xref: /openbmc/linux/kernel/exit.c (revision 6355592e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71 
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *uninitialized_var(tty);
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead) {
107 		posix_cpu_timers_exit_group(tsk);
108 	} else {
109 		/*
110 		 * This can only happen if the caller is de_thread().
111 		 * FIXME: this is the temporary hack, we should teach
112 		 * posix-cpu-timers to handle this case correctly.
113 		 */
114 		if (unlikely(has_group_leader_pid(tsk)))
115 			posix_cpu_timers_exit_group(tsk);
116 	}
117 #endif
118 
119 	if (group_dead) {
120 		tty = sig->tty;
121 		sig->tty = NULL;
122 	} else {
123 		/*
124 		 * If there is any task waiting for the group exit
125 		 * then notify it:
126 		 */
127 		if (sig->notify_count > 0 && !--sig->notify_count)
128 			wake_up_process(sig->group_exit_task);
129 
130 		if (tsk == sig->curr_target)
131 			sig->curr_target = next_thread(tsk);
132 	}
133 
134 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 			      sizeof(unsigned long long));
136 
137 	/*
138 	 * Accumulate here the counters for all threads as they die. We could
139 	 * skip the group leader because it is the last user of signal_struct,
140 	 * but we want to avoid the race with thread_group_cputime() which can
141 	 * see the empty ->thread_head list.
142 	 */
143 	task_cputime(tsk, &utime, &stime);
144 	write_seqlock(&sig->stats_lock);
145 	sig->utime += utime;
146 	sig->stime += stime;
147 	sig->gtime += task_gtime(tsk);
148 	sig->min_flt += tsk->min_flt;
149 	sig->maj_flt += tsk->maj_flt;
150 	sig->nvcsw += tsk->nvcsw;
151 	sig->nivcsw += tsk->nivcsw;
152 	sig->inblock += task_io_get_inblock(tsk);
153 	sig->oublock += task_io_get_oublock(tsk);
154 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 	sig->nr_threads--;
157 	__unhash_process(tsk, group_dead);
158 	write_sequnlock(&sig->stats_lock);
159 
160 	/*
161 	 * Do this under ->siglock, we can race with another thread
162 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 	 */
164 	flush_sigqueue(&tsk->pending);
165 	tsk->sighand = NULL;
166 	spin_unlock(&sighand->siglock);
167 
168 	__cleanup_sighand(sighand);
169 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 	if (group_dead) {
171 		flush_sigqueue(&sig->shared_pending);
172 		tty_kref_put(tty);
173 	}
174 }
175 
176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179 
180 	perf_event_delayed_put(tsk);
181 	trace_sched_process_free(tsk);
182 	put_task_struct(tsk);
183 }
184 
185 
186 void release_task(struct task_struct *p)
187 {
188 	struct task_struct *leader;
189 	int zap_leader;
190 repeat:
191 	/* don't need to get the RCU readlock here - the process is dead and
192 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
193 	rcu_read_lock();
194 	atomic_dec(&__task_cred(p)->user->processes);
195 	rcu_read_unlock();
196 
197 	proc_flush_task(p);
198 	cgroup_release(p);
199 
200 	write_lock_irq(&tasklist_lock);
201 	ptrace_release_task(p);
202 	__exit_signal(p);
203 
204 	/*
205 	 * If we are the last non-leader member of the thread
206 	 * group, and the leader is zombie, then notify the
207 	 * group leader's parent process. (if it wants notification.)
208 	 */
209 	zap_leader = 0;
210 	leader = p->group_leader;
211 	if (leader != p && thread_group_empty(leader)
212 			&& leader->exit_state == EXIT_ZOMBIE) {
213 		/*
214 		 * If we were the last child thread and the leader has
215 		 * exited already, and the leader's parent ignores SIGCHLD,
216 		 * then we are the one who should release the leader.
217 		 */
218 		zap_leader = do_notify_parent(leader, leader->exit_signal);
219 		if (zap_leader)
220 			leader->exit_state = EXIT_DEAD;
221 	}
222 
223 	write_unlock_irq(&tasklist_lock);
224 	release_thread(p);
225 	call_rcu(&p->rcu, delayed_put_task_struct);
226 
227 	p = leader;
228 	if (unlikely(zap_leader))
229 		goto repeat;
230 }
231 
232 /*
233  * Note that if this function returns a valid task_struct pointer (!NULL)
234  * task->usage must remain >0 for the duration of the RCU critical section.
235  */
236 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
237 {
238 	struct sighand_struct *sighand;
239 	struct task_struct *task;
240 
241 	/*
242 	 * We need to verify that release_task() was not called and thus
243 	 * delayed_put_task_struct() can't run and drop the last reference
244 	 * before rcu_read_unlock(). We check task->sighand != NULL,
245 	 * but we can read the already freed and reused memory.
246 	 */
247 retry:
248 	task = rcu_dereference(*ptask);
249 	if (!task)
250 		return NULL;
251 
252 	probe_kernel_address(&task->sighand, sighand);
253 
254 	/*
255 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
256 	 * was already freed we can not miss the preceding update of this
257 	 * pointer.
258 	 */
259 	smp_rmb();
260 	if (unlikely(task != READ_ONCE(*ptask)))
261 		goto retry;
262 
263 	/*
264 	 * We've re-checked that "task == *ptask", now we have two different
265 	 * cases:
266 	 *
267 	 * 1. This is actually the same task/task_struct. In this case
268 	 *    sighand != NULL tells us it is still alive.
269 	 *
270 	 * 2. This is another task which got the same memory for task_struct.
271 	 *    We can't know this of course, and we can not trust
272 	 *    sighand != NULL.
273 	 *
274 	 *    In this case we actually return a random value, but this is
275 	 *    correct.
276 	 *
277 	 *    If we return NULL - we can pretend that we actually noticed that
278 	 *    *ptask was updated when the previous task has exited. Or pretend
279 	 *    that probe_slab_address(&sighand) reads NULL.
280 	 *
281 	 *    If we return the new task (because sighand is not NULL for any
282 	 *    reason) - this is fine too. This (new) task can't go away before
283 	 *    another gp pass.
284 	 *
285 	 *    And note: We could even eliminate the false positive if re-read
286 	 *    task->sighand once again to avoid the falsely NULL. But this case
287 	 *    is very unlikely so we don't care.
288 	 */
289 	if (!sighand)
290 		return NULL;
291 
292 	return task;
293 }
294 
295 void rcuwait_wake_up(struct rcuwait *w)
296 {
297 	struct task_struct *task;
298 
299 	rcu_read_lock();
300 
301 	/*
302 	 * Order condition vs @task, such that everything prior to the load
303 	 * of @task is visible. This is the condition as to why the user called
304 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
305 	 * barrier (A) in rcuwait_wait_event().
306 	 *
307 	 *    WAIT                WAKE
308 	 *    [S] tsk = current	  [S] cond = true
309 	 *        MB (A)	      MB (B)
310 	 *    [L] cond		  [L] tsk
311 	 */
312 	smp_mb(); /* (B) */
313 
314 	/*
315 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
316 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
317 	 */
318 	task = rcu_dereference(w->task);
319 	if (task)
320 		wake_up_process(task);
321 	rcu_read_unlock();
322 }
323 
324 /*
325  * Determine if a process group is "orphaned", according to the POSIX
326  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
327  * by terminal-generated stop signals.  Newly orphaned process groups are
328  * to receive a SIGHUP and a SIGCONT.
329  *
330  * "I ask you, have you ever known what it is to be an orphan?"
331  */
332 static int will_become_orphaned_pgrp(struct pid *pgrp,
333 					struct task_struct *ignored_task)
334 {
335 	struct task_struct *p;
336 
337 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
338 		if ((p == ignored_task) ||
339 		    (p->exit_state && thread_group_empty(p)) ||
340 		    is_global_init(p->real_parent))
341 			continue;
342 
343 		if (task_pgrp(p->real_parent) != pgrp &&
344 		    task_session(p->real_parent) == task_session(p))
345 			return 0;
346 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
347 
348 	return 1;
349 }
350 
351 int is_current_pgrp_orphaned(void)
352 {
353 	int retval;
354 
355 	read_lock(&tasklist_lock);
356 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
357 	read_unlock(&tasklist_lock);
358 
359 	return retval;
360 }
361 
362 static bool has_stopped_jobs(struct pid *pgrp)
363 {
364 	struct task_struct *p;
365 
366 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
367 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
368 			return true;
369 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
370 
371 	return false;
372 }
373 
374 /*
375  * Check to see if any process groups have become orphaned as
376  * a result of our exiting, and if they have any stopped jobs,
377  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
378  */
379 static void
380 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
381 {
382 	struct pid *pgrp = task_pgrp(tsk);
383 	struct task_struct *ignored_task = tsk;
384 
385 	if (!parent)
386 		/* exit: our father is in a different pgrp than
387 		 * we are and we were the only connection outside.
388 		 */
389 		parent = tsk->real_parent;
390 	else
391 		/* reparent: our child is in a different pgrp than
392 		 * we are, and it was the only connection outside.
393 		 */
394 		ignored_task = NULL;
395 
396 	if (task_pgrp(parent) != pgrp &&
397 	    task_session(parent) == task_session(tsk) &&
398 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
399 	    has_stopped_jobs(pgrp)) {
400 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
401 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
402 	}
403 }
404 
405 #ifdef CONFIG_MEMCG
406 /*
407  * A task is exiting.   If it owned this mm, find a new owner for the mm.
408  */
409 void mm_update_next_owner(struct mm_struct *mm)
410 {
411 	struct task_struct *c, *g, *p = current;
412 
413 retry:
414 	/*
415 	 * If the exiting or execing task is not the owner, it's
416 	 * someone else's problem.
417 	 */
418 	if (mm->owner != p)
419 		return;
420 	/*
421 	 * The current owner is exiting/execing and there are no other
422 	 * candidates.  Do not leave the mm pointing to a possibly
423 	 * freed task structure.
424 	 */
425 	if (atomic_read(&mm->mm_users) <= 1) {
426 		WRITE_ONCE(mm->owner, NULL);
427 		return;
428 	}
429 
430 	read_lock(&tasklist_lock);
431 	/*
432 	 * Search in the children
433 	 */
434 	list_for_each_entry(c, &p->children, sibling) {
435 		if (c->mm == mm)
436 			goto assign_new_owner;
437 	}
438 
439 	/*
440 	 * Search in the siblings
441 	 */
442 	list_for_each_entry(c, &p->real_parent->children, sibling) {
443 		if (c->mm == mm)
444 			goto assign_new_owner;
445 	}
446 
447 	/*
448 	 * Search through everything else, we should not get here often.
449 	 */
450 	for_each_process(g) {
451 		if (g->flags & PF_KTHREAD)
452 			continue;
453 		for_each_thread(g, c) {
454 			if (c->mm == mm)
455 				goto assign_new_owner;
456 			if (c->mm)
457 				break;
458 		}
459 	}
460 	read_unlock(&tasklist_lock);
461 	/*
462 	 * We found no owner yet mm_users > 1: this implies that we are
463 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
464 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
465 	 */
466 	WRITE_ONCE(mm->owner, NULL);
467 	return;
468 
469 assign_new_owner:
470 	BUG_ON(c == p);
471 	get_task_struct(c);
472 	/*
473 	 * The task_lock protects c->mm from changing.
474 	 * We always want mm->owner->mm == mm
475 	 */
476 	task_lock(c);
477 	/*
478 	 * Delay read_unlock() till we have the task_lock()
479 	 * to ensure that c does not slip away underneath us
480 	 */
481 	read_unlock(&tasklist_lock);
482 	if (c->mm != mm) {
483 		task_unlock(c);
484 		put_task_struct(c);
485 		goto retry;
486 	}
487 	WRITE_ONCE(mm->owner, c);
488 	task_unlock(c);
489 	put_task_struct(c);
490 }
491 #endif /* CONFIG_MEMCG */
492 
493 /*
494  * Turn us into a lazy TLB process if we
495  * aren't already..
496  */
497 static void exit_mm(void)
498 {
499 	struct mm_struct *mm = current->mm;
500 	struct core_state *core_state;
501 
502 	mm_release(current, mm);
503 	if (!mm)
504 		return;
505 	sync_mm_rss(mm);
506 	/*
507 	 * Serialize with any possible pending coredump.
508 	 * We must hold mmap_sem around checking core_state
509 	 * and clearing tsk->mm.  The core-inducing thread
510 	 * will increment ->nr_threads for each thread in the
511 	 * group with ->mm != NULL.
512 	 */
513 	down_read(&mm->mmap_sem);
514 	core_state = mm->core_state;
515 	if (core_state) {
516 		struct core_thread self;
517 
518 		up_read(&mm->mmap_sem);
519 
520 		self.task = current;
521 		self.next = xchg(&core_state->dumper.next, &self);
522 		/*
523 		 * Implies mb(), the result of xchg() must be visible
524 		 * to core_state->dumper.
525 		 */
526 		if (atomic_dec_and_test(&core_state->nr_threads))
527 			complete(&core_state->startup);
528 
529 		for (;;) {
530 			set_current_state(TASK_UNINTERRUPTIBLE);
531 			if (!self.task) /* see coredump_finish() */
532 				break;
533 			freezable_schedule();
534 		}
535 		__set_current_state(TASK_RUNNING);
536 		down_read(&mm->mmap_sem);
537 	}
538 	mmgrab(mm);
539 	BUG_ON(mm != current->active_mm);
540 	/* more a memory barrier than a real lock */
541 	task_lock(current);
542 	current->mm = NULL;
543 	up_read(&mm->mmap_sem);
544 	enter_lazy_tlb(mm, current);
545 	task_unlock(current);
546 	mm_update_next_owner(mm);
547 	mmput(mm);
548 	if (test_thread_flag(TIF_MEMDIE))
549 		exit_oom_victim();
550 }
551 
552 static struct task_struct *find_alive_thread(struct task_struct *p)
553 {
554 	struct task_struct *t;
555 
556 	for_each_thread(p, t) {
557 		if (!(t->flags & PF_EXITING))
558 			return t;
559 	}
560 	return NULL;
561 }
562 
563 static struct task_struct *find_child_reaper(struct task_struct *father,
564 						struct list_head *dead)
565 	__releases(&tasklist_lock)
566 	__acquires(&tasklist_lock)
567 {
568 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
569 	struct task_struct *reaper = pid_ns->child_reaper;
570 	struct task_struct *p, *n;
571 
572 	if (likely(reaper != father))
573 		return reaper;
574 
575 	reaper = find_alive_thread(father);
576 	if (reaper) {
577 		pid_ns->child_reaper = reaper;
578 		return reaper;
579 	}
580 
581 	write_unlock_irq(&tasklist_lock);
582 	if (unlikely(pid_ns == &init_pid_ns)) {
583 		panic("Attempted to kill init! exitcode=0x%08x\n",
584 			father->signal->group_exit_code ?: father->exit_code);
585 	}
586 
587 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
588 		list_del_init(&p->ptrace_entry);
589 		release_task(p);
590 	}
591 
592 	zap_pid_ns_processes(pid_ns);
593 	write_lock_irq(&tasklist_lock);
594 
595 	return father;
596 }
597 
598 /*
599  * When we die, we re-parent all our children, and try to:
600  * 1. give them to another thread in our thread group, if such a member exists
601  * 2. give it to the first ancestor process which prctl'd itself as a
602  *    child_subreaper for its children (like a service manager)
603  * 3. give it to the init process (PID 1) in our pid namespace
604  */
605 static struct task_struct *find_new_reaper(struct task_struct *father,
606 					   struct task_struct *child_reaper)
607 {
608 	struct task_struct *thread, *reaper;
609 
610 	thread = find_alive_thread(father);
611 	if (thread)
612 		return thread;
613 
614 	if (father->signal->has_child_subreaper) {
615 		unsigned int ns_level = task_pid(father)->level;
616 		/*
617 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
618 		 * We can't check reaper != child_reaper to ensure we do not
619 		 * cross the namespaces, the exiting parent could be injected
620 		 * by setns() + fork().
621 		 * We check pid->level, this is slightly more efficient than
622 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
623 		 */
624 		for (reaper = father->real_parent;
625 		     task_pid(reaper)->level == ns_level;
626 		     reaper = reaper->real_parent) {
627 			if (reaper == &init_task)
628 				break;
629 			if (!reaper->signal->is_child_subreaper)
630 				continue;
631 			thread = find_alive_thread(reaper);
632 			if (thread)
633 				return thread;
634 		}
635 	}
636 
637 	return child_reaper;
638 }
639 
640 /*
641 * Any that need to be release_task'd are put on the @dead list.
642  */
643 static void reparent_leader(struct task_struct *father, struct task_struct *p,
644 				struct list_head *dead)
645 {
646 	if (unlikely(p->exit_state == EXIT_DEAD))
647 		return;
648 
649 	/* We don't want people slaying init. */
650 	p->exit_signal = SIGCHLD;
651 
652 	/* If it has exited notify the new parent about this child's death. */
653 	if (!p->ptrace &&
654 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
655 		if (do_notify_parent(p, p->exit_signal)) {
656 			p->exit_state = EXIT_DEAD;
657 			list_add(&p->ptrace_entry, dead);
658 		}
659 	}
660 
661 	kill_orphaned_pgrp(p, father);
662 }
663 
664 /*
665  * This does two things:
666  *
667  * A.  Make init inherit all the child processes
668  * B.  Check to see if any process groups have become orphaned
669  *	as a result of our exiting, and if they have any stopped
670  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
671  */
672 static void forget_original_parent(struct task_struct *father,
673 					struct list_head *dead)
674 {
675 	struct task_struct *p, *t, *reaper;
676 
677 	if (unlikely(!list_empty(&father->ptraced)))
678 		exit_ptrace(father, dead);
679 
680 	/* Can drop and reacquire tasklist_lock */
681 	reaper = find_child_reaper(father, dead);
682 	if (list_empty(&father->children))
683 		return;
684 
685 	reaper = find_new_reaper(father, reaper);
686 	list_for_each_entry(p, &father->children, sibling) {
687 		for_each_thread(p, t) {
688 			t->real_parent = reaper;
689 			BUG_ON((!t->ptrace) != (t->parent == father));
690 			if (likely(!t->ptrace))
691 				t->parent = t->real_parent;
692 			if (t->pdeath_signal)
693 				group_send_sig_info(t->pdeath_signal,
694 						    SEND_SIG_NOINFO, t,
695 						    PIDTYPE_TGID);
696 		}
697 		/*
698 		 * If this is a threaded reparent there is no need to
699 		 * notify anyone anything has happened.
700 		 */
701 		if (!same_thread_group(reaper, father))
702 			reparent_leader(father, p, dead);
703 	}
704 	list_splice_tail_init(&father->children, &reaper->children);
705 }
706 
707 /*
708  * Send signals to all our closest relatives so that they know
709  * to properly mourn us..
710  */
711 static void exit_notify(struct task_struct *tsk, int group_dead)
712 {
713 	bool autoreap;
714 	struct task_struct *p, *n;
715 	LIST_HEAD(dead);
716 
717 	write_lock_irq(&tasklist_lock);
718 	forget_original_parent(tsk, &dead);
719 
720 	if (group_dead)
721 		kill_orphaned_pgrp(tsk->group_leader, NULL);
722 
723 	tsk->exit_state = EXIT_ZOMBIE;
724 	if (unlikely(tsk->ptrace)) {
725 		int sig = thread_group_leader(tsk) &&
726 				thread_group_empty(tsk) &&
727 				!ptrace_reparented(tsk) ?
728 			tsk->exit_signal : SIGCHLD;
729 		autoreap = do_notify_parent(tsk, sig);
730 	} else if (thread_group_leader(tsk)) {
731 		autoreap = thread_group_empty(tsk) &&
732 			do_notify_parent(tsk, tsk->exit_signal);
733 	} else {
734 		autoreap = true;
735 	}
736 
737 	if (autoreap) {
738 		tsk->exit_state = EXIT_DEAD;
739 		list_add(&tsk->ptrace_entry, &dead);
740 	}
741 
742 	/* mt-exec, de_thread() is waiting for group leader */
743 	if (unlikely(tsk->signal->notify_count < 0))
744 		wake_up_process(tsk->signal->group_exit_task);
745 	write_unlock_irq(&tasklist_lock);
746 
747 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
748 		list_del_init(&p->ptrace_entry);
749 		release_task(p);
750 	}
751 }
752 
753 #ifdef CONFIG_DEBUG_STACK_USAGE
754 static void check_stack_usage(void)
755 {
756 	static DEFINE_SPINLOCK(low_water_lock);
757 	static int lowest_to_date = THREAD_SIZE;
758 	unsigned long free;
759 
760 	free = stack_not_used(current);
761 
762 	if (free >= lowest_to_date)
763 		return;
764 
765 	spin_lock(&low_water_lock);
766 	if (free < lowest_to_date) {
767 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
768 			current->comm, task_pid_nr(current), free);
769 		lowest_to_date = free;
770 	}
771 	spin_unlock(&low_water_lock);
772 }
773 #else
774 static inline void check_stack_usage(void) {}
775 #endif
776 
777 void __noreturn do_exit(long code)
778 {
779 	struct task_struct *tsk = current;
780 	int group_dead;
781 
782 	profile_task_exit(tsk);
783 	kcov_task_exit(tsk);
784 
785 	WARN_ON(blk_needs_flush_plug(tsk));
786 
787 	if (unlikely(in_interrupt()))
788 		panic("Aiee, killing interrupt handler!");
789 	if (unlikely(!tsk->pid))
790 		panic("Attempted to kill the idle task!");
791 
792 	/*
793 	 * If do_exit is called because this processes oopsed, it's possible
794 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
795 	 * continuing. Amongst other possible reasons, this is to prevent
796 	 * mm_release()->clear_child_tid() from writing to a user-controlled
797 	 * kernel address.
798 	 */
799 	set_fs(USER_DS);
800 
801 	ptrace_event(PTRACE_EVENT_EXIT, code);
802 
803 	validate_creds_for_do_exit(tsk);
804 
805 	/*
806 	 * We're taking recursive faults here in do_exit. Safest is to just
807 	 * leave this task alone and wait for reboot.
808 	 */
809 	if (unlikely(tsk->flags & PF_EXITING)) {
810 		pr_alert("Fixing recursive fault but reboot is needed!\n");
811 		/*
812 		 * We can do this unlocked here. The futex code uses
813 		 * this flag just to verify whether the pi state
814 		 * cleanup has been done or not. In the worst case it
815 		 * loops once more. We pretend that the cleanup was
816 		 * done as there is no way to return. Either the
817 		 * OWNER_DIED bit is set by now or we push the blocked
818 		 * task into the wait for ever nirwana as well.
819 		 */
820 		tsk->flags |= PF_EXITPIDONE;
821 		set_current_state(TASK_UNINTERRUPTIBLE);
822 		schedule();
823 	}
824 
825 	exit_signals(tsk);  /* sets PF_EXITING */
826 	/*
827 	 * Ensure that all new tsk->pi_lock acquisitions must observe
828 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
829 	 */
830 	smp_mb();
831 	/*
832 	 * Ensure that we must observe the pi_state in exit_mm() ->
833 	 * mm_release() -> exit_pi_state_list().
834 	 */
835 	raw_spin_lock_irq(&tsk->pi_lock);
836 	raw_spin_unlock_irq(&tsk->pi_lock);
837 
838 	if (unlikely(in_atomic())) {
839 		pr_info("note: %s[%d] exited with preempt_count %d\n",
840 			current->comm, task_pid_nr(current),
841 			preempt_count());
842 		preempt_count_set(PREEMPT_ENABLED);
843 	}
844 
845 	/* sync mm's RSS info before statistics gathering */
846 	if (tsk->mm)
847 		sync_mm_rss(tsk->mm);
848 	acct_update_integrals(tsk);
849 	group_dead = atomic_dec_and_test(&tsk->signal->live);
850 	if (group_dead) {
851 #ifdef CONFIG_POSIX_TIMERS
852 		hrtimer_cancel(&tsk->signal->real_timer);
853 		exit_itimers(tsk->signal);
854 #endif
855 		if (tsk->mm)
856 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
857 	}
858 	acct_collect(code, group_dead);
859 	if (group_dead)
860 		tty_audit_exit();
861 	audit_free(tsk);
862 
863 	tsk->exit_code = code;
864 	taskstats_exit(tsk, group_dead);
865 
866 	exit_mm();
867 
868 	if (group_dead)
869 		acct_process();
870 	trace_sched_process_exit(tsk);
871 
872 	exit_sem(tsk);
873 	exit_shm(tsk);
874 	exit_files(tsk);
875 	exit_fs(tsk);
876 	if (group_dead)
877 		disassociate_ctty(1);
878 	exit_task_namespaces(tsk);
879 	exit_task_work(tsk);
880 	exit_thread(tsk);
881 	exit_umh(tsk);
882 
883 	/*
884 	 * Flush inherited counters to the parent - before the parent
885 	 * gets woken up by child-exit notifications.
886 	 *
887 	 * because of cgroup mode, must be called before cgroup_exit()
888 	 */
889 	perf_event_exit_task(tsk);
890 
891 	sched_autogroup_exit_task(tsk);
892 	cgroup_exit(tsk);
893 
894 	/*
895 	 * FIXME: do that only when needed, using sched_exit tracepoint
896 	 */
897 	flush_ptrace_hw_breakpoint(tsk);
898 
899 	exit_tasks_rcu_start();
900 	exit_notify(tsk, group_dead);
901 	proc_exit_connector(tsk);
902 	mpol_put_task_policy(tsk);
903 #ifdef CONFIG_FUTEX
904 	if (unlikely(current->pi_state_cache))
905 		kfree(current->pi_state_cache);
906 #endif
907 	/*
908 	 * Make sure we are holding no locks:
909 	 */
910 	debug_check_no_locks_held();
911 	/*
912 	 * We can do this unlocked here. The futex code uses this flag
913 	 * just to verify whether the pi state cleanup has been done
914 	 * or not. In the worst case it loops once more.
915 	 */
916 	tsk->flags |= PF_EXITPIDONE;
917 
918 	if (tsk->io_context)
919 		exit_io_context(tsk);
920 
921 	if (tsk->splice_pipe)
922 		free_pipe_info(tsk->splice_pipe);
923 
924 	if (tsk->task_frag.page)
925 		put_page(tsk->task_frag.page);
926 
927 	validate_creds_for_do_exit(tsk);
928 
929 	check_stack_usage();
930 	preempt_disable();
931 	if (tsk->nr_dirtied)
932 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
933 	exit_rcu();
934 	exit_tasks_rcu_finish();
935 
936 	lockdep_free_task(tsk);
937 	do_task_dead();
938 }
939 EXPORT_SYMBOL_GPL(do_exit);
940 
941 void complete_and_exit(struct completion *comp, long code)
942 {
943 	if (comp)
944 		complete(comp);
945 
946 	do_exit(code);
947 }
948 EXPORT_SYMBOL(complete_and_exit);
949 
950 SYSCALL_DEFINE1(exit, int, error_code)
951 {
952 	do_exit((error_code&0xff)<<8);
953 }
954 
955 /*
956  * Take down every thread in the group.  This is called by fatal signals
957  * as well as by sys_exit_group (below).
958  */
959 void
960 do_group_exit(int exit_code)
961 {
962 	struct signal_struct *sig = current->signal;
963 
964 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
965 
966 	if (signal_group_exit(sig))
967 		exit_code = sig->group_exit_code;
968 	else if (!thread_group_empty(current)) {
969 		struct sighand_struct *const sighand = current->sighand;
970 
971 		spin_lock_irq(&sighand->siglock);
972 		if (signal_group_exit(sig))
973 			/* Another thread got here before we took the lock.  */
974 			exit_code = sig->group_exit_code;
975 		else {
976 			sig->group_exit_code = exit_code;
977 			sig->flags = SIGNAL_GROUP_EXIT;
978 			zap_other_threads(current);
979 		}
980 		spin_unlock_irq(&sighand->siglock);
981 	}
982 
983 	do_exit(exit_code);
984 	/* NOTREACHED */
985 }
986 
987 /*
988  * this kills every thread in the thread group. Note that any externally
989  * wait4()-ing process will get the correct exit code - even if this
990  * thread is not the thread group leader.
991  */
992 SYSCALL_DEFINE1(exit_group, int, error_code)
993 {
994 	do_group_exit((error_code & 0xff) << 8);
995 	/* NOTREACHED */
996 	return 0;
997 }
998 
999 struct waitid_info {
1000 	pid_t pid;
1001 	uid_t uid;
1002 	int status;
1003 	int cause;
1004 };
1005 
1006 struct wait_opts {
1007 	enum pid_type		wo_type;
1008 	int			wo_flags;
1009 	struct pid		*wo_pid;
1010 
1011 	struct waitid_info	*wo_info;
1012 	int			wo_stat;
1013 	struct rusage		*wo_rusage;
1014 
1015 	wait_queue_entry_t		child_wait;
1016 	int			notask_error;
1017 };
1018 
1019 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1020 {
1021 	return	wo->wo_type == PIDTYPE_MAX ||
1022 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1023 }
1024 
1025 static int
1026 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1027 {
1028 	if (!eligible_pid(wo, p))
1029 		return 0;
1030 
1031 	/*
1032 	 * Wait for all children (clone and not) if __WALL is set or
1033 	 * if it is traced by us.
1034 	 */
1035 	if (ptrace || (wo->wo_flags & __WALL))
1036 		return 1;
1037 
1038 	/*
1039 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1040 	 * otherwise, wait for non-clone children *only*.
1041 	 *
1042 	 * Note: a "clone" child here is one that reports to its parent
1043 	 * using a signal other than SIGCHLD, or a non-leader thread which
1044 	 * we can only see if it is traced by us.
1045 	 */
1046 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1047 		return 0;
1048 
1049 	return 1;
1050 }
1051 
1052 /*
1053  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1054  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1055  * the lock and this task is uninteresting.  If we return nonzero, we have
1056  * released the lock and the system call should return.
1057  */
1058 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1059 {
1060 	int state, status;
1061 	pid_t pid = task_pid_vnr(p);
1062 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1063 	struct waitid_info *infop;
1064 
1065 	if (!likely(wo->wo_flags & WEXITED))
1066 		return 0;
1067 
1068 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1069 		status = p->exit_code;
1070 		get_task_struct(p);
1071 		read_unlock(&tasklist_lock);
1072 		sched_annotate_sleep();
1073 		if (wo->wo_rusage)
1074 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1075 		put_task_struct(p);
1076 		goto out_info;
1077 	}
1078 	/*
1079 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1080 	 */
1081 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1082 		EXIT_TRACE : EXIT_DEAD;
1083 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1084 		return 0;
1085 	/*
1086 	 * We own this thread, nobody else can reap it.
1087 	 */
1088 	read_unlock(&tasklist_lock);
1089 	sched_annotate_sleep();
1090 
1091 	/*
1092 	 * Check thread_group_leader() to exclude the traced sub-threads.
1093 	 */
1094 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1095 		struct signal_struct *sig = p->signal;
1096 		struct signal_struct *psig = current->signal;
1097 		unsigned long maxrss;
1098 		u64 tgutime, tgstime;
1099 
1100 		/*
1101 		 * The resource counters for the group leader are in its
1102 		 * own task_struct.  Those for dead threads in the group
1103 		 * are in its signal_struct, as are those for the child
1104 		 * processes it has previously reaped.  All these
1105 		 * accumulate in the parent's signal_struct c* fields.
1106 		 *
1107 		 * We don't bother to take a lock here to protect these
1108 		 * p->signal fields because the whole thread group is dead
1109 		 * and nobody can change them.
1110 		 *
1111 		 * psig->stats_lock also protects us from our sub-theads
1112 		 * which can reap other children at the same time. Until
1113 		 * we change k_getrusage()-like users to rely on this lock
1114 		 * we have to take ->siglock as well.
1115 		 *
1116 		 * We use thread_group_cputime_adjusted() to get times for
1117 		 * the thread group, which consolidates times for all threads
1118 		 * in the group including the group leader.
1119 		 */
1120 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1121 		spin_lock_irq(&current->sighand->siglock);
1122 		write_seqlock(&psig->stats_lock);
1123 		psig->cutime += tgutime + sig->cutime;
1124 		psig->cstime += tgstime + sig->cstime;
1125 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1126 		psig->cmin_flt +=
1127 			p->min_flt + sig->min_flt + sig->cmin_flt;
1128 		psig->cmaj_flt +=
1129 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1130 		psig->cnvcsw +=
1131 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1132 		psig->cnivcsw +=
1133 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1134 		psig->cinblock +=
1135 			task_io_get_inblock(p) +
1136 			sig->inblock + sig->cinblock;
1137 		psig->coublock +=
1138 			task_io_get_oublock(p) +
1139 			sig->oublock + sig->coublock;
1140 		maxrss = max(sig->maxrss, sig->cmaxrss);
1141 		if (psig->cmaxrss < maxrss)
1142 			psig->cmaxrss = maxrss;
1143 		task_io_accounting_add(&psig->ioac, &p->ioac);
1144 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1145 		write_sequnlock(&psig->stats_lock);
1146 		spin_unlock_irq(&current->sighand->siglock);
1147 	}
1148 
1149 	if (wo->wo_rusage)
1150 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1151 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1152 		? p->signal->group_exit_code : p->exit_code;
1153 	wo->wo_stat = status;
1154 
1155 	if (state == EXIT_TRACE) {
1156 		write_lock_irq(&tasklist_lock);
1157 		/* We dropped tasklist, ptracer could die and untrace */
1158 		ptrace_unlink(p);
1159 
1160 		/* If parent wants a zombie, don't release it now */
1161 		state = EXIT_ZOMBIE;
1162 		if (do_notify_parent(p, p->exit_signal))
1163 			state = EXIT_DEAD;
1164 		p->exit_state = state;
1165 		write_unlock_irq(&tasklist_lock);
1166 	}
1167 	if (state == EXIT_DEAD)
1168 		release_task(p);
1169 
1170 out_info:
1171 	infop = wo->wo_info;
1172 	if (infop) {
1173 		if ((status & 0x7f) == 0) {
1174 			infop->cause = CLD_EXITED;
1175 			infop->status = status >> 8;
1176 		} else {
1177 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1178 			infop->status = status & 0x7f;
1179 		}
1180 		infop->pid = pid;
1181 		infop->uid = uid;
1182 	}
1183 
1184 	return pid;
1185 }
1186 
1187 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1188 {
1189 	if (ptrace) {
1190 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1191 			return &p->exit_code;
1192 	} else {
1193 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1194 			return &p->signal->group_exit_code;
1195 	}
1196 	return NULL;
1197 }
1198 
1199 /**
1200  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1201  * @wo: wait options
1202  * @ptrace: is the wait for ptrace
1203  * @p: task to wait for
1204  *
1205  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1206  *
1207  * CONTEXT:
1208  * read_lock(&tasklist_lock), which is released if return value is
1209  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1210  *
1211  * RETURNS:
1212  * 0 if wait condition didn't exist and search for other wait conditions
1213  * should continue.  Non-zero return, -errno on failure and @p's pid on
1214  * success, implies that tasklist_lock is released and wait condition
1215  * search should terminate.
1216  */
1217 static int wait_task_stopped(struct wait_opts *wo,
1218 				int ptrace, struct task_struct *p)
1219 {
1220 	struct waitid_info *infop;
1221 	int exit_code, *p_code, why;
1222 	uid_t uid = 0; /* unneeded, required by compiler */
1223 	pid_t pid;
1224 
1225 	/*
1226 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1227 	 */
1228 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1229 		return 0;
1230 
1231 	if (!task_stopped_code(p, ptrace))
1232 		return 0;
1233 
1234 	exit_code = 0;
1235 	spin_lock_irq(&p->sighand->siglock);
1236 
1237 	p_code = task_stopped_code(p, ptrace);
1238 	if (unlikely(!p_code))
1239 		goto unlock_sig;
1240 
1241 	exit_code = *p_code;
1242 	if (!exit_code)
1243 		goto unlock_sig;
1244 
1245 	if (!unlikely(wo->wo_flags & WNOWAIT))
1246 		*p_code = 0;
1247 
1248 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1249 unlock_sig:
1250 	spin_unlock_irq(&p->sighand->siglock);
1251 	if (!exit_code)
1252 		return 0;
1253 
1254 	/*
1255 	 * Now we are pretty sure this task is interesting.
1256 	 * Make sure it doesn't get reaped out from under us while we
1257 	 * give up the lock and then examine it below.  We don't want to
1258 	 * keep holding onto the tasklist_lock while we call getrusage and
1259 	 * possibly take page faults for user memory.
1260 	 */
1261 	get_task_struct(p);
1262 	pid = task_pid_vnr(p);
1263 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1264 	read_unlock(&tasklist_lock);
1265 	sched_annotate_sleep();
1266 	if (wo->wo_rusage)
1267 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1268 	put_task_struct(p);
1269 
1270 	if (likely(!(wo->wo_flags & WNOWAIT)))
1271 		wo->wo_stat = (exit_code << 8) | 0x7f;
1272 
1273 	infop = wo->wo_info;
1274 	if (infop) {
1275 		infop->cause = why;
1276 		infop->status = exit_code;
1277 		infop->pid = pid;
1278 		infop->uid = uid;
1279 	}
1280 	return pid;
1281 }
1282 
1283 /*
1284  * Handle do_wait work for one task in a live, non-stopped state.
1285  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1286  * the lock and this task is uninteresting.  If we return nonzero, we have
1287  * released the lock and the system call should return.
1288  */
1289 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1290 {
1291 	struct waitid_info *infop;
1292 	pid_t pid;
1293 	uid_t uid;
1294 
1295 	if (!unlikely(wo->wo_flags & WCONTINUED))
1296 		return 0;
1297 
1298 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1299 		return 0;
1300 
1301 	spin_lock_irq(&p->sighand->siglock);
1302 	/* Re-check with the lock held.  */
1303 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1304 		spin_unlock_irq(&p->sighand->siglock);
1305 		return 0;
1306 	}
1307 	if (!unlikely(wo->wo_flags & WNOWAIT))
1308 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1309 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1310 	spin_unlock_irq(&p->sighand->siglock);
1311 
1312 	pid = task_pid_vnr(p);
1313 	get_task_struct(p);
1314 	read_unlock(&tasklist_lock);
1315 	sched_annotate_sleep();
1316 	if (wo->wo_rusage)
1317 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1318 	put_task_struct(p);
1319 
1320 	infop = wo->wo_info;
1321 	if (!infop) {
1322 		wo->wo_stat = 0xffff;
1323 	} else {
1324 		infop->cause = CLD_CONTINUED;
1325 		infop->pid = pid;
1326 		infop->uid = uid;
1327 		infop->status = SIGCONT;
1328 	}
1329 	return pid;
1330 }
1331 
1332 /*
1333  * Consider @p for a wait by @parent.
1334  *
1335  * -ECHILD should be in ->notask_error before the first call.
1336  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1337  * Returns zero if the search for a child should continue;
1338  * then ->notask_error is 0 if @p is an eligible child,
1339  * or still -ECHILD.
1340  */
1341 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1342 				struct task_struct *p)
1343 {
1344 	/*
1345 	 * We can race with wait_task_zombie() from another thread.
1346 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1347 	 * can't confuse the checks below.
1348 	 */
1349 	int exit_state = READ_ONCE(p->exit_state);
1350 	int ret;
1351 
1352 	if (unlikely(exit_state == EXIT_DEAD))
1353 		return 0;
1354 
1355 	ret = eligible_child(wo, ptrace, p);
1356 	if (!ret)
1357 		return ret;
1358 
1359 	if (unlikely(exit_state == EXIT_TRACE)) {
1360 		/*
1361 		 * ptrace == 0 means we are the natural parent. In this case
1362 		 * we should clear notask_error, debugger will notify us.
1363 		 */
1364 		if (likely(!ptrace))
1365 			wo->notask_error = 0;
1366 		return 0;
1367 	}
1368 
1369 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1370 		/*
1371 		 * If it is traced by its real parent's group, just pretend
1372 		 * the caller is ptrace_do_wait() and reap this child if it
1373 		 * is zombie.
1374 		 *
1375 		 * This also hides group stop state from real parent; otherwise
1376 		 * a single stop can be reported twice as group and ptrace stop.
1377 		 * If a ptracer wants to distinguish these two events for its
1378 		 * own children it should create a separate process which takes
1379 		 * the role of real parent.
1380 		 */
1381 		if (!ptrace_reparented(p))
1382 			ptrace = 1;
1383 	}
1384 
1385 	/* slay zombie? */
1386 	if (exit_state == EXIT_ZOMBIE) {
1387 		/* we don't reap group leaders with subthreads */
1388 		if (!delay_group_leader(p)) {
1389 			/*
1390 			 * A zombie ptracee is only visible to its ptracer.
1391 			 * Notification and reaping will be cascaded to the
1392 			 * real parent when the ptracer detaches.
1393 			 */
1394 			if (unlikely(ptrace) || likely(!p->ptrace))
1395 				return wait_task_zombie(wo, p);
1396 		}
1397 
1398 		/*
1399 		 * Allow access to stopped/continued state via zombie by
1400 		 * falling through.  Clearing of notask_error is complex.
1401 		 *
1402 		 * When !@ptrace:
1403 		 *
1404 		 * If WEXITED is set, notask_error should naturally be
1405 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1406 		 * so, if there are live subthreads, there are events to
1407 		 * wait for.  If all subthreads are dead, it's still safe
1408 		 * to clear - this function will be called again in finite
1409 		 * amount time once all the subthreads are released and
1410 		 * will then return without clearing.
1411 		 *
1412 		 * When @ptrace:
1413 		 *
1414 		 * Stopped state is per-task and thus can't change once the
1415 		 * target task dies.  Only continued and exited can happen.
1416 		 * Clear notask_error if WCONTINUED | WEXITED.
1417 		 */
1418 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1419 			wo->notask_error = 0;
1420 	} else {
1421 		/*
1422 		 * @p is alive and it's gonna stop, continue or exit, so
1423 		 * there always is something to wait for.
1424 		 */
1425 		wo->notask_error = 0;
1426 	}
1427 
1428 	/*
1429 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1430 	 * is used and the two don't interact with each other.
1431 	 */
1432 	ret = wait_task_stopped(wo, ptrace, p);
1433 	if (ret)
1434 		return ret;
1435 
1436 	/*
1437 	 * Wait for continued.  There's only one continued state and the
1438 	 * ptracer can consume it which can confuse the real parent.  Don't
1439 	 * use WCONTINUED from ptracer.  You don't need or want it.
1440 	 */
1441 	return wait_task_continued(wo, p);
1442 }
1443 
1444 /*
1445  * Do the work of do_wait() for one thread in the group, @tsk.
1446  *
1447  * -ECHILD should be in ->notask_error before the first call.
1448  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1449  * Returns zero if the search for a child should continue; then
1450  * ->notask_error is 0 if there were any eligible children,
1451  * or still -ECHILD.
1452  */
1453 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1454 {
1455 	struct task_struct *p;
1456 
1457 	list_for_each_entry(p, &tsk->children, sibling) {
1458 		int ret = wait_consider_task(wo, 0, p);
1459 
1460 		if (ret)
1461 			return ret;
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1468 {
1469 	struct task_struct *p;
1470 
1471 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1472 		int ret = wait_consider_task(wo, 1, p);
1473 
1474 		if (ret)
1475 			return ret;
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1482 				int sync, void *key)
1483 {
1484 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1485 						child_wait);
1486 	struct task_struct *p = key;
1487 
1488 	if (!eligible_pid(wo, p))
1489 		return 0;
1490 
1491 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1492 		return 0;
1493 
1494 	return default_wake_function(wait, mode, sync, key);
1495 }
1496 
1497 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1498 {
1499 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1500 				TASK_INTERRUPTIBLE, 1, p);
1501 }
1502 
1503 static long do_wait(struct wait_opts *wo)
1504 {
1505 	struct task_struct *tsk;
1506 	int retval;
1507 
1508 	trace_sched_process_wait(wo->wo_pid);
1509 
1510 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1511 	wo->child_wait.private = current;
1512 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1513 repeat:
1514 	/*
1515 	 * If there is nothing that can match our criteria, just get out.
1516 	 * We will clear ->notask_error to zero if we see any child that
1517 	 * might later match our criteria, even if we are not able to reap
1518 	 * it yet.
1519 	 */
1520 	wo->notask_error = -ECHILD;
1521 	if ((wo->wo_type < PIDTYPE_MAX) &&
1522 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1523 		goto notask;
1524 
1525 	set_current_state(TASK_INTERRUPTIBLE);
1526 	read_lock(&tasklist_lock);
1527 	tsk = current;
1528 	do {
1529 		retval = do_wait_thread(wo, tsk);
1530 		if (retval)
1531 			goto end;
1532 
1533 		retval = ptrace_do_wait(wo, tsk);
1534 		if (retval)
1535 			goto end;
1536 
1537 		if (wo->wo_flags & __WNOTHREAD)
1538 			break;
1539 	} while_each_thread(current, tsk);
1540 	read_unlock(&tasklist_lock);
1541 
1542 notask:
1543 	retval = wo->notask_error;
1544 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1545 		retval = -ERESTARTSYS;
1546 		if (!signal_pending(current)) {
1547 			schedule();
1548 			goto repeat;
1549 		}
1550 	}
1551 end:
1552 	__set_current_state(TASK_RUNNING);
1553 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1554 	return retval;
1555 }
1556 
1557 static struct pid *pidfd_get_pid(unsigned int fd)
1558 {
1559 	struct fd f;
1560 	struct pid *pid;
1561 
1562 	f = fdget(fd);
1563 	if (!f.file)
1564 		return ERR_PTR(-EBADF);
1565 
1566 	pid = pidfd_pid(f.file);
1567 	if (!IS_ERR(pid))
1568 		get_pid(pid);
1569 
1570 	fdput(f);
1571 	return pid;
1572 }
1573 
1574 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1575 			  int options, struct rusage *ru)
1576 {
1577 	struct wait_opts wo;
1578 	struct pid *pid = NULL;
1579 	enum pid_type type;
1580 	long ret;
1581 
1582 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1583 			__WNOTHREAD|__WCLONE|__WALL))
1584 		return -EINVAL;
1585 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1586 		return -EINVAL;
1587 
1588 	switch (which) {
1589 	case P_ALL:
1590 		type = PIDTYPE_MAX;
1591 		break;
1592 	case P_PID:
1593 		type = PIDTYPE_PID;
1594 		if (upid <= 0)
1595 			return -EINVAL;
1596 
1597 		pid = find_get_pid(upid);
1598 		break;
1599 	case P_PGID:
1600 		type = PIDTYPE_PGID;
1601 		if (upid < 0)
1602 			return -EINVAL;
1603 
1604 		if (upid)
1605 			pid = find_get_pid(upid);
1606 		else
1607 			pid = get_task_pid(current, PIDTYPE_PGID);
1608 		break;
1609 	case P_PIDFD:
1610 		type = PIDTYPE_PID;
1611 		if (upid < 0)
1612 			return -EINVAL;
1613 
1614 		pid = pidfd_get_pid(upid);
1615 		if (IS_ERR(pid))
1616 			return PTR_ERR(pid);
1617 		break;
1618 	default:
1619 		return -EINVAL;
1620 	}
1621 
1622 	wo.wo_type	= type;
1623 	wo.wo_pid	= pid;
1624 	wo.wo_flags	= options;
1625 	wo.wo_info	= infop;
1626 	wo.wo_rusage	= ru;
1627 	ret = do_wait(&wo);
1628 
1629 	put_pid(pid);
1630 	return ret;
1631 }
1632 
1633 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1634 		infop, int, options, struct rusage __user *, ru)
1635 {
1636 	struct rusage r;
1637 	struct waitid_info info = {.status = 0};
1638 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1639 	int signo = 0;
1640 
1641 	if (err > 0) {
1642 		signo = SIGCHLD;
1643 		err = 0;
1644 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1645 			return -EFAULT;
1646 	}
1647 	if (!infop)
1648 		return err;
1649 
1650 	if (!user_access_begin(infop, sizeof(*infop)))
1651 		return -EFAULT;
1652 
1653 	unsafe_put_user(signo, &infop->si_signo, Efault);
1654 	unsafe_put_user(0, &infop->si_errno, Efault);
1655 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1656 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1657 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1658 	unsafe_put_user(info.status, &infop->si_status, Efault);
1659 	user_access_end();
1660 	return err;
1661 Efault:
1662 	user_access_end();
1663 	return -EFAULT;
1664 }
1665 
1666 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1667 		  struct rusage *ru)
1668 {
1669 	struct wait_opts wo;
1670 	struct pid *pid = NULL;
1671 	enum pid_type type;
1672 	long ret;
1673 
1674 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1675 			__WNOTHREAD|__WCLONE|__WALL))
1676 		return -EINVAL;
1677 
1678 	/* -INT_MIN is not defined */
1679 	if (upid == INT_MIN)
1680 		return -ESRCH;
1681 
1682 	if (upid == -1)
1683 		type = PIDTYPE_MAX;
1684 	else if (upid < 0) {
1685 		type = PIDTYPE_PGID;
1686 		pid = find_get_pid(-upid);
1687 	} else if (upid == 0) {
1688 		type = PIDTYPE_PGID;
1689 		pid = get_task_pid(current, PIDTYPE_PGID);
1690 	} else /* upid > 0 */ {
1691 		type = PIDTYPE_PID;
1692 		pid = find_get_pid(upid);
1693 	}
1694 
1695 	wo.wo_type	= type;
1696 	wo.wo_pid	= pid;
1697 	wo.wo_flags	= options | WEXITED;
1698 	wo.wo_info	= NULL;
1699 	wo.wo_stat	= 0;
1700 	wo.wo_rusage	= ru;
1701 	ret = do_wait(&wo);
1702 	put_pid(pid);
1703 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1704 		ret = -EFAULT;
1705 
1706 	return ret;
1707 }
1708 
1709 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1710 		int, options, struct rusage __user *, ru)
1711 {
1712 	struct rusage r;
1713 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1714 
1715 	if (err > 0) {
1716 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1717 			return -EFAULT;
1718 	}
1719 	return err;
1720 }
1721 
1722 #ifdef __ARCH_WANT_SYS_WAITPID
1723 
1724 /*
1725  * sys_waitpid() remains for compatibility. waitpid() should be
1726  * implemented by calling sys_wait4() from libc.a.
1727  */
1728 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1729 {
1730 	return kernel_wait4(pid, stat_addr, options, NULL);
1731 }
1732 
1733 #endif
1734 
1735 #ifdef CONFIG_COMPAT
1736 COMPAT_SYSCALL_DEFINE4(wait4,
1737 	compat_pid_t, pid,
1738 	compat_uint_t __user *, stat_addr,
1739 	int, options,
1740 	struct compat_rusage __user *, ru)
1741 {
1742 	struct rusage r;
1743 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1744 	if (err > 0) {
1745 		if (ru && put_compat_rusage(&r, ru))
1746 			return -EFAULT;
1747 	}
1748 	return err;
1749 }
1750 
1751 COMPAT_SYSCALL_DEFINE5(waitid,
1752 		int, which, compat_pid_t, pid,
1753 		struct compat_siginfo __user *, infop, int, options,
1754 		struct compat_rusage __user *, uru)
1755 {
1756 	struct rusage ru;
1757 	struct waitid_info info = {.status = 0};
1758 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1759 	int signo = 0;
1760 	if (err > 0) {
1761 		signo = SIGCHLD;
1762 		err = 0;
1763 		if (uru) {
1764 			/* kernel_waitid() overwrites everything in ru */
1765 			if (COMPAT_USE_64BIT_TIME)
1766 				err = copy_to_user(uru, &ru, sizeof(ru));
1767 			else
1768 				err = put_compat_rusage(&ru, uru);
1769 			if (err)
1770 				return -EFAULT;
1771 		}
1772 	}
1773 
1774 	if (!infop)
1775 		return err;
1776 
1777 	if (!user_access_begin(infop, sizeof(*infop)))
1778 		return -EFAULT;
1779 
1780 	unsafe_put_user(signo, &infop->si_signo, Efault);
1781 	unsafe_put_user(0, &infop->si_errno, Efault);
1782 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1783 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1784 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1785 	unsafe_put_user(info.status, &infop->si_status, Efault);
1786 	user_access_end();
1787 	return err;
1788 Efault:
1789 	user_access_end();
1790 	return -EFAULT;
1791 }
1792 #endif
1793 
1794 __weak void abort(void)
1795 {
1796 	BUG();
1797 
1798 	/* if that doesn't kill us, halt */
1799 	panic("Oops failed to kill thread");
1800 }
1801 EXPORT_SYMBOL(abort);
1802