1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/compat.h> 43 #include <linux/pipe_fs_i.h> 44 #include <linux/audit.h> /* for audit_free() */ 45 #include <linux/resource.h> 46 #include <linux/blkdev.h> 47 #include <linux/task_io_accounting_ops.h> 48 49 #include <asm/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/pgtable.h> 52 #include <asm/mmu_context.h> 53 54 static void exit_mm(struct task_struct * tsk); 55 56 static inline int task_detached(struct task_struct *p) 57 { 58 return p->exit_signal == -1; 59 } 60 61 static void __unhash_process(struct task_struct *p) 62 { 63 nr_threads--; 64 detach_pid(p, PIDTYPE_PID); 65 if (thread_group_leader(p)) { 66 detach_pid(p, PIDTYPE_PGID); 67 detach_pid(p, PIDTYPE_SID); 68 69 list_del_rcu(&p->tasks); 70 __get_cpu_var(process_counts)--; 71 } 72 list_del_rcu(&p->thread_group); 73 remove_parent(p); 74 } 75 76 /* 77 * This function expects the tasklist_lock write-locked. 78 */ 79 static void __exit_signal(struct task_struct *tsk) 80 { 81 struct signal_struct *sig = tsk->signal; 82 struct sighand_struct *sighand; 83 84 BUG_ON(!sig); 85 BUG_ON(!atomic_read(&sig->count)); 86 87 rcu_read_lock(); 88 sighand = rcu_dereference(tsk->sighand); 89 spin_lock(&sighand->siglock); 90 91 posix_cpu_timers_exit(tsk); 92 if (atomic_dec_and_test(&sig->count)) 93 posix_cpu_timers_exit_group(tsk); 94 else { 95 /* 96 * If there is any task waiting for the group exit 97 * then notify it: 98 */ 99 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 100 wake_up_process(sig->group_exit_task); 101 102 if (tsk == sig->curr_target) 103 sig->curr_target = next_thread(tsk); 104 /* 105 * Accumulate here the counters for all threads but the 106 * group leader as they die, so they can be added into 107 * the process-wide totals when those are taken. 108 * The group leader stays around as a zombie as long 109 * as there are other threads. When it gets reaped, 110 * the exit.c code will add its counts into these totals. 111 * We won't ever get here for the group leader, since it 112 * will have been the last reference on the signal_struct. 113 */ 114 sig->utime = cputime_add(sig->utime, tsk->utime); 115 sig->stime = cputime_add(sig->stime, tsk->stime); 116 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 117 sig->min_flt += tsk->min_flt; 118 sig->maj_flt += tsk->maj_flt; 119 sig->nvcsw += tsk->nvcsw; 120 sig->nivcsw += tsk->nivcsw; 121 sig->inblock += task_io_get_inblock(tsk); 122 sig->oublock += task_io_get_oublock(tsk); 123 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 124 sig = NULL; /* Marker for below. */ 125 } 126 127 __unhash_process(tsk); 128 129 /* 130 * Do this under ->siglock, we can race with another thread 131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 132 */ 133 flush_sigqueue(&tsk->pending); 134 135 tsk->signal = NULL; 136 tsk->sighand = NULL; 137 spin_unlock(&sighand->siglock); 138 rcu_read_unlock(); 139 140 __cleanup_sighand(sighand); 141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 142 if (sig) { 143 flush_sigqueue(&sig->shared_pending); 144 taskstats_tgid_free(sig); 145 __cleanup_signal(sig); 146 } 147 } 148 149 static void delayed_put_task_struct(struct rcu_head *rhp) 150 { 151 put_task_struct(container_of(rhp, struct task_struct, rcu)); 152 } 153 154 void release_task(struct task_struct * p) 155 { 156 struct task_struct *leader; 157 int zap_leader; 158 repeat: 159 atomic_dec(&p->user->processes); 160 proc_flush_task(p); 161 write_lock_irq(&tasklist_lock); 162 ptrace_unlink(p); 163 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 164 __exit_signal(p); 165 166 /* 167 * If we are the last non-leader member of the thread 168 * group, and the leader is zombie, then notify the 169 * group leader's parent process. (if it wants notification.) 170 */ 171 zap_leader = 0; 172 leader = p->group_leader; 173 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 174 BUG_ON(task_detached(leader)); 175 do_notify_parent(leader, leader->exit_signal); 176 /* 177 * If we were the last child thread and the leader has 178 * exited already, and the leader's parent ignores SIGCHLD, 179 * then we are the one who should release the leader. 180 * 181 * do_notify_parent() will have marked it self-reaping in 182 * that case. 183 */ 184 zap_leader = task_detached(leader); 185 } 186 187 write_unlock_irq(&tasklist_lock); 188 release_thread(p); 189 call_rcu(&p->rcu, delayed_put_task_struct); 190 191 p = leader; 192 if (unlikely(zap_leader)) 193 goto repeat; 194 } 195 196 /* 197 * This checks not only the pgrp, but falls back on the pid if no 198 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 199 * without this... 200 * 201 * The caller must hold rcu lock or the tasklist lock. 202 */ 203 struct pid *session_of_pgrp(struct pid *pgrp) 204 { 205 struct task_struct *p; 206 struct pid *sid = NULL; 207 208 p = pid_task(pgrp, PIDTYPE_PGID); 209 if (p == NULL) 210 p = pid_task(pgrp, PIDTYPE_PID); 211 if (p != NULL) 212 sid = task_session(p); 213 214 return sid; 215 } 216 217 /* 218 * Determine if a process group is "orphaned", according to the POSIX 219 * definition in 2.2.2.52. Orphaned process groups are not to be affected 220 * by terminal-generated stop signals. Newly orphaned process groups are 221 * to receive a SIGHUP and a SIGCONT. 222 * 223 * "I ask you, have you ever known what it is to be an orphan?" 224 */ 225 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 226 { 227 struct task_struct *p; 228 229 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 230 if ((p == ignored_task) || 231 (p->exit_state && thread_group_empty(p)) || 232 is_global_init(p->real_parent)) 233 continue; 234 235 if (task_pgrp(p->real_parent) != pgrp && 236 task_session(p->real_parent) == task_session(p)) 237 return 0; 238 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 239 240 return 1; 241 } 242 243 int is_current_pgrp_orphaned(void) 244 { 245 int retval; 246 247 read_lock(&tasklist_lock); 248 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 249 read_unlock(&tasklist_lock); 250 251 return retval; 252 } 253 254 static int has_stopped_jobs(struct pid *pgrp) 255 { 256 int retval = 0; 257 struct task_struct *p; 258 259 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 260 if (!task_is_stopped(p)) 261 continue; 262 retval = 1; 263 break; 264 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 265 return retval; 266 } 267 268 /* 269 * Check to see if any process groups have become orphaned as 270 * a result of our exiting, and if they have any stopped jobs, 271 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 272 */ 273 static void 274 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 275 { 276 struct pid *pgrp = task_pgrp(tsk); 277 struct task_struct *ignored_task = tsk; 278 279 if (!parent) 280 /* exit: our father is in a different pgrp than 281 * we are and we were the only connection outside. 282 */ 283 parent = tsk->real_parent; 284 else 285 /* reparent: our child is in a different pgrp than 286 * we are, and it was the only connection outside. 287 */ 288 ignored_task = NULL; 289 290 if (task_pgrp(parent) != pgrp && 291 task_session(parent) == task_session(tsk) && 292 will_become_orphaned_pgrp(pgrp, ignored_task) && 293 has_stopped_jobs(pgrp)) { 294 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 295 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 296 } 297 } 298 299 /** 300 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 301 * 302 * If a kernel thread is launched as a result of a system call, or if 303 * it ever exits, it should generally reparent itself to kthreadd so it 304 * isn't in the way of other processes and is correctly cleaned up on exit. 305 * 306 * The various task state such as scheduling policy and priority may have 307 * been inherited from a user process, so we reset them to sane values here. 308 * 309 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 310 */ 311 static void reparent_to_kthreadd(void) 312 { 313 write_lock_irq(&tasklist_lock); 314 315 ptrace_unlink(current); 316 /* Reparent to init */ 317 remove_parent(current); 318 current->real_parent = current->parent = kthreadd_task; 319 add_parent(current); 320 321 /* Set the exit signal to SIGCHLD so we signal init on exit */ 322 current->exit_signal = SIGCHLD; 323 324 if (task_nice(current) < 0) 325 set_user_nice(current, 0); 326 /* cpus_allowed? */ 327 /* rt_priority? */ 328 /* signals? */ 329 security_task_reparent_to_init(current); 330 memcpy(current->signal->rlim, init_task.signal->rlim, 331 sizeof(current->signal->rlim)); 332 atomic_inc(&(INIT_USER->__count)); 333 write_unlock_irq(&tasklist_lock); 334 switch_uid(INIT_USER); 335 } 336 337 void __set_special_pids(struct pid *pid) 338 { 339 struct task_struct *curr = current->group_leader; 340 pid_t nr = pid_nr(pid); 341 342 if (task_session(curr) != pid) { 343 change_pid(curr, PIDTYPE_SID, pid); 344 set_task_session(curr, nr); 345 } 346 if (task_pgrp(curr) != pid) { 347 change_pid(curr, PIDTYPE_PGID, pid); 348 set_task_pgrp(curr, nr); 349 } 350 } 351 352 static void set_special_pids(struct pid *pid) 353 { 354 write_lock_irq(&tasklist_lock); 355 __set_special_pids(pid); 356 write_unlock_irq(&tasklist_lock); 357 } 358 359 /* 360 * Let kernel threads use this to say that they 361 * allow a certain signal (since daemonize() will 362 * have disabled all of them by default). 363 */ 364 int allow_signal(int sig) 365 { 366 if (!valid_signal(sig) || sig < 1) 367 return -EINVAL; 368 369 spin_lock_irq(¤t->sighand->siglock); 370 sigdelset(¤t->blocked, sig); 371 if (!current->mm) { 372 /* Kernel threads handle their own signals. 373 Let the signal code know it'll be handled, so 374 that they don't get converted to SIGKILL or 375 just silently dropped */ 376 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 377 } 378 recalc_sigpending(); 379 spin_unlock_irq(¤t->sighand->siglock); 380 return 0; 381 } 382 383 EXPORT_SYMBOL(allow_signal); 384 385 int disallow_signal(int sig) 386 { 387 if (!valid_signal(sig) || sig < 1) 388 return -EINVAL; 389 390 spin_lock_irq(¤t->sighand->siglock); 391 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 392 recalc_sigpending(); 393 spin_unlock_irq(¤t->sighand->siglock); 394 return 0; 395 } 396 397 EXPORT_SYMBOL(disallow_signal); 398 399 /* 400 * Put all the gunge required to become a kernel thread without 401 * attached user resources in one place where it belongs. 402 */ 403 404 void daemonize(const char *name, ...) 405 { 406 va_list args; 407 struct fs_struct *fs; 408 sigset_t blocked; 409 410 va_start(args, name); 411 vsnprintf(current->comm, sizeof(current->comm), name, args); 412 va_end(args); 413 414 /* 415 * If we were started as result of loading a module, close all of the 416 * user space pages. We don't need them, and if we didn't close them 417 * they would be locked into memory. 418 */ 419 exit_mm(current); 420 /* 421 * We don't want to have TIF_FREEZE set if the system-wide hibernation 422 * or suspend transition begins right now. 423 */ 424 current->flags |= PF_NOFREEZE; 425 426 if (current->nsproxy != &init_nsproxy) { 427 get_nsproxy(&init_nsproxy); 428 switch_task_namespaces(current, &init_nsproxy); 429 } 430 set_special_pids(&init_struct_pid); 431 proc_clear_tty(current); 432 433 /* Block and flush all signals */ 434 sigfillset(&blocked); 435 sigprocmask(SIG_BLOCK, &blocked, NULL); 436 flush_signals(current); 437 438 /* Become as one with the init task */ 439 440 exit_fs(current); /* current->fs->count--; */ 441 fs = init_task.fs; 442 current->fs = fs; 443 atomic_inc(&fs->count); 444 445 exit_files(current); 446 current->files = init_task.files; 447 atomic_inc(¤t->files->count); 448 449 reparent_to_kthreadd(); 450 } 451 452 EXPORT_SYMBOL(daemonize); 453 454 static void close_files(struct files_struct * files) 455 { 456 int i, j; 457 struct fdtable *fdt; 458 459 j = 0; 460 461 /* 462 * It is safe to dereference the fd table without RCU or 463 * ->file_lock because this is the last reference to the 464 * files structure. 465 */ 466 fdt = files_fdtable(files); 467 for (;;) { 468 unsigned long set; 469 i = j * __NFDBITS; 470 if (i >= fdt->max_fds) 471 break; 472 set = fdt->open_fds->fds_bits[j++]; 473 while (set) { 474 if (set & 1) { 475 struct file * file = xchg(&fdt->fd[i], NULL); 476 if (file) { 477 filp_close(file, files); 478 cond_resched(); 479 } 480 } 481 i++; 482 set >>= 1; 483 } 484 } 485 } 486 487 struct files_struct *get_files_struct(struct task_struct *task) 488 { 489 struct files_struct *files; 490 491 task_lock(task); 492 files = task->files; 493 if (files) 494 atomic_inc(&files->count); 495 task_unlock(task); 496 497 return files; 498 } 499 500 void put_files_struct(struct files_struct *files) 501 { 502 struct fdtable *fdt; 503 504 if (atomic_dec_and_test(&files->count)) { 505 close_files(files); 506 /* 507 * Free the fd and fdset arrays if we expanded them. 508 * If the fdtable was embedded, pass files for freeing 509 * at the end of the RCU grace period. Otherwise, 510 * you can free files immediately. 511 */ 512 fdt = files_fdtable(files); 513 if (fdt != &files->fdtab) 514 kmem_cache_free(files_cachep, files); 515 free_fdtable(fdt); 516 } 517 } 518 519 void reset_files_struct(struct files_struct *files) 520 { 521 struct task_struct *tsk = current; 522 struct files_struct *old; 523 524 old = tsk->files; 525 task_lock(tsk); 526 tsk->files = files; 527 task_unlock(tsk); 528 put_files_struct(old); 529 } 530 531 void exit_files(struct task_struct *tsk) 532 { 533 struct files_struct * files = tsk->files; 534 535 if (files) { 536 task_lock(tsk); 537 tsk->files = NULL; 538 task_unlock(tsk); 539 put_files_struct(files); 540 } 541 } 542 543 void put_fs_struct(struct fs_struct *fs) 544 { 545 /* No need to hold fs->lock if we are killing it */ 546 if (atomic_dec_and_test(&fs->count)) { 547 path_put(&fs->root); 548 path_put(&fs->pwd); 549 if (fs->altroot.dentry) 550 path_put(&fs->altroot); 551 kmem_cache_free(fs_cachep, fs); 552 } 553 } 554 555 void exit_fs(struct task_struct *tsk) 556 { 557 struct fs_struct * fs = tsk->fs; 558 559 if (fs) { 560 task_lock(tsk); 561 tsk->fs = NULL; 562 task_unlock(tsk); 563 put_fs_struct(fs); 564 } 565 } 566 567 EXPORT_SYMBOL_GPL(exit_fs); 568 569 #ifdef CONFIG_MM_OWNER 570 /* 571 * Task p is exiting and it owned mm, lets find a new owner for it 572 */ 573 static inline int 574 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 575 { 576 /* 577 * If there are other users of the mm and the owner (us) is exiting 578 * we need to find a new owner to take on the responsibility. 579 */ 580 if (!mm) 581 return 0; 582 if (atomic_read(&mm->mm_users) <= 1) 583 return 0; 584 if (mm->owner != p) 585 return 0; 586 return 1; 587 } 588 589 void mm_update_next_owner(struct mm_struct *mm) 590 { 591 struct task_struct *c, *g, *p = current; 592 593 retry: 594 if (!mm_need_new_owner(mm, p)) 595 return; 596 597 read_lock(&tasklist_lock); 598 /* 599 * Search in the children 600 */ 601 list_for_each_entry(c, &p->children, sibling) { 602 if (c->mm == mm) 603 goto assign_new_owner; 604 } 605 606 /* 607 * Search in the siblings 608 */ 609 list_for_each_entry(c, &p->parent->children, sibling) { 610 if (c->mm == mm) 611 goto assign_new_owner; 612 } 613 614 /* 615 * Search through everything else. We should not get 616 * here often 617 */ 618 do_each_thread(g, c) { 619 if (c->mm == mm) 620 goto assign_new_owner; 621 } while_each_thread(g, c); 622 623 read_unlock(&tasklist_lock); 624 return; 625 626 assign_new_owner: 627 BUG_ON(c == p); 628 get_task_struct(c); 629 /* 630 * The task_lock protects c->mm from changing. 631 * We always want mm->owner->mm == mm 632 */ 633 task_lock(c); 634 /* 635 * Delay read_unlock() till we have the task_lock() 636 * to ensure that c does not slip away underneath us 637 */ 638 read_unlock(&tasklist_lock); 639 if (c->mm != mm) { 640 task_unlock(c); 641 put_task_struct(c); 642 goto retry; 643 } 644 cgroup_mm_owner_callbacks(mm->owner, c); 645 mm->owner = c; 646 task_unlock(c); 647 put_task_struct(c); 648 } 649 #endif /* CONFIG_MM_OWNER */ 650 651 /* 652 * Turn us into a lazy TLB process if we 653 * aren't already.. 654 */ 655 static void exit_mm(struct task_struct * tsk) 656 { 657 struct mm_struct *mm = tsk->mm; 658 659 mm_release(tsk, mm); 660 if (!mm) 661 return; 662 /* 663 * Serialize with any possible pending coredump. 664 * We must hold mmap_sem around checking core_waiters 665 * and clearing tsk->mm. The core-inducing thread 666 * will increment core_waiters for each thread in the 667 * group with ->mm != NULL. 668 */ 669 down_read(&mm->mmap_sem); 670 if (mm->core_waiters) { 671 up_read(&mm->mmap_sem); 672 down_write(&mm->mmap_sem); 673 if (!--mm->core_waiters) 674 complete(mm->core_startup_done); 675 up_write(&mm->mmap_sem); 676 677 wait_for_completion(&mm->core_done); 678 down_read(&mm->mmap_sem); 679 } 680 atomic_inc(&mm->mm_count); 681 BUG_ON(mm != tsk->active_mm); 682 /* more a memory barrier than a real lock */ 683 task_lock(tsk); 684 tsk->mm = NULL; 685 up_read(&mm->mmap_sem); 686 enter_lazy_tlb(mm, current); 687 /* We don't want this task to be frozen prematurely */ 688 clear_freeze_flag(tsk); 689 task_unlock(tsk); 690 mm_update_next_owner(mm); 691 mmput(mm); 692 } 693 694 static void 695 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 696 { 697 if (p->pdeath_signal) 698 /* We already hold the tasklist_lock here. */ 699 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 700 701 /* Move the child from its dying parent to the new one. */ 702 if (unlikely(traced)) { 703 /* Preserve ptrace links if someone else is tracing this child. */ 704 list_del_init(&p->ptrace_list); 705 if (ptrace_reparented(p)) 706 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 707 } else { 708 /* If this child is being traced, then we're the one tracing it 709 * anyway, so let go of it. 710 */ 711 p->ptrace = 0; 712 remove_parent(p); 713 p->parent = p->real_parent; 714 add_parent(p); 715 716 if (task_is_traced(p)) { 717 /* 718 * If it was at a trace stop, turn it into 719 * a normal stop since it's no longer being 720 * traced. 721 */ 722 ptrace_untrace(p); 723 } 724 } 725 726 /* If this is a threaded reparent there is no need to 727 * notify anyone anything has happened. 728 */ 729 if (same_thread_group(p->real_parent, father)) 730 return; 731 732 /* We don't want people slaying init. */ 733 if (!task_detached(p)) 734 p->exit_signal = SIGCHLD; 735 736 /* If we'd notified the old parent about this child's death, 737 * also notify the new parent. 738 */ 739 if (!traced && p->exit_state == EXIT_ZOMBIE && 740 !task_detached(p) && thread_group_empty(p)) 741 do_notify_parent(p, p->exit_signal); 742 743 kill_orphaned_pgrp(p, father); 744 } 745 746 /* 747 * When we die, we re-parent all our children. 748 * Try to give them to another thread in our thread 749 * group, and if no such member exists, give it to 750 * the child reaper process (ie "init") in our pid 751 * space. 752 */ 753 static void forget_original_parent(struct task_struct *father) 754 { 755 struct task_struct *p, *n, *reaper = father; 756 struct list_head ptrace_dead; 757 758 INIT_LIST_HEAD(&ptrace_dead); 759 760 write_lock_irq(&tasklist_lock); 761 762 do { 763 reaper = next_thread(reaper); 764 if (reaper == father) { 765 reaper = task_child_reaper(father); 766 break; 767 } 768 } while (reaper->flags & PF_EXITING); 769 770 /* 771 * There are only two places where our children can be: 772 * 773 * - in our child list 774 * - in our ptraced child list 775 * 776 * Search them and reparent children. 777 */ 778 list_for_each_entry_safe(p, n, &father->children, sibling) { 779 int ptrace; 780 781 ptrace = p->ptrace; 782 783 /* if father isn't the real parent, then ptrace must be enabled */ 784 BUG_ON(father != p->real_parent && !ptrace); 785 786 if (father == p->real_parent) { 787 /* reparent with a reaper, real father it's us */ 788 p->real_parent = reaper; 789 reparent_thread(p, father, 0); 790 } else { 791 /* reparent ptraced task to its real parent */ 792 __ptrace_unlink (p); 793 if (p->exit_state == EXIT_ZOMBIE && !task_detached(p) && 794 thread_group_empty(p)) 795 do_notify_parent(p, p->exit_signal); 796 } 797 798 /* 799 * if the ptraced child is a detached zombie we must collect 800 * it before we exit, or it will remain zombie forever since 801 * we prevented it from self-reap itself while it was being 802 * traced by us, to be able to see it in wait4. 803 */ 804 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && task_detached(p))) 805 list_add(&p->ptrace_list, &ptrace_dead); 806 } 807 808 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) { 809 p->real_parent = reaper; 810 reparent_thread(p, father, 1); 811 } 812 813 write_unlock_irq(&tasklist_lock); 814 BUG_ON(!list_empty(&father->children)); 815 BUG_ON(!list_empty(&father->ptrace_children)); 816 817 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) { 818 list_del_init(&p->ptrace_list); 819 release_task(p); 820 } 821 822 } 823 824 /* 825 * Send signals to all our closest relatives so that they know 826 * to properly mourn us.. 827 */ 828 static void exit_notify(struct task_struct *tsk, int group_dead) 829 { 830 int state; 831 832 /* 833 * This does two things: 834 * 835 * A. Make init inherit all the child processes 836 * B. Check to see if any process groups have become orphaned 837 * as a result of our exiting, and if they have any stopped 838 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 839 */ 840 forget_original_parent(tsk); 841 exit_task_namespaces(tsk); 842 843 write_lock_irq(&tasklist_lock); 844 if (group_dead) 845 kill_orphaned_pgrp(tsk->group_leader, NULL); 846 847 /* Let father know we died 848 * 849 * Thread signals are configurable, but you aren't going to use 850 * that to send signals to arbitary processes. 851 * That stops right now. 852 * 853 * If the parent exec id doesn't match the exec id we saved 854 * when we started then we know the parent has changed security 855 * domain. 856 * 857 * If our self_exec id doesn't match our parent_exec_id then 858 * we have changed execution domain as these two values started 859 * the same after a fork. 860 */ 861 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 862 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 863 tsk->self_exec_id != tsk->parent_exec_id) && 864 !capable(CAP_KILL)) 865 tsk->exit_signal = SIGCHLD; 866 867 /* If something other than our normal parent is ptracing us, then 868 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 869 * only has special meaning to our real parent. 870 */ 871 if (!task_detached(tsk) && thread_group_empty(tsk)) { 872 int signal = ptrace_reparented(tsk) ? 873 SIGCHLD : tsk->exit_signal; 874 do_notify_parent(tsk, signal); 875 } else if (tsk->ptrace) { 876 do_notify_parent(tsk, SIGCHLD); 877 } 878 879 state = EXIT_ZOMBIE; 880 if (task_detached(tsk) && likely(!tsk->ptrace)) 881 state = EXIT_DEAD; 882 tsk->exit_state = state; 883 884 /* mt-exec, de_thread() is waiting for us */ 885 if (thread_group_leader(tsk) && 886 tsk->signal->notify_count < 0 && 887 tsk->signal->group_exit_task) 888 wake_up_process(tsk->signal->group_exit_task); 889 890 write_unlock_irq(&tasklist_lock); 891 892 /* If the process is dead, release it - nobody will wait for it */ 893 if (state == EXIT_DEAD) 894 release_task(tsk); 895 } 896 897 #ifdef CONFIG_DEBUG_STACK_USAGE 898 static void check_stack_usage(void) 899 { 900 static DEFINE_SPINLOCK(low_water_lock); 901 static int lowest_to_date = THREAD_SIZE; 902 unsigned long *n = end_of_stack(current); 903 unsigned long free; 904 905 while (*n == 0) 906 n++; 907 free = (unsigned long)n - (unsigned long)end_of_stack(current); 908 909 if (free >= lowest_to_date) 910 return; 911 912 spin_lock(&low_water_lock); 913 if (free < lowest_to_date) { 914 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 915 "left\n", 916 current->comm, free); 917 lowest_to_date = free; 918 } 919 spin_unlock(&low_water_lock); 920 } 921 #else 922 static inline void check_stack_usage(void) {} 923 #endif 924 925 static inline void exit_child_reaper(struct task_struct *tsk) 926 { 927 if (likely(tsk->group_leader != task_child_reaper(tsk))) 928 return; 929 930 if (tsk->nsproxy->pid_ns == &init_pid_ns) 931 panic("Attempted to kill init!"); 932 933 /* 934 * @tsk is the last thread in the 'cgroup-init' and is exiting. 935 * Terminate all remaining processes in the namespace and reap them 936 * before exiting @tsk. 937 * 938 * Note that @tsk (last thread of cgroup-init) may not necessarily 939 * be the child-reaper (i.e main thread of cgroup-init) of the 940 * namespace i.e the child_reaper may have already exited. 941 * 942 * Even after a child_reaper exits, we let it inherit orphaned children, 943 * because, pid_ns->child_reaper remains valid as long as there is 944 * at least one living sub-thread in the cgroup init. 945 946 * This living sub-thread of the cgroup-init will be notified when 947 * a child inherited by the 'child-reaper' exits (do_notify_parent() 948 * uses __group_send_sig_info()). Further, when reaping child processes, 949 * do_wait() iterates over children of all living sub threads. 950 951 * i.e even though 'child_reaper' thread is listed as the parent of the 952 * orphaned children, any living sub-thread in the cgroup-init can 953 * perform the role of the child_reaper. 954 */ 955 zap_pid_ns_processes(tsk->nsproxy->pid_ns); 956 } 957 958 NORET_TYPE void do_exit(long code) 959 { 960 struct task_struct *tsk = current; 961 int group_dead; 962 963 profile_task_exit(tsk); 964 965 WARN_ON(atomic_read(&tsk->fs_excl)); 966 967 if (unlikely(in_interrupt())) 968 panic("Aiee, killing interrupt handler!"); 969 if (unlikely(!tsk->pid)) 970 panic("Attempted to kill the idle task!"); 971 972 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 973 current->ptrace_message = code; 974 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 975 } 976 977 /* 978 * We're taking recursive faults here in do_exit. Safest is to just 979 * leave this task alone and wait for reboot. 980 */ 981 if (unlikely(tsk->flags & PF_EXITING)) { 982 printk(KERN_ALERT 983 "Fixing recursive fault but reboot is needed!\n"); 984 /* 985 * We can do this unlocked here. The futex code uses 986 * this flag just to verify whether the pi state 987 * cleanup has been done or not. In the worst case it 988 * loops once more. We pretend that the cleanup was 989 * done as there is no way to return. Either the 990 * OWNER_DIED bit is set by now or we push the blocked 991 * task into the wait for ever nirwana as well. 992 */ 993 tsk->flags |= PF_EXITPIDONE; 994 if (tsk->io_context) 995 exit_io_context(); 996 set_current_state(TASK_UNINTERRUPTIBLE); 997 schedule(); 998 } 999 1000 exit_signals(tsk); /* sets PF_EXITING */ 1001 /* 1002 * tsk->flags are checked in the futex code to protect against 1003 * an exiting task cleaning up the robust pi futexes. 1004 */ 1005 smp_mb(); 1006 spin_unlock_wait(&tsk->pi_lock); 1007 1008 if (unlikely(in_atomic())) 1009 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 1010 current->comm, task_pid_nr(current), 1011 preempt_count()); 1012 1013 acct_update_integrals(tsk); 1014 if (tsk->mm) { 1015 update_hiwater_rss(tsk->mm); 1016 update_hiwater_vm(tsk->mm); 1017 } 1018 group_dead = atomic_dec_and_test(&tsk->signal->live); 1019 if (group_dead) { 1020 exit_child_reaper(tsk); 1021 hrtimer_cancel(&tsk->signal->real_timer); 1022 exit_itimers(tsk->signal); 1023 } 1024 acct_collect(code, group_dead); 1025 #ifdef CONFIG_FUTEX 1026 if (unlikely(tsk->robust_list)) 1027 exit_robust_list(tsk); 1028 #ifdef CONFIG_COMPAT 1029 if (unlikely(tsk->compat_robust_list)) 1030 compat_exit_robust_list(tsk); 1031 #endif 1032 #endif 1033 if (group_dead) 1034 tty_audit_exit(); 1035 if (unlikely(tsk->audit_context)) 1036 audit_free(tsk); 1037 1038 tsk->exit_code = code; 1039 taskstats_exit(tsk, group_dead); 1040 1041 exit_mm(tsk); 1042 1043 if (group_dead) 1044 acct_process(); 1045 exit_sem(tsk); 1046 exit_files(tsk); 1047 exit_fs(tsk); 1048 check_stack_usage(); 1049 exit_thread(); 1050 cgroup_exit(tsk, 1); 1051 exit_keys(tsk); 1052 1053 if (group_dead && tsk->signal->leader) 1054 disassociate_ctty(1); 1055 1056 module_put(task_thread_info(tsk)->exec_domain->module); 1057 if (tsk->binfmt) 1058 module_put(tsk->binfmt->module); 1059 1060 proc_exit_connector(tsk); 1061 exit_notify(tsk, group_dead); 1062 #ifdef CONFIG_NUMA 1063 mpol_put(tsk->mempolicy); 1064 tsk->mempolicy = NULL; 1065 #endif 1066 #ifdef CONFIG_FUTEX 1067 /* 1068 * This must happen late, after the PID is not 1069 * hashed anymore: 1070 */ 1071 if (unlikely(!list_empty(&tsk->pi_state_list))) 1072 exit_pi_state_list(tsk); 1073 if (unlikely(current->pi_state_cache)) 1074 kfree(current->pi_state_cache); 1075 #endif 1076 /* 1077 * Make sure we are holding no locks: 1078 */ 1079 debug_check_no_locks_held(tsk); 1080 /* 1081 * We can do this unlocked here. The futex code uses this flag 1082 * just to verify whether the pi state cleanup has been done 1083 * or not. In the worst case it loops once more. 1084 */ 1085 tsk->flags |= PF_EXITPIDONE; 1086 1087 if (tsk->io_context) 1088 exit_io_context(); 1089 1090 if (tsk->splice_pipe) 1091 __free_pipe_info(tsk->splice_pipe); 1092 1093 preempt_disable(); 1094 /* causes final put_task_struct in finish_task_switch(). */ 1095 tsk->state = TASK_DEAD; 1096 1097 schedule(); 1098 BUG(); 1099 /* Avoid "noreturn function does return". */ 1100 for (;;) 1101 cpu_relax(); /* For when BUG is null */ 1102 } 1103 1104 EXPORT_SYMBOL_GPL(do_exit); 1105 1106 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1107 { 1108 if (comp) 1109 complete(comp); 1110 1111 do_exit(code); 1112 } 1113 1114 EXPORT_SYMBOL(complete_and_exit); 1115 1116 asmlinkage long sys_exit(int error_code) 1117 { 1118 do_exit((error_code&0xff)<<8); 1119 } 1120 1121 /* 1122 * Take down every thread in the group. This is called by fatal signals 1123 * as well as by sys_exit_group (below). 1124 */ 1125 NORET_TYPE void 1126 do_group_exit(int exit_code) 1127 { 1128 struct signal_struct *sig = current->signal; 1129 1130 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1131 1132 if (signal_group_exit(sig)) 1133 exit_code = sig->group_exit_code; 1134 else if (!thread_group_empty(current)) { 1135 struct sighand_struct *const sighand = current->sighand; 1136 spin_lock_irq(&sighand->siglock); 1137 if (signal_group_exit(sig)) 1138 /* Another thread got here before we took the lock. */ 1139 exit_code = sig->group_exit_code; 1140 else { 1141 sig->group_exit_code = exit_code; 1142 sig->flags = SIGNAL_GROUP_EXIT; 1143 zap_other_threads(current); 1144 } 1145 spin_unlock_irq(&sighand->siglock); 1146 } 1147 1148 do_exit(exit_code); 1149 /* NOTREACHED */ 1150 } 1151 1152 /* 1153 * this kills every thread in the thread group. Note that any externally 1154 * wait4()-ing process will get the correct exit code - even if this 1155 * thread is not the thread group leader. 1156 */ 1157 asmlinkage void sys_exit_group(int error_code) 1158 { 1159 do_group_exit((error_code & 0xff) << 8); 1160 } 1161 1162 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1163 { 1164 struct pid *pid = NULL; 1165 if (type == PIDTYPE_PID) 1166 pid = task->pids[type].pid; 1167 else if (type < PIDTYPE_MAX) 1168 pid = task->group_leader->pids[type].pid; 1169 return pid; 1170 } 1171 1172 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1173 struct task_struct *p) 1174 { 1175 int err; 1176 1177 if (type < PIDTYPE_MAX) { 1178 if (task_pid_type(p, type) != pid) 1179 return 0; 1180 } 1181 1182 /* 1183 * Do not consider detached threads that are 1184 * not ptraced: 1185 */ 1186 if (task_detached(p) && !p->ptrace) 1187 return 0; 1188 1189 /* Wait for all children (clone and not) if __WALL is set; 1190 * otherwise, wait for clone children *only* if __WCLONE is 1191 * set; otherwise, wait for non-clone children *only*. (Note: 1192 * A "clone" child here is one that reports to its parent 1193 * using a signal other than SIGCHLD.) */ 1194 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1195 && !(options & __WALL)) 1196 return 0; 1197 1198 err = security_task_wait(p); 1199 if (likely(!err)) 1200 return 1; 1201 1202 if (type != PIDTYPE_PID) 1203 return 0; 1204 /* This child was explicitly requested, abort */ 1205 read_unlock(&tasklist_lock); 1206 return err; 1207 } 1208 1209 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1210 int why, int status, 1211 struct siginfo __user *infop, 1212 struct rusage __user *rusagep) 1213 { 1214 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1215 1216 put_task_struct(p); 1217 if (!retval) 1218 retval = put_user(SIGCHLD, &infop->si_signo); 1219 if (!retval) 1220 retval = put_user(0, &infop->si_errno); 1221 if (!retval) 1222 retval = put_user((short)why, &infop->si_code); 1223 if (!retval) 1224 retval = put_user(pid, &infop->si_pid); 1225 if (!retval) 1226 retval = put_user(uid, &infop->si_uid); 1227 if (!retval) 1228 retval = put_user(status, &infop->si_status); 1229 if (!retval) 1230 retval = pid; 1231 return retval; 1232 } 1233 1234 /* 1235 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1236 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1237 * the lock and this task is uninteresting. If we return nonzero, we have 1238 * released the lock and the system call should return. 1239 */ 1240 static int wait_task_zombie(struct task_struct *p, int noreap, 1241 struct siginfo __user *infop, 1242 int __user *stat_addr, struct rusage __user *ru) 1243 { 1244 unsigned long state; 1245 int retval, status, traced; 1246 pid_t pid = task_pid_vnr(p); 1247 1248 if (unlikely(noreap)) { 1249 uid_t uid = p->uid; 1250 int exit_code = p->exit_code; 1251 int why, status; 1252 1253 get_task_struct(p); 1254 read_unlock(&tasklist_lock); 1255 if ((exit_code & 0x7f) == 0) { 1256 why = CLD_EXITED; 1257 status = exit_code >> 8; 1258 } else { 1259 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1260 status = exit_code & 0x7f; 1261 } 1262 return wait_noreap_copyout(p, pid, uid, why, 1263 status, infop, ru); 1264 } 1265 1266 /* 1267 * Try to move the task's state to DEAD 1268 * only one thread is allowed to do this: 1269 */ 1270 state = xchg(&p->exit_state, EXIT_DEAD); 1271 if (state != EXIT_ZOMBIE) { 1272 BUG_ON(state != EXIT_DEAD); 1273 return 0; 1274 } 1275 1276 traced = ptrace_reparented(p); 1277 1278 if (likely(!traced)) { 1279 struct signal_struct *psig; 1280 struct signal_struct *sig; 1281 1282 /* 1283 * The resource counters for the group leader are in its 1284 * own task_struct. Those for dead threads in the group 1285 * are in its signal_struct, as are those for the child 1286 * processes it has previously reaped. All these 1287 * accumulate in the parent's signal_struct c* fields. 1288 * 1289 * We don't bother to take a lock here to protect these 1290 * p->signal fields, because they are only touched by 1291 * __exit_signal, which runs with tasklist_lock 1292 * write-locked anyway, and so is excluded here. We do 1293 * need to protect the access to p->parent->signal fields, 1294 * as other threads in the parent group can be right 1295 * here reaping other children at the same time. 1296 */ 1297 spin_lock_irq(&p->parent->sighand->siglock); 1298 psig = p->parent->signal; 1299 sig = p->signal; 1300 psig->cutime = 1301 cputime_add(psig->cutime, 1302 cputime_add(p->utime, 1303 cputime_add(sig->utime, 1304 sig->cutime))); 1305 psig->cstime = 1306 cputime_add(psig->cstime, 1307 cputime_add(p->stime, 1308 cputime_add(sig->stime, 1309 sig->cstime))); 1310 psig->cgtime = 1311 cputime_add(psig->cgtime, 1312 cputime_add(p->gtime, 1313 cputime_add(sig->gtime, 1314 sig->cgtime))); 1315 psig->cmin_flt += 1316 p->min_flt + sig->min_flt + sig->cmin_flt; 1317 psig->cmaj_flt += 1318 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1319 psig->cnvcsw += 1320 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1321 psig->cnivcsw += 1322 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1323 psig->cinblock += 1324 task_io_get_inblock(p) + 1325 sig->inblock + sig->cinblock; 1326 psig->coublock += 1327 task_io_get_oublock(p) + 1328 sig->oublock + sig->coublock; 1329 spin_unlock_irq(&p->parent->sighand->siglock); 1330 } 1331 1332 /* 1333 * Now we are sure this task is interesting, and no other 1334 * thread can reap it because we set its state to EXIT_DEAD. 1335 */ 1336 read_unlock(&tasklist_lock); 1337 1338 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1339 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1340 ? p->signal->group_exit_code : p->exit_code; 1341 if (!retval && stat_addr) 1342 retval = put_user(status, stat_addr); 1343 if (!retval && infop) 1344 retval = put_user(SIGCHLD, &infop->si_signo); 1345 if (!retval && infop) 1346 retval = put_user(0, &infop->si_errno); 1347 if (!retval && infop) { 1348 int why; 1349 1350 if ((status & 0x7f) == 0) { 1351 why = CLD_EXITED; 1352 status >>= 8; 1353 } else { 1354 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1355 status &= 0x7f; 1356 } 1357 retval = put_user((short)why, &infop->si_code); 1358 if (!retval) 1359 retval = put_user(status, &infop->si_status); 1360 } 1361 if (!retval && infop) 1362 retval = put_user(pid, &infop->si_pid); 1363 if (!retval && infop) 1364 retval = put_user(p->uid, &infop->si_uid); 1365 if (!retval) 1366 retval = pid; 1367 1368 if (traced) { 1369 write_lock_irq(&tasklist_lock); 1370 /* We dropped tasklist, ptracer could die and untrace */ 1371 ptrace_unlink(p); 1372 /* 1373 * If this is not a detached task, notify the parent. 1374 * If it's still not detached after that, don't release 1375 * it now. 1376 */ 1377 if (!task_detached(p)) { 1378 do_notify_parent(p, p->exit_signal); 1379 if (!task_detached(p)) { 1380 p->exit_state = EXIT_ZOMBIE; 1381 p = NULL; 1382 } 1383 } 1384 write_unlock_irq(&tasklist_lock); 1385 } 1386 if (p != NULL) 1387 release_task(p); 1388 1389 return retval; 1390 } 1391 1392 /* 1393 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1394 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1395 * the lock and this task is uninteresting. If we return nonzero, we have 1396 * released the lock and the system call should return. 1397 */ 1398 static int wait_task_stopped(struct task_struct *p, 1399 int noreap, struct siginfo __user *infop, 1400 int __user *stat_addr, struct rusage __user *ru) 1401 { 1402 int retval, exit_code, why; 1403 uid_t uid = 0; /* unneeded, required by compiler */ 1404 pid_t pid; 1405 1406 exit_code = 0; 1407 spin_lock_irq(&p->sighand->siglock); 1408 1409 if (unlikely(!task_is_stopped_or_traced(p))) 1410 goto unlock_sig; 1411 1412 if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0) 1413 /* 1414 * A group stop is in progress and this is the group leader. 1415 * We won't report until all threads have stopped. 1416 */ 1417 goto unlock_sig; 1418 1419 exit_code = p->exit_code; 1420 if (!exit_code) 1421 goto unlock_sig; 1422 1423 if (!noreap) 1424 p->exit_code = 0; 1425 1426 uid = p->uid; 1427 unlock_sig: 1428 spin_unlock_irq(&p->sighand->siglock); 1429 if (!exit_code) 1430 return 0; 1431 1432 /* 1433 * Now we are pretty sure this task is interesting. 1434 * Make sure it doesn't get reaped out from under us while we 1435 * give up the lock and then examine it below. We don't want to 1436 * keep holding onto the tasklist_lock while we call getrusage and 1437 * possibly take page faults for user memory. 1438 */ 1439 get_task_struct(p); 1440 pid = task_pid_vnr(p); 1441 why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1442 read_unlock(&tasklist_lock); 1443 1444 if (unlikely(noreap)) 1445 return wait_noreap_copyout(p, pid, uid, 1446 why, exit_code, 1447 infop, ru); 1448 1449 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1450 if (!retval && stat_addr) 1451 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1452 if (!retval && infop) 1453 retval = put_user(SIGCHLD, &infop->si_signo); 1454 if (!retval && infop) 1455 retval = put_user(0, &infop->si_errno); 1456 if (!retval && infop) 1457 retval = put_user((short)why, &infop->si_code); 1458 if (!retval && infop) 1459 retval = put_user(exit_code, &infop->si_status); 1460 if (!retval && infop) 1461 retval = put_user(pid, &infop->si_pid); 1462 if (!retval && infop) 1463 retval = put_user(uid, &infop->si_uid); 1464 if (!retval) 1465 retval = pid; 1466 put_task_struct(p); 1467 1468 BUG_ON(!retval); 1469 return retval; 1470 } 1471 1472 /* 1473 * Handle do_wait work for one task in a live, non-stopped state. 1474 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1475 * the lock and this task is uninteresting. If we return nonzero, we have 1476 * released the lock and the system call should return. 1477 */ 1478 static int wait_task_continued(struct task_struct *p, int noreap, 1479 struct siginfo __user *infop, 1480 int __user *stat_addr, struct rusage __user *ru) 1481 { 1482 int retval; 1483 pid_t pid; 1484 uid_t uid; 1485 1486 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1487 return 0; 1488 1489 spin_lock_irq(&p->sighand->siglock); 1490 /* Re-check with the lock held. */ 1491 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1492 spin_unlock_irq(&p->sighand->siglock); 1493 return 0; 1494 } 1495 if (!noreap) 1496 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1497 spin_unlock_irq(&p->sighand->siglock); 1498 1499 pid = task_pid_vnr(p); 1500 uid = p->uid; 1501 get_task_struct(p); 1502 read_unlock(&tasklist_lock); 1503 1504 if (!infop) { 1505 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1506 put_task_struct(p); 1507 if (!retval && stat_addr) 1508 retval = put_user(0xffff, stat_addr); 1509 if (!retval) 1510 retval = pid; 1511 } else { 1512 retval = wait_noreap_copyout(p, pid, uid, 1513 CLD_CONTINUED, SIGCONT, 1514 infop, ru); 1515 BUG_ON(retval == 0); 1516 } 1517 1518 return retval; 1519 } 1520 1521 static long do_wait(enum pid_type type, struct pid *pid, int options, 1522 struct siginfo __user *infop, int __user *stat_addr, 1523 struct rusage __user *ru) 1524 { 1525 DECLARE_WAITQUEUE(wait, current); 1526 struct task_struct *tsk; 1527 int flag, retval; 1528 1529 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1530 repeat: 1531 /* If there is nothing that can match our critier just get out */ 1532 retval = -ECHILD; 1533 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1534 goto end; 1535 1536 /* 1537 * We will set this flag if we see any child that might later 1538 * match our criteria, even if we are not able to reap it yet. 1539 */ 1540 flag = retval = 0; 1541 current->state = TASK_INTERRUPTIBLE; 1542 read_lock(&tasklist_lock); 1543 tsk = current; 1544 do { 1545 struct task_struct *p; 1546 1547 list_for_each_entry(p, &tsk->children, sibling) { 1548 int ret = eligible_child(type, pid, options, p); 1549 if (!ret) 1550 continue; 1551 1552 if (unlikely(ret < 0)) { 1553 retval = ret; 1554 } else if (task_is_stopped_or_traced(p)) { 1555 /* 1556 * It's stopped now, so it might later 1557 * continue, exit, or stop again. 1558 */ 1559 flag = 1; 1560 if (!(p->ptrace & PT_PTRACED) && 1561 !(options & WUNTRACED)) 1562 continue; 1563 1564 retval = wait_task_stopped(p, 1565 (options & WNOWAIT), infop, 1566 stat_addr, ru); 1567 } else if (p->exit_state == EXIT_ZOMBIE && 1568 !delay_group_leader(p)) { 1569 /* 1570 * We don't reap group leaders with subthreads. 1571 */ 1572 if (!likely(options & WEXITED)) 1573 continue; 1574 retval = wait_task_zombie(p, 1575 (options & WNOWAIT), infop, 1576 stat_addr, ru); 1577 } else if (p->exit_state != EXIT_DEAD) { 1578 /* 1579 * It's running now, so it might later 1580 * exit, stop, or stop and then continue. 1581 */ 1582 flag = 1; 1583 if (!unlikely(options & WCONTINUED)) 1584 continue; 1585 retval = wait_task_continued(p, 1586 (options & WNOWAIT), infop, 1587 stat_addr, ru); 1588 } 1589 if (retval != 0) /* tasklist_lock released */ 1590 goto end; 1591 } 1592 if (!flag) { 1593 list_for_each_entry(p, &tsk->ptrace_children, 1594 ptrace_list) { 1595 flag = eligible_child(type, pid, options, p); 1596 if (!flag) 1597 continue; 1598 if (likely(flag > 0)) 1599 break; 1600 retval = flag; 1601 goto end; 1602 } 1603 } 1604 if (options & __WNOTHREAD) 1605 break; 1606 tsk = next_thread(tsk); 1607 BUG_ON(tsk->signal != current->signal); 1608 } while (tsk != current); 1609 read_unlock(&tasklist_lock); 1610 1611 if (flag) { 1612 if (options & WNOHANG) 1613 goto end; 1614 retval = -ERESTARTSYS; 1615 if (signal_pending(current)) 1616 goto end; 1617 schedule(); 1618 goto repeat; 1619 } 1620 retval = -ECHILD; 1621 end: 1622 current->state = TASK_RUNNING; 1623 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1624 if (infop) { 1625 if (retval > 0) 1626 retval = 0; 1627 else { 1628 /* 1629 * For a WNOHANG return, clear out all the fields 1630 * we would set so the user can easily tell the 1631 * difference. 1632 */ 1633 if (!retval) 1634 retval = put_user(0, &infop->si_signo); 1635 if (!retval) 1636 retval = put_user(0, &infop->si_errno); 1637 if (!retval) 1638 retval = put_user(0, &infop->si_code); 1639 if (!retval) 1640 retval = put_user(0, &infop->si_pid); 1641 if (!retval) 1642 retval = put_user(0, &infop->si_uid); 1643 if (!retval) 1644 retval = put_user(0, &infop->si_status); 1645 } 1646 } 1647 return retval; 1648 } 1649 1650 asmlinkage long sys_waitid(int which, pid_t upid, 1651 struct siginfo __user *infop, int options, 1652 struct rusage __user *ru) 1653 { 1654 struct pid *pid = NULL; 1655 enum pid_type type; 1656 long ret; 1657 1658 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1659 return -EINVAL; 1660 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1661 return -EINVAL; 1662 1663 switch (which) { 1664 case P_ALL: 1665 type = PIDTYPE_MAX; 1666 break; 1667 case P_PID: 1668 type = PIDTYPE_PID; 1669 if (upid <= 0) 1670 return -EINVAL; 1671 break; 1672 case P_PGID: 1673 type = PIDTYPE_PGID; 1674 if (upid <= 0) 1675 return -EINVAL; 1676 break; 1677 default: 1678 return -EINVAL; 1679 } 1680 1681 if (type < PIDTYPE_MAX) 1682 pid = find_get_pid(upid); 1683 ret = do_wait(type, pid, options, infop, NULL, ru); 1684 put_pid(pid); 1685 1686 /* avoid REGPARM breakage on x86: */ 1687 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1688 return ret; 1689 } 1690 1691 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, 1692 int options, struct rusage __user *ru) 1693 { 1694 struct pid *pid = NULL; 1695 enum pid_type type; 1696 long ret; 1697 1698 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1699 __WNOTHREAD|__WCLONE|__WALL)) 1700 return -EINVAL; 1701 1702 if (upid == -1) 1703 type = PIDTYPE_MAX; 1704 else if (upid < 0) { 1705 type = PIDTYPE_PGID; 1706 pid = find_get_pid(-upid); 1707 } else if (upid == 0) { 1708 type = PIDTYPE_PGID; 1709 pid = get_pid(task_pgrp(current)); 1710 } else /* upid > 0 */ { 1711 type = PIDTYPE_PID; 1712 pid = find_get_pid(upid); 1713 } 1714 1715 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1716 put_pid(pid); 1717 1718 /* avoid REGPARM breakage on x86: */ 1719 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1720 return ret; 1721 } 1722 1723 #ifdef __ARCH_WANT_SYS_WAITPID 1724 1725 /* 1726 * sys_waitpid() remains for compatibility. waitpid() should be 1727 * implemented by calling sys_wait4() from libc.a. 1728 */ 1729 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1730 { 1731 return sys_wait4(pid, stat_addr, options, NULL); 1732 } 1733 1734 #endif 1735