1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_io_accounting_ops.h> 53 #include <linux/tracehook.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 67 #include <linux/uaccess.h> 68 #include <asm/unistd.h> 69 #include <asm/pgtable.h> 70 #include <asm/mmu_context.h> 71 72 static void __unhash_process(struct task_struct *p, bool group_dead) 73 { 74 nr_threads--; 75 detach_pid(p, PIDTYPE_PID); 76 if (group_dead) { 77 detach_pid(p, PIDTYPE_TGID); 78 detach_pid(p, PIDTYPE_PGID); 79 detach_pid(p, PIDTYPE_SID); 80 81 list_del_rcu(&p->tasks); 82 list_del_init(&p->sibling); 83 __this_cpu_dec(process_counts); 84 } 85 list_del_rcu(&p->thread_group); 86 list_del_rcu(&p->thread_node); 87 } 88 89 /* 90 * This function expects the tasklist_lock write-locked. 91 */ 92 static void __exit_signal(struct task_struct *tsk) 93 { 94 struct signal_struct *sig = tsk->signal; 95 bool group_dead = thread_group_leader(tsk); 96 struct sighand_struct *sighand; 97 struct tty_struct *uninitialized_var(tty); 98 u64 utime, stime; 99 100 sighand = rcu_dereference_check(tsk->sighand, 101 lockdep_tasklist_lock_is_held()); 102 spin_lock(&sighand->siglock); 103 104 #ifdef CONFIG_POSIX_TIMERS 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) { 107 posix_cpu_timers_exit_group(tsk); 108 } else { 109 /* 110 * This can only happen if the caller is de_thread(). 111 * FIXME: this is the temporary hack, we should teach 112 * posix-cpu-timers to handle this case correctly. 113 */ 114 if (unlikely(has_group_leader_pid(tsk))) 115 posix_cpu_timers_exit_group(tsk); 116 } 117 #endif 118 119 if (group_dead) { 120 tty = sig->tty; 121 sig->tty = NULL; 122 } else { 123 /* 124 * If there is any task waiting for the group exit 125 * then notify it: 126 */ 127 if (sig->notify_count > 0 && !--sig->notify_count) 128 wake_up_process(sig->group_exit_task); 129 130 if (tsk == sig->curr_target) 131 sig->curr_target = next_thread(tsk); 132 } 133 134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 135 sizeof(unsigned long long)); 136 137 /* 138 * Accumulate here the counters for all threads as they die. We could 139 * skip the group leader because it is the last user of signal_struct, 140 * but we want to avoid the race with thread_group_cputime() which can 141 * see the empty ->thread_head list. 142 */ 143 task_cputime(tsk, &utime, &stime); 144 write_seqlock(&sig->stats_lock); 145 sig->utime += utime; 146 sig->stime += stime; 147 sig->gtime += task_gtime(tsk); 148 sig->min_flt += tsk->min_flt; 149 sig->maj_flt += tsk->maj_flt; 150 sig->nvcsw += tsk->nvcsw; 151 sig->nivcsw += tsk->nivcsw; 152 sig->inblock += task_io_get_inblock(tsk); 153 sig->oublock += task_io_get_oublock(tsk); 154 task_io_accounting_add(&sig->ioac, &tsk->ioac); 155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 156 sig->nr_threads--; 157 __unhash_process(tsk, group_dead); 158 write_sequnlock(&sig->stats_lock); 159 160 /* 161 * Do this under ->siglock, we can race with another thread 162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 163 */ 164 flush_sigqueue(&tsk->pending); 165 tsk->sighand = NULL; 166 spin_unlock(&sighand->siglock); 167 168 __cleanup_sighand(sighand); 169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 170 if (group_dead) { 171 flush_sigqueue(&sig->shared_pending); 172 tty_kref_put(tty); 173 } 174 } 175 176 static void delayed_put_task_struct(struct rcu_head *rhp) 177 { 178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 179 180 perf_event_delayed_put(tsk); 181 trace_sched_process_free(tsk); 182 put_task_struct(tsk); 183 } 184 185 void put_task_struct_rcu_user(struct task_struct *task) 186 { 187 if (refcount_dec_and_test(&task->rcu_users)) 188 call_rcu(&task->rcu, delayed_put_task_struct); 189 } 190 191 void release_task(struct task_struct *p) 192 { 193 struct task_struct *leader; 194 int zap_leader; 195 repeat: 196 /* don't need to get the RCU readlock here - the process is dead and 197 * can't be modifying its own credentials. But shut RCU-lockdep up */ 198 rcu_read_lock(); 199 atomic_dec(&__task_cred(p)->user->processes); 200 rcu_read_unlock(); 201 202 proc_flush_task(p); 203 cgroup_release(p); 204 205 write_lock_irq(&tasklist_lock); 206 ptrace_release_task(p); 207 __exit_signal(p); 208 209 /* 210 * If we are the last non-leader member of the thread 211 * group, and the leader is zombie, then notify the 212 * group leader's parent process. (if it wants notification.) 213 */ 214 zap_leader = 0; 215 leader = p->group_leader; 216 if (leader != p && thread_group_empty(leader) 217 && leader->exit_state == EXIT_ZOMBIE) { 218 /* 219 * If we were the last child thread and the leader has 220 * exited already, and the leader's parent ignores SIGCHLD, 221 * then we are the one who should release the leader. 222 */ 223 zap_leader = do_notify_parent(leader, leader->exit_signal); 224 if (zap_leader) 225 leader->exit_state = EXIT_DEAD; 226 } 227 228 write_unlock_irq(&tasklist_lock); 229 release_thread(p); 230 put_task_struct_rcu_user(p); 231 232 p = leader; 233 if (unlikely(zap_leader)) 234 goto repeat; 235 } 236 237 void rcuwait_wake_up(struct rcuwait *w) 238 { 239 struct task_struct *task; 240 241 rcu_read_lock(); 242 243 /* 244 * Order condition vs @task, such that everything prior to the load 245 * of @task is visible. This is the condition as to why the user called 246 * rcuwait_trywake() in the first place. Pairs with set_current_state() 247 * barrier (A) in rcuwait_wait_event(). 248 * 249 * WAIT WAKE 250 * [S] tsk = current [S] cond = true 251 * MB (A) MB (B) 252 * [L] cond [L] tsk 253 */ 254 smp_mb(); /* (B) */ 255 256 task = rcu_dereference(w->task); 257 if (task) 258 wake_up_process(task); 259 rcu_read_unlock(); 260 } 261 262 /* 263 * Determine if a process group is "orphaned", according to the POSIX 264 * definition in 2.2.2.52. Orphaned process groups are not to be affected 265 * by terminal-generated stop signals. Newly orphaned process groups are 266 * to receive a SIGHUP and a SIGCONT. 267 * 268 * "I ask you, have you ever known what it is to be an orphan?" 269 */ 270 static int will_become_orphaned_pgrp(struct pid *pgrp, 271 struct task_struct *ignored_task) 272 { 273 struct task_struct *p; 274 275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 276 if ((p == ignored_task) || 277 (p->exit_state && thread_group_empty(p)) || 278 is_global_init(p->real_parent)) 279 continue; 280 281 if (task_pgrp(p->real_parent) != pgrp && 282 task_session(p->real_parent) == task_session(p)) 283 return 0; 284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 285 286 return 1; 287 } 288 289 int is_current_pgrp_orphaned(void) 290 { 291 int retval; 292 293 read_lock(&tasklist_lock); 294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 295 read_unlock(&tasklist_lock); 296 297 return retval; 298 } 299 300 static bool has_stopped_jobs(struct pid *pgrp) 301 { 302 struct task_struct *p; 303 304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 305 if (p->signal->flags & SIGNAL_STOP_STOPPED) 306 return true; 307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 308 309 return false; 310 } 311 312 /* 313 * Check to see if any process groups have become orphaned as 314 * a result of our exiting, and if they have any stopped jobs, 315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 316 */ 317 static void 318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 319 { 320 struct pid *pgrp = task_pgrp(tsk); 321 struct task_struct *ignored_task = tsk; 322 323 if (!parent) 324 /* exit: our father is in a different pgrp than 325 * we are and we were the only connection outside. 326 */ 327 parent = tsk->real_parent; 328 else 329 /* reparent: our child is in a different pgrp than 330 * we are, and it was the only connection outside. 331 */ 332 ignored_task = NULL; 333 334 if (task_pgrp(parent) != pgrp && 335 task_session(parent) == task_session(tsk) && 336 will_become_orphaned_pgrp(pgrp, ignored_task) && 337 has_stopped_jobs(pgrp)) { 338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 340 } 341 } 342 343 #ifdef CONFIG_MEMCG 344 /* 345 * A task is exiting. If it owned this mm, find a new owner for the mm. 346 */ 347 void mm_update_next_owner(struct mm_struct *mm) 348 { 349 struct task_struct *c, *g, *p = current; 350 351 retry: 352 /* 353 * If the exiting or execing task is not the owner, it's 354 * someone else's problem. 355 */ 356 if (mm->owner != p) 357 return; 358 /* 359 * The current owner is exiting/execing and there are no other 360 * candidates. Do not leave the mm pointing to a possibly 361 * freed task structure. 362 */ 363 if (atomic_read(&mm->mm_users) <= 1) { 364 WRITE_ONCE(mm->owner, NULL); 365 return; 366 } 367 368 read_lock(&tasklist_lock); 369 /* 370 * Search in the children 371 */ 372 list_for_each_entry(c, &p->children, sibling) { 373 if (c->mm == mm) 374 goto assign_new_owner; 375 } 376 377 /* 378 * Search in the siblings 379 */ 380 list_for_each_entry(c, &p->real_parent->children, sibling) { 381 if (c->mm == mm) 382 goto assign_new_owner; 383 } 384 385 /* 386 * Search through everything else, we should not get here often. 387 */ 388 for_each_process(g) { 389 if (g->flags & PF_KTHREAD) 390 continue; 391 for_each_thread(g, c) { 392 if (c->mm == mm) 393 goto assign_new_owner; 394 if (c->mm) 395 break; 396 } 397 } 398 read_unlock(&tasklist_lock); 399 /* 400 * We found no owner yet mm_users > 1: this implies that we are 401 * most likely racing with swapoff (try_to_unuse()) or /proc or 402 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 403 */ 404 WRITE_ONCE(mm->owner, NULL); 405 return; 406 407 assign_new_owner: 408 BUG_ON(c == p); 409 get_task_struct(c); 410 /* 411 * The task_lock protects c->mm from changing. 412 * We always want mm->owner->mm == mm 413 */ 414 task_lock(c); 415 /* 416 * Delay read_unlock() till we have the task_lock() 417 * to ensure that c does not slip away underneath us 418 */ 419 read_unlock(&tasklist_lock); 420 if (c->mm != mm) { 421 task_unlock(c); 422 put_task_struct(c); 423 goto retry; 424 } 425 WRITE_ONCE(mm->owner, c); 426 task_unlock(c); 427 put_task_struct(c); 428 } 429 #endif /* CONFIG_MEMCG */ 430 431 /* 432 * Turn us into a lazy TLB process if we 433 * aren't already.. 434 */ 435 static void exit_mm(void) 436 { 437 struct mm_struct *mm = current->mm; 438 struct core_state *core_state; 439 440 exit_mm_release(current, mm); 441 if (!mm) 442 return; 443 sync_mm_rss(mm); 444 /* 445 * Serialize with any possible pending coredump. 446 * We must hold mmap_sem around checking core_state 447 * and clearing tsk->mm. The core-inducing thread 448 * will increment ->nr_threads for each thread in the 449 * group with ->mm != NULL. 450 */ 451 down_read(&mm->mmap_sem); 452 core_state = mm->core_state; 453 if (core_state) { 454 struct core_thread self; 455 456 up_read(&mm->mmap_sem); 457 458 self.task = current; 459 self.next = xchg(&core_state->dumper.next, &self); 460 /* 461 * Implies mb(), the result of xchg() must be visible 462 * to core_state->dumper. 463 */ 464 if (atomic_dec_and_test(&core_state->nr_threads)) 465 complete(&core_state->startup); 466 467 for (;;) { 468 set_current_state(TASK_UNINTERRUPTIBLE); 469 if (!self.task) /* see coredump_finish() */ 470 break; 471 freezable_schedule(); 472 } 473 __set_current_state(TASK_RUNNING); 474 down_read(&mm->mmap_sem); 475 } 476 mmgrab(mm); 477 BUG_ON(mm != current->active_mm); 478 /* more a memory barrier than a real lock */ 479 task_lock(current); 480 current->mm = NULL; 481 up_read(&mm->mmap_sem); 482 enter_lazy_tlb(mm, current); 483 task_unlock(current); 484 mm_update_next_owner(mm); 485 mmput(mm); 486 if (test_thread_flag(TIF_MEMDIE)) 487 exit_oom_victim(); 488 } 489 490 static struct task_struct *find_alive_thread(struct task_struct *p) 491 { 492 struct task_struct *t; 493 494 for_each_thread(p, t) { 495 if (!(t->flags & PF_EXITING)) 496 return t; 497 } 498 return NULL; 499 } 500 501 static struct task_struct *find_child_reaper(struct task_struct *father, 502 struct list_head *dead) 503 __releases(&tasklist_lock) 504 __acquires(&tasklist_lock) 505 { 506 struct pid_namespace *pid_ns = task_active_pid_ns(father); 507 struct task_struct *reaper = pid_ns->child_reaper; 508 struct task_struct *p, *n; 509 510 if (likely(reaper != father)) 511 return reaper; 512 513 reaper = find_alive_thread(father); 514 if (reaper) { 515 pid_ns->child_reaper = reaper; 516 return reaper; 517 } 518 519 write_unlock_irq(&tasklist_lock); 520 521 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 522 list_del_init(&p->ptrace_entry); 523 release_task(p); 524 } 525 526 zap_pid_ns_processes(pid_ns); 527 write_lock_irq(&tasklist_lock); 528 529 return father; 530 } 531 532 /* 533 * When we die, we re-parent all our children, and try to: 534 * 1. give them to another thread in our thread group, if such a member exists 535 * 2. give it to the first ancestor process which prctl'd itself as a 536 * child_subreaper for its children (like a service manager) 537 * 3. give it to the init process (PID 1) in our pid namespace 538 */ 539 static struct task_struct *find_new_reaper(struct task_struct *father, 540 struct task_struct *child_reaper) 541 { 542 struct task_struct *thread, *reaper; 543 544 thread = find_alive_thread(father); 545 if (thread) 546 return thread; 547 548 if (father->signal->has_child_subreaper) { 549 unsigned int ns_level = task_pid(father)->level; 550 /* 551 * Find the first ->is_child_subreaper ancestor in our pid_ns. 552 * We can't check reaper != child_reaper to ensure we do not 553 * cross the namespaces, the exiting parent could be injected 554 * by setns() + fork(). 555 * We check pid->level, this is slightly more efficient than 556 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 557 */ 558 for (reaper = father->real_parent; 559 task_pid(reaper)->level == ns_level; 560 reaper = reaper->real_parent) { 561 if (reaper == &init_task) 562 break; 563 if (!reaper->signal->is_child_subreaper) 564 continue; 565 thread = find_alive_thread(reaper); 566 if (thread) 567 return thread; 568 } 569 } 570 571 return child_reaper; 572 } 573 574 /* 575 * Any that need to be release_task'd are put on the @dead list. 576 */ 577 static void reparent_leader(struct task_struct *father, struct task_struct *p, 578 struct list_head *dead) 579 { 580 if (unlikely(p->exit_state == EXIT_DEAD)) 581 return; 582 583 /* We don't want people slaying init. */ 584 p->exit_signal = SIGCHLD; 585 586 /* If it has exited notify the new parent about this child's death. */ 587 if (!p->ptrace && 588 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 589 if (do_notify_parent(p, p->exit_signal)) { 590 p->exit_state = EXIT_DEAD; 591 list_add(&p->ptrace_entry, dead); 592 } 593 } 594 595 kill_orphaned_pgrp(p, father); 596 } 597 598 /* 599 * This does two things: 600 * 601 * A. Make init inherit all the child processes 602 * B. Check to see if any process groups have become orphaned 603 * as a result of our exiting, and if they have any stopped 604 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 605 */ 606 static void forget_original_parent(struct task_struct *father, 607 struct list_head *dead) 608 { 609 struct task_struct *p, *t, *reaper; 610 611 if (unlikely(!list_empty(&father->ptraced))) 612 exit_ptrace(father, dead); 613 614 /* Can drop and reacquire tasklist_lock */ 615 reaper = find_child_reaper(father, dead); 616 if (list_empty(&father->children)) 617 return; 618 619 reaper = find_new_reaper(father, reaper); 620 list_for_each_entry(p, &father->children, sibling) { 621 for_each_thread(p, t) { 622 RCU_INIT_POINTER(t->real_parent, reaper); 623 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 624 if (likely(!t->ptrace)) 625 t->parent = t->real_parent; 626 if (t->pdeath_signal) 627 group_send_sig_info(t->pdeath_signal, 628 SEND_SIG_NOINFO, t, 629 PIDTYPE_TGID); 630 } 631 /* 632 * If this is a threaded reparent there is no need to 633 * notify anyone anything has happened. 634 */ 635 if (!same_thread_group(reaper, father)) 636 reparent_leader(father, p, dead); 637 } 638 list_splice_tail_init(&father->children, &reaper->children); 639 } 640 641 /* 642 * Send signals to all our closest relatives so that they know 643 * to properly mourn us.. 644 */ 645 static void exit_notify(struct task_struct *tsk, int group_dead) 646 { 647 bool autoreap; 648 struct task_struct *p, *n; 649 LIST_HEAD(dead); 650 651 write_lock_irq(&tasklist_lock); 652 forget_original_parent(tsk, &dead); 653 654 if (group_dead) 655 kill_orphaned_pgrp(tsk->group_leader, NULL); 656 657 tsk->exit_state = EXIT_ZOMBIE; 658 if (unlikely(tsk->ptrace)) { 659 int sig = thread_group_leader(tsk) && 660 thread_group_empty(tsk) && 661 !ptrace_reparented(tsk) ? 662 tsk->exit_signal : SIGCHLD; 663 autoreap = do_notify_parent(tsk, sig); 664 } else if (thread_group_leader(tsk)) { 665 autoreap = thread_group_empty(tsk) && 666 do_notify_parent(tsk, tsk->exit_signal); 667 } else { 668 autoreap = true; 669 } 670 671 if (autoreap) { 672 tsk->exit_state = EXIT_DEAD; 673 list_add(&tsk->ptrace_entry, &dead); 674 } 675 676 /* mt-exec, de_thread() is waiting for group leader */ 677 if (unlikely(tsk->signal->notify_count < 0)) 678 wake_up_process(tsk->signal->group_exit_task); 679 write_unlock_irq(&tasklist_lock); 680 681 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 682 list_del_init(&p->ptrace_entry); 683 release_task(p); 684 } 685 } 686 687 #ifdef CONFIG_DEBUG_STACK_USAGE 688 static void check_stack_usage(void) 689 { 690 static DEFINE_SPINLOCK(low_water_lock); 691 static int lowest_to_date = THREAD_SIZE; 692 unsigned long free; 693 694 free = stack_not_used(current); 695 696 if (free >= lowest_to_date) 697 return; 698 699 spin_lock(&low_water_lock); 700 if (free < lowest_to_date) { 701 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 702 current->comm, task_pid_nr(current), free); 703 lowest_to_date = free; 704 } 705 spin_unlock(&low_water_lock); 706 } 707 #else 708 static inline void check_stack_usage(void) {} 709 #endif 710 711 void __noreturn do_exit(long code) 712 { 713 struct task_struct *tsk = current; 714 int group_dead; 715 716 profile_task_exit(tsk); 717 kcov_task_exit(tsk); 718 719 WARN_ON(blk_needs_flush_plug(tsk)); 720 721 if (unlikely(in_interrupt())) 722 panic("Aiee, killing interrupt handler!"); 723 if (unlikely(!tsk->pid)) 724 panic("Attempted to kill the idle task!"); 725 726 /* 727 * If do_exit is called because this processes oopsed, it's possible 728 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 729 * continuing. Amongst other possible reasons, this is to prevent 730 * mm_release()->clear_child_tid() from writing to a user-controlled 731 * kernel address. 732 */ 733 set_fs(USER_DS); 734 735 ptrace_event(PTRACE_EVENT_EXIT, code); 736 737 validate_creds_for_do_exit(tsk); 738 739 /* 740 * We're taking recursive faults here in do_exit. Safest is to just 741 * leave this task alone and wait for reboot. 742 */ 743 if (unlikely(tsk->flags & PF_EXITING)) { 744 pr_alert("Fixing recursive fault but reboot is needed!\n"); 745 futex_exit_recursive(tsk); 746 set_current_state(TASK_UNINTERRUPTIBLE); 747 schedule(); 748 } 749 750 exit_signals(tsk); /* sets PF_EXITING */ 751 752 if (unlikely(in_atomic())) { 753 pr_info("note: %s[%d] exited with preempt_count %d\n", 754 current->comm, task_pid_nr(current), 755 preempt_count()); 756 preempt_count_set(PREEMPT_ENABLED); 757 } 758 759 /* sync mm's RSS info before statistics gathering */ 760 if (tsk->mm) 761 sync_mm_rss(tsk->mm); 762 acct_update_integrals(tsk); 763 group_dead = atomic_dec_and_test(&tsk->signal->live); 764 if (group_dead) { 765 /* 766 * If the last thread of global init has exited, panic 767 * immediately to get a useable coredump. 768 */ 769 if (unlikely(is_global_init(tsk))) 770 panic("Attempted to kill init! exitcode=0x%08x\n", 771 tsk->signal->group_exit_code ?: (int)code); 772 773 #ifdef CONFIG_POSIX_TIMERS 774 hrtimer_cancel(&tsk->signal->real_timer); 775 exit_itimers(tsk->signal); 776 #endif 777 if (tsk->mm) 778 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 779 } 780 acct_collect(code, group_dead); 781 if (group_dead) 782 tty_audit_exit(); 783 audit_free(tsk); 784 785 tsk->exit_code = code; 786 taskstats_exit(tsk, group_dead); 787 788 exit_mm(); 789 790 if (group_dead) 791 acct_process(); 792 trace_sched_process_exit(tsk); 793 794 exit_sem(tsk); 795 exit_shm(tsk); 796 exit_files(tsk); 797 exit_fs(tsk); 798 if (group_dead) 799 disassociate_ctty(1); 800 exit_task_namespaces(tsk); 801 exit_task_work(tsk); 802 exit_thread(tsk); 803 exit_umh(tsk); 804 805 /* 806 * Flush inherited counters to the parent - before the parent 807 * gets woken up by child-exit notifications. 808 * 809 * because of cgroup mode, must be called before cgroup_exit() 810 */ 811 perf_event_exit_task(tsk); 812 813 sched_autogroup_exit_task(tsk); 814 cgroup_exit(tsk); 815 816 /* 817 * FIXME: do that only when needed, using sched_exit tracepoint 818 */ 819 flush_ptrace_hw_breakpoint(tsk); 820 821 exit_tasks_rcu_start(); 822 exit_notify(tsk, group_dead); 823 proc_exit_connector(tsk); 824 mpol_put_task_policy(tsk); 825 #ifdef CONFIG_FUTEX 826 if (unlikely(current->pi_state_cache)) 827 kfree(current->pi_state_cache); 828 #endif 829 /* 830 * Make sure we are holding no locks: 831 */ 832 debug_check_no_locks_held(); 833 834 if (tsk->io_context) 835 exit_io_context(tsk); 836 837 if (tsk->splice_pipe) 838 free_pipe_info(tsk->splice_pipe); 839 840 if (tsk->task_frag.page) 841 put_page(tsk->task_frag.page); 842 843 validate_creds_for_do_exit(tsk); 844 845 check_stack_usage(); 846 preempt_disable(); 847 if (tsk->nr_dirtied) 848 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 849 exit_rcu(); 850 exit_tasks_rcu_finish(); 851 852 lockdep_free_task(tsk); 853 do_task_dead(); 854 } 855 EXPORT_SYMBOL_GPL(do_exit); 856 857 void complete_and_exit(struct completion *comp, long code) 858 { 859 if (comp) 860 complete(comp); 861 862 do_exit(code); 863 } 864 EXPORT_SYMBOL(complete_and_exit); 865 866 SYSCALL_DEFINE1(exit, int, error_code) 867 { 868 do_exit((error_code&0xff)<<8); 869 } 870 871 /* 872 * Take down every thread in the group. This is called by fatal signals 873 * as well as by sys_exit_group (below). 874 */ 875 void 876 do_group_exit(int exit_code) 877 { 878 struct signal_struct *sig = current->signal; 879 880 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 881 882 if (signal_group_exit(sig)) 883 exit_code = sig->group_exit_code; 884 else if (!thread_group_empty(current)) { 885 struct sighand_struct *const sighand = current->sighand; 886 887 spin_lock_irq(&sighand->siglock); 888 if (signal_group_exit(sig)) 889 /* Another thread got here before we took the lock. */ 890 exit_code = sig->group_exit_code; 891 else { 892 sig->group_exit_code = exit_code; 893 sig->flags = SIGNAL_GROUP_EXIT; 894 zap_other_threads(current); 895 } 896 spin_unlock_irq(&sighand->siglock); 897 } 898 899 do_exit(exit_code); 900 /* NOTREACHED */ 901 } 902 903 /* 904 * this kills every thread in the thread group. Note that any externally 905 * wait4()-ing process will get the correct exit code - even if this 906 * thread is not the thread group leader. 907 */ 908 SYSCALL_DEFINE1(exit_group, int, error_code) 909 { 910 do_group_exit((error_code & 0xff) << 8); 911 /* NOTREACHED */ 912 return 0; 913 } 914 915 struct waitid_info { 916 pid_t pid; 917 uid_t uid; 918 int status; 919 int cause; 920 }; 921 922 struct wait_opts { 923 enum pid_type wo_type; 924 int wo_flags; 925 struct pid *wo_pid; 926 927 struct waitid_info *wo_info; 928 int wo_stat; 929 struct rusage *wo_rusage; 930 931 wait_queue_entry_t child_wait; 932 int notask_error; 933 }; 934 935 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 936 { 937 return wo->wo_type == PIDTYPE_MAX || 938 task_pid_type(p, wo->wo_type) == wo->wo_pid; 939 } 940 941 static int 942 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 943 { 944 if (!eligible_pid(wo, p)) 945 return 0; 946 947 /* 948 * Wait for all children (clone and not) if __WALL is set or 949 * if it is traced by us. 950 */ 951 if (ptrace || (wo->wo_flags & __WALL)) 952 return 1; 953 954 /* 955 * Otherwise, wait for clone children *only* if __WCLONE is set; 956 * otherwise, wait for non-clone children *only*. 957 * 958 * Note: a "clone" child here is one that reports to its parent 959 * using a signal other than SIGCHLD, or a non-leader thread which 960 * we can only see if it is traced by us. 961 */ 962 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 963 return 0; 964 965 return 1; 966 } 967 968 /* 969 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 970 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 971 * the lock and this task is uninteresting. If we return nonzero, we have 972 * released the lock and the system call should return. 973 */ 974 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 975 { 976 int state, status; 977 pid_t pid = task_pid_vnr(p); 978 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 979 struct waitid_info *infop; 980 981 if (!likely(wo->wo_flags & WEXITED)) 982 return 0; 983 984 if (unlikely(wo->wo_flags & WNOWAIT)) { 985 status = p->exit_code; 986 get_task_struct(p); 987 read_unlock(&tasklist_lock); 988 sched_annotate_sleep(); 989 if (wo->wo_rusage) 990 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 991 put_task_struct(p); 992 goto out_info; 993 } 994 /* 995 * Move the task's state to DEAD/TRACE, only one thread can do this. 996 */ 997 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 998 EXIT_TRACE : EXIT_DEAD; 999 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1000 return 0; 1001 /* 1002 * We own this thread, nobody else can reap it. 1003 */ 1004 read_unlock(&tasklist_lock); 1005 sched_annotate_sleep(); 1006 1007 /* 1008 * Check thread_group_leader() to exclude the traced sub-threads. 1009 */ 1010 if (state == EXIT_DEAD && thread_group_leader(p)) { 1011 struct signal_struct *sig = p->signal; 1012 struct signal_struct *psig = current->signal; 1013 unsigned long maxrss; 1014 u64 tgutime, tgstime; 1015 1016 /* 1017 * The resource counters for the group leader are in its 1018 * own task_struct. Those for dead threads in the group 1019 * are in its signal_struct, as are those for the child 1020 * processes it has previously reaped. All these 1021 * accumulate in the parent's signal_struct c* fields. 1022 * 1023 * We don't bother to take a lock here to protect these 1024 * p->signal fields because the whole thread group is dead 1025 * and nobody can change them. 1026 * 1027 * psig->stats_lock also protects us from our sub-theads 1028 * which can reap other children at the same time. Until 1029 * we change k_getrusage()-like users to rely on this lock 1030 * we have to take ->siglock as well. 1031 * 1032 * We use thread_group_cputime_adjusted() to get times for 1033 * the thread group, which consolidates times for all threads 1034 * in the group including the group leader. 1035 */ 1036 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1037 spin_lock_irq(¤t->sighand->siglock); 1038 write_seqlock(&psig->stats_lock); 1039 psig->cutime += tgutime + sig->cutime; 1040 psig->cstime += tgstime + sig->cstime; 1041 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1042 psig->cmin_flt += 1043 p->min_flt + sig->min_flt + sig->cmin_flt; 1044 psig->cmaj_flt += 1045 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1046 psig->cnvcsw += 1047 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1048 psig->cnivcsw += 1049 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1050 psig->cinblock += 1051 task_io_get_inblock(p) + 1052 sig->inblock + sig->cinblock; 1053 psig->coublock += 1054 task_io_get_oublock(p) + 1055 sig->oublock + sig->coublock; 1056 maxrss = max(sig->maxrss, sig->cmaxrss); 1057 if (psig->cmaxrss < maxrss) 1058 psig->cmaxrss = maxrss; 1059 task_io_accounting_add(&psig->ioac, &p->ioac); 1060 task_io_accounting_add(&psig->ioac, &sig->ioac); 1061 write_sequnlock(&psig->stats_lock); 1062 spin_unlock_irq(¤t->sighand->siglock); 1063 } 1064 1065 if (wo->wo_rusage) 1066 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1067 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1068 ? p->signal->group_exit_code : p->exit_code; 1069 wo->wo_stat = status; 1070 1071 if (state == EXIT_TRACE) { 1072 write_lock_irq(&tasklist_lock); 1073 /* We dropped tasklist, ptracer could die and untrace */ 1074 ptrace_unlink(p); 1075 1076 /* If parent wants a zombie, don't release it now */ 1077 state = EXIT_ZOMBIE; 1078 if (do_notify_parent(p, p->exit_signal)) 1079 state = EXIT_DEAD; 1080 p->exit_state = state; 1081 write_unlock_irq(&tasklist_lock); 1082 } 1083 if (state == EXIT_DEAD) 1084 release_task(p); 1085 1086 out_info: 1087 infop = wo->wo_info; 1088 if (infop) { 1089 if ((status & 0x7f) == 0) { 1090 infop->cause = CLD_EXITED; 1091 infop->status = status >> 8; 1092 } else { 1093 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1094 infop->status = status & 0x7f; 1095 } 1096 infop->pid = pid; 1097 infop->uid = uid; 1098 } 1099 1100 return pid; 1101 } 1102 1103 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1104 { 1105 if (ptrace) { 1106 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1107 return &p->exit_code; 1108 } else { 1109 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1110 return &p->signal->group_exit_code; 1111 } 1112 return NULL; 1113 } 1114 1115 /** 1116 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1117 * @wo: wait options 1118 * @ptrace: is the wait for ptrace 1119 * @p: task to wait for 1120 * 1121 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1122 * 1123 * CONTEXT: 1124 * read_lock(&tasklist_lock), which is released if return value is 1125 * non-zero. Also, grabs and releases @p->sighand->siglock. 1126 * 1127 * RETURNS: 1128 * 0 if wait condition didn't exist and search for other wait conditions 1129 * should continue. Non-zero return, -errno on failure and @p's pid on 1130 * success, implies that tasklist_lock is released and wait condition 1131 * search should terminate. 1132 */ 1133 static int wait_task_stopped(struct wait_opts *wo, 1134 int ptrace, struct task_struct *p) 1135 { 1136 struct waitid_info *infop; 1137 int exit_code, *p_code, why; 1138 uid_t uid = 0; /* unneeded, required by compiler */ 1139 pid_t pid; 1140 1141 /* 1142 * Traditionally we see ptrace'd stopped tasks regardless of options. 1143 */ 1144 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1145 return 0; 1146 1147 if (!task_stopped_code(p, ptrace)) 1148 return 0; 1149 1150 exit_code = 0; 1151 spin_lock_irq(&p->sighand->siglock); 1152 1153 p_code = task_stopped_code(p, ptrace); 1154 if (unlikely(!p_code)) 1155 goto unlock_sig; 1156 1157 exit_code = *p_code; 1158 if (!exit_code) 1159 goto unlock_sig; 1160 1161 if (!unlikely(wo->wo_flags & WNOWAIT)) 1162 *p_code = 0; 1163 1164 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1165 unlock_sig: 1166 spin_unlock_irq(&p->sighand->siglock); 1167 if (!exit_code) 1168 return 0; 1169 1170 /* 1171 * Now we are pretty sure this task is interesting. 1172 * Make sure it doesn't get reaped out from under us while we 1173 * give up the lock and then examine it below. We don't want to 1174 * keep holding onto the tasklist_lock while we call getrusage and 1175 * possibly take page faults for user memory. 1176 */ 1177 get_task_struct(p); 1178 pid = task_pid_vnr(p); 1179 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1180 read_unlock(&tasklist_lock); 1181 sched_annotate_sleep(); 1182 if (wo->wo_rusage) 1183 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1184 put_task_struct(p); 1185 1186 if (likely(!(wo->wo_flags & WNOWAIT))) 1187 wo->wo_stat = (exit_code << 8) | 0x7f; 1188 1189 infop = wo->wo_info; 1190 if (infop) { 1191 infop->cause = why; 1192 infop->status = exit_code; 1193 infop->pid = pid; 1194 infop->uid = uid; 1195 } 1196 return pid; 1197 } 1198 1199 /* 1200 * Handle do_wait work for one task in a live, non-stopped state. 1201 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1202 * the lock and this task is uninteresting. If we return nonzero, we have 1203 * released the lock and the system call should return. 1204 */ 1205 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1206 { 1207 struct waitid_info *infop; 1208 pid_t pid; 1209 uid_t uid; 1210 1211 if (!unlikely(wo->wo_flags & WCONTINUED)) 1212 return 0; 1213 1214 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1215 return 0; 1216 1217 spin_lock_irq(&p->sighand->siglock); 1218 /* Re-check with the lock held. */ 1219 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1220 spin_unlock_irq(&p->sighand->siglock); 1221 return 0; 1222 } 1223 if (!unlikely(wo->wo_flags & WNOWAIT)) 1224 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1225 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1226 spin_unlock_irq(&p->sighand->siglock); 1227 1228 pid = task_pid_vnr(p); 1229 get_task_struct(p); 1230 read_unlock(&tasklist_lock); 1231 sched_annotate_sleep(); 1232 if (wo->wo_rusage) 1233 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1234 put_task_struct(p); 1235 1236 infop = wo->wo_info; 1237 if (!infop) { 1238 wo->wo_stat = 0xffff; 1239 } else { 1240 infop->cause = CLD_CONTINUED; 1241 infop->pid = pid; 1242 infop->uid = uid; 1243 infop->status = SIGCONT; 1244 } 1245 return pid; 1246 } 1247 1248 /* 1249 * Consider @p for a wait by @parent. 1250 * 1251 * -ECHILD should be in ->notask_error before the first call. 1252 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1253 * Returns zero if the search for a child should continue; 1254 * then ->notask_error is 0 if @p is an eligible child, 1255 * or still -ECHILD. 1256 */ 1257 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1258 struct task_struct *p) 1259 { 1260 /* 1261 * We can race with wait_task_zombie() from another thread. 1262 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1263 * can't confuse the checks below. 1264 */ 1265 int exit_state = READ_ONCE(p->exit_state); 1266 int ret; 1267 1268 if (unlikely(exit_state == EXIT_DEAD)) 1269 return 0; 1270 1271 ret = eligible_child(wo, ptrace, p); 1272 if (!ret) 1273 return ret; 1274 1275 if (unlikely(exit_state == EXIT_TRACE)) { 1276 /* 1277 * ptrace == 0 means we are the natural parent. In this case 1278 * we should clear notask_error, debugger will notify us. 1279 */ 1280 if (likely(!ptrace)) 1281 wo->notask_error = 0; 1282 return 0; 1283 } 1284 1285 if (likely(!ptrace) && unlikely(p->ptrace)) { 1286 /* 1287 * If it is traced by its real parent's group, just pretend 1288 * the caller is ptrace_do_wait() and reap this child if it 1289 * is zombie. 1290 * 1291 * This also hides group stop state from real parent; otherwise 1292 * a single stop can be reported twice as group and ptrace stop. 1293 * If a ptracer wants to distinguish these two events for its 1294 * own children it should create a separate process which takes 1295 * the role of real parent. 1296 */ 1297 if (!ptrace_reparented(p)) 1298 ptrace = 1; 1299 } 1300 1301 /* slay zombie? */ 1302 if (exit_state == EXIT_ZOMBIE) { 1303 /* we don't reap group leaders with subthreads */ 1304 if (!delay_group_leader(p)) { 1305 /* 1306 * A zombie ptracee is only visible to its ptracer. 1307 * Notification and reaping will be cascaded to the 1308 * real parent when the ptracer detaches. 1309 */ 1310 if (unlikely(ptrace) || likely(!p->ptrace)) 1311 return wait_task_zombie(wo, p); 1312 } 1313 1314 /* 1315 * Allow access to stopped/continued state via zombie by 1316 * falling through. Clearing of notask_error is complex. 1317 * 1318 * When !@ptrace: 1319 * 1320 * If WEXITED is set, notask_error should naturally be 1321 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1322 * so, if there are live subthreads, there are events to 1323 * wait for. If all subthreads are dead, it's still safe 1324 * to clear - this function will be called again in finite 1325 * amount time once all the subthreads are released and 1326 * will then return without clearing. 1327 * 1328 * When @ptrace: 1329 * 1330 * Stopped state is per-task and thus can't change once the 1331 * target task dies. Only continued and exited can happen. 1332 * Clear notask_error if WCONTINUED | WEXITED. 1333 */ 1334 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1335 wo->notask_error = 0; 1336 } else { 1337 /* 1338 * @p is alive and it's gonna stop, continue or exit, so 1339 * there always is something to wait for. 1340 */ 1341 wo->notask_error = 0; 1342 } 1343 1344 /* 1345 * Wait for stopped. Depending on @ptrace, different stopped state 1346 * is used and the two don't interact with each other. 1347 */ 1348 ret = wait_task_stopped(wo, ptrace, p); 1349 if (ret) 1350 return ret; 1351 1352 /* 1353 * Wait for continued. There's only one continued state and the 1354 * ptracer can consume it which can confuse the real parent. Don't 1355 * use WCONTINUED from ptracer. You don't need or want it. 1356 */ 1357 return wait_task_continued(wo, p); 1358 } 1359 1360 /* 1361 * Do the work of do_wait() for one thread in the group, @tsk. 1362 * 1363 * -ECHILD should be in ->notask_error before the first call. 1364 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1365 * Returns zero if the search for a child should continue; then 1366 * ->notask_error is 0 if there were any eligible children, 1367 * or still -ECHILD. 1368 */ 1369 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1370 { 1371 struct task_struct *p; 1372 1373 list_for_each_entry(p, &tsk->children, sibling) { 1374 int ret = wait_consider_task(wo, 0, p); 1375 1376 if (ret) 1377 return ret; 1378 } 1379 1380 return 0; 1381 } 1382 1383 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1384 { 1385 struct task_struct *p; 1386 1387 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1388 int ret = wait_consider_task(wo, 1, p); 1389 1390 if (ret) 1391 return ret; 1392 } 1393 1394 return 0; 1395 } 1396 1397 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1398 int sync, void *key) 1399 { 1400 struct wait_opts *wo = container_of(wait, struct wait_opts, 1401 child_wait); 1402 struct task_struct *p = key; 1403 1404 if (!eligible_pid(wo, p)) 1405 return 0; 1406 1407 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1408 return 0; 1409 1410 return default_wake_function(wait, mode, sync, key); 1411 } 1412 1413 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1414 { 1415 __wake_up_sync_key(&parent->signal->wait_chldexit, 1416 TASK_INTERRUPTIBLE, p); 1417 } 1418 1419 static long do_wait(struct wait_opts *wo) 1420 { 1421 struct task_struct *tsk; 1422 int retval; 1423 1424 trace_sched_process_wait(wo->wo_pid); 1425 1426 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1427 wo->child_wait.private = current; 1428 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1429 repeat: 1430 /* 1431 * If there is nothing that can match our criteria, just get out. 1432 * We will clear ->notask_error to zero if we see any child that 1433 * might later match our criteria, even if we are not able to reap 1434 * it yet. 1435 */ 1436 wo->notask_error = -ECHILD; 1437 if ((wo->wo_type < PIDTYPE_MAX) && 1438 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1439 goto notask; 1440 1441 set_current_state(TASK_INTERRUPTIBLE); 1442 read_lock(&tasklist_lock); 1443 tsk = current; 1444 do { 1445 retval = do_wait_thread(wo, tsk); 1446 if (retval) 1447 goto end; 1448 1449 retval = ptrace_do_wait(wo, tsk); 1450 if (retval) 1451 goto end; 1452 1453 if (wo->wo_flags & __WNOTHREAD) 1454 break; 1455 } while_each_thread(current, tsk); 1456 read_unlock(&tasklist_lock); 1457 1458 notask: 1459 retval = wo->notask_error; 1460 if (!retval && !(wo->wo_flags & WNOHANG)) { 1461 retval = -ERESTARTSYS; 1462 if (!signal_pending(current)) { 1463 schedule(); 1464 goto repeat; 1465 } 1466 } 1467 end: 1468 __set_current_state(TASK_RUNNING); 1469 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1470 return retval; 1471 } 1472 1473 static struct pid *pidfd_get_pid(unsigned int fd) 1474 { 1475 struct fd f; 1476 struct pid *pid; 1477 1478 f = fdget(fd); 1479 if (!f.file) 1480 return ERR_PTR(-EBADF); 1481 1482 pid = pidfd_pid(f.file); 1483 if (!IS_ERR(pid)) 1484 get_pid(pid); 1485 1486 fdput(f); 1487 return pid; 1488 } 1489 1490 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1491 int options, struct rusage *ru) 1492 { 1493 struct wait_opts wo; 1494 struct pid *pid = NULL; 1495 enum pid_type type; 1496 long ret; 1497 1498 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1499 __WNOTHREAD|__WCLONE|__WALL)) 1500 return -EINVAL; 1501 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1502 return -EINVAL; 1503 1504 switch (which) { 1505 case P_ALL: 1506 type = PIDTYPE_MAX; 1507 break; 1508 case P_PID: 1509 type = PIDTYPE_PID; 1510 if (upid <= 0) 1511 return -EINVAL; 1512 1513 pid = find_get_pid(upid); 1514 break; 1515 case P_PGID: 1516 type = PIDTYPE_PGID; 1517 if (upid < 0) 1518 return -EINVAL; 1519 1520 if (upid) 1521 pid = find_get_pid(upid); 1522 else 1523 pid = get_task_pid(current, PIDTYPE_PGID); 1524 break; 1525 case P_PIDFD: 1526 type = PIDTYPE_PID; 1527 if (upid < 0) 1528 return -EINVAL; 1529 1530 pid = pidfd_get_pid(upid); 1531 if (IS_ERR(pid)) 1532 return PTR_ERR(pid); 1533 break; 1534 default: 1535 return -EINVAL; 1536 } 1537 1538 wo.wo_type = type; 1539 wo.wo_pid = pid; 1540 wo.wo_flags = options; 1541 wo.wo_info = infop; 1542 wo.wo_rusage = ru; 1543 ret = do_wait(&wo); 1544 1545 put_pid(pid); 1546 return ret; 1547 } 1548 1549 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1550 infop, int, options, struct rusage __user *, ru) 1551 { 1552 struct rusage r; 1553 struct waitid_info info = {.status = 0}; 1554 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1555 int signo = 0; 1556 1557 if (err > 0) { 1558 signo = SIGCHLD; 1559 err = 0; 1560 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1561 return -EFAULT; 1562 } 1563 if (!infop) 1564 return err; 1565 1566 if (!user_access_begin(infop, sizeof(*infop))) 1567 return -EFAULT; 1568 1569 unsafe_put_user(signo, &infop->si_signo, Efault); 1570 unsafe_put_user(0, &infop->si_errno, Efault); 1571 unsafe_put_user(info.cause, &infop->si_code, Efault); 1572 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1573 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1574 unsafe_put_user(info.status, &infop->si_status, Efault); 1575 user_access_end(); 1576 return err; 1577 Efault: 1578 user_access_end(); 1579 return -EFAULT; 1580 } 1581 1582 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1583 struct rusage *ru) 1584 { 1585 struct wait_opts wo; 1586 struct pid *pid = NULL; 1587 enum pid_type type; 1588 long ret; 1589 1590 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1591 __WNOTHREAD|__WCLONE|__WALL)) 1592 return -EINVAL; 1593 1594 /* -INT_MIN is not defined */ 1595 if (upid == INT_MIN) 1596 return -ESRCH; 1597 1598 if (upid == -1) 1599 type = PIDTYPE_MAX; 1600 else if (upid < 0) { 1601 type = PIDTYPE_PGID; 1602 pid = find_get_pid(-upid); 1603 } else if (upid == 0) { 1604 type = PIDTYPE_PGID; 1605 pid = get_task_pid(current, PIDTYPE_PGID); 1606 } else /* upid > 0 */ { 1607 type = PIDTYPE_PID; 1608 pid = find_get_pid(upid); 1609 } 1610 1611 wo.wo_type = type; 1612 wo.wo_pid = pid; 1613 wo.wo_flags = options | WEXITED; 1614 wo.wo_info = NULL; 1615 wo.wo_stat = 0; 1616 wo.wo_rusage = ru; 1617 ret = do_wait(&wo); 1618 put_pid(pid); 1619 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1620 ret = -EFAULT; 1621 1622 return ret; 1623 } 1624 1625 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1626 int, options, struct rusage __user *, ru) 1627 { 1628 struct rusage r; 1629 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1630 1631 if (err > 0) { 1632 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1633 return -EFAULT; 1634 } 1635 return err; 1636 } 1637 1638 #ifdef __ARCH_WANT_SYS_WAITPID 1639 1640 /* 1641 * sys_waitpid() remains for compatibility. waitpid() should be 1642 * implemented by calling sys_wait4() from libc.a. 1643 */ 1644 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1645 { 1646 return kernel_wait4(pid, stat_addr, options, NULL); 1647 } 1648 1649 #endif 1650 1651 #ifdef CONFIG_COMPAT 1652 COMPAT_SYSCALL_DEFINE4(wait4, 1653 compat_pid_t, pid, 1654 compat_uint_t __user *, stat_addr, 1655 int, options, 1656 struct compat_rusage __user *, ru) 1657 { 1658 struct rusage r; 1659 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1660 if (err > 0) { 1661 if (ru && put_compat_rusage(&r, ru)) 1662 return -EFAULT; 1663 } 1664 return err; 1665 } 1666 1667 COMPAT_SYSCALL_DEFINE5(waitid, 1668 int, which, compat_pid_t, pid, 1669 struct compat_siginfo __user *, infop, int, options, 1670 struct compat_rusage __user *, uru) 1671 { 1672 struct rusage ru; 1673 struct waitid_info info = {.status = 0}; 1674 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1675 int signo = 0; 1676 if (err > 0) { 1677 signo = SIGCHLD; 1678 err = 0; 1679 if (uru) { 1680 /* kernel_waitid() overwrites everything in ru */ 1681 if (COMPAT_USE_64BIT_TIME) 1682 err = copy_to_user(uru, &ru, sizeof(ru)); 1683 else 1684 err = put_compat_rusage(&ru, uru); 1685 if (err) 1686 return -EFAULT; 1687 } 1688 } 1689 1690 if (!infop) 1691 return err; 1692 1693 if (!user_access_begin(infop, sizeof(*infop))) 1694 return -EFAULT; 1695 1696 unsafe_put_user(signo, &infop->si_signo, Efault); 1697 unsafe_put_user(0, &infop->si_errno, Efault); 1698 unsafe_put_user(info.cause, &infop->si_code, Efault); 1699 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1700 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1701 unsafe_put_user(info.status, &infop->si_status, Efault); 1702 user_access_end(); 1703 return err; 1704 Efault: 1705 user_access_end(); 1706 return -EFAULT; 1707 } 1708 #endif 1709 1710 __weak void abort(void) 1711 { 1712 BUG(); 1713 1714 /* if that doesn't kill us, halt */ 1715 panic("Oops failed to kill thread"); 1716 } 1717 EXPORT_SYMBOL(abort); 1718