(&p->sighand->siglock);
1408 
1409 	if (unlikely(!task_is_stopped_or_traced(p)))
1410 		goto unlock_sig;
1411 
1412 	if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1413 		/*
1414 		 * A group stop is in progress and this is the group leader.
1415 		 * We won't report until all threads have stopped.
1416 		 */
1417 		goto unlock_sig;
1418 
1419 	exit_code = p->exit_code;
1420 	if (!exit_code)
1421 		goto unlock_sig;
1422 
1423 	if (!noreap)
1424 		p->exit_code = 0;
1425 
1426 	uid = p->uid;
1427 unlock_sig:
1428 	spin_unlock_irq(&p->sighand->siglock);
1429 	if (!exit_code)
1430 		return 0;
1431 
1432 	/*
1433 	 * Now we are pretty sure this task is interesting.
1434 	 * Make sure it doesn't get reaped out from under us while we
1435 	 * give up the lock and then examine it below.  We don't want to
1436 	 * keep holding onto the tasklist_lock while we call getrusage and
1437 	 * possibly take page faults for user memory.
1438 	 */
1439 	get_task_struct(p);
1440 	pid = task_pid_vnr(p);
1441 	why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1442 	read_unlock(&tasklist_lock);
1443 
1444 	if (unlikely(noreap))
1445 		return wait_noreap_copyout(p, pid, uid,
1446 					   why, exit_code,
1447 					   infop, ru);
1448 
1449 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1450 	if (!retval && stat_addr)
1451 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1452 	if (!retval && infop)
1453 		retval = put_user(SIGCHLD, &infop->si_signo);
1454 	if (!retval && infop)
1455 		retval = put_user(0, &infop->si_errno);
1456 	if (!retval && infop)
1457 		retval = put_user((short)why, &infop->si_code);
1458 	if (!retval && infop)
1459 		retval = put_user(exit_code, &infop->si_status);
1460 	if (!retval && infop)
1461 		retval = put_user(pid, &infop->si_pid);
1462 	if (!retval && infop)
1463 		retval = put_user(uid, &infop->si_uid);
1464 	if (!retval)
1465 		retval = pid;
1466 	put_task_struct(p);
1467 
1468 	BUG_ON(!retval);
1469 	return retval;
1470 }
1471 
1472 /*
1473  * Handle do_wait work for one task in a live, non-stopped state.
1474  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1475  * the lock and this task is uninteresting.  If we return nonzero, we have
1476  * released the lock and the system call should return.
1477  */
1478 static int wait_task_continued(struct task_struct *p, int noreap,
1479 			       struct siginfo __user *infop,
1480 			       int __user *stat_addr, struct rusage __user *ru)
1481 {
1482 	int retval;
1483 	pid_t pid;
1484 	uid_t uid;
1485 
1486 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1487 		return 0;
1488 
1489 	spin_lock_irq(&p->sighand->siglock);
1490 	/* Re-check with the lock held.  */
1491 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1492 		spin_unlock_irq(&p->sighand->siglock);
1493 		return 0;
1494 	}
1495 	if (!noreap)
1496 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1497 	spin_unlock_irq(&p->sighand->siglock);
1498 
1499 	pid = task_pid_vnr(p);
1500 	uid = p->uid;
1501 	get_task_struct(p);
1502 	read_unlock(&tasklist_lock);
1503 
1504 	if (!infop) {
1505 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1506 		put_task_struct(p);
1507 		if (!retval && stat_addr)
1508 			retval = put_user(0xffff, stat_addr);
1509 		if (!retval)
1510 			retval = pid;
1511 	} else {
1512 		retval = wait_noreap_copyout(p, pid, uid,
1513 					     CLD_CONTINUED, SIGCONT,
1514 					     infop, ru);
1515 		BUG_ON(retval == 0);
1516 	}
1517 
1518 	return retval;
1519 }
1520 
1521 static long do_wait(enum pid_type type, struct pid *pid, int options,
1522 		    struct siginfo __user *infop, int __user *stat_addr,
1523 		    struct rusage __user *ru)
1524 {
1525 	DECLARE_WAITQUEUE(wait, current);
1526 	struct task_struct *tsk;
1527 	int flag, retval;
1528 
1529 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1530 repeat:
1531 	/* If there is nothing that can match our critier just get out */
1532 	retval = -ECHILD;
1533 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1534 		goto end;
1535 
1536 	/*
1537 	 * We will set this flag if we see any child that might later
1538 	 * match our criteria, even if we are not able to reap it yet.
1539 	 */
1540 	flag = retval = 0;
1541 	current->state = TASK_INTERRUPTIBLE;
1542 	read_lock(&tasklist_lock);
1543 	tsk = current;
1544 	do {
1545 		struct task_struct *p;
1546 
1547 		list_for_each_entry(p, &tsk->children, sibling) {
1548 			int ret = eligible_child(type, pid, options, p);
1549 			if (!ret)
1550 				continue;
1551 
1552 			if (unlikely(ret < 0)) {
1553 				retval = ret;
1554 			} else if (task_is_stopped_or_traced(p)) {
1555 				/*
1556 				 * It's stopped now, so it might later
1557 				 * continue, exit, or stop again.
1558 				 */
1559 				flag = 1;
1560 				if (!(p->ptrace & PT_PTRACED) &&
1561 				    !(options & WUNTRACED))
1562 					continue;
1563 
1564 				retval = wait_task_stopped(p,
1565 						(options & WNOWAIT), infop,
1566 						stat_addr, ru);
1567 			} else if (p->exit_state == EXIT_ZOMBIE &&
1568 					!delay_group_leader(p)) {
1569 				/*
1570 				 * We don't reap group leaders with subthreads.
1571 				 */
1572 				if (!likely(options & WEXITED))
1573 					continue;
1574 				retval = wait_task_zombie(p,
1575 						(options & WNOWAIT), infop,
1576 						stat_addr, ru);
1577 			} else if (p->exit_state != EXIT_DEAD) {
1578 				/*
1579 				 * It's running now, so it might later
1580 				 * exit, stop, or stop and then continue.
1581 				 */
1582 				flag = 1;
1583 				if (!unlikely(options & WCONTINUED))
1584 					continue;
1585 				retval = wait_task_continued(p,
1586 						(options & WNOWAIT), infop,
1587 						stat_addr, ru);
1588 			}
1589 			if (retval != 0) /* tasklist_lock released */
1590 				goto end;
1591 		}
1592 		if (!flag) {
1593 			list_for_each_entry(p, &tsk->ptrace_children,
1594 								ptrace_list) {
1595 				flag = eligible_child(type, pid, options, p);
1596 				if (!flag)
1597 					continue;
1598 				if (likely(flag > 0))
1599 					break;
1600 				retval = flag;
1601 				goto end;
1602 			}
1603 		}
1604 		if (options & __WNOTHREAD)
1605 			break;
1606 		tsk = next_thread(tsk);
1607 		BUG_ON(tsk->signal != current->signal);
1608 	} while (tsk != current);
1609 	read_unlock(&tasklist_lock);
1610 
1611 	if (flag) {
1612 		if (options & WNOHANG)
1613 			goto end;
1614 		retval = -ERESTARTSYS;
1615 		if (signal_pending(current))
1616 			goto end;
1617 		schedule();
1618 		goto repeat;
1619 	}
1620 	retval = -ECHILD;
1621 end:
1622 	current->state = TASK_RUNNING;
1623 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1624 	if (infop) {
1625 		if (retval > 0)
1626 			retval = 0;
1627 		else {
1628 			/*
1629 			 * For a WNOHANG return, clear out all the fields
1630 			 * we would set so the user can easily tell the
1631 			 * difference.
1632 			 */
1633 			if (!retval)
1634 				retval = put_user(0, &infop->si_signo);
1635 			if (!retval)
1636 				retval = put_user(0, &infop->si_errno);
1637 			if (!retval)
1638 				retval = put_user(0, &infop->si_code);
1639 			if (!retval)
1640 				retval = put_user(0, &infop->si_pid);
1641 			if (!retval)
1642 				retval = put_user(0, &infop->si_uid);
1643 			if (!retval)
1644 				retval = put_user(0, &infop->si_status);
1645 		}
1646 	}
1647 	return retval;
1648 }
1649 
1650 asmlinkage long sys_waitid(int which, pid_t upid,
1651 			   struct siginfo __user *infop, int options,
1652 			   struct rusage __user *ru)
1653 {
1654 	struct pid *pid = NULL;
1655 	enum pid_type type;
1656 	long ret;
1657 
1658 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1659 		return -EINVAL;
1660 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1661 		return -EINVAL;
1662 
1663 	switch (which) {
1664 	case P_ALL:
1665 		type = PIDTYPE_MAX;
1666 		break;
1667 	case P_PID:
1668 		type = PIDTYPE_PID;
1669 		if (upid <= 0)
1670 			return -EINVAL;
1671 		break;
1672 	case P_PGID:
1673 		type = PIDTYPE_PGID;
1674 		if (upid <= 0)
1675 			return -EINVAL;
1676 		break;
1677 	default:
1678 		return -EINVAL;
1679 	}
1680 
1681 	if (type < PIDTYPE_MAX)
1682 		pid = find_get_pid(upid);
1683 	ret = do_wait(type, pid, options, infop, NULL, ru);
1684 	put_pid(pid);
1685 
1686 	/* avoid REGPARM breakage on x86: */
1687 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1688 	return ret;
1689 }
1690 
1691 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1692 			  int options, struct rusage __user *ru)
1693 {
1694 	struct pid *pid = NULL;
1695 	enum pid_type type;
1696 	long ret;
1697 
1698 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1699 			__WNOTHREAD|__WCLONE|__WALL))
1700 		return -EINVAL;
1701 
1702 	if (upid == -1)
1703 		type = PIDTYPE_MAX;
1704 	else if (upid < 0) {
1705 		type = PIDTYPE_PGID;
1706 		pid = find_get_pid(-upid);
1707 	} else if (upid == 0) {
1708 		type = PIDTYPE_PGID;
1709 		pid = get_pid(task_pgrp(current));
1710 	} else /* upid > 0 */ {
1711 		type = PIDTYPE_PID;
1712 		pid = find_get_pid(upid);
1713 	}
1714 
1715 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1716 	put_pid(pid);
1717 
1718 	/* avoid REGPARM breakage on x86: */
1719 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1720 	return ret;
1721 }
1722 
1723 #ifdef __ARCH_WANT_SYS_WAITPID
1724 
1725 /*
1726  * sys_waitpid() remains for compatibility. waitpid() should be
1727  * implemented by calling sys_wait4() from libc.a.
1728  */
1729 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1730 {
1731 	return sys_wait4(pid, stat_addr, options, NULL);
1732 }
1733 
1734 #endif
1735