xref: /openbmc/linux/kernel/exit.c (revision 68db0cf1)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/capability.h>
17 #include <linux/completion.h>
18 #include <linux/personality.h>
19 #include <linux/tty.h>
20 #include <linux/iocontext.h>
21 #include <linux/key.h>
22 #include <linux/cpu.h>
23 #include <linux/acct.h>
24 #include <linux/tsacct_kern.h>
25 #include <linux/file.h>
26 #include <linux/fdtable.h>
27 #include <linux/freezer.h>
28 #include <linux/binfmts.h>
29 #include <linux/nsproxy.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/ptrace.h>
32 #include <linux/profile.h>
33 #include <linux/mount.h>
34 #include <linux/proc_fs.h>
35 #include <linux/kthread.h>
36 #include <linux/mempolicy.h>
37 #include <linux/taskstats_kern.h>
38 #include <linux/delayacct.h>
39 #include <linux/cgroup.h>
40 #include <linux/syscalls.h>
41 #include <linux/signal.h>
42 #include <linux/posix-timers.h>
43 #include <linux/cn_proc.h>
44 #include <linux/mutex.h>
45 #include <linux/futex.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/audit.h> /* for audit_free() */
48 #include <linux/resource.h>
49 #include <linux/blkdev.h>
50 #include <linux/task_io_accounting_ops.h>
51 #include <linux/tracehook.h>
52 #include <linux/fs_struct.h>
53 #include <linux/userfaultfd_k.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 
65 #include <linux/uaccess.h>
66 #include <asm/unistd.h>
67 #include <asm/pgtable.h>
68 #include <asm/mmu_context.h>
69 
70 static void __unhash_process(struct task_struct *p, bool group_dead)
71 {
72 	nr_threads--;
73 	detach_pid(p, PIDTYPE_PID);
74 	if (group_dead) {
75 		detach_pid(p, PIDTYPE_PGID);
76 		detach_pid(p, PIDTYPE_SID);
77 
78 		list_del_rcu(&p->tasks);
79 		list_del_init(&p->sibling);
80 		__this_cpu_dec(process_counts);
81 	}
82 	list_del_rcu(&p->thread_group);
83 	list_del_rcu(&p->thread_node);
84 }
85 
86 /*
87  * This function expects the tasklist_lock write-locked.
88  */
89 static void __exit_signal(struct task_struct *tsk)
90 {
91 	struct signal_struct *sig = tsk->signal;
92 	bool group_dead = thread_group_leader(tsk);
93 	struct sighand_struct *sighand;
94 	struct tty_struct *uninitialized_var(tty);
95 	u64 utime, stime;
96 
97 	sighand = rcu_dereference_check(tsk->sighand,
98 					lockdep_tasklist_lock_is_held());
99 	spin_lock(&sighand->siglock);
100 
101 #ifdef CONFIG_POSIX_TIMERS
102 	posix_cpu_timers_exit(tsk);
103 	if (group_dead) {
104 		posix_cpu_timers_exit_group(tsk);
105 	} else {
106 		/*
107 		 * This can only happen if the caller is de_thread().
108 		 * FIXME: this is the temporary hack, we should teach
109 		 * posix-cpu-timers to handle this case correctly.
110 		 */
111 		if (unlikely(has_group_leader_pid(tsk)))
112 			posix_cpu_timers_exit_group(tsk);
113 	}
114 #endif
115 
116 	if (group_dead) {
117 		tty = sig->tty;
118 		sig->tty = NULL;
119 	} else {
120 		/*
121 		 * If there is any task waiting for the group exit
122 		 * then notify it:
123 		 */
124 		if (sig->notify_count > 0 && !--sig->notify_count)
125 			wake_up_process(sig->group_exit_task);
126 
127 		if (tsk == sig->curr_target)
128 			sig->curr_target = next_thread(tsk);
129 	}
130 
131 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
132 			      sizeof(unsigned long long));
133 
134 	/*
135 	 * Accumulate here the counters for all threads as they die. We could
136 	 * skip the group leader because it is the last user of signal_struct,
137 	 * but we want to avoid the race with thread_group_cputime() which can
138 	 * see the empty ->thread_head list.
139 	 */
140 	task_cputime(tsk, &utime, &stime);
141 	write_seqlock(&sig->stats_lock);
142 	sig->utime += utime;
143 	sig->stime += stime;
144 	sig->gtime += task_gtime(tsk);
145 	sig->min_flt += tsk->min_flt;
146 	sig->maj_flt += tsk->maj_flt;
147 	sig->nvcsw += tsk->nvcsw;
148 	sig->nivcsw += tsk->nivcsw;
149 	sig->inblock += task_io_get_inblock(tsk);
150 	sig->oublock += task_io_get_oublock(tsk);
151 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
152 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
153 	sig->nr_threads--;
154 	__unhash_process(tsk, group_dead);
155 	write_sequnlock(&sig->stats_lock);
156 
157 	/*
158 	 * Do this under ->siglock, we can race with another thread
159 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
160 	 */
161 	flush_sigqueue(&tsk->pending);
162 	tsk->sighand = NULL;
163 	spin_unlock(&sighand->siglock);
164 
165 	__cleanup_sighand(sighand);
166 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
167 	if (group_dead) {
168 		flush_sigqueue(&sig->shared_pending);
169 		tty_kref_put(tty);
170 	}
171 }
172 
173 static void delayed_put_task_struct(struct rcu_head *rhp)
174 {
175 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
176 
177 	perf_event_delayed_put(tsk);
178 	trace_sched_process_free(tsk);
179 	put_task_struct(tsk);
180 }
181 
182 
183 void release_task(struct task_struct *p)
184 {
185 	struct task_struct *leader;
186 	int zap_leader;
187 repeat:
188 	/* don't need to get the RCU readlock here - the process is dead and
189 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
190 	rcu_read_lock();
191 	atomic_dec(&__task_cred(p)->user->processes);
192 	rcu_read_unlock();
193 
194 	proc_flush_task(p);
195 
196 	write_lock_irq(&tasklist_lock);
197 	ptrace_release_task(p);
198 	__exit_signal(p);
199 
200 	/*
201 	 * If we are the last non-leader member of the thread
202 	 * group, and the leader is zombie, then notify the
203 	 * group leader's parent process. (if it wants notification.)
204 	 */
205 	zap_leader = 0;
206 	leader = p->group_leader;
207 	if (leader != p && thread_group_empty(leader)
208 			&& leader->exit_state == EXIT_ZOMBIE) {
209 		/*
210 		 * If we were the last child thread and the leader has
211 		 * exited already, and the leader's parent ignores SIGCHLD,
212 		 * then we are the one who should release the leader.
213 		 */
214 		zap_leader = do_notify_parent(leader, leader->exit_signal);
215 		if (zap_leader)
216 			leader->exit_state = EXIT_DEAD;
217 	}
218 
219 	write_unlock_irq(&tasklist_lock);
220 	release_thread(p);
221 	call_rcu(&p->rcu, delayed_put_task_struct);
222 
223 	p = leader;
224 	if (unlikely(zap_leader))
225 		goto repeat;
226 }
227 
228 /*
229  * Note that if this function returns a valid task_struct pointer (!NULL)
230  * task->usage must remain >0 for the duration of the RCU critical section.
231  */
232 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
233 {
234 	struct sighand_struct *sighand;
235 	struct task_struct *task;
236 
237 	/*
238 	 * We need to verify that release_task() was not called and thus
239 	 * delayed_put_task_struct() can't run and drop the last reference
240 	 * before rcu_read_unlock(). We check task->sighand != NULL,
241 	 * but we can read the already freed and reused memory.
242 	 */
243 retry:
244 	task = rcu_dereference(*ptask);
245 	if (!task)
246 		return NULL;
247 
248 	probe_kernel_address(&task->sighand, sighand);
249 
250 	/*
251 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
252 	 * was already freed we can not miss the preceding update of this
253 	 * pointer.
254 	 */
255 	smp_rmb();
256 	if (unlikely(task != READ_ONCE(*ptask)))
257 		goto retry;
258 
259 	/*
260 	 * We've re-checked that "task == *ptask", now we have two different
261 	 * cases:
262 	 *
263 	 * 1. This is actually the same task/task_struct. In this case
264 	 *    sighand != NULL tells us it is still alive.
265 	 *
266 	 * 2. This is another task which got the same memory for task_struct.
267 	 *    We can't know this of course, and we can not trust
268 	 *    sighand != NULL.
269 	 *
270 	 *    In this case we actually return a random value, but this is
271 	 *    correct.
272 	 *
273 	 *    If we return NULL - we can pretend that we actually noticed that
274 	 *    *ptask was updated when the previous task has exited. Or pretend
275 	 *    that probe_slab_address(&sighand) reads NULL.
276 	 *
277 	 *    If we return the new task (because sighand is not NULL for any
278 	 *    reason) - this is fine too. This (new) task can't go away before
279 	 *    another gp pass.
280 	 *
281 	 *    And note: We could even eliminate the false positive if re-read
282 	 *    task->sighand once again to avoid the falsely NULL. But this case
283 	 *    is very unlikely so we don't care.
284 	 */
285 	if (!sighand)
286 		return NULL;
287 
288 	return task;
289 }
290 
291 void rcuwait_wake_up(struct rcuwait *w)
292 {
293 	struct task_struct *task;
294 
295 	rcu_read_lock();
296 
297 	/*
298 	 * Order condition vs @task, such that everything prior to the load
299 	 * of @task is visible. This is the condition as to why the user called
300 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
301 	 * barrier (A) in rcuwait_wait_event().
302 	 *
303 	 *    WAIT                WAKE
304 	 *    [S] tsk = current	  [S] cond = true
305 	 *        MB (A)	      MB (B)
306 	 *    [L] cond		  [L] tsk
307 	 */
308 	smp_rmb(); /* (B) */
309 
310 	/*
311 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
312 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
313 	 */
314 	task = rcu_dereference(w->task);
315 	if (task)
316 		wake_up_process(task);
317 	rcu_read_unlock();
318 }
319 
320 struct task_struct *try_get_task_struct(struct task_struct **ptask)
321 {
322 	struct task_struct *task;
323 
324 	rcu_read_lock();
325 	task = task_rcu_dereference(ptask);
326 	if (task)
327 		get_task_struct(task);
328 	rcu_read_unlock();
329 
330 	return task;
331 }
332 
333 /*
334  * Determine if a process group is "orphaned", according to the POSIX
335  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
336  * by terminal-generated stop signals.  Newly orphaned process groups are
337  * to receive a SIGHUP and a SIGCONT.
338  *
339  * "I ask you, have you ever known what it is to be an orphan?"
340  */
341 static int will_become_orphaned_pgrp(struct pid *pgrp,
342 					struct task_struct *ignored_task)
343 {
344 	struct task_struct *p;
345 
346 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
347 		if ((p == ignored_task) ||
348 		    (p->exit_state && thread_group_empty(p)) ||
349 		    is_global_init(p->real_parent))
350 			continue;
351 
352 		if (task_pgrp(p->real_parent) != pgrp &&
353 		    task_session(p->real_parent) == task_session(p))
354 			return 0;
355 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
356 
357 	return 1;
358 }
359 
360 int is_current_pgrp_orphaned(void)
361 {
362 	int retval;
363 
364 	read_lock(&tasklist_lock);
365 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
366 	read_unlock(&tasklist_lock);
367 
368 	return retval;
369 }
370 
371 static bool has_stopped_jobs(struct pid *pgrp)
372 {
373 	struct task_struct *p;
374 
375 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
376 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
377 			return true;
378 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
379 
380 	return false;
381 }
382 
383 /*
384  * Check to see if any process groups have become orphaned as
385  * a result of our exiting, and if they have any stopped jobs,
386  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
387  */
388 static void
389 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
390 {
391 	struct pid *pgrp = task_pgrp(tsk);
392 	struct task_struct *ignored_task = tsk;
393 
394 	if (!parent)
395 		/* exit: our father is in a different pgrp than
396 		 * we are and we were the only connection outside.
397 		 */
398 		parent = tsk->real_parent;
399 	else
400 		/* reparent: our child is in a different pgrp than
401 		 * we are, and it was the only connection outside.
402 		 */
403 		ignored_task = NULL;
404 
405 	if (task_pgrp(parent) != pgrp &&
406 	    task_session(parent) == task_session(tsk) &&
407 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
408 	    has_stopped_jobs(pgrp)) {
409 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
410 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
411 	}
412 }
413 
414 #ifdef CONFIG_MEMCG
415 /*
416  * A task is exiting.   If it owned this mm, find a new owner for the mm.
417  */
418 void mm_update_next_owner(struct mm_struct *mm)
419 {
420 	struct task_struct *c, *g, *p = current;
421 
422 retry:
423 	/*
424 	 * If the exiting or execing task is not the owner, it's
425 	 * someone else's problem.
426 	 */
427 	if (mm->owner != p)
428 		return;
429 	/*
430 	 * The current owner is exiting/execing and there are no other
431 	 * candidates.  Do not leave the mm pointing to a possibly
432 	 * freed task structure.
433 	 */
434 	if (atomic_read(&mm->mm_users) <= 1) {
435 		mm->owner = NULL;
436 		return;
437 	}
438 
439 	read_lock(&tasklist_lock);
440 	/*
441 	 * Search in the children
442 	 */
443 	list_for_each_entry(c, &p->children, sibling) {
444 		if (c->mm == mm)
445 			goto assign_new_owner;
446 	}
447 
448 	/*
449 	 * Search in the siblings
450 	 */
451 	list_for_each_entry(c, &p->real_parent->children, sibling) {
452 		if (c->mm == mm)
453 			goto assign_new_owner;
454 	}
455 
456 	/*
457 	 * Search through everything else, we should not get here often.
458 	 */
459 	for_each_process(g) {
460 		if (g->flags & PF_KTHREAD)
461 			continue;
462 		for_each_thread(g, c) {
463 			if (c->mm == mm)
464 				goto assign_new_owner;
465 			if (c->mm)
466 				break;
467 		}
468 	}
469 	read_unlock(&tasklist_lock);
470 	/*
471 	 * We found no owner yet mm_users > 1: this implies that we are
472 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
473 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
474 	 */
475 	mm->owner = NULL;
476 	return;
477 
478 assign_new_owner:
479 	BUG_ON(c == p);
480 	get_task_struct(c);
481 	/*
482 	 * The task_lock protects c->mm from changing.
483 	 * We always want mm->owner->mm == mm
484 	 */
485 	task_lock(c);
486 	/*
487 	 * Delay read_unlock() till we have the task_lock()
488 	 * to ensure that c does not slip away underneath us
489 	 */
490 	read_unlock(&tasklist_lock);
491 	if (c->mm != mm) {
492 		task_unlock(c);
493 		put_task_struct(c);
494 		goto retry;
495 	}
496 	mm->owner = c;
497 	task_unlock(c);
498 	put_task_struct(c);
499 }
500 #endif /* CONFIG_MEMCG */
501 
502 /*
503  * Turn us into a lazy TLB process if we
504  * aren't already..
505  */
506 static void exit_mm(void)
507 {
508 	struct mm_struct *mm = current->mm;
509 	struct core_state *core_state;
510 
511 	mm_release(current, mm);
512 	if (!mm)
513 		return;
514 	sync_mm_rss(mm);
515 	/*
516 	 * Serialize with any possible pending coredump.
517 	 * We must hold mmap_sem around checking core_state
518 	 * and clearing tsk->mm.  The core-inducing thread
519 	 * will increment ->nr_threads for each thread in the
520 	 * group with ->mm != NULL.
521 	 */
522 	down_read(&mm->mmap_sem);
523 	core_state = mm->core_state;
524 	if (core_state) {
525 		struct core_thread self;
526 
527 		up_read(&mm->mmap_sem);
528 
529 		self.task = current;
530 		self.next = xchg(&core_state->dumper.next, &self);
531 		/*
532 		 * Implies mb(), the result of xchg() must be visible
533 		 * to core_state->dumper.
534 		 */
535 		if (atomic_dec_and_test(&core_state->nr_threads))
536 			complete(&core_state->startup);
537 
538 		for (;;) {
539 			set_current_state(TASK_UNINTERRUPTIBLE);
540 			if (!self.task) /* see coredump_finish() */
541 				break;
542 			freezable_schedule();
543 		}
544 		__set_current_state(TASK_RUNNING);
545 		down_read(&mm->mmap_sem);
546 	}
547 	mmgrab(mm);
548 	BUG_ON(mm != current->active_mm);
549 	/* more a memory barrier than a real lock */
550 	task_lock(current);
551 	current->mm = NULL;
552 	up_read(&mm->mmap_sem);
553 	enter_lazy_tlb(mm, current);
554 	task_unlock(current);
555 	mm_update_next_owner(mm);
556 	userfaultfd_exit(mm);
557 	mmput(mm);
558 	if (test_thread_flag(TIF_MEMDIE))
559 		exit_oom_victim();
560 }
561 
562 static struct task_struct *find_alive_thread(struct task_struct *p)
563 {
564 	struct task_struct *t;
565 
566 	for_each_thread(p, t) {
567 		if (!(t->flags & PF_EXITING))
568 			return t;
569 	}
570 	return NULL;
571 }
572 
573 static struct task_struct *find_child_reaper(struct task_struct *father)
574 	__releases(&tasklist_lock)
575 	__acquires(&tasklist_lock)
576 {
577 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
578 	struct task_struct *reaper = pid_ns->child_reaper;
579 
580 	if (likely(reaper != father))
581 		return reaper;
582 
583 	reaper = find_alive_thread(father);
584 	if (reaper) {
585 		pid_ns->child_reaper = reaper;
586 		return reaper;
587 	}
588 
589 	write_unlock_irq(&tasklist_lock);
590 	if (unlikely(pid_ns == &init_pid_ns)) {
591 		panic("Attempted to kill init! exitcode=0x%08x\n",
592 			father->signal->group_exit_code ?: father->exit_code);
593 	}
594 	zap_pid_ns_processes(pid_ns);
595 	write_lock_irq(&tasklist_lock);
596 
597 	return father;
598 }
599 
600 /*
601  * When we die, we re-parent all our children, and try to:
602  * 1. give them to another thread in our thread group, if such a member exists
603  * 2. give it to the first ancestor process which prctl'd itself as a
604  *    child_subreaper for its children (like a service manager)
605  * 3. give it to the init process (PID 1) in our pid namespace
606  */
607 static struct task_struct *find_new_reaper(struct task_struct *father,
608 					   struct task_struct *child_reaper)
609 {
610 	struct task_struct *thread, *reaper;
611 
612 	thread = find_alive_thread(father);
613 	if (thread)
614 		return thread;
615 
616 	if (father->signal->has_child_subreaper) {
617 		unsigned int ns_level = task_pid(father)->level;
618 		/*
619 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
620 		 * We can't check reaper != child_reaper to ensure we do not
621 		 * cross the namespaces, the exiting parent could be injected
622 		 * by setns() + fork().
623 		 * We check pid->level, this is slightly more efficient than
624 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
625 		 */
626 		for (reaper = father->real_parent;
627 		     task_pid(reaper)->level == ns_level;
628 		     reaper = reaper->real_parent) {
629 			if (reaper == &init_task)
630 				break;
631 			if (!reaper->signal->is_child_subreaper)
632 				continue;
633 			thread = find_alive_thread(reaper);
634 			if (thread)
635 				return thread;
636 		}
637 	}
638 
639 	return child_reaper;
640 }
641 
642 /*
643 * Any that need to be release_task'd are put on the @dead list.
644  */
645 static void reparent_leader(struct task_struct *father, struct task_struct *p,
646 				struct list_head *dead)
647 {
648 	if (unlikely(p->exit_state == EXIT_DEAD))
649 		return;
650 
651 	/* We don't want people slaying init. */
652 	p->exit_signal = SIGCHLD;
653 
654 	/* If it has exited notify the new parent about this child's death. */
655 	if (!p->ptrace &&
656 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
657 		if (do_notify_parent(p, p->exit_signal)) {
658 			p->exit_state = EXIT_DEAD;
659 			list_add(&p->ptrace_entry, dead);
660 		}
661 	}
662 
663 	kill_orphaned_pgrp(p, father);
664 }
665 
666 /*
667  * This does two things:
668  *
669  * A.  Make init inherit all the child processes
670  * B.  Check to see if any process groups have become orphaned
671  *	as a result of our exiting, and if they have any stopped
672  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
673  */
674 static void forget_original_parent(struct task_struct *father,
675 					struct list_head *dead)
676 {
677 	struct task_struct *p, *t, *reaper;
678 
679 	if (unlikely(!list_empty(&father->ptraced)))
680 		exit_ptrace(father, dead);
681 
682 	/* Can drop and reacquire tasklist_lock */
683 	reaper = find_child_reaper(father);
684 	if (list_empty(&father->children))
685 		return;
686 
687 	reaper = find_new_reaper(father, reaper);
688 	list_for_each_entry(p, &father->children, sibling) {
689 		for_each_thread(p, t) {
690 			t->real_parent = reaper;
691 			BUG_ON((!t->ptrace) != (t->parent == father));
692 			if (likely(!t->ptrace))
693 				t->parent = t->real_parent;
694 			if (t->pdeath_signal)
695 				group_send_sig_info(t->pdeath_signal,
696 						    SEND_SIG_NOINFO, t);
697 		}
698 		/*
699 		 * If this is a threaded reparent there is no need to
700 		 * notify anyone anything has happened.
701 		 */
702 		if (!same_thread_group(reaper, father))
703 			reparent_leader(father, p, dead);
704 	}
705 	list_splice_tail_init(&father->children, &reaper->children);
706 }
707 
708 /*
709  * Send signals to all our closest relatives so that they know
710  * to properly mourn us..
711  */
712 static void exit_notify(struct task_struct *tsk, int group_dead)
713 {
714 	bool autoreap;
715 	struct task_struct *p, *n;
716 	LIST_HEAD(dead);
717 
718 	write_lock_irq(&tasklist_lock);
719 	forget_original_parent(tsk, &dead);
720 
721 	if (group_dead)
722 		kill_orphaned_pgrp(tsk->group_leader, NULL);
723 
724 	if (unlikely(tsk->ptrace)) {
725 		int sig = thread_group_leader(tsk) &&
726 				thread_group_empty(tsk) &&
727 				!ptrace_reparented(tsk) ?
728 			tsk->exit_signal : SIGCHLD;
729 		autoreap = do_notify_parent(tsk, sig);
730 	} else if (thread_group_leader(tsk)) {
731 		autoreap = thread_group_empty(tsk) &&
732 			do_notify_parent(tsk, tsk->exit_signal);
733 	} else {
734 		autoreap = true;
735 	}
736 
737 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
738 	if (tsk->exit_state == EXIT_DEAD)
739 		list_add(&tsk->ptrace_entry, &dead);
740 
741 	/* mt-exec, de_thread() is waiting for group leader */
742 	if (unlikely(tsk->signal->notify_count < 0))
743 		wake_up_process(tsk->signal->group_exit_task);
744 	write_unlock_irq(&tasklist_lock);
745 
746 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
747 		list_del_init(&p->ptrace_entry);
748 		release_task(p);
749 	}
750 }
751 
752 #ifdef CONFIG_DEBUG_STACK_USAGE
753 static void check_stack_usage(void)
754 {
755 	static DEFINE_SPINLOCK(low_water_lock);
756 	static int lowest_to_date = THREAD_SIZE;
757 	unsigned long free;
758 
759 	free = stack_not_used(current);
760 
761 	if (free >= lowest_to_date)
762 		return;
763 
764 	spin_lock(&low_water_lock);
765 	if (free < lowest_to_date) {
766 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
767 			current->comm, task_pid_nr(current), free);
768 		lowest_to_date = free;
769 	}
770 	spin_unlock(&low_water_lock);
771 }
772 #else
773 static inline void check_stack_usage(void) {}
774 #endif
775 
776 void __noreturn do_exit(long code)
777 {
778 	struct task_struct *tsk = current;
779 	int group_dead;
780 	TASKS_RCU(int tasks_rcu_i);
781 
782 	profile_task_exit(tsk);
783 	kcov_task_exit(tsk);
784 
785 	WARN_ON(blk_needs_flush_plug(tsk));
786 
787 	if (unlikely(in_interrupt()))
788 		panic("Aiee, killing interrupt handler!");
789 	if (unlikely(!tsk->pid))
790 		panic("Attempted to kill the idle task!");
791 
792 	/*
793 	 * If do_exit is called because this processes oopsed, it's possible
794 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
795 	 * continuing. Amongst other possible reasons, this is to prevent
796 	 * mm_release()->clear_child_tid() from writing to a user-controlled
797 	 * kernel address.
798 	 */
799 	set_fs(USER_DS);
800 
801 	ptrace_event(PTRACE_EVENT_EXIT, code);
802 
803 	validate_creds_for_do_exit(tsk);
804 
805 	/*
806 	 * We're taking recursive faults here in do_exit. Safest is to just
807 	 * leave this task alone and wait for reboot.
808 	 */
809 	if (unlikely(tsk->flags & PF_EXITING)) {
810 		pr_alert("Fixing recursive fault but reboot is needed!\n");
811 		/*
812 		 * We can do this unlocked here. The futex code uses
813 		 * this flag just to verify whether the pi state
814 		 * cleanup has been done or not. In the worst case it
815 		 * loops once more. We pretend that the cleanup was
816 		 * done as there is no way to return. Either the
817 		 * OWNER_DIED bit is set by now or we push the blocked
818 		 * task into the wait for ever nirwana as well.
819 		 */
820 		tsk->flags |= PF_EXITPIDONE;
821 		set_current_state(TASK_UNINTERRUPTIBLE);
822 		schedule();
823 	}
824 
825 	exit_signals(tsk);  /* sets PF_EXITING */
826 	/*
827 	 * Ensure that all new tsk->pi_lock acquisitions must observe
828 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
829 	 */
830 	smp_mb();
831 	/*
832 	 * Ensure that we must observe the pi_state in exit_mm() ->
833 	 * mm_release() -> exit_pi_state_list().
834 	 */
835 	raw_spin_unlock_wait(&tsk->pi_lock);
836 
837 	if (unlikely(in_atomic())) {
838 		pr_info("note: %s[%d] exited with preempt_count %d\n",
839 			current->comm, task_pid_nr(current),
840 			preempt_count());
841 		preempt_count_set(PREEMPT_ENABLED);
842 	}
843 
844 	/* sync mm's RSS info before statistics gathering */
845 	if (tsk->mm)
846 		sync_mm_rss(tsk->mm);
847 	acct_update_integrals(tsk);
848 	group_dead = atomic_dec_and_test(&tsk->signal->live);
849 	if (group_dead) {
850 #ifdef CONFIG_POSIX_TIMERS
851 		hrtimer_cancel(&tsk->signal->real_timer);
852 		exit_itimers(tsk->signal);
853 #endif
854 		if (tsk->mm)
855 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
856 	}
857 	acct_collect(code, group_dead);
858 	if (group_dead)
859 		tty_audit_exit();
860 	audit_free(tsk);
861 
862 	tsk->exit_code = code;
863 	taskstats_exit(tsk, group_dead);
864 
865 	exit_mm();
866 
867 	if (group_dead)
868 		acct_process();
869 	trace_sched_process_exit(tsk);
870 
871 	exit_sem(tsk);
872 	exit_shm(tsk);
873 	exit_files(tsk);
874 	exit_fs(tsk);
875 	if (group_dead)
876 		disassociate_ctty(1);
877 	exit_task_namespaces(tsk);
878 	exit_task_work(tsk);
879 	exit_thread(tsk);
880 
881 	/*
882 	 * Flush inherited counters to the parent - before the parent
883 	 * gets woken up by child-exit notifications.
884 	 *
885 	 * because of cgroup mode, must be called before cgroup_exit()
886 	 */
887 	perf_event_exit_task(tsk);
888 
889 	sched_autogroup_exit_task(tsk);
890 	cgroup_exit(tsk);
891 
892 	/*
893 	 * FIXME: do that only when needed, using sched_exit tracepoint
894 	 */
895 	flush_ptrace_hw_breakpoint(tsk);
896 
897 	TASKS_RCU(preempt_disable());
898 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
899 	TASKS_RCU(preempt_enable());
900 	exit_notify(tsk, group_dead);
901 	proc_exit_connector(tsk);
902 	mpol_put_task_policy(tsk);
903 #ifdef CONFIG_FUTEX
904 	if (unlikely(current->pi_state_cache))
905 		kfree(current->pi_state_cache);
906 #endif
907 	/*
908 	 * Make sure we are holding no locks:
909 	 */
910 	debug_check_no_locks_held();
911 	/*
912 	 * We can do this unlocked here. The futex code uses this flag
913 	 * just to verify whether the pi state cleanup has been done
914 	 * or not. In the worst case it loops once more.
915 	 */
916 	tsk->flags |= PF_EXITPIDONE;
917 
918 	if (tsk->io_context)
919 		exit_io_context(tsk);
920 
921 	if (tsk->splice_pipe)
922 		free_pipe_info(tsk->splice_pipe);
923 
924 	if (tsk->task_frag.page)
925 		put_page(tsk->task_frag.page);
926 
927 	validate_creds_for_do_exit(tsk);
928 
929 	check_stack_usage();
930 	preempt_disable();
931 	if (tsk->nr_dirtied)
932 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
933 	exit_rcu();
934 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
935 
936 	do_task_dead();
937 }
938 EXPORT_SYMBOL_GPL(do_exit);
939 
940 void complete_and_exit(struct completion *comp, long code)
941 {
942 	if (comp)
943 		complete(comp);
944 
945 	do_exit(code);
946 }
947 EXPORT_SYMBOL(complete_and_exit);
948 
949 SYSCALL_DEFINE1(exit, int, error_code)
950 {
951 	do_exit((error_code&0xff)<<8);
952 }
953 
954 /*
955  * Take down every thread in the group.  This is called by fatal signals
956  * as well as by sys_exit_group (below).
957  */
958 void
959 do_group_exit(int exit_code)
960 {
961 	struct signal_struct *sig = current->signal;
962 
963 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
964 
965 	if (signal_group_exit(sig))
966 		exit_code = sig->group_exit_code;
967 	else if (!thread_group_empty(current)) {
968 		struct sighand_struct *const sighand = current->sighand;
969 
970 		spin_lock_irq(&sighand->siglock);
971 		if (signal_group_exit(sig))
972 			/* Another thread got here before we took the lock.  */
973 			exit_code = sig->group_exit_code;
974 		else {
975 			sig->group_exit_code = exit_code;
976 			sig->flags = SIGNAL_GROUP_EXIT;
977 			zap_other_threads(current);
978 		}
979 		spin_unlock_irq(&sighand->siglock);
980 	}
981 
982 	do_exit(exit_code);
983 	/* NOTREACHED */
984 }
985 
986 /*
987  * this kills every thread in the thread group. Note that any externally
988  * wait4()-ing process will get the correct exit code - even if this
989  * thread is not the thread group leader.
990  */
991 SYSCALL_DEFINE1(exit_group, int, error_code)
992 {
993 	do_group_exit((error_code & 0xff) << 8);
994 	/* NOTREACHED */
995 	return 0;
996 }
997 
998 struct wait_opts {
999 	enum pid_type		wo_type;
1000 	int			wo_flags;
1001 	struct pid		*wo_pid;
1002 
1003 	struct siginfo __user	*wo_info;
1004 	int __user		*wo_stat;
1005 	struct rusage __user	*wo_rusage;
1006 
1007 	wait_queue_t		child_wait;
1008 	int			notask_error;
1009 };
1010 
1011 static inline
1012 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1013 {
1014 	if (type != PIDTYPE_PID)
1015 		task = task->group_leader;
1016 	return task->pids[type].pid;
1017 }
1018 
1019 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1020 {
1021 	return	wo->wo_type == PIDTYPE_MAX ||
1022 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1023 }
1024 
1025 static int
1026 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1027 {
1028 	if (!eligible_pid(wo, p))
1029 		return 0;
1030 
1031 	/*
1032 	 * Wait for all children (clone and not) if __WALL is set or
1033 	 * if it is traced by us.
1034 	 */
1035 	if (ptrace || (wo->wo_flags & __WALL))
1036 		return 1;
1037 
1038 	/*
1039 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1040 	 * otherwise, wait for non-clone children *only*.
1041 	 *
1042 	 * Note: a "clone" child here is one that reports to its parent
1043 	 * using a signal other than SIGCHLD, or a non-leader thread which
1044 	 * we can only see if it is traced by us.
1045 	 */
1046 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1047 		return 0;
1048 
1049 	return 1;
1050 }
1051 
1052 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1053 				pid_t pid, uid_t uid, int why, int status)
1054 {
1055 	struct siginfo __user *infop;
1056 	int retval = wo->wo_rusage
1057 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1058 
1059 	put_task_struct(p);
1060 	infop = wo->wo_info;
1061 	if (infop) {
1062 		if (!retval)
1063 			retval = put_user(SIGCHLD, &infop->si_signo);
1064 		if (!retval)
1065 			retval = put_user(0, &infop->si_errno);
1066 		if (!retval)
1067 			retval = put_user((short)why, &infop->si_code);
1068 		if (!retval)
1069 			retval = put_user(pid, &infop->si_pid);
1070 		if (!retval)
1071 			retval = put_user(uid, &infop->si_uid);
1072 		if (!retval)
1073 			retval = put_user(status, &infop->si_status);
1074 	}
1075 	if (!retval)
1076 		retval = pid;
1077 	return retval;
1078 }
1079 
1080 /*
1081  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1082  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1083  * the lock and this task is uninteresting.  If we return nonzero, we have
1084  * released the lock and the system call should return.
1085  */
1086 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1087 {
1088 	int state, retval, status;
1089 	pid_t pid = task_pid_vnr(p);
1090 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1091 	struct siginfo __user *infop;
1092 
1093 	if (!likely(wo->wo_flags & WEXITED))
1094 		return 0;
1095 
1096 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1097 		int exit_code = p->exit_code;
1098 		int why;
1099 
1100 		get_task_struct(p);
1101 		read_unlock(&tasklist_lock);
1102 		sched_annotate_sleep();
1103 
1104 		if ((exit_code & 0x7f) == 0) {
1105 			why = CLD_EXITED;
1106 			status = exit_code >> 8;
1107 		} else {
1108 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1109 			status = exit_code & 0x7f;
1110 		}
1111 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1112 	}
1113 	/*
1114 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1115 	 */
1116 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1117 		EXIT_TRACE : EXIT_DEAD;
1118 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1119 		return 0;
1120 	/*
1121 	 * We own this thread, nobody else can reap it.
1122 	 */
1123 	read_unlock(&tasklist_lock);
1124 	sched_annotate_sleep();
1125 
1126 	/*
1127 	 * Check thread_group_leader() to exclude the traced sub-threads.
1128 	 */
1129 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1130 		struct signal_struct *sig = p->signal;
1131 		struct signal_struct *psig = current->signal;
1132 		unsigned long maxrss;
1133 		u64 tgutime, tgstime;
1134 
1135 		/*
1136 		 * The resource counters for the group leader are in its
1137 		 * own task_struct.  Those for dead threads in the group
1138 		 * are in its signal_struct, as are those for the child
1139 		 * processes it has previously reaped.  All these
1140 		 * accumulate in the parent's signal_struct c* fields.
1141 		 *
1142 		 * We don't bother to take a lock here to protect these
1143 		 * p->signal fields because the whole thread group is dead
1144 		 * and nobody can change them.
1145 		 *
1146 		 * psig->stats_lock also protects us from our sub-theads
1147 		 * which can reap other children at the same time. Until
1148 		 * we change k_getrusage()-like users to rely on this lock
1149 		 * we have to take ->siglock as well.
1150 		 *
1151 		 * We use thread_group_cputime_adjusted() to get times for
1152 		 * the thread group, which consolidates times for all threads
1153 		 * in the group including the group leader.
1154 		 */
1155 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1156 		spin_lock_irq(&current->sighand->siglock);
1157 		write_seqlock(&psig->stats_lock);
1158 		psig->cutime += tgutime + sig->cutime;
1159 		psig->cstime += tgstime + sig->cstime;
1160 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1161 		psig->cmin_flt +=
1162 			p->min_flt + sig->min_flt + sig->cmin_flt;
1163 		psig->cmaj_flt +=
1164 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1165 		psig->cnvcsw +=
1166 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1167 		psig->cnivcsw +=
1168 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1169 		psig->cinblock +=
1170 			task_io_get_inblock(p) +
1171 			sig->inblock + sig->cinblock;
1172 		psig->coublock +=
1173 			task_io_get_oublock(p) +
1174 			sig->oublock + sig->coublock;
1175 		maxrss = max(sig->maxrss, sig->cmaxrss);
1176 		if (psig->cmaxrss < maxrss)
1177 			psig->cmaxrss = maxrss;
1178 		task_io_accounting_add(&psig->ioac, &p->ioac);
1179 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1180 		write_sequnlock(&psig->stats_lock);
1181 		spin_unlock_irq(&current->sighand->siglock);
1182 	}
1183 
1184 	retval = wo->wo_rusage
1185 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1186 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1187 		? p->signal->group_exit_code : p->exit_code;
1188 	if (!retval && wo->wo_stat)
1189 		retval = put_user(status, wo->wo_stat);
1190 
1191 	infop = wo->wo_info;
1192 	if (!retval && infop)
1193 		retval = put_user(SIGCHLD, &infop->si_signo);
1194 	if (!retval && infop)
1195 		retval = put_user(0, &infop->si_errno);
1196 	if (!retval && infop) {
1197 		int why;
1198 
1199 		if ((status & 0x7f) == 0) {
1200 			why = CLD_EXITED;
1201 			status >>= 8;
1202 		} else {
1203 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1204 			status &= 0x7f;
1205 		}
1206 		retval = put_user((short)why, &infop->si_code);
1207 		if (!retval)
1208 			retval = put_user(status, &infop->si_status);
1209 	}
1210 	if (!retval && infop)
1211 		retval = put_user(pid, &infop->si_pid);
1212 	if (!retval && infop)
1213 		retval = put_user(uid, &infop->si_uid);
1214 	if (!retval)
1215 		retval = pid;
1216 
1217 	if (state == EXIT_TRACE) {
1218 		write_lock_irq(&tasklist_lock);
1219 		/* We dropped tasklist, ptracer could die and untrace */
1220 		ptrace_unlink(p);
1221 
1222 		/* If parent wants a zombie, don't release it now */
1223 		state = EXIT_ZOMBIE;
1224 		if (do_notify_parent(p, p->exit_signal))
1225 			state = EXIT_DEAD;
1226 		p->exit_state = state;
1227 		write_unlock_irq(&tasklist_lock);
1228 	}
1229 	if (state == EXIT_DEAD)
1230 		release_task(p);
1231 
1232 	return retval;
1233 }
1234 
1235 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1236 {
1237 	if (ptrace) {
1238 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1239 			return &p->exit_code;
1240 	} else {
1241 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1242 			return &p->signal->group_exit_code;
1243 	}
1244 	return NULL;
1245 }
1246 
1247 /**
1248  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1249  * @wo: wait options
1250  * @ptrace: is the wait for ptrace
1251  * @p: task to wait for
1252  *
1253  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1254  *
1255  * CONTEXT:
1256  * read_lock(&tasklist_lock), which is released if return value is
1257  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1258  *
1259  * RETURNS:
1260  * 0 if wait condition didn't exist and search for other wait conditions
1261  * should continue.  Non-zero return, -errno on failure and @p's pid on
1262  * success, implies that tasklist_lock is released and wait condition
1263  * search should terminate.
1264  */
1265 static int wait_task_stopped(struct wait_opts *wo,
1266 				int ptrace, struct task_struct *p)
1267 {
1268 	struct siginfo __user *infop;
1269 	int retval, exit_code, *p_code, why;
1270 	uid_t uid = 0; /* unneeded, required by compiler */
1271 	pid_t pid;
1272 
1273 	/*
1274 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1275 	 */
1276 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1277 		return 0;
1278 
1279 	if (!task_stopped_code(p, ptrace))
1280 		return 0;
1281 
1282 	exit_code = 0;
1283 	spin_lock_irq(&p->sighand->siglock);
1284 
1285 	p_code = task_stopped_code(p, ptrace);
1286 	if (unlikely(!p_code))
1287 		goto unlock_sig;
1288 
1289 	exit_code = *p_code;
1290 	if (!exit_code)
1291 		goto unlock_sig;
1292 
1293 	if (!unlikely(wo->wo_flags & WNOWAIT))
1294 		*p_code = 0;
1295 
1296 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1297 unlock_sig:
1298 	spin_unlock_irq(&p->sighand->siglock);
1299 	if (!exit_code)
1300 		return 0;
1301 
1302 	/*
1303 	 * Now we are pretty sure this task is interesting.
1304 	 * Make sure it doesn't get reaped out from under us while we
1305 	 * give up the lock and then examine it below.  We don't want to
1306 	 * keep holding onto the tasklist_lock while we call getrusage and
1307 	 * possibly take page faults for user memory.
1308 	 */
1309 	get_task_struct(p);
1310 	pid = task_pid_vnr(p);
1311 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1312 	read_unlock(&tasklist_lock);
1313 	sched_annotate_sleep();
1314 
1315 	if (unlikely(wo->wo_flags & WNOWAIT))
1316 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1317 
1318 	retval = wo->wo_rusage
1319 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1320 	if (!retval && wo->wo_stat)
1321 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1322 
1323 	infop = wo->wo_info;
1324 	if (!retval && infop)
1325 		retval = put_user(SIGCHLD, &infop->si_signo);
1326 	if (!retval && infop)
1327 		retval = put_user(0, &infop->si_errno);
1328 	if (!retval && infop)
1329 		retval = put_user((short)why, &infop->si_code);
1330 	if (!retval && infop)
1331 		retval = put_user(exit_code, &infop->si_status);
1332 	if (!retval && infop)
1333 		retval = put_user(pid, &infop->si_pid);
1334 	if (!retval && infop)
1335 		retval = put_user(uid, &infop->si_uid);
1336 	if (!retval)
1337 		retval = pid;
1338 	put_task_struct(p);
1339 
1340 	BUG_ON(!retval);
1341 	return retval;
1342 }
1343 
1344 /*
1345  * Handle do_wait work for one task in a live, non-stopped state.
1346  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1347  * the lock and this task is uninteresting.  If we return nonzero, we have
1348  * released the lock and the system call should return.
1349  */
1350 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1351 {
1352 	int retval;
1353 	pid_t pid;
1354 	uid_t uid;
1355 
1356 	if (!unlikely(wo->wo_flags & WCONTINUED))
1357 		return 0;
1358 
1359 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1360 		return 0;
1361 
1362 	spin_lock_irq(&p->sighand->siglock);
1363 	/* Re-check with the lock held.  */
1364 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1365 		spin_unlock_irq(&p->sighand->siglock);
1366 		return 0;
1367 	}
1368 	if (!unlikely(wo->wo_flags & WNOWAIT))
1369 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1370 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1371 	spin_unlock_irq(&p->sighand->siglock);
1372 
1373 	pid = task_pid_vnr(p);
1374 	get_task_struct(p);
1375 	read_unlock(&tasklist_lock);
1376 	sched_annotate_sleep();
1377 
1378 	if (!wo->wo_info) {
1379 		retval = wo->wo_rusage
1380 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1381 		put_task_struct(p);
1382 		if (!retval && wo->wo_stat)
1383 			retval = put_user(0xffff, wo->wo_stat);
1384 		if (!retval)
1385 			retval = pid;
1386 	} else {
1387 		retval = wait_noreap_copyout(wo, p, pid, uid,
1388 					     CLD_CONTINUED, SIGCONT);
1389 		BUG_ON(retval == 0);
1390 	}
1391 
1392 	return retval;
1393 }
1394 
1395 /*
1396  * Consider @p for a wait by @parent.
1397  *
1398  * -ECHILD should be in ->notask_error before the first call.
1399  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1400  * Returns zero if the search for a child should continue;
1401  * then ->notask_error is 0 if @p is an eligible child,
1402  * or still -ECHILD.
1403  */
1404 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1405 				struct task_struct *p)
1406 {
1407 	/*
1408 	 * We can race with wait_task_zombie() from another thread.
1409 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1410 	 * can't confuse the checks below.
1411 	 */
1412 	int exit_state = ACCESS_ONCE(p->exit_state);
1413 	int ret;
1414 
1415 	if (unlikely(exit_state == EXIT_DEAD))
1416 		return 0;
1417 
1418 	ret = eligible_child(wo, ptrace, p);
1419 	if (!ret)
1420 		return ret;
1421 
1422 	if (unlikely(exit_state == EXIT_TRACE)) {
1423 		/*
1424 		 * ptrace == 0 means we are the natural parent. In this case
1425 		 * we should clear notask_error, debugger will notify us.
1426 		 */
1427 		if (likely(!ptrace))
1428 			wo->notask_error = 0;
1429 		return 0;
1430 	}
1431 
1432 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1433 		/*
1434 		 * If it is traced by its real parent's group, just pretend
1435 		 * the caller is ptrace_do_wait() and reap this child if it
1436 		 * is zombie.
1437 		 *
1438 		 * This also hides group stop state from real parent; otherwise
1439 		 * a single stop can be reported twice as group and ptrace stop.
1440 		 * If a ptracer wants to distinguish these two events for its
1441 		 * own children it should create a separate process which takes
1442 		 * the role of real parent.
1443 		 */
1444 		if (!ptrace_reparented(p))
1445 			ptrace = 1;
1446 	}
1447 
1448 	/* slay zombie? */
1449 	if (exit_state == EXIT_ZOMBIE) {
1450 		/* we don't reap group leaders with subthreads */
1451 		if (!delay_group_leader(p)) {
1452 			/*
1453 			 * A zombie ptracee is only visible to its ptracer.
1454 			 * Notification and reaping will be cascaded to the
1455 			 * real parent when the ptracer detaches.
1456 			 */
1457 			if (unlikely(ptrace) || likely(!p->ptrace))
1458 				return wait_task_zombie(wo, p);
1459 		}
1460 
1461 		/*
1462 		 * Allow access to stopped/continued state via zombie by
1463 		 * falling through.  Clearing of notask_error is complex.
1464 		 *
1465 		 * When !@ptrace:
1466 		 *
1467 		 * If WEXITED is set, notask_error should naturally be
1468 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1469 		 * so, if there are live subthreads, there are events to
1470 		 * wait for.  If all subthreads are dead, it's still safe
1471 		 * to clear - this function will be called again in finite
1472 		 * amount time once all the subthreads are released and
1473 		 * will then return without clearing.
1474 		 *
1475 		 * When @ptrace:
1476 		 *
1477 		 * Stopped state is per-task and thus can't change once the
1478 		 * target task dies.  Only continued and exited can happen.
1479 		 * Clear notask_error if WCONTINUED | WEXITED.
1480 		 */
1481 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1482 			wo->notask_error = 0;
1483 	} else {
1484 		/*
1485 		 * @p is alive and it's gonna stop, continue or exit, so
1486 		 * there always is something to wait for.
1487 		 */
1488 		wo->notask_error = 0;
1489 	}
1490 
1491 	/*
1492 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1493 	 * is used and the two don't interact with each other.
1494 	 */
1495 	ret = wait_task_stopped(wo, ptrace, p);
1496 	if (ret)
1497 		return ret;
1498 
1499 	/*
1500 	 * Wait for continued.  There's only one continued state and the
1501 	 * ptracer can consume it which can confuse the real parent.  Don't
1502 	 * use WCONTINUED from ptracer.  You don't need or want it.
1503 	 */
1504 	return wait_task_continued(wo, p);
1505 }
1506 
1507 /*
1508  * Do the work of do_wait() for one thread in the group, @tsk.
1509  *
1510  * -ECHILD should be in ->notask_error before the first call.
1511  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1512  * Returns zero if the search for a child should continue; then
1513  * ->notask_error is 0 if there were any eligible children,
1514  * or still -ECHILD.
1515  */
1516 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1517 {
1518 	struct task_struct *p;
1519 
1520 	list_for_each_entry(p, &tsk->children, sibling) {
1521 		int ret = wait_consider_task(wo, 0, p);
1522 
1523 		if (ret)
1524 			return ret;
1525 	}
1526 
1527 	return 0;
1528 }
1529 
1530 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1531 {
1532 	struct task_struct *p;
1533 
1534 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1535 		int ret = wait_consider_task(wo, 1, p);
1536 
1537 		if (ret)
1538 			return ret;
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1545 				int sync, void *key)
1546 {
1547 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1548 						child_wait);
1549 	struct task_struct *p = key;
1550 
1551 	if (!eligible_pid(wo, p))
1552 		return 0;
1553 
1554 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1555 		return 0;
1556 
1557 	return default_wake_function(wait, mode, sync, key);
1558 }
1559 
1560 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1561 {
1562 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1563 				TASK_INTERRUPTIBLE, 1, p);
1564 }
1565 
1566 static long do_wait(struct wait_opts *wo)
1567 {
1568 	struct task_struct *tsk;
1569 	int retval;
1570 
1571 	trace_sched_process_wait(wo->wo_pid);
1572 
1573 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1574 	wo->child_wait.private = current;
1575 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1576 repeat:
1577 	/*
1578 	 * If there is nothing that can match our criteria, just get out.
1579 	 * We will clear ->notask_error to zero if we see any child that
1580 	 * might later match our criteria, even if we are not able to reap
1581 	 * it yet.
1582 	 */
1583 	wo->notask_error = -ECHILD;
1584 	if ((wo->wo_type < PIDTYPE_MAX) &&
1585 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1586 		goto notask;
1587 
1588 	set_current_state(TASK_INTERRUPTIBLE);
1589 	read_lock(&tasklist_lock);
1590 	tsk = current;
1591 	do {
1592 		retval = do_wait_thread(wo, tsk);
1593 		if (retval)
1594 			goto end;
1595 
1596 		retval = ptrace_do_wait(wo, tsk);
1597 		if (retval)
1598 			goto end;
1599 
1600 		if (wo->wo_flags & __WNOTHREAD)
1601 			break;
1602 	} while_each_thread(current, tsk);
1603 	read_unlock(&tasklist_lock);
1604 
1605 notask:
1606 	retval = wo->notask_error;
1607 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1608 		retval = -ERESTARTSYS;
1609 		if (!signal_pending(current)) {
1610 			schedule();
1611 			goto repeat;
1612 		}
1613 	}
1614 end:
1615 	__set_current_state(TASK_RUNNING);
1616 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1617 	return retval;
1618 }
1619 
1620 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1621 		infop, int, options, struct rusage __user *, ru)
1622 {
1623 	struct wait_opts wo;
1624 	struct pid *pid = NULL;
1625 	enum pid_type type;
1626 	long ret;
1627 
1628 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1629 			__WNOTHREAD|__WCLONE|__WALL))
1630 		return -EINVAL;
1631 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1632 		return -EINVAL;
1633 
1634 	switch (which) {
1635 	case P_ALL:
1636 		type = PIDTYPE_MAX;
1637 		break;
1638 	case P_PID:
1639 		type = PIDTYPE_PID;
1640 		if (upid <= 0)
1641 			return -EINVAL;
1642 		break;
1643 	case P_PGID:
1644 		type = PIDTYPE_PGID;
1645 		if (upid <= 0)
1646 			return -EINVAL;
1647 		break;
1648 	default:
1649 		return -EINVAL;
1650 	}
1651 
1652 	if (type < PIDTYPE_MAX)
1653 		pid = find_get_pid(upid);
1654 
1655 	wo.wo_type	= type;
1656 	wo.wo_pid	= pid;
1657 	wo.wo_flags	= options;
1658 	wo.wo_info	= infop;
1659 	wo.wo_stat	= NULL;
1660 	wo.wo_rusage	= ru;
1661 	ret = do_wait(&wo);
1662 
1663 	if (ret > 0) {
1664 		ret = 0;
1665 	} else if (infop) {
1666 		/*
1667 		 * For a WNOHANG return, clear out all the fields
1668 		 * we would set so the user can easily tell the
1669 		 * difference.
1670 		 */
1671 		if (!ret)
1672 			ret = put_user(0, &infop->si_signo);
1673 		if (!ret)
1674 			ret = put_user(0, &infop->si_errno);
1675 		if (!ret)
1676 			ret = put_user(0, &infop->si_code);
1677 		if (!ret)
1678 			ret = put_user(0, &infop->si_pid);
1679 		if (!ret)
1680 			ret = put_user(0, &infop->si_uid);
1681 		if (!ret)
1682 			ret = put_user(0, &infop->si_status);
1683 	}
1684 
1685 	put_pid(pid);
1686 	return ret;
1687 }
1688 
1689 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1690 		int, options, struct rusage __user *, ru)
1691 {
1692 	struct wait_opts wo;
1693 	struct pid *pid = NULL;
1694 	enum pid_type type;
1695 	long ret;
1696 
1697 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1698 			__WNOTHREAD|__WCLONE|__WALL))
1699 		return -EINVAL;
1700 
1701 	if (upid == -1)
1702 		type = PIDTYPE_MAX;
1703 	else if (upid < 0) {
1704 		type = PIDTYPE_PGID;
1705 		pid = find_get_pid(-upid);
1706 	} else if (upid == 0) {
1707 		type = PIDTYPE_PGID;
1708 		pid = get_task_pid(current, PIDTYPE_PGID);
1709 	} else /* upid > 0 */ {
1710 		type = PIDTYPE_PID;
1711 		pid = find_get_pid(upid);
1712 	}
1713 
1714 	wo.wo_type	= type;
1715 	wo.wo_pid	= pid;
1716 	wo.wo_flags	= options | WEXITED;
1717 	wo.wo_info	= NULL;
1718 	wo.wo_stat	= stat_addr;
1719 	wo.wo_rusage	= ru;
1720 	ret = do_wait(&wo);
1721 	put_pid(pid);
1722 
1723 	return ret;
1724 }
1725 
1726 #ifdef __ARCH_WANT_SYS_WAITPID
1727 
1728 /*
1729  * sys_waitpid() remains for compatibility. waitpid() should be
1730  * implemented by calling sys_wait4() from libc.a.
1731  */
1732 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1733 {
1734 	return sys_wait4(pid, stat_addr, options, NULL);
1735 }
1736 
1737 #endif
1738