xref: /openbmc/linux/kernel/exit.c (revision 63dc02bd)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct * tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 }
78 
79 /*
80  * This function expects the tasklist_lock write-locked.
81  */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 	struct signal_struct *sig = tsk->signal;
85 	bool group_dead = thread_group_leader(tsk);
86 	struct sighand_struct *sighand;
87 	struct tty_struct *uninitialized_var(tty);
88 
89 	sighand = rcu_dereference_check(tsk->sighand,
90 					lockdep_tasklist_lock_is_held());
91 	spin_lock(&sighand->siglock);
92 
93 	posix_cpu_timers_exit(tsk);
94 	if (group_dead) {
95 		posix_cpu_timers_exit_group(tsk);
96 		tty = sig->tty;
97 		sig->tty = NULL;
98 	} else {
99 		/*
100 		 * This can only happen if the caller is de_thread().
101 		 * FIXME: this is the temporary hack, we should teach
102 		 * posix-cpu-timers to handle this case correctly.
103 		 */
104 		if (unlikely(has_group_leader_pid(tsk)))
105 			posix_cpu_timers_exit_group(tsk);
106 
107 		/*
108 		 * If there is any task waiting for the group exit
109 		 * then notify it:
110 		 */
111 		if (sig->notify_count > 0 && !--sig->notify_count)
112 			wake_up_process(sig->group_exit_task);
113 
114 		if (tsk == sig->curr_target)
115 			sig->curr_target = next_thread(tsk);
116 		/*
117 		 * Accumulate here the counters for all threads but the
118 		 * group leader as they die, so they can be added into
119 		 * the process-wide totals when those are taken.
120 		 * The group leader stays around as a zombie as long
121 		 * as there are other threads.  When it gets reaped,
122 		 * the exit.c code will add its counts into these totals.
123 		 * We won't ever get here for the group leader, since it
124 		 * will have been the last reference on the signal_struct.
125 		 */
126 		sig->utime += tsk->utime;
127 		sig->stime += tsk->stime;
128 		sig->gtime += tsk->gtime;
129 		sig->min_flt += tsk->min_flt;
130 		sig->maj_flt += tsk->maj_flt;
131 		sig->nvcsw += tsk->nvcsw;
132 		sig->nivcsw += tsk->nivcsw;
133 		sig->inblock += task_io_get_inblock(tsk);
134 		sig->oublock += task_io_get_oublock(tsk);
135 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
136 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137 	}
138 
139 	sig->nr_threads--;
140 	__unhash_process(tsk, group_dead);
141 
142 	/*
143 	 * Do this under ->siglock, we can race with another thread
144 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 	 */
146 	flush_sigqueue(&tsk->pending);
147 	tsk->sighand = NULL;
148 	spin_unlock(&sighand->siglock);
149 
150 	__cleanup_sighand(sighand);
151 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
152 	if (group_dead) {
153 		flush_sigqueue(&sig->shared_pending);
154 		tty_kref_put(tty);
155 	}
156 }
157 
158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 
162 	perf_event_delayed_put(tsk);
163 	trace_sched_process_free(tsk);
164 	put_task_struct(tsk);
165 }
166 
167 
168 void release_task(struct task_struct * p)
169 {
170 	struct task_struct *leader;
171 	int zap_leader;
172 repeat:
173 	/* don't need to get the RCU readlock here - the process is dead and
174 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 	rcu_read_lock();
176 	atomic_dec(&__task_cred(p)->user->processes);
177 	rcu_read_unlock();
178 
179 	proc_flush_task(p);
180 
181 	write_lock_irq(&tasklist_lock);
182 	ptrace_release_task(p);
183 	__exit_signal(p);
184 
185 	/*
186 	 * If we are the last non-leader member of the thread
187 	 * group, and the leader is zombie, then notify the
188 	 * group leader's parent process. (if it wants notification.)
189 	 */
190 	zap_leader = 0;
191 	leader = p->group_leader;
192 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 		/*
194 		 * If we were the last child thread and the leader has
195 		 * exited already, and the leader's parent ignores SIGCHLD,
196 		 * then we are the one who should release the leader.
197 		 */
198 		zap_leader = do_notify_parent(leader, leader->exit_signal);
199 		if (zap_leader)
200 			leader->exit_state = EXIT_DEAD;
201 	}
202 
203 	write_unlock_irq(&tasklist_lock);
204 	release_thread(p);
205 	call_rcu(&p->rcu, delayed_put_task_struct);
206 
207 	p = leader;
208 	if (unlikely(zap_leader))
209 		goto repeat;
210 }
211 
212 /*
213  * This checks not only the pgrp, but falls back on the pid if no
214  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
215  * without this...
216  *
217  * The caller must hold rcu lock or the tasklist lock.
218  */
219 struct pid *session_of_pgrp(struct pid *pgrp)
220 {
221 	struct task_struct *p;
222 	struct pid *sid = NULL;
223 
224 	p = pid_task(pgrp, PIDTYPE_PGID);
225 	if (p == NULL)
226 		p = pid_task(pgrp, PIDTYPE_PID);
227 	if (p != NULL)
228 		sid = task_session(p);
229 
230 	return sid;
231 }
232 
233 /*
234  * Determine if a process group is "orphaned", according to the POSIX
235  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
236  * by terminal-generated stop signals.  Newly orphaned process groups are
237  * to receive a SIGHUP and a SIGCONT.
238  *
239  * "I ask you, have you ever known what it is to be an orphan?"
240  */
241 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
242 {
243 	struct task_struct *p;
244 
245 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
246 		if ((p == ignored_task) ||
247 		    (p->exit_state && thread_group_empty(p)) ||
248 		    is_global_init(p->real_parent))
249 			continue;
250 
251 		if (task_pgrp(p->real_parent) != pgrp &&
252 		    task_session(p->real_parent) == task_session(p))
253 			return 0;
254 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255 
256 	return 1;
257 }
258 
259 int is_current_pgrp_orphaned(void)
260 {
261 	int retval;
262 
263 	read_lock(&tasklist_lock);
264 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
265 	read_unlock(&tasklist_lock);
266 
267 	return retval;
268 }
269 
270 static bool has_stopped_jobs(struct pid *pgrp)
271 {
272 	struct task_struct *p;
273 
274 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
276 			return true;
277 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
278 
279 	return false;
280 }
281 
282 /*
283  * Check to see if any process groups have become orphaned as
284  * a result of our exiting, and if they have any stopped jobs,
285  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
286  */
287 static void
288 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
289 {
290 	struct pid *pgrp = task_pgrp(tsk);
291 	struct task_struct *ignored_task = tsk;
292 
293 	if (!parent)
294 		 /* exit: our father is in a different pgrp than
295 		  * we are and we were the only connection outside.
296 		  */
297 		parent = tsk->real_parent;
298 	else
299 		/* reparent: our child is in a different pgrp than
300 		 * we are, and it was the only connection outside.
301 		 */
302 		ignored_task = NULL;
303 
304 	if (task_pgrp(parent) != pgrp &&
305 	    task_session(parent) == task_session(tsk) &&
306 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
307 	    has_stopped_jobs(pgrp)) {
308 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
309 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
310 	}
311 }
312 
313 /**
314  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
315  *
316  * If a kernel thread is launched as a result of a system call, or if
317  * it ever exits, it should generally reparent itself to kthreadd so it
318  * isn't in the way of other processes and is correctly cleaned up on exit.
319  *
320  * The various task state such as scheduling policy and priority may have
321  * been inherited from a user process, so we reset them to sane values here.
322  *
323  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
324  */
325 static void reparent_to_kthreadd(void)
326 {
327 	write_lock_irq(&tasklist_lock);
328 
329 	ptrace_unlink(current);
330 	/* Reparent to init */
331 	current->real_parent = current->parent = kthreadd_task;
332 	list_move_tail(&current->sibling, &current->real_parent->children);
333 
334 	/* Set the exit signal to SIGCHLD so we signal init on exit */
335 	current->exit_signal = SIGCHLD;
336 
337 	if (task_nice(current) < 0)
338 		set_user_nice(current, 0);
339 	/* cpus_allowed? */
340 	/* rt_priority? */
341 	/* signals? */
342 	memcpy(current->signal->rlim, init_task.signal->rlim,
343 	       sizeof(current->signal->rlim));
344 
345 	atomic_inc(&init_cred.usage);
346 	commit_creds(&init_cred);
347 	write_unlock_irq(&tasklist_lock);
348 }
349 
350 void __set_special_pids(struct pid *pid)
351 {
352 	struct task_struct *curr = current->group_leader;
353 
354 	if (task_session(curr) != pid)
355 		change_pid(curr, PIDTYPE_SID, pid);
356 
357 	if (task_pgrp(curr) != pid)
358 		change_pid(curr, PIDTYPE_PGID, pid);
359 }
360 
361 static void set_special_pids(struct pid *pid)
362 {
363 	write_lock_irq(&tasklist_lock);
364 	__set_special_pids(pid);
365 	write_unlock_irq(&tasklist_lock);
366 }
367 
368 /*
369  * Let kernel threads use this to say that they allow a certain signal.
370  * Must not be used if kthread was cloned with CLONE_SIGHAND.
371  */
372 int allow_signal(int sig)
373 {
374 	if (!valid_signal(sig) || sig < 1)
375 		return -EINVAL;
376 
377 	spin_lock_irq(&current->sighand->siglock);
378 	/* This is only needed for daemonize()'ed kthreads */
379 	sigdelset(&current->blocked, sig);
380 	/*
381 	 * Kernel threads handle their own signals. Let the signal code
382 	 * know it'll be handled, so that they don't get converted to
383 	 * SIGKILL or just silently dropped.
384 	 */
385 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
386 	recalc_sigpending();
387 	spin_unlock_irq(&current->sighand->siglock);
388 	return 0;
389 }
390 
391 EXPORT_SYMBOL(allow_signal);
392 
393 int disallow_signal(int sig)
394 {
395 	if (!valid_signal(sig) || sig < 1)
396 		return -EINVAL;
397 
398 	spin_lock_irq(&current->sighand->siglock);
399 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
400 	recalc_sigpending();
401 	spin_unlock_irq(&current->sighand->siglock);
402 	return 0;
403 }
404 
405 EXPORT_SYMBOL(disallow_signal);
406 
407 /*
408  *	Put all the gunge required to become a kernel thread without
409  *	attached user resources in one place where it belongs.
410  */
411 
412 void daemonize(const char *name, ...)
413 {
414 	va_list args;
415 	sigset_t blocked;
416 
417 	va_start(args, name);
418 	vsnprintf(current->comm, sizeof(current->comm), name, args);
419 	va_end(args);
420 
421 	/*
422 	 * If we were started as result of loading a module, close all of the
423 	 * user space pages.  We don't need them, and if we didn't close them
424 	 * they would be locked into memory.
425 	 */
426 	exit_mm(current);
427 	/*
428 	 * We don't want to get frozen, in case system-wide hibernation
429 	 * or suspend transition begins right now.
430 	 */
431 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
432 
433 	if (current->nsproxy != &init_nsproxy) {
434 		get_nsproxy(&init_nsproxy);
435 		switch_task_namespaces(current, &init_nsproxy);
436 	}
437 	set_special_pids(&init_struct_pid);
438 	proc_clear_tty(current);
439 
440 	/* Block and flush all signals */
441 	sigfillset(&blocked);
442 	sigprocmask(SIG_BLOCK, &blocked, NULL);
443 	flush_signals(current);
444 
445 	/* Become as one with the init task */
446 
447 	daemonize_fs_struct();
448 	exit_files(current);
449 	current->files = init_task.files;
450 	atomic_inc(&current->files->count);
451 
452 	reparent_to_kthreadd();
453 }
454 
455 EXPORT_SYMBOL(daemonize);
456 
457 static void close_files(struct files_struct * files)
458 {
459 	int i, j;
460 	struct fdtable *fdt;
461 
462 	j = 0;
463 
464 	/*
465 	 * It is safe to dereference the fd table without RCU or
466 	 * ->file_lock because this is the last reference to the
467 	 * files structure.  But use RCU to shut RCU-lockdep up.
468 	 */
469 	rcu_read_lock();
470 	fdt = files_fdtable(files);
471 	rcu_read_unlock();
472 	for (;;) {
473 		unsigned long set;
474 		i = j * __NFDBITS;
475 		if (i >= fdt->max_fds)
476 			break;
477 		set = fdt->open_fds[j++];
478 		while (set) {
479 			if (set & 1) {
480 				struct file * file = xchg(&fdt->fd[i], NULL);
481 				if (file) {
482 					filp_close(file, files);
483 					cond_resched();
484 				}
485 			}
486 			i++;
487 			set >>= 1;
488 		}
489 	}
490 }
491 
492 struct files_struct *get_files_struct(struct task_struct *task)
493 {
494 	struct files_struct *files;
495 
496 	task_lock(task);
497 	files = task->files;
498 	if (files)
499 		atomic_inc(&files->count);
500 	task_unlock(task);
501 
502 	return files;
503 }
504 
505 void put_files_struct(struct files_struct *files)
506 {
507 	struct fdtable *fdt;
508 
509 	if (atomic_dec_and_test(&files->count)) {
510 		close_files(files);
511 		/*
512 		 * Free the fd and fdset arrays if we expanded them.
513 		 * If the fdtable was embedded, pass files for freeing
514 		 * at the end of the RCU grace period. Otherwise,
515 		 * you can free files immediately.
516 		 */
517 		rcu_read_lock();
518 		fdt = files_fdtable(files);
519 		if (fdt != &files->fdtab)
520 			kmem_cache_free(files_cachep, files);
521 		free_fdtable(fdt);
522 		rcu_read_unlock();
523 	}
524 }
525 
526 void reset_files_struct(struct files_struct *files)
527 {
528 	struct task_struct *tsk = current;
529 	struct files_struct *old;
530 
531 	old = tsk->files;
532 	task_lock(tsk);
533 	tsk->files = files;
534 	task_unlock(tsk);
535 	put_files_struct(old);
536 }
537 
538 void exit_files(struct task_struct *tsk)
539 {
540 	struct files_struct * files = tsk->files;
541 
542 	if (files) {
543 		task_lock(tsk);
544 		tsk->files = NULL;
545 		task_unlock(tsk);
546 		put_files_struct(files);
547 	}
548 }
549 
550 #ifdef CONFIG_MM_OWNER
551 /*
552  * A task is exiting.   If it owned this mm, find a new owner for the mm.
553  */
554 void mm_update_next_owner(struct mm_struct *mm)
555 {
556 	struct task_struct *c, *g, *p = current;
557 
558 retry:
559 	/*
560 	 * If the exiting or execing task is not the owner, it's
561 	 * someone else's problem.
562 	 */
563 	if (mm->owner != p)
564 		return;
565 	/*
566 	 * The current owner is exiting/execing and there are no other
567 	 * candidates.  Do not leave the mm pointing to a possibly
568 	 * freed task structure.
569 	 */
570 	if (atomic_read(&mm->mm_users) <= 1) {
571 		mm->owner = NULL;
572 		return;
573 	}
574 
575 	read_lock(&tasklist_lock);
576 	/*
577 	 * Search in the children
578 	 */
579 	list_for_each_entry(c, &p->children, sibling) {
580 		if (c->mm == mm)
581 			goto assign_new_owner;
582 	}
583 
584 	/*
585 	 * Search in the siblings
586 	 */
587 	list_for_each_entry(c, &p->real_parent->children, sibling) {
588 		if (c->mm == mm)
589 			goto assign_new_owner;
590 	}
591 
592 	/*
593 	 * Search through everything else. We should not get
594 	 * here often
595 	 */
596 	do_each_thread(g, c) {
597 		if (c->mm == mm)
598 			goto assign_new_owner;
599 	} while_each_thread(g, c);
600 
601 	read_unlock(&tasklist_lock);
602 	/*
603 	 * We found no owner yet mm_users > 1: this implies that we are
604 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
605 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
606 	 */
607 	mm->owner = NULL;
608 	return;
609 
610 assign_new_owner:
611 	BUG_ON(c == p);
612 	get_task_struct(c);
613 	/*
614 	 * The task_lock protects c->mm from changing.
615 	 * We always want mm->owner->mm == mm
616 	 */
617 	task_lock(c);
618 	/*
619 	 * Delay read_unlock() till we have the task_lock()
620 	 * to ensure that c does not slip away underneath us
621 	 */
622 	read_unlock(&tasklist_lock);
623 	if (c->mm != mm) {
624 		task_unlock(c);
625 		put_task_struct(c);
626 		goto retry;
627 	}
628 	mm->owner = c;
629 	task_unlock(c);
630 	put_task_struct(c);
631 }
632 #endif /* CONFIG_MM_OWNER */
633 
634 /*
635  * Turn us into a lazy TLB process if we
636  * aren't already..
637  */
638 static void exit_mm(struct task_struct * tsk)
639 {
640 	struct mm_struct *mm = tsk->mm;
641 	struct core_state *core_state;
642 
643 	mm_release(tsk, mm);
644 	if (!mm)
645 		return;
646 	/*
647 	 * Serialize with any possible pending coredump.
648 	 * We must hold mmap_sem around checking core_state
649 	 * and clearing tsk->mm.  The core-inducing thread
650 	 * will increment ->nr_threads for each thread in the
651 	 * group with ->mm != NULL.
652 	 */
653 	down_read(&mm->mmap_sem);
654 	core_state = mm->core_state;
655 	if (core_state) {
656 		struct core_thread self;
657 		up_read(&mm->mmap_sem);
658 
659 		self.task = tsk;
660 		self.next = xchg(&core_state->dumper.next, &self);
661 		/*
662 		 * Implies mb(), the result of xchg() must be visible
663 		 * to core_state->dumper.
664 		 */
665 		if (atomic_dec_and_test(&core_state->nr_threads))
666 			complete(&core_state->startup);
667 
668 		for (;;) {
669 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
670 			if (!self.task) /* see coredump_finish() */
671 				break;
672 			schedule();
673 		}
674 		__set_task_state(tsk, TASK_RUNNING);
675 		down_read(&mm->mmap_sem);
676 	}
677 	atomic_inc(&mm->mm_count);
678 	BUG_ON(mm != tsk->active_mm);
679 	/* more a memory barrier than a real lock */
680 	task_lock(tsk);
681 	tsk->mm = NULL;
682 	up_read(&mm->mmap_sem);
683 	enter_lazy_tlb(mm, current);
684 	task_unlock(tsk);
685 	mm_update_next_owner(mm);
686 	mmput(mm);
687 }
688 
689 /*
690  * When we die, we re-parent all our children, and try to:
691  * 1. give them to another thread in our thread group, if such a member exists
692  * 2. give it to the first ancestor process which prctl'd itself as a
693  *    child_subreaper for its children (like a service manager)
694  * 3. give it to the init process (PID 1) in our pid namespace
695  */
696 static struct task_struct *find_new_reaper(struct task_struct *father)
697 	__releases(&tasklist_lock)
698 	__acquires(&tasklist_lock)
699 {
700 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
701 	struct task_struct *thread;
702 
703 	thread = father;
704 	while_each_thread(father, thread) {
705 		if (thread->flags & PF_EXITING)
706 			continue;
707 		if (unlikely(pid_ns->child_reaper == father))
708 			pid_ns->child_reaper = thread;
709 		return thread;
710 	}
711 
712 	if (unlikely(pid_ns->child_reaper == father)) {
713 		write_unlock_irq(&tasklist_lock);
714 		if (unlikely(pid_ns == &init_pid_ns)) {
715 			panic("Attempted to kill init! exitcode=0x%08x\n",
716 				father->signal->group_exit_code ?:
717 					father->exit_code);
718 		}
719 
720 		zap_pid_ns_processes(pid_ns);
721 		write_lock_irq(&tasklist_lock);
722 		/*
723 		 * We can not clear ->child_reaper or leave it alone.
724 		 * There may by stealth EXIT_DEAD tasks on ->children,
725 		 * forget_original_parent() must move them somewhere.
726 		 */
727 		pid_ns->child_reaper = init_pid_ns.child_reaper;
728 	} else if (father->signal->has_child_subreaper) {
729 		struct task_struct *reaper;
730 
731 		/*
732 		 * Find the first ancestor marked as child_subreaper.
733 		 * Note that the code below checks same_thread_group(reaper,
734 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
735 		 * PID namespace. However we still need the check above, see
736 		 * http://marc.info/?l=linux-kernel&m=131385460420380
737 		 */
738 		for (reaper = father->real_parent;
739 		     reaper != &init_task;
740 		     reaper = reaper->real_parent) {
741 			if (same_thread_group(reaper, pid_ns->child_reaper))
742 				break;
743 			if (!reaper->signal->is_child_subreaper)
744 				continue;
745 			thread = reaper;
746 			do {
747 				if (!(thread->flags & PF_EXITING))
748 					return reaper;
749 			} while_each_thread(reaper, thread);
750 		}
751 	}
752 
753 	return pid_ns->child_reaper;
754 }
755 
756 /*
757 * Any that need to be release_task'd are put on the @dead list.
758  */
759 static void reparent_leader(struct task_struct *father, struct task_struct *p,
760 				struct list_head *dead)
761 {
762 	list_move_tail(&p->sibling, &p->real_parent->children);
763 
764 	if (p->exit_state == EXIT_DEAD)
765 		return;
766 	/*
767 	 * If this is a threaded reparent there is no need to
768 	 * notify anyone anything has happened.
769 	 */
770 	if (same_thread_group(p->real_parent, father))
771 		return;
772 
773 	/* We don't want people slaying init.  */
774 	p->exit_signal = SIGCHLD;
775 
776 	/* If it has exited notify the new parent about this child's death. */
777 	if (!p->ptrace &&
778 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
779 		if (do_notify_parent(p, p->exit_signal)) {
780 			p->exit_state = EXIT_DEAD;
781 			list_move_tail(&p->sibling, dead);
782 		}
783 	}
784 
785 	kill_orphaned_pgrp(p, father);
786 }
787 
788 static void forget_original_parent(struct task_struct *father)
789 {
790 	struct task_struct *p, *n, *reaper;
791 	LIST_HEAD(dead_children);
792 
793 	write_lock_irq(&tasklist_lock);
794 	/*
795 	 * Note that exit_ptrace() and find_new_reaper() might
796 	 * drop tasklist_lock and reacquire it.
797 	 */
798 	exit_ptrace(father);
799 	reaper = find_new_reaper(father);
800 
801 	list_for_each_entry_safe(p, n, &father->children, sibling) {
802 		struct task_struct *t = p;
803 		do {
804 			t->real_parent = reaper;
805 			if (t->parent == father) {
806 				BUG_ON(t->ptrace);
807 				t->parent = t->real_parent;
808 			}
809 			if (t->pdeath_signal)
810 				group_send_sig_info(t->pdeath_signal,
811 						    SEND_SIG_NOINFO, t);
812 		} while_each_thread(p, t);
813 		reparent_leader(father, p, &dead_children);
814 	}
815 	write_unlock_irq(&tasklist_lock);
816 
817 	BUG_ON(!list_empty(&father->children));
818 
819 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
820 		list_del_init(&p->sibling);
821 		release_task(p);
822 	}
823 }
824 
825 /*
826  * Send signals to all our closest relatives so that they know
827  * to properly mourn us..
828  */
829 static void exit_notify(struct task_struct *tsk, int group_dead)
830 {
831 	bool autoreap;
832 
833 	/*
834 	 * This does two things:
835 	 *
836   	 * A.  Make init inherit all the child processes
837 	 * B.  Check to see if any process groups have become orphaned
838 	 *	as a result of our exiting, and if they have any stopped
839 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
840 	 */
841 	forget_original_parent(tsk);
842 	exit_task_namespaces(tsk);
843 
844 	write_lock_irq(&tasklist_lock);
845 	if (group_dead)
846 		kill_orphaned_pgrp(tsk->group_leader, NULL);
847 
848 	if (unlikely(tsk->ptrace)) {
849 		int sig = thread_group_leader(tsk) &&
850 				thread_group_empty(tsk) &&
851 				!ptrace_reparented(tsk) ?
852 			tsk->exit_signal : SIGCHLD;
853 		autoreap = do_notify_parent(tsk, sig);
854 	} else if (thread_group_leader(tsk)) {
855 		autoreap = thread_group_empty(tsk) &&
856 			do_notify_parent(tsk, tsk->exit_signal);
857 	} else {
858 		autoreap = true;
859 	}
860 
861 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
862 
863 	/* mt-exec, de_thread() is waiting for group leader */
864 	if (unlikely(tsk->signal->notify_count < 0))
865 		wake_up_process(tsk->signal->group_exit_task);
866 	write_unlock_irq(&tasklist_lock);
867 
868 	/* If the process is dead, release it - nobody will wait for it */
869 	if (autoreap)
870 		release_task(tsk);
871 }
872 
873 #ifdef CONFIG_DEBUG_STACK_USAGE
874 static void check_stack_usage(void)
875 {
876 	static DEFINE_SPINLOCK(low_water_lock);
877 	static int lowest_to_date = THREAD_SIZE;
878 	unsigned long free;
879 
880 	free = stack_not_used(current);
881 
882 	if (free >= lowest_to_date)
883 		return;
884 
885 	spin_lock(&low_water_lock);
886 	if (free < lowest_to_date) {
887 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
888 				"left\n",
889 				current->comm, free);
890 		lowest_to_date = free;
891 	}
892 	spin_unlock(&low_water_lock);
893 }
894 #else
895 static inline void check_stack_usage(void) {}
896 #endif
897 
898 void do_exit(long code)
899 {
900 	struct task_struct *tsk = current;
901 	int group_dead;
902 
903 	profile_task_exit(tsk);
904 
905 	WARN_ON(blk_needs_flush_plug(tsk));
906 
907 	if (unlikely(in_interrupt()))
908 		panic("Aiee, killing interrupt handler!");
909 	if (unlikely(!tsk->pid))
910 		panic("Attempted to kill the idle task!");
911 
912 	/*
913 	 * If do_exit is called because this processes oopsed, it's possible
914 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
915 	 * continuing. Amongst other possible reasons, this is to prevent
916 	 * mm_release()->clear_child_tid() from writing to a user-controlled
917 	 * kernel address.
918 	 */
919 	set_fs(USER_DS);
920 
921 	ptrace_event(PTRACE_EVENT_EXIT, code);
922 
923 	validate_creds_for_do_exit(tsk);
924 
925 	/*
926 	 * We're taking recursive faults here in do_exit. Safest is to just
927 	 * leave this task alone and wait for reboot.
928 	 */
929 	if (unlikely(tsk->flags & PF_EXITING)) {
930 		printk(KERN_ALERT
931 			"Fixing recursive fault but reboot is needed!\n");
932 		/*
933 		 * We can do this unlocked here. The futex code uses
934 		 * this flag just to verify whether the pi state
935 		 * cleanup has been done or not. In the worst case it
936 		 * loops once more. We pretend that the cleanup was
937 		 * done as there is no way to return. Either the
938 		 * OWNER_DIED bit is set by now or we push the blocked
939 		 * task into the wait for ever nirwana as well.
940 		 */
941 		tsk->flags |= PF_EXITPIDONE;
942 		set_current_state(TASK_UNINTERRUPTIBLE);
943 		schedule();
944 	}
945 
946 	exit_signals(tsk);  /* sets PF_EXITING */
947 	/*
948 	 * tsk->flags are checked in the futex code to protect against
949 	 * an exiting task cleaning up the robust pi futexes.
950 	 */
951 	smp_mb();
952 	raw_spin_unlock_wait(&tsk->pi_lock);
953 
954 	exit_irq_thread();
955 
956 	if (unlikely(in_atomic()))
957 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
958 				current->comm, task_pid_nr(current),
959 				preempt_count());
960 
961 	acct_update_integrals(tsk);
962 	/* sync mm's RSS info before statistics gathering */
963 	if (tsk->mm)
964 		sync_mm_rss(tsk->mm);
965 	group_dead = atomic_dec_and_test(&tsk->signal->live);
966 	if (group_dead) {
967 		hrtimer_cancel(&tsk->signal->real_timer);
968 		exit_itimers(tsk->signal);
969 		if (tsk->mm)
970 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
971 	}
972 	acct_collect(code, group_dead);
973 	if (group_dead)
974 		tty_audit_exit();
975 	audit_free(tsk);
976 
977 	tsk->exit_code = code;
978 	taskstats_exit(tsk, group_dead);
979 
980 	exit_mm(tsk);
981 
982 	if (group_dead)
983 		acct_process();
984 	trace_sched_process_exit(tsk);
985 
986 	exit_sem(tsk);
987 	exit_shm(tsk);
988 	exit_files(tsk);
989 	exit_fs(tsk);
990 	check_stack_usage();
991 	exit_thread();
992 
993 	/*
994 	 * Flush inherited counters to the parent - before the parent
995 	 * gets woken up by child-exit notifications.
996 	 *
997 	 * because of cgroup mode, must be called before cgroup_exit()
998 	 */
999 	perf_event_exit_task(tsk);
1000 
1001 	cgroup_exit(tsk, 1);
1002 
1003 	if (group_dead)
1004 		disassociate_ctty(1);
1005 
1006 	module_put(task_thread_info(tsk)->exec_domain->module);
1007 
1008 	proc_exit_connector(tsk);
1009 
1010 	/*
1011 	 * FIXME: do that only when needed, using sched_exit tracepoint
1012 	 */
1013 	ptrace_put_breakpoints(tsk);
1014 
1015 	exit_notify(tsk, group_dead);
1016 #ifdef CONFIG_NUMA
1017 	task_lock(tsk);
1018 	mpol_put(tsk->mempolicy);
1019 	tsk->mempolicy = NULL;
1020 	task_unlock(tsk);
1021 #endif
1022 #ifdef CONFIG_FUTEX
1023 	if (unlikely(current->pi_state_cache))
1024 		kfree(current->pi_state_cache);
1025 #endif
1026 	/*
1027 	 * Make sure we are holding no locks:
1028 	 */
1029 	debug_check_no_locks_held(tsk);
1030 	/*
1031 	 * We can do this unlocked here. The futex code uses this flag
1032 	 * just to verify whether the pi state cleanup has been done
1033 	 * or not. In the worst case it loops once more.
1034 	 */
1035 	tsk->flags |= PF_EXITPIDONE;
1036 
1037 	if (tsk->io_context)
1038 		exit_io_context(tsk);
1039 
1040 	if (tsk->splice_pipe)
1041 		__free_pipe_info(tsk->splice_pipe);
1042 
1043 	validate_creds_for_do_exit(tsk);
1044 
1045 	preempt_disable();
1046 	if (tsk->nr_dirtied)
1047 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1048 	exit_rcu();
1049 
1050 	/*
1051 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1052 	 * when the following two conditions become true.
1053 	 *   - There is race condition of mmap_sem (It is acquired by
1054 	 *     exit_mm()), and
1055 	 *   - SMI occurs before setting TASK_RUNINNG.
1056 	 *     (or hypervisor of virtual machine switches to other guest)
1057 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1058 	 *
1059 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
1060 	 * is held by try_to_wake_up()
1061 	 */
1062 	smp_mb();
1063 	raw_spin_unlock_wait(&tsk->pi_lock);
1064 
1065 	/* causes final put_task_struct in finish_task_switch(). */
1066 	tsk->state = TASK_DEAD;
1067 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
1068 	schedule();
1069 	BUG();
1070 	/* Avoid "noreturn function does return".  */
1071 	for (;;)
1072 		cpu_relax();	/* For when BUG is null */
1073 }
1074 
1075 EXPORT_SYMBOL_GPL(do_exit);
1076 
1077 void complete_and_exit(struct completion *comp, long code)
1078 {
1079 	if (comp)
1080 		complete(comp);
1081 
1082 	do_exit(code);
1083 }
1084 
1085 EXPORT_SYMBOL(complete_and_exit);
1086 
1087 SYSCALL_DEFINE1(exit, int, error_code)
1088 {
1089 	do_exit((error_code&0xff)<<8);
1090 }
1091 
1092 /*
1093  * Take down every thread in the group.  This is called by fatal signals
1094  * as well as by sys_exit_group (below).
1095  */
1096 void
1097 do_group_exit(int exit_code)
1098 {
1099 	struct signal_struct *sig = current->signal;
1100 
1101 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1102 
1103 	if (signal_group_exit(sig))
1104 		exit_code = sig->group_exit_code;
1105 	else if (!thread_group_empty(current)) {
1106 		struct sighand_struct *const sighand = current->sighand;
1107 		spin_lock_irq(&sighand->siglock);
1108 		if (signal_group_exit(sig))
1109 			/* Another thread got here before we took the lock.  */
1110 			exit_code = sig->group_exit_code;
1111 		else {
1112 			sig->group_exit_code = exit_code;
1113 			sig->flags = SIGNAL_GROUP_EXIT;
1114 			zap_other_threads(current);
1115 		}
1116 		spin_unlock_irq(&sighand->siglock);
1117 	}
1118 
1119 	do_exit(exit_code);
1120 	/* NOTREACHED */
1121 }
1122 
1123 /*
1124  * this kills every thread in the thread group. Note that any externally
1125  * wait4()-ing process will get the correct exit code - even if this
1126  * thread is not the thread group leader.
1127  */
1128 SYSCALL_DEFINE1(exit_group, int, error_code)
1129 {
1130 	do_group_exit((error_code & 0xff) << 8);
1131 	/* NOTREACHED */
1132 	return 0;
1133 }
1134 
1135 struct wait_opts {
1136 	enum pid_type		wo_type;
1137 	int			wo_flags;
1138 	struct pid		*wo_pid;
1139 
1140 	struct siginfo __user	*wo_info;
1141 	int __user		*wo_stat;
1142 	struct rusage __user	*wo_rusage;
1143 
1144 	wait_queue_t		child_wait;
1145 	int			notask_error;
1146 };
1147 
1148 static inline
1149 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1150 {
1151 	if (type != PIDTYPE_PID)
1152 		task = task->group_leader;
1153 	return task->pids[type].pid;
1154 }
1155 
1156 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1157 {
1158 	return	wo->wo_type == PIDTYPE_MAX ||
1159 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1160 }
1161 
1162 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1163 {
1164 	if (!eligible_pid(wo, p))
1165 		return 0;
1166 	/* Wait for all children (clone and not) if __WALL is set;
1167 	 * otherwise, wait for clone children *only* if __WCLONE is
1168 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1169 	 * A "clone" child here is one that reports to its parent
1170 	 * using a signal other than SIGCHLD.) */
1171 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1172 	    && !(wo->wo_flags & __WALL))
1173 		return 0;
1174 
1175 	return 1;
1176 }
1177 
1178 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1179 				pid_t pid, uid_t uid, int why, int status)
1180 {
1181 	struct siginfo __user *infop;
1182 	int retval = wo->wo_rusage
1183 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1184 
1185 	put_task_struct(p);
1186 	infop = wo->wo_info;
1187 	if (infop) {
1188 		if (!retval)
1189 			retval = put_user(SIGCHLD, &infop->si_signo);
1190 		if (!retval)
1191 			retval = put_user(0, &infop->si_errno);
1192 		if (!retval)
1193 			retval = put_user((short)why, &infop->si_code);
1194 		if (!retval)
1195 			retval = put_user(pid, &infop->si_pid);
1196 		if (!retval)
1197 			retval = put_user(uid, &infop->si_uid);
1198 		if (!retval)
1199 			retval = put_user(status, &infop->si_status);
1200 	}
1201 	if (!retval)
1202 		retval = pid;
1203 	return retval;
1204 }
1205 
1206 /*
1207  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1208  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1209  * the lock and this task is uninteresting.  If we return nonzero, we have
1210  * released the lock and the system call should return.
1211  */
1212 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1213 {
1214 	unsigned long state;
1215 	int retval, status, traced;
1216 	pid_t pid = task_pid_vnr(p);
1217 	uid_t uid = __task_cred(p)->uid;
1218 	struct siginfo __user *infop;
1219 
1220 	if (!likely(wo->wo_flags & WEXITED))
1221 		return 0;
1222 
1223 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1224 		int exit_code = p->exit_code;
1225 		int why;
1226 
1227 		get_task_struct(p);
1228 		read_unlock(&tasklist_lock);
1229 		if ((exit_code & 0x7f) == 0) {
1230 			why = CLD_EXITED;
1231 			status = exit_code >> 8;
1232 		} else {
1233 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1234 			status = exit_code & 0x7f;
1235 		}
1236 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1237 	}
1238 
1239 	/*
1240 	 * Try to move the task's state to DEAD
1241 	 * only one thread is allowed to do this:
1242 	 */
1243 	state = xchg(&p->exit_state, EXIT_DEAD);
1244 	if (state != EXIT_ZOMBIE) {
1245 		BUG_ON(state != EXIT_DEAD);
1246 		return 0;
1247 	}
1248 
1249 	traced = ptrace_reparented(p);
1250 	/*
1251 	 * It can be ptraced but not reparented, check
1252 	 * thread_group_leader() to filter out sub-threads.
1253 	 */
1254 	if (likely(!traced) && thread_group_leader(p)) {
1255 		struct signal_struct *psig;
1256 		struct signal_struct *sig;
1257 		unsigned long maxrss;
1258 		cputime_t tgutime, tgstime;
1259 
1260 		/*
1261 		 * The resource counters for the group leader are in its
1262 		 * own task_struct.  Those for dead threads in the group
1263 		 * are in its signal_struct, as are those for the child
1264 		 * processes it has previously reaped.  All these
1265 		 * accumulate in the parent's signal_struct c* fields.
1266 		 *
1267 		 * We don't bother to take a lock here to protect these
1268 		 * p->signal fields, because they are only touched by
1269 		 * __exit_signal, which runs with tasklist_lock
1270 		 * write-locked anyway, and so is excluded here.  We do
1271 		 * need to protect the access to parent->signal fields,
1272 		 * as other threads in the parent group can be right
1273 		 * here reaping other children at the same time.
1274 		 *
1275 		 * We use thread_group_times() to get times for the thread
1276 		 * group, which consolidates times for all threads in the
1277 		 * group including the group leader.
1278 		 */
1279 		thread_group_times(p, &tgutime, &tgstime);
1280 		spin_lock_irq(&p->real_parent->sighand->siglock);
1281 		psig = p->real_parent->signal;
1282 		sig = p->signal;
1283 		psig->cutime += tgutime + sig->cutime;
1284 		psig->cstime += tgstime + sig->cstime;
1285 		psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1286 		psig->cmin_flt +=
1287 			p->min_flt + sig->min_flt + sig->cmin_flt;
1288 		psig->cmaj_flt +=
1289 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1290 		psig->cnvcsw +=
1291 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1292 		psig->cnivcsw +=
1293 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1294 		psig->cinblock +=
1295 			task_io_get_inblock(p) +
1296 			sig->inblock + sig->cinblock;
1297 		psig->coublock +=
1298 			task_io_get_oublock(p) +
1299 			sig->oublock + sig->coublock;
1300 		maxrss = max(sig->maxrss, sig->cmaxrss);
1301 		if (psig->cmaxrss < maxrss)
1302 			psig->cmaxrss = maxrss;
1303 		task_io_accounting_add(&psig->ioac, &p->ioac);
1304 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1305 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1306 	}
1307 
1308 	/*
1309 	 * Now we are sure this task is interesting, and no other
1310 	 * thread can reap it because we set its state to EXIT_DEAD.
1311 	 */
1312 	read_unlock(&tasklist_lock);
1313 
1314 	retval = wo->wo_rusage
1315 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1316 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1317 		? p->signal->group_exit_code : p->exit_code;
1318 	if (!retval && wo->wo_stat)
1319 		retval = put_user(status, wo->wo_stat);
1320 
1321 	infop = wo->wo_info;
1322 	if (!retval && infop)
1323 		retval = put_user(SIGCHLD, &infop->si_signo);
1324 	if (!retval && infop)
1325 		retval = put_user(0, &infop->si_errno);
1326 	if (!retval && infop) {
1327 		int why;
1328 
1329 		if ((status & 0x7f) == 0) {
1330 			why = CLD_EXITED;
1331 			status >>= 8;
1332 		} else {
1333 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1334 			status &= 0x7f;
1335 		}
1336 		retval = put_user((short)why, &infop->si_code);
1337 		if (!retval)
1338 			retval = put_user(status, &infop->si_status);
1339 	}
1340 	if (!retval && infop)
1341 		retval = put_user(pid, &infop->si_pid);
1342 	if (!retval && infop)
1343 		retval = put_user(uid, &infop->si_uid);
1344 	if (!retval)
1345 		retval = pid;
1346 
1347 	if (traced) {
1348 		write_lock_irq(&tasklist_lock);
1349 		/* We dropped tasklist, ptracer could die and untrace */
1350 		ptrace_unlink(p);
1351 		/*
1352 		 * If this is not a sub-thread, notify the parent.
1353 		 * If parent wants a zombie, don't release it now.
1354 		 */
1355 		if (thread_group_leader(p) &&
1356 		    !do_notify_parent(p, p->exit_signal)) {
1357 			p->exit_state = EXIT_ZOMBIE;
1358 			p = NULL;
1359 		}
1360 		write_unlock_irq(&tasklist_lock);
1361 	}
1362 	if (p != NULL)
1363 		release_task(p);
1364 
1365 	return retval;
1366 }
1367 
1368 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1369 {
1370 	if (ptrace) {
1371 		if (task_is_stopped_or_traced(p) &&
1372 		    !(p->jobctl & JOBCTL_LISTENING))
1373 			return &p->exit_code;
1374 	} else {
1375 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1376 			return &p->signal->group_exit_code;
1377 	}
1378 	return NULL;
1379 }
1380 
1381 /**
1382  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1383  * @wo: wait options
1384  * @ptrace: is the wait for ptrace
1385  * @p: task to wait for
1386  *
1387  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1388  *
1389  * CONTEXT:
1390  * read_lock(&tasklist_lock), which is released if return value is
1391  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1392  *
1393  * RETURNS:
1394  * 0 if wait condition didn't exist and search for other wait conditions
1395  * should continue.  Non-zero return, -errno on failure and @p's pid on
1396  * success, implies that tasklist_lock is released and wait condition
1397  * search should terminate.
1398  */
1399 static int wait_task_stopped(struct wait_opts *wo,
1400 				int ptrace, struct task_struct *p)
1401 {
1402 	struct siginfo __user *infop;
1403 	int retval, exit_code, *p_code, why;
1404 	uid_t uid = 0; /* unneeded, required by compiler */
1405 	pid_t pid;
1406 
1407 	/*
1408 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1409 	 */
1410 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1411 		return 0;
1412 
1413 	if (!task_stopped_code(p, ptrace))
1414 		return 0;
1415 
1416 	exit_code = 0;
1417 	spin_lock_irq(&p->sighand->siglock);
1418 
1419 	p_code = task_stopped_code(p, ptrace);
1420 	if (unlikely(!p_code))
1421 		goto unlock_sig;
1422 
1423 	exit_code = *p_code;
1424 	if (!exit_code)
1425 		goto unlock_sig;
1426 
1427 	if (!unlikely(wo->wo_flags & WNOWAIT))
1428 		*p_code = 0;
1429 
1430 	uid = task_uid(p);
1431 unlock_sig:
1432 	spin_unlock_irq(&p->sighand->siglock);
1433 	if (!exit_code)
1434 		return 0;
1435 
1436 	/*
1437 	 * Now we are pretty sure this task is interesting.
1438 	 * Make sure it doesn't get reaped out from under us while we
1439 	 * give up the lock and then examine it below.  We don't want to
1440 	 * keep holding onto the tasklist_lock while we call getrusage and
1441 	 * possibly take page faults for user memory.
1442 	 */
1443 	get_task_struct(p);
1444 	pid = task_pid_vnr(p);
1445 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1446 	read_unlock(&tasklist_lock);
1447 
1448 	if (unlikely(wo->wo_flags & WNOWAIT))
1449 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1450 
1451 	retval = wo->wo_rusage
1452 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1453 	if (!retval && wo->wo_stat)
1454 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1455 
1456 	infop = wo->wo_info;
1457 	if (!retval && infop)
1458 		retval = put_user(SIGCHLD, &infop->si_signo);
1459 	if (!retval && infop)
1460 		retval = put_user(0, &infop->si_errno);
1461 	if (!retval && infop)
1462 		retval = put_user((short)why, &infop->si_code);
1463 	if (!retval && infop)
1464 		retval = put_user(exit_code, &infop->si_status);
1465 	if (!retval && infop)
1466 		retval = put_user(pid, &infop->si_pid);
1467 	if (!retval && infop)
1468 		retval = put_user(uid, &infop->si_uid);
1469 	if (!retval)
1470 		retval = pid;
1471 	put_task_struct(p);
1472 
1473 	BUG_ON(!retval);
1474 	return retval;
1475 }
1476 
1477 /*
1478  * Handle do_wait work for one task in a live, non-stopped state.
1479  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1480  * the lock and this task is uninteresting.  If we return nonzero, we have
1481  * released the lock and the system call should return.
1482  */
1483 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1484 {
1485 	int retval;
1486 	pid_t pid;
1487 	uid_t uid;
1488 
1489 	if (!unlikely(wo->wo_flags & WCONTINUED))
1490 		return 0;
1491 
1492 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1493 		return 0;
1494 
1495 	spin_lock_irq(&p->sighand->siglock);
1496 	/* Re-check with the lock held.  */
1497 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1498 		spin_unlock_irq(&p->sighand->siglock);
1499 		return 0;
1500 	}
1501 	if (!unlikely(wo->wo_flags & WNOWAIT))
1502 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1503 	uid = task_uid(p);
1504 	spin_unlock_irq(&p->sighand->siglock);
1505 
1506 	pid = task_pid_vnr(p);
1507 	get_task_struct(p);
1508 	read_unlock(&tasklist_lock);
1509 
1510 	if (!wo->wo_info) {
1511 		retval = wo->wo_rusage
1512 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1513 		put_task_struct(p);
1514 		if (!retval && wo->wo_stat)
1515 			retval = put_user(0xffff, wo->wo_stat);
1516 		if (!retval)
1517 			retval = pid;
1518 	} else {
1519 		retval = wait_noreap_copyout(wo, p, pid, uid,
1520 					     CLD_CONTINUED, SIGCONT);
1521 		BUG_ON(retval == 0);
1522 	}
1523 
1524 	return retval;
1525 }
1526 
1527 /*
1528  * Consider @p for a wait by @parent.
1529  *
1530  * -ECHILD should be in ->notask_error before the first call.
1531  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1532  * Returns zero if the search for a child should continue;
1533  * then ->notask_error is 0 if @p is an eligible child,
1534  * or another error from security_task_wait(), or still -ECHILD.
1535  */
1536 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1537 				struct task_struct *p)
1538 {
1539 	int ret = eligible_child(wo, p);
1540 	if (!ret)
1541 		return ret;
1542 
1543 	ret = security_task_wait(p);
1544 	if (unlikely(ret < 0)) {
1545 		/*
1546 		 * If we have not yet seen any eligible child,
1547 		 * then let this error code replace -ECHILD.
1548 		 * A permission error will give the user a clue
1549 		 * to look for security policy problems, rather
1550 		 * than for mysterious wait bugs.
1551 		 */
1552 		if (wo->notask_error)
1553 			wo->notask_error = ret;
1554 		return 0;
1555 	}
1556 
1557 	/* dead body doesn't have much to contribute */
1558 	if (unlikely(p->exit_state == EXIT_DEAD)) {
1559 		/*
1560 		 * But do not ignore this task until the tracer does
1561 		 * wait_task_zombie()->do_notify_parent().
1562 		 */
1563 		if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1564 			wo->notask_error = 0;
1565 		return 0;
1566 	}
1567 
1568 	/* slay zombie? */
1569 	if (p->exit_state == EXIT_ZOMBIE) {
1570 		/*
1571 		 * A zombie ptracee is only visible to its ptracer.
1572 		 * Notification and reaping will be cascaded to the real
1573 		 * parent when the ptracer detaches.
1574 		 */
1575 		if (likely(!ptrace) && unlikely(p->ptrace)) {
1576 			/* it will become visible, clear notask_error */
1577 			wo->notask_error = 0;
1578 			return 0;
1579 		}
1580 
1581 		/* we don't reap group leaders with subthreads */
1582 		if (!delay_group_leader(p))
1583 			return wait_task_zombie(wo, p);
1584 
1585 		/*
1586 		 * Allow access to stopped/continued state via zombie by
1587 		 * falling through.  Clearing of notask_error is complex.
1588 		 *
1589 		 * When !@ptrace:
1590 		 *
1591 		 * If WEXITED is set, notask_error should naturally be
1592 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1593 		 * so, if there are live subthreads, there are events to
1594 		 * wait for.  If all subthreads are dead, it's still safe
1595 		 * to clear - this function will be called again in finite
1596 		 * amount time once all the subthreads are released and
1597 		 * will then return without clearing.
1598 		 *
1599 		 * When @ptrace:
1600 		 *
1601 		 * Stopped state is per-task and thus can't change once the
1602 		 * target task dies.  Only continued and exited can happen.
1603 		 * Clear notask_error if WCONTINUED | WEXITED.
1604 		 */
1605 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1606 			wo->notask_error = 0;
1607 	} else {
1608 		/*
1609 		 * If @p is ptraced by a task in its real parent's group,
1610 		 * hide group stop/continued state when looking at @p as
1611 		 * the real parent; otherwise, a single stop can be
1612 		 * reported twice as group and ptrace stops.
1613 		 *
1614 		 * If a ptracer wants to distinguish the two events for its
1615 		 * own children, it should create a separate process which
1616 		 * takes the role of real parent.
1617 		 */
1618 		if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1619 			return 0;
1620 
1621 		/*
1622 		 * @p is alive and it's gonna stop, continue or exit, so
1623 		 * there always is something to wait for.
1624 		 */
1625 		wo->notask_error = 0;
1626 	}
1627 
1628 	/*
1629 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1630 	 * is used and the two don't interact with each other.
1631 	 */
1632 	ret = wait_task_stopped(wo, ptrace, p);
1633 	if (ret)
1634 		return ret;
1635 
1636 	/*
1637 	 * Wait for continued.  There's only one continued state and the
1638 	 * ptracer can consume it which can confuse the real parent.  Don't
1639 	 * use WCONTINUED from ptracer.  You don't need or want it.
1640 	 */
1641 	return wait_task_continued(wo, p);
1642 }
1643 
1644 /*
1645  * Do the work of do_wait() for one thread in the group, @tsk.
1646  *
1647  * -ECHILD should be in ->notask_error before the first call.
1648  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1649  * Returns zero if the search for a child should continue; then
1650  * ->notask_error is 0 if there were any eligible children,
1651  * or another error from security_task_wait(), or still -ECHILD.
1652  */
1653 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1654 {
1655 	struct task_struct *p;
1656 
1657 	list_for_each_entry(p, &tsk->children, sibling) {
1658 		int ret = wait_consider_task(wo, 0, p);
1659 		if (ret)
1660 			return ret;
1661 	}
1662 
1663 	return 0;
1664 }
1665 
1666 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1667 {
1668 	struct task_struct *p;
1669 
1670 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1671 		int ret = wait_consider_task(wo, 1, p);
1672 		if (ret)
1673 			return ret;
1674 	}
1675 
1676 	return 0;
1677 }
1678 
1679 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1680 				int sync, void *key)
1681 {
1682 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1683 						child_wait);
1684 	struct task_struct *p = key;
1685 
1686 	if (!eligible_pid(wo, p))
1687 		return 0;
1688 
1689 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1690 		return 0;
1691 
1692 	return default_wake_function(wait, mode, sync, key);
1693 }
1694 
1695 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1696 {
1697 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1698 				TASK_INTERRUPTIBLE, 1, p);
1699 }
1700 
1701 static long do_wait(struct wait_opts *wo)
1702 {
1703 	struct task_struct *tsk;
1704 	int retval;
1705 
1706 	trace_sched_process_wait(wo->wo_pid);
1707 
1708 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1709 	wo->child_wait.private = current;
1710 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1711 repeat:
1712 	/*
1713 	 * If there is nothing that can match our critiera just get out.
1714 	 * We will clear ->notask_error to zero if we see any child that
1715 	 * might later match our criteria, even if we are not able to reap
1716 	 * it yet.
1717 	 */
1718 	wo->notask_error = -ECHILD;
1719 	if ((wo->wo_type < PIDTYPE_MAX) &&
1720 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1721 		goto notask;
1722 
1723 	set_current_state(TASK_INTERRUPTIBLE);
1724 	read_lock(&tasklist_lock);
1725 	tsk = current;
1726 	do {
1727 		retval = do_wait_thread(wo, tsk);
1728 		if (retval)
1729 			goto end;
1730 
1731 		retval = ptrace_do_wait(wo, tsk);
1732 		if (retval)
1733 			goto end;
1734 
1735 		if (wo->wo_flags & __WNOTHREAD)
1736 			break;
1737 	} while_each_thread(current, tsk);
1738 	read_unlock(&tasklist_lock);
1739 
1740 notask:
1741 	retval = wo->notask_error;
1742 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1743 		retval = -ERESTARTSYS;
1744 		if (!signal_pending(current)) {
1745 			schedule();
1746 			goto repeat;
1747 		}
1748 	}
1749 end:
1750 	__set_current_state(TASK_RUNNING);
1751 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1752 	return retval;
1753 }
1754 
1755 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1756 		infop, int, options, struct rusage __user *, ru)
1757 {
1758 	struct wait_opts wo;
1759 	struct pid *pid = NULL;
1760 	enum pid_type type;
1761 	long ret;
1762 
1763 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1764 		return -EINVAL;
1765 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1766 		return -EINVAL;
1767 
1768 	switch (which) {
1769 	case P_ALL:
1770 		type = PIDTYPE_MAX;
1771 		break;
1772 	case P_PID:
1773 		type = PIDTYPE_PID;
1774 		if (upid <= 0)
1775 			return -EINVAL;
1776 		break;
1777 	case P_PGID:
1778 		type = PIDTYPE_PGID;
1779 		if (upid <= 0)
1780 			return -EINVAL;
1781 		break;
1782 	default:
1783 		return -EINVAL;
1784 	}
1785 
1786 	if (type < PIDTYPE_MAX)
1787 		pid = find_get_pid(upid);
1788 
1789 	wo.wo_type	= type;
1790 	wo.wo_pid	= pid;
1791 	wo.wo_flags	= options;
1792 	wo.wo_info	= infop;
1793 	wo.wo_stat	= NULL;
1794 	wo.wo_rusage	= ru;
1795 	ret = do_wait(&wo);
1796 
1797 	if (ret > 0) {
1798 		ret = 0;
1799 	} else if (infop) {
1800 		/*
1801 		 * For a WNOHANG return, clear out all the fields
1802 		 * we would set so the user can easily tell the
1803 		 * difference.
1804 		 */
1805 		if (!ret)
1806 			ret = put_user(0, &infop->si_signo);
1807 		if (!ret)
1808 			ret = put_user(0, &infop->si_errno);
1809 		if (!ret)
1810 			ret = put_user(0, &infop->si_code);
1811 		if (!ret)
1812 			ret = put_user(0, &infop->si_pid);
1813 		if (!ret)
1814 			ret = put_user(0, &infop->si_uid);
1815 		if (!ret)
1816 			ret = put_user(0, &infop->si_status);
1817 	}
1818 
1819 	put_pid(pid);
1820 
1821 	/* avoid REGPARM breakage on x86: */
1822 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1823 	return ret;
1824 }
1825 
1826 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1827 		int, options, struct rusage __user *, ru)
1828 {
1829 	struct wait_opts wo;
1830 	struct pid *pid = NULL;
1831 	enum pid_type type;
1832 	long ret;
1833 
1834 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1835 			__WNOTHREAD|__WCLONE|__WALL))
1836 		return -EINVAL;
1837 
1838 	if (upid == -1)
1839 		type = PIDTYPE_MAX;
1840 	else if (upid < 0) {
1841 		type = PIDTYPE_PGID;
1842 		pid = find_get_pid(-upid);
1843 	} else if (upid == 0) {
1844 		type = PIDTYPE_PGID;
1845 		pid = get_task_pid(current, PIDTYPE_PGID);
1846 	} else /* upid > 0 */ {
1847 		type = PIDTYPE_PID;
1848 		pid = find_get_pid(upid);
1849 	}
1850 
1851 	wo.wo_type	= type;
1852 	wo.wo_pid	= pid;
1853 	wo.wo_flags	= options | WEXITED;
1854 	wo.wo_info	= NULL;
1855 	wo.wo_stat	= stat_addr;
1856 	wo.wo_rusage	= ru;
1857 	ret = do_wait(&wo);
1858 	put_pid(pid);
1859 
1860 	/* avoid REGPARM breakage on x86: */
1861 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1862 	return ret;
1863 }
1864 
1865 #ifdef __ARCH_WANT_SYS_WAITPID
1866 
1867 /*
1868  * sys_waitpid() remains for compatibility. waitpid() should be
1869  * implemented by calling sys_wait4() from libc.a.
1870  */
1871 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1872 {
1873 	return sys_wait4(pid, stat_addr, options, NULL);
1874 }
1875 
1876 #endif
1877