xref: /openbmc/linux/kernel/exit.c (revision 62e7ca52)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct * tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 	list_del_rcu(&p->thread_node);
78 }
79 
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 	struct signal_struct *sig = tsk->signal;
86 	bool group_dead = thread_group_leader(tsk);
87 	struct sighand_struct *sighand;
88 	struct tty_struct *uninitialized_var(tty);
89 	cputime_t utime, stime;
90 
91 	sighand = rcu_dereference_check(tsk->sighand,
92 					lockdep_tasklist_lock_is_held());
93 	spin_lock(&sighand->siglock);
94 
95 	posix_cpu_timers_exit(tsk);
96 	if (group_dead) {
97 		posix_cpu_timers_exit_group(tsk);
98 		tty = sig->tty;
99 		sig->tty = NULL;
100 	} else {
101 		/*
102 		 * This can only happen if the caller is de_thread().
103 		 * FIXME: this is the temporary hack, we should teach
104 		 * posix-cpu-timers to handle this case correctly.
105 		 */
106 		if (unlikely(has_group_leader_pid(tsk)))
107 			posix_cpu_timers_exit_group(tsk);
108 
109 		/*
110 		 * If there is any task waiting for the group exit
111 		 * then notify it:
112 		 */
113 		if (sig->notify_count > 0 && !--sig->notify_count)
114 			wake_up_process(sig->group_exit_task);
115 
116 		if (tsk == sig->curr_target)
117 			sig->curr_target = next_thread(tsk);
118 		/*
119 		 * Accumulate here the counters for all threads but the
120 		 * group leader as they die, so they can be added into
121 		 * the process-wide totals when those are taken.
122 		 * The group leader stays around as a zombie as long
123 		 * as there are other threads.  When it gets reaped,
124 		 * the exit.c code will add its counts into these totals.
125 		 * We won't ever get here for the group leader, since it
126 		 * will have been the last reference on the signal_struct.
127 		 */
128 		task_cputime(tsk, &utime, &stime);
129 		sig->utime += utime;
130 		sig->stime += stime;
131 		sig->gtime += task_gtime(tsk);
132 		sig->min_flt += tsk->min_flt;
133 		sig->maj_flt += tsk->maj_flt;
134 		sig->nvcsw += tsk->nvcsw;
135 		sig->nivcsw += tsk->nivcsw;
136 		sig->inblock += task_io_get_inblock(tsk);
137 		sig->oublock += task_io_get_oublock(tsk);
138 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 	}
141 
142 	sig->nr_threads--;
143 	__unhash_process(tsk, group_dead);
144 
145 	/*
146 	 * Do this under ->siglock, we can race with another thread
147 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 	 */
149 	flush_sigqueue(&tsk->pending);
150 	tsk->sighand = NULL;
151 	spin_unlock(&sighand->siglock);
152 
153 	__cleanup_sighand(sighand);
154 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
155 	if (group_dead) {
156 		flush_sigqueue(&sig->shared_pending);
157 		tty_kref_put(tty);
158 	}
159 }
160 
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164 
165 	perf_event_delayed_put(tsk);
166 	trace_sched_process_free(tsk);
167 	put_task_struct(tsk);
168 }
169 
170 
171 void release_task(struct task_struct * p)
172 {
173 	struct task_struct *leader;
174 	int zap_leader;
175 repeat:
176 	/* don't need to get the RCU readlock here - the process is dead and
177 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 	rcu_read_lock();
179 	atomic_dec(&__task_cred(p)->user->processes);
180 	rcu_read_unlock();
181 
182 	proc_flush_task(p);
183 
184 	write_lock_irq(&tasklist_lock);
185 	ptrace_release_task(p);
186 	__exit_signal(p);
187 
188 	/*
189 	 * If we are the last non-leader member of the thread
190 	 * group, and the leader is zombie, then notify the
191 	 * group leader's parent process. (if it wants notification.)
192 	 */
193 	zap_leader = 0;
194 	leader = p->group_leader;
195 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
196 		/*
197 		 * If we were the last child thread and the leader has
198 		 * exited already, and the leader's parent ignores SIGCHLD,
199 		 * then we are the one who should release the leader.
200 		 */
201 		zap_leader = do_notify_parent(leader, leader->exit_signal);
202 		if (zap_leader)
203 			leader->exit_state = EXIT_DEAD;
204 	}
205 
206 	write_unlock_irq(&tasklist_lock);
207 	release_thread(p);
208 	call_rcu(&p->rcu, delayed_put_task_struct);
209 
210 	p = leader;
211 	if (unlikely(zap_leader))
212 		goto repeat;
213 }
214 
215 /*
216  * This checks not only the pgrp, but falls back on the pid if no
217  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218  * without this...
219  *
220  * The caller must hold rcu lock or the tasklist lock.
221  */
222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 	struct task_struct *p;
225 	struct pid *sid = NULL;
226 
227 	p = pid_task(pgrp, PIDTYPE_PGID);
228 	if (p == NULL)
229 		p = pid_task(pgrp, PIDTYPE_PID);
230 	if (p != NULL)
231 		sid = task_session(p);
232 
233 	return sid;
234 }
235 
236 /*
237  * Determine if a process group is "orphaned", according to the POSIX
238  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
239  * by terminal-generated stop signals.  Newly orphaned process groups are
240  * to receive a SIGHUP and a SIGCONT.
241  *
242  * "I ask you, have you ever known what it is to be an orphan?"
243  */
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 {
246 	struct task_struct *p;
247 
248 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 		if ((p == ignored_task) ||
250 		    (p->exit_state && thread_group_empty(p)) ||
251 		    is_global_init(p->real_parent))
252 			continue;
253 
254 		if (task_pgrp(p->real_parent) != pgrp &&
255 		    task_session(p->real_parent) == task_session(p))
256 			return 0;
257 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258 
259 	return 1;
260 }
261 
262 int is_current_pgrp_orphaned(void)
263 {
264 	int retval;
265 
266 	read_lock(&tasklist_lock);
267 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 	read_unlock(&tasklist_lock);
269 
270 	return retval;
271 }
272 
273 static bool has_stopped_jobs(struct pid *pgrp)
274 {
275 	struct task_struct *p;
276 
277 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 			return true;
280 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281 
282 	return false;
283 }
284 
285 /*
286  * Check to see if any process groups have become orphaned as
287  * a result of our exiting, and if they have any stopped jobs,
288  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289  */
290 static void
291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 {
293 	struct pid *pgrp = task_pgrp(tsk);
294 	struct task_struct *ignored_task = tsk;
295 
296 	if (!parent)
297 		 /* exit: our father is in a different pgrp than
298 		  * we are and we were the only connection outside.
299 		  */
300 		parent = tsk->real_parent;
301 	else
302 		/* reparent: our child is in a different pgrp than
303 		 * we are, and it was the only connection outside.
304 		 */
305 		ignored_task = NULL;
306 
307 	if (task_pgrp(parent) != pgrp &&
308 	    task_session(parent) == task_session(tsk) &&
309 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 	    has_stopped_jobs(pgrp)) {
311 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 	}
314 }
315 
316 #ifdef CONFIG_MEMCG
317 /*
318  * A task is exiting.   If it owned this mm, find a new owner for the mm.
319  */
320 void mm_update_next_owner(struct mm_struct *mm)
321 {
322 	struct task_struct *c, *g, *p = current;
323 
324 retry:
325 	/*
326 	 * If the exiting or execing task is not the owner, it's
327 	 * someone else's problem.
328 	 */
329 	if (mm->owner != p)
330 		return;
331 	/*
332 	 * The current owner is exiting/execing and there are no other
333 	 * candidates.  Do not leave the mm pointing to a possibly
334 	 * freed task structure.
335 	 */
336 	if (atomic_read(&mm->mm_users) <= 1) {
337 		mm->owner = NULL;
338 		return;
339 	}
340 
341 	read_lock(&tasklist_lock);
342 	/*
343 	 * Search in the children
344 	 */
345 	list_for_each_entry(c, &p->children, sibling) {
346 		if (c->mm == mm)
347 			goto assign_new_owner;
348 	}
349 
350 	/*
351 	 * Search in the siblings
352 	 */
353 	list_for_each_entry(c, &p->real_parent->children, sibling) {
354 		if (c->mm == mm)
355 			goto assign_new_owner;
356 	}
357 
358 	/*
359 	 * Search through everything else, we should not get here often.
360 	 */
361 	for_each_process(g) {
362 		if (g->flags & PF_KTHREAD)
363 			continue;
364 		for_each_thread(g, c) {
365 			if (c->mm == mm)
366 				goto assign_new_owner;
367 			if (c->mm)
368 				break;
369 		}
370 	}
371 	read_unlock(&tasklist_lock);
372 	/*
373 	 * We found no owner yet mm_users > 1: this implies that we are
374 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
375 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
376 	 */
377 	mm->owner = NULL;
378 	return;
379 
380 assign_new_owner:
381 	BUG_ON(c == p);
382 	get_task_struct(c);
383 	/*
384 	 * The task_lock protects c->mm from changing.
385 	 * We always want mm->owner->mm == mm
386 	 */
387 	task_lock(c);
388 	/*
389 	 * Delay read_unlock() till we have the task_lock()
390 	 * to ensure that c does not slip away underneath us
391 	 */
392 	read_unlock(&tasklist_lock);
393 	if (c->mm != mm) {
394 		task_unlock(c);
395 		put_task_struct(c);
396 		goto retry;
397 	}
398 	mm->owner = c;
399 	task_unlock(c);
400 	put_task_struct(c);
401 }
402 #endif /* CONFIG_MEMCG */
403 
404 /*
405  * Turn us into a lazy TLB process if we
406  * aren't already..
407  */
408 static void exit_mm(struct task_struct * tsk)
409 {
410 	struct mm_struct *mm = tsk->mm;
411 	struct core_state *core_state;
412 
413 	mm_release(tsk, mm);
414 	if (!mm)
415 		return;
416 	sync_mm_rss(mm);
417 	/*
418 	 * Serialize with any possible pending coredump.
419 	 * We must hold mmap_sem around checking core_state
420 	 * and clearing tsk->mm.  The core-inducing thread
421 	 * will increment ->nr_threads for each thread in the
422 	 * group with ->mm != NULL.
423 	 */
424 	down_read(&mm->mmap_sem);
425 	core_state = mm->core_state;
426 	if (core_state) {
427 		struct core_thread self;
428 		up_read(&mm->mmap_sem);
429 
430 		self.task = tsk;
431 		self.next = xchg(&core_state->dumper.next, &self);
432 		/*
433 		 * Implies mb(), the result of xchg() must be visible
434 		 * to core_state->dumper.
435 		 */
436 		if (atomic_dec_and_test(&core_state->nr_threads))
437 			complete(&core_state->startup);
438 
439 		for (;;) {
440 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
441 			if (!self.task) /* see coredump_finish() */
442 				break;
443 			freezable_schedule();
444 		}
445 		__set_task_state(tsk, TASK_RUNNING);
446 		down_read(&mm->mmap_sem);
447 	}
448 	atomic_inc(&mm->mm_count);
449 	BUG_ON(mm != tsk->active_mm);
450 	/* more a memory barrier than a real lock */
451 	task_lock(tsk);
452 	tsk->mm = NULL;
453 	up_read(&mm->mmap_sem);
454 	enter_lazy_tlb(mm, current);
455 	task_unlock(tsk);
456 	mm_update_next_owner(mm);
457 	mmput(mm);
458 	clear_thread_flag(TIF_MEMDIE);
459 }
460 
461 /*
462  * When we die, we re-parent all our children, and try to:
463  * 1. give them to another thread in our thread group, if such a member exists
464  * 2. give it to the first ancestor process which prctl'd itself as a
465  *    child_subreaper for its children (like a service manager)
466  * 3. give it to the init process (PID 1) in our pid namespace
467  */
468 static struct task_struct *find_new_reaper(struct task_struct *father)
469 	__releases(&tasklist_lock)
470 	__acquires(&tasklist_lock)
471 {
472 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
473 	struct task_struct *thread;
474 
475 	thread = father;
476 	while_each_thread(father, thread) {
477 		if (thread->flags & PF_EXITING)
478 			continue;
479 		if (unlikely(pid_ns->child_reaper == father))
480 			pid_ns->child_reaper = thread;
481 		return thread;
482 	}
483 
484 	if (unlikely(pid_ns->child_reaper == father)) {
485 		write_unlock_irq(&tasklist_lock);
486 		if (unlikely(pid_ns == &init_pid_ns)) {
487 			panic("Attempted to kill init! exitcode=0x%08x\n",
488 				father->signal->group_exit_code ?:
489 					father->exit_code);
490 		}
491 
492 		zap_pid_ns_processes(pid_ns);
493 		write_lock_irq(&tasklist_lock);
494 	} else if (father->signal->has_child_subreaper) {
495 		struct task_struct *reaper;
496 
497 		/*
498 		 * Find the first ancestor marked as child_subreaper.
499 		 * Note that the code below checks same_thread_group(reaper,
500 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
501 		 * PID namespace. However we still need the check above, see
502 		 * http://marc.info/?l=linux-kernel&m=131385460420380
503 		 */
504 		for (reaper = father->real_parent;
505 		     reaper != &init_task;
506 		     reaper = reaper->real_parent) {
507 			if (same_thread_group(reaper, pid_ns->child_reaper))
508 				break;
509 			if (!reaper->signal->is_child_subreaper)
510 				continue;
511 			thread = reaper;
512 			do {
513 				if (!(thread->flags & PF_EXITING))
514 					return reaper;
515 			} while_each_thread(reaper, thread);
516 		}
517 	}
518 
519 	return pid_ns->child_reaper;
520 }
521 
522 /*
523 * Any that need to be release_task'd are put on the @dead list.
524  */
525 static void reparent_leader(struct task_struct *father, struct task_struct *p,
526 				struct list_head *dead)
527 {
528 	list_move_tail(&p->sibling, &p->real_parent->children);
529 
530 	if (p->exit_state == EXIT_DEAD)
531 		return;
532 	/*
533 	 * If this is a threaded reparent there is no need to
534 	 * notify anyone anything has happened.
535 	 */
536 	if (same_thread_group(p->real_parent, father))
537 		return;
538 
539 	/* We don't want people slaying init. */
540 	p->exit_signal = SIGCHLD;
541 
542 	/* If it has exited notify the new parent about this child's death. */
543 	if (!p->ptrace &&
544 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
545 		if (do_notify_parent(p, p->exit_signal)) {
546 			p->exit_state = EXIT_DEAD;
547 			list_move_tail(&p->sibling, dead);
548 		}
549 	}
550 
551 	kill_orphaned_pgrp(p, father);
552 }
553 
554 static void forget_original_parent(struct task_struct *father)
555 {
556 	struct task_struct *p, *n, *reaper;
557 	LIST_HEAD(dead_children);
558 
559 	write_lock_irq(&tasklist_lock);
560 	/*
561 	 * Note that exit_ptrace() and find_new_reaper() might
562 	 * drop tasklist_lock and reacquire it.
563 	 */
564 	exit_ptrace(father);
565 	reaper = find_new_reaper(father);
566 
567 	list_for_each_entry_safe(p, n, &father->children, sibling) {
568 		struct task_struct *t = p;
569 		do {
570 			t->real_parent = reaper;
571 			if (t->parent == father) {
572 				BUG_ON(t->ptrace);
573 				t->parent = t->real_parent;
574 			}
575 			if (t->pdeath_signal)
576 				group_send_sig_info(t->pdeath_signal,
577 						    SEND_SIG_NOINFO, t);
578 		} while_each_thread(p, t);
579 		reparent_leader(father, p, &dead_children);
580 	}
581 	write_unlock_irq(&tasklist_lock);
582 
583 	BUG_ON(!list_empty(&father->children));
584 
585 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
586 		list_del_init(&p->sibling);
587 		release_task(p);
588 	}
589 }
590 
591 /*
592  * Send signals to all our closest relatives so that they know
593  * to properly mourn us..
594  */
595 static void exit_notify(struct task_struct *tsk, int group_dead)
596 {
597 	bool autoreap;
598 
599 	/*
600 	 * This does two things:
601 	 *
602   	 * A.  Make init inherit all the child processes
603 	 * B.  Check to see if any process groups have become orphaned
604 	 *	as a result of our exiting, and if they have any stopped
605 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
606 	 */
607 	forget_original_parent(tsk);
608 
609 	write_lock_irq(&tasklist_lock);
610 	if (group_dead)
611 		kill_orphaned_pgrp(tsk->group_leader, NULL);
612 
613 	if (unlikely(tsk->ptrace)) {
614 		int sig = thread_group_leader(tsk) &&
615 				thread_group_empty(tsk) &&
616 				!ptrace_reparented(tsk) ?
617 			tsk->exit_signal : SIGCHLD;
618 		autoreap = do_notify_parent(tsk, sig);
619 	} else if (thread_group_leader(tsk)) {
620 		autoreap = thread_group_empty(tsk) &&
621 			do_notify_parent(tsk, tsk->exit_signal);
622 	} else {
623 		autoreap = true;
624 	}
625 
626 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
627 
628 	/* mt-exec, de_thread() is waiting for group leader */
629 	if (unlikely(tsk->signal->notify_count < 0))
630 		wake_up_process(tsk->signal->group_exit_task);
631 	write_unlock_irq(&tasklist_lock);
632 
633 	/* If the process is dead, release it - nobody will wait for it */
634 	if (autoreap)
635 		release_task(tsk);
636 }
637 
638 #ifdef CONFIG_DEBUG_STACK_USAGE
639 static void check_stack_usage(void)
640 {
641 	static DEFINE_SPINLOCK(low_water_lock);
642 	static int lowest_to_date = THREAD_SIZE;
643 	unsigned long free;
644 
645 	free = stack_not_used(current);
646 
647 	if (free >= lowest_to_date)
648 		return;
649 
650 	spin_lock(&low_water_lock);
651 	if (free < lowest_to_date) {
652 		printk(KERN_WARNING "%s (%d) used greatest stack depth: "
653 				"%lu bytes left\n",
654 				current->comm, task_pid_nr(current), free);
655 		lowest_to_date = free;
656 	}
657 	spin_unlock(&low_water_lock);
658 }
659 #else
660 static inline void check_stack_usage(void) {}
661 #endif
662 
663 void do_exit(long code)
664 {
665 	struct task_struct *tsk = current;
666 	int group_dead;
667 
668 	profile_task_exit(tsk);
669 
670 	WARN_ON(blk_needs_flush_plug(tsk));
671 
672 	if (unlikely(in_interrupt()))
673 		panic("Aiee, killing interrupt handler!");
674 	if (unlikely(!tsk->pid))
675 		panic("Attempted to kill the idle task!");
676 
677 	/*
678 	 * If do_exit is called because this processes oopsed, it's possible
679 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
680 	 * continuing. Amongst other possible reasons, this is to prevent
681 	 * mm_release()->clear_child_tid() from writing to a user-controlled
682 	 * kernel address.
683 	 */
684 	set_fs(USER_DS);
685 
686 	ptrace_event(PTRACE_EVENT_EXIT, code);
687 
688 	validate_creds_for_do_exit(tsk);
689 
690 	/*
691 	 * We're taking recursive faults here in do_exit. Safest is to just
692 	 * leave this task alone and wait for reboot.
693 	 */
694 	if (unlikely(tsk->flags & PF_EXITING)) {
695 		printk(KERN_ALERT
696 			"Fixing recursive fault but reboot is needed!\n");
697 		/*
698 		 * We can do this unlocked here. The futex code uses
699 		 * this flag just to verify whether the pi state
700 		 * cleanup has been done or not. In the worst case it
701 		 * loops once more. We pretend that the cleanup was
702 		 * done as there is no way to return. Either the
703 		 * OWNER_DIED bit is set by now or we push the blocked
704 		 * task into the wait for ever nirwana as well.
705 		 */
706 		tsk->flags |= PF_EXITPIDONE;
707 		set_current_state(TASK_UNINTERRUPTIBLE);
708 		schedule();
709 	}
710 
711 	exit_signals(tsk);  /* sets PF_EXITING */
712 	/*
713 	 * tsk->flags are checked in the futex code to protect against
714 	 * an exiting task cleaning up the robust pi futexes.
715 	 */
716 	smp_mb();
717 	raw_spin_unlock_wait(&tsk->pi_lock);
718 
719 	if (unlikely(in_atomic()))
720 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
721 				current->comm, task_pid_nr(current),
722 				preempt_count());
723 
724 	acct_update_integrals(tsk);
725 	/* sync mm's RSS info before statistics gathering */
726 	if (tsk->mm)
727 		sync_mm_rss(tsk->mm);
728 	group_dead = atomic_dec_and_test(&tsk->signal->live);
729 	if (group_dead) {
730 		hrtimer_cancel(&tsk->signal->real_timer);
731 		exit_itimers(tsk->signal);
732 		if (tsk->mm)
733 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
734 	}
735 	acct_collect(code, group_dead);
736 	if (group_dead)
737 		tty_audit_exit();
738 	audit_free(tsk);
739 
740 	tsk->exit_code = code;
741 	taskstats_exit(tsk, group_dead);
742 
743 	exit_mm(tsk);
744 
745 	if (group_dead)
746 		acct_process();
747 	trace_sched_process_exit(tsk);
748 
749 	exit_sem(tsk);
750 	exit_shm(tsk);
751 	exit_files(tsk);
752 	exit_fs(tsk);
753 	if (group_dead)
754 		disassociate_ctty(1);
755 	exit_task_namespaces(tsk);
756 	exit_task_work(tsk);
757 	exit_thread();
758 
759 	/*
760 	 * Flush inherited counters to the parent - before the parent
761 	 * gets woken up by child-exit notifications.
762 	 *
763 	 * because of cgroup mode, must be called before cgroup_exit()
764 	 */
765 	perf_event_exit_task(tsk);
766 
767 	cgroup_exit(tsk);
768 
769 	module_put(task_thread_info(tsk)->exec_domain->module);
770 
771 	/*
772 	 * FIXME: do that only when needed, using sched_exit tracepoint
773 	 */
774 	flush_ptrace_hw_breakpoint(tsk);
775 
776 	exit_notify(tsk, group_dead);
777 	proc_exit_connector(tsk);
778 #ifdef CONFIG_NUMA
779 	task_lock(tsk);
780 	mpol_put(tsk->mempolicy);
781 	tsk->mempolicy = NULL;
782 	task_unlock(tsk);
783 #endif
784 #ifdef CONFIG_FUTEX
785 	if (unlikely(current->pi_state_cache))
786 		kfree(current->pi_state_cache);
787 #endif
788 	/*
789 	 * Make sure we are holding no locks:
790 	 */
791 	debug_check_no_locks_held();
792 	/*
793 	 * We can do this unlocked here. The futex code uses this flag
794 	 * just to verify whether the pi state cleanup has been done
795 	 * or not. In the worst case it loops once more.
796 	 */
797 	tsk->flags |= PF_EXITPIDONE;
798 
799 	if (tsk->io_context)
800 		exit_io_context(tsk);
801 
802 	if (tsk->splice_pipe)
803 		free_pipe_info(tsk->splice_pipe);
804 
805 	if (tsk->task_frag.page)
806 		put_page(tsk->task_frag.page);
807 
808 	validate_creds_for_do_exit(tsk);
809 
810 	check_stack_usage();
811 	preempt_disable();
812 	if (tsk->nr_dirtied)
813 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
814 	exit_rcu();
815 
816 	/*
817 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
818 	 * when the following two conditions become true.
819 	 *   - There is race condition of mmap_sem (It is acquired by
820 	 *     exit_mm()), and
821 	 *   - SMI occurs before setting TASK_RUNINNG.
822 	 *     (or hypervisor of virtual machine switches to other guest)
823 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
824 	 *
825 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
826 	 * is held by try_to_wake_up()
827 	 */
828 	smp_mb();
829 	raw_spin_unlock_wait(&tsk->pi_lock);
830 
831 	/* causes final put_task_struct in finish_task_switch(). */
832 	tsk->state = TASK_DEAD;
833 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
834 	schedule();
835 	BUG();
836 	/* Avoid "noreturn function does return".  */
837 	for (;;)
838 		cpu_relax();	/* For when BUG is null */
839 }
840 
841 EXPORT_SYMBOL_GPL(do_exit);
842 
843 void complete_and_exit(struct completion *comp, long code)
844 {
845 	if (comp)
846 		complete(comp);
847 
848 	do_exit(code);
849 }
850 
851 EXPORT_SYMBOL(complete_and_exit);
852 
853 SYSCALL_DEFINE1(exit, int, error_code)
854 {
855 	do_exit((error_code&0xff)<<8);
856 }
857 
858 /*
859  * Take down every thread in the group.  This is called by fatal signals
860  * as well as by sys_exit_group (below).
861  */
862 void
863 do_group_exit(int exit_code)
864 {
865 	struct signal_struct *sig = current->signal;
866 
867 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
868 
869 	if (signal_group_exit(sig))
870 		exit_code = sig->group_exit_code;
871 	else if (!thread_group_empty(current)) {
872 		struct sighand_struct *const sighand = current->sighand;
873 		spin_lock_irq(&sighand->siglock);
874 		if (signal_group_exit(sig))
875 			/* Another thread got here before we took the lock.  */
876 			exit_code = sig->group_exit_code;
877 		else {
878 			sig->group_exit_code = exit_code;
879 			sig->flags = SIGNAL_GROUP_EXIT;
880 			zap_other_threads(current);
881 		}
882 		spin_unlock_irq(&sighand->siglock);
883 	}
884 
885 	do_exit(exit_code);
886 	/* NOTREACHED */
887 }
888 
889 /*
890  * this kills every thread in the thread group. Note that any externally
891  * wait4()-ing process will get the correct exit code - even if this
892  * thread is not the thread group leader.
893  */
894 SYSCALL_DEFINE1(exit_group, int, error_code)
895 {
896 	do_group_exit((error_code & 0xff) << 8);
897 	/* NOTREACHED */
898 	return 0;
899 }
900 
901 struct wait_opts {
902 	enum pid_type		wo_type;
903 	int			wo_flags;
904 	struct pid		*wo_pid;
905 
906 	struct siginfo __user	*wo_info;
907 	int __user		*wo_stat;
908 	struct rusage __user	*wo_rusage;
909 
910 	wait_queue_t		child_wait;
911 	int			notask_error;
912 };
913 
914 static inline
915 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
916 {
917 	if (type != PIDTYPE_PID)
918 		task = task->group_leader;
919 	return task->pids[type].pid;
920 }
921 
922 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
923 {
924 	return	wo->wo_type == PIDTYPE_MAX ||
925 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
926 }
927 
928 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
929 {
930 	if (!eligible_pid(wo, p))
931 		return 0;
932 	/* Wait for all children (clone and not) if __WALL is set;
933 	 * otherwise, wait for clone children *only* if __WCLONE is
934 	 * set; otherwise, wait for non-clone children *only*.  (Note:
935 	 * A "clone" child here is one that reports to its parent
936 	 * using a signal other than SIGCHLD.) */
937 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
938 	    && !(wo->wo_flags & __WALL))
939 		return 0;
940 
941 	return 1;
942 }
943 
944 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
945 				pid_t pid, uid_t uid, int why, int status)
946 {
947 	struct siginfo __user *infop;
948 	int retval = wo->wo_rusage
949 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
950 
951 	put_task_struct(p);
952 	infop = wo->wo_info;
953 	if (infop) {
954 		if (!retval)
955 			retval = put_user(SIGCHLD, &infop->si_signo);
956 		if (!retval)
957 			retval = put_user(0, &infop->si_errno);
958 		if (!retval)
959 			retval = put_user((short)why, &infop->si_code);
960 		if (!retval)
961 			retval = put_user(pid, &infop->si_pid);
962 		if (!retval)
963 			retval = put_user(uid, &infop->si_uid);
964 		if (!retval)
965 			retval = put_user(status, &infop->si_status);
966 	}
967 	if (!retval)
968 		retval = pid;
969 	return retval;
970 }
971 
972 /*
973  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
974  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
975  * the lock and this task is uninteresting.  If we return nonzero, we have
976  * released the lock and the system call should return.
977  */
978 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
979 {
980 	unsigned long state;
981 	int retval, status, traced;
982 	pid_t pid = task_pid_vnr(p);
983 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
984 	struct siginfo __user *infop;
985 
986 	if (!likely(wo->wo_flags & WEXITED))
987 		return 0;
988 
989 	if (unlikely(wo->wo_flags & WNOWAIT)) {
990 		int exit_code = p->exit_code;
991 		int why;
992 
993 		get_task_struct(p);
994 		read_unlock(&tasklist_lock);
995 		if ((exit_code & 0x7f) == 0) {
996 			why = CLD_EXITED;
997 			status = exit_code >> 8;
998 		} else {
999 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1000 			status = exit_code & 0x7f;
1001 		}
1002 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1003 	}
1004 
1005 	traced = ptrace_reparented(p);
1006 	/*
1007 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1008 	 */
1009 	state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1010 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1011 		return 0;
1012 	/*
1013 	 * It can be ptraced but not reparented, check
1014 	 * thread_group_leader() to filter out sub-threads.
1015 	 */
1016 	if (likely(!traced) && thread_group_leader(p)) {
1017 		struct signal_struct *psig;
1018 		struct signal_struct *sig;
1019 		unsigned long maxrss;
1020 		cputime_t tgutime, tgstime;
1021 
1022 		/*
1023 		 * The resource counters for the group leader are in its
1024 		 * own task_struct.  Those for dead threads in the group
1025 		 * are in its signal_struct, as are those for the child
1026 		 * processes it has previously reaped.  All these
1027 		 * accumulate in the parent's signal_struct c* fields.
1028 		 *
1029 		 * We don't bother to take a lock here to protect these
1030 		 * p->signal fields, because they are only touched by
1031 		 * __exit_signal, which runs with tasklist_lock
1032 		 * write-locked anyway, and so is excluded here.  We do
1033 		 * need to protect the access to parent->signal fields,
1034 		 * as other threads in the parent group can be right
1035 		 * here reaping other children at the same time.
1036 		 *
1037 		 * We use thread_group_cputime_adjusted() to get times for the thread
1038 		 * group, which consolidates times for all threads in the
1039 		 * group including the group leader.
1040 		 */
1041 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1042 		spin_lock_irq(&p->real_parent->sighand->siglock);
1043 		psig = p->real_parent->signal;
1044 		sig = p->signal;
1045 		psig->cutime += tgutime + sig->cutime;
1046 		psig->cstime += tgstime + sig->cstime;
1047 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1048 		psig->cmin_flt +=
1049 			p->min_flt + sig->min_flt + sig->cmin_flt;
1050 		psig->cmaj_flt +=
1051 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1052 		psig->cnvcsw +=
1053 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1054 		psig->cnivcsw +=
1055 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1056 		psig->cinblock +=
1057 			task_io_get_inblock(p) +
1058 			sig->inblock + sig->cinblock;
1059 		psig->coublock +=
1060 			task_io_get_oublock(p) +
1061 			sig->oublock + sig->coublock;
1062 		maxrss = max(sig->maxrss, sig->cmaxrss);
1063 		if (psig->cmaxrss < maxrss)
1064 			psig->cmaxrss = maxrss;
1065 		task_io_accounting_add(&psig->ioac, &p->ioac);
1066 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1067 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1068 	}
1069 
1070 	/*
1071 	 * Now we are sure this task is interesting, and no other
1072 	 * thread can reap it because we its state == DEAD/TRACE.
1073 	 */
1074 	read_unlock(&tasklist_lock);
1075 
1076 	retval = wo->wo_rusage
1077 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1078 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1079 		? p->signal->group_exit_code : p->exit_code;
1080 	if (!retval && wo->wo_stat)
1081 		retval = put_user(status, wo->wo_stat);
1082 
1083 	infop = wo->wo_info;
1084 	if (!retval && infop)
1085 		retval = put_user(SIGCHLD, &infop->si_signo);
1086 	if (!retval && infop)
1087 		retval = put_user(0, &infop->si_errno);
1088 	if (!retval && infop) {
1089 		int why;
1090 
1091 		if ((status & 0x7f) == 0) {
1092 			why = CLD_EXITED;
1093 			status >>= 8;
1094 		} else {
1095 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1096 			status &= 0x7f;
1097 		}
1098 		retval = put_user((short)why, &infop->si_code);
1099 		if (!retval)
1100 			retval = put_user(status, &infop->si_status);
1101 	}
1102 	if (!retval && infop)
1103 		retval = put_user(pid, &infop->si_pid);
1104 	if (!retval && infop)
1105 		retval = put_user(uid, &infop->si_uid);
1106 	if (!retval)
1107 		retval = pid;
1108 
1109 	if (state == EXIT_TRACE) {
1110 		write_lock_irq(&tasklist_lock);
1111 		/* We dropped tasklist, ptracer could die and untrace */
1112 		ptrace_unlink(p);
1113 
1114 		/* If parent wants a zombie, don't release it now */
1115 		state = EXIT_ZOMBIE;
1116 		if (do_notify_parent(p, p->exit_signal))
1117 			state = EXIT_DEAD;
1118 		p->exit_state = state;
1119 		write_unlock_irq(&tasklist_lock);
1120 	}
1121 	if (state == EXIT_DEAD)
1122 		release_task(p);
1123 
1124 	return retval;
1125 }
1126 
1127 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1128 {
1129 	if (ptrace) {
1130 		if (task_is_stopped_or_traced(p) &&
1131 		    !(p->jobctl & JOBCTL_LISTENING))
1132 			return &p->exit_code;
1133 	} else {
1134 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1135 			return &p->signal->group_exit_code;
1136 	}
1137 	return NULL;
1138 }
1139 
1140 /**
1141  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1142  * @wo: wait options
1143  * @ptrace: is the wait for ptrace
1144  * @p: task to wait for
1145  *
1146  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1147  *
1148  * CONTEXT:
1149  * read_lock(&tasklist_lock), which is released if return value is
1150  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1151  *
1152  * RETURNS:
1153  * 0 if wait condition didn't exist and search for other wait conditions
1154  * should continue.  Non-zero return, -errno on failure and @p's pid on
1155  * success, implies that tasklist_lock is released and wait condition
1156  * search should terminate.
1157  */
1158 static int wait_task_stopped(struct wait_opts *wo,
1159 				int ptrace, struct task_struct *p)
1160 {
1161 	struct siginfo __user *infop;
1162 	int retval, exit_code, *p_code, why;
1163 	uid_t uid = 0; /* unneeded, required by compiler */
1164 	pid_t pid;
1165 
1166 	/*
1167 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1168 	 */
1169 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1170 		return 0;
1171 
1172 	if (!task_stopped_code(p, ptrace))
1173 		return 0;
1174 
1175 	exit_code = 0;
1176 	spin_lock_irq(&p->sighand->siglock);
1177 
1178 	p_code = task_stopped_code(p, ptrace);
1179 	if (unlikely(!p_code))
1180 		goto unlock_sig;
1181 
1182 	exit_code = *p_code;
1183 	if (!exit_code)
1184 		goto unlock_sig;
1185 
1186 	if (!unlikely(wo->wo_flags & WNOWAIT))
1187 		*p_code = 0;
1188 
1189 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1190 unlock_sig:
1191 	spin_unlock_irq(&p->sighand->siglock);
1192 	if (!exit_code)
1193 		return 0;
1194 
1195 	/*
1196 	 * Now we are pretty sure this task is interesting.
1197 	 * Make sure it doesn't get reaped out from under us while we
1198 	 * give up the lock and then examine it below.  We don't want to
1199 	 * keep holding onto the tasklist_lock while we call getrusage and
1200 	 * possibly take page faults for user memory.
1201 	 */
1202 	get_task_struct(p);
1203 	pid = task_pid_vnr(p);
1204 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1205 	read_unlock(&tasklist_lock);
1206 
1207 	if (unlikely(wo->wo_flags & WNOWAIT))
1208 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1209 
1210 	retval = wo->wo_rusage
1211 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1212 	if (!retval && wo->wo_stat)
1213 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1214 
1215 	infop = wo->wo_info;
1216 	if (!retval && infop)
1217 		retval = put_user(SIGCHLD, &infop->si_signo);
1218 	if (!retval && infop)
1219 		retval = put_user(0, &infop->si_errno);
1220 	if (!retval && infop)
1221 		retval = put_user((short)why, &infop->si_code);
1222 	if (!retval && infop)
1223 		retval = put_user(exit_code, &infop->si_status);
1224 	if (!retval && infop)
1225 		retval = put_user(pid, &infop->si_pid);
1226 	if (!retval && infop)
1227 		retval = put_user(uid, &infop->si_uid);
1228 	if (!retval)
1229 		retval = pid;
1230 	put_task_struct(p);
1231 
1232 	BUG_ON(!retval);
1233 	return retval;
1234 }
1235 
1236 /*
1237  * Handle do_wait work for one task in a live, non-stopped state.
1238  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1239  * the lock and this task is uninteresting.  If we return nonzero, we have
1240  * released the lock and the system call should return.
1241  */
1242 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1243 {
1244 	int retval;
1245 	pid_t pid;
1246 	uid_t uid;
1247 
1248 	if (!unlikely(wo->wo_flags & WCONTINUED))
1249 		return 0;
1250 
1251 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1252 		return 0;
1253 
1254 	spin_lock_irq(&p->sighand->siglock);
1255 	/* Re-check with the lock held.  */
1256 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1257 		spin_unlock_irq(&p->sighand->siglock);
1258 		return 0;
1259 	}
1260 	if (!unlikely(wo->wo_flags & WNOWAIT))
1261 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1262 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1263 	spin_unlock_irq(&p->sighand->siglock);
1264 
1265 	pid = task_pid_vnr(p);
1266 	get_task_struct(p);
1267 	read_unlock(&tasklist_lock);
1268 
1269 	if (!wo->wo_info) {
1270 		retval = wo->wo_rusage
1271 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1272 		put_task_struct(p);
1273 		if (!retval && wo->wo_stat)
1274 			retval = put_user(0xffff, wo->wo_stat);
1275 		if (!retval)
1276 			retval = pid;
1277 	} else {
1278 		retval = wait_noreap_copyout(wo, p, pid, uid,
1279 					     CLD_CONTINUED, SIGCONT);
1280 		BUG_ON(retval == 0);
1281 	}
1282 
1283 	return retval;
1284 }
1285 
1286 /*
1287  * Consider @p for a wait by @parent.
1288  *
1289  * -ECHILD should be in ->notask_error before the first call.
1290  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1291  * Returns zero if the search for a child should continue;
1292  * then ->notask_error is 0 if @p is an eligible child,
1293  * or another error from security_task_wait(), or still -ECHILD.
1294  */
1295 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1296 				struct task_struct *p)
1297 {
1298 	int ret;
1299 
1300 	if (unlikely(p->exit_state == EXIT_DEAD))
1301 		return 0;
1302 
1303 	ret = eligible_child(wo, p);
1304 	if (!ret)
1305 		return ret;
1306 
1307 	ret = security_task_wait(p);
1308 	if (unlikely(ret < 0)) {
1309 		/*
1310 		 * If we have not yet seen any eligible child,
1311 		 * then let this error code replace -ECHILD.
1312 		 * A permission error will give the user a clue
1313 		 * to look for security policy problems, rather
1314 		 * than for mysterious wait bugs.
1315 		 */
1316 		if (wo->notask_error)
1317 			wo->notask_error = ret;
1318 		return 0;
1319 	}
1320 
1321 	if (unlikely(p->exit_state == EXIT_TRACE)) {
1322 		/*
1323 		 * ptrace == 0 means we are the natural parent. In this case
1324 		 * we should clear notask_error, debugger will notify us.
1325 		 */
1326 		if (likely(!ptrace))
1327 			wo->notask_error = 0;
1328 		return 0;
1329 	}
1330 
1331 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1332 		/*
1333 		 * If it is traced by its real parent's group, just pretend
1334 		 * the caller is ptrace_do_wait() and reap this child if it
1335 		 * is zombie.
1336 		 *
1337 		 * This also hides group stop state from real parent; otherwise
1338 		 * a single stop can be reported twice as group and ptrace stop.
1339 		 * If a ptracer wants to distinguish these two events for its
1340 		 * own children it should create a separate process which takes
1341 		 * the role of real parent.
1342 		 */
1343 		if (!ptrace_reparented(p))
1344 			ptrace = 1;
1345 	}
1346 
1347 	/* slay zombie? */
1348 	if (p->exit_state == EXIT_ZOMBIE) {
1349 		/* we don't reap group leaders with subthreads */
1350 		if (!delay_group_leader(p)) {
1351 			/*
1352 			 * A zombie ptracee is only visible to its ptracer.
1353 			 * Notification and reaping will be cascaded to the
1354 			 * real parent when the ptracer detaches.
1355 			 */
1356 			if (unlikely(ptrace) || likely(!p->ptrace))
1357 				return wait_task_zombie(wo, p);
1358 		}
1359 
1360 		/*
1361 		 * Allow access to stopped/continued state via zombie by
1362 		 * falling through.  Clearing of notask_error is complex.
1363 		 *
1364 		 * When !@ptrace:
1365 		 *
1366 		 * If WEXITED is set, notask_error should naturally be
1367 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1368 		 * so, if there are live subthreads, there are events to
1369 		 * wait for.  If all subthreads are dead, it's still safe
1370 		 * to clear - this function will be called again in finite
1371 		 * amount time once all the subthreads are released and
1372 		 * will then return without clearing.
1373 		 *
1374 		 * When @ptrace:
1375 		 *
1376 		 * Stopped state is per-task and thus can't change once the
1377 		 * target task dies.  Only continued and exited can happen.
1378 		 * Clear notask_error if WCONTINUED | WEXITED.
1379 		 */
1380 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1381 			wo->notask_error = 0;
1382 	} else {
1383 		/*
1384 		 * @p is alive and it's gonna stop, continue or exit, so
1385 		 * there always is something to wait for.
1386 		 */
1387 		wo->notask_error = 0;
1388 	}
1389 
1390 	/*
1391 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1392 	 * is used and the two don't interact with each other.
1393 	 */
1394 	ret = wait_task_stopped(wo, ptrace, p);
1395 	if (ret)
1396 		return ret;
1397 
1398 	/*
1399 	 * Wait for continued.  There's only one continued state and the
1400 	 * ptracer can consume it which can confuse the real parent.  Don't
1401 	 * use WCONTINUED from ptracer.  You don't need or want it.
1402 	 */
1403 	return wait_task_continued(wo, p);
1404 }
1405 
1406 /*
1407  * Do the work of do_wait() for one thread in the group, @tsk.
1408  *
1409  * -ECHILD should be in ->notask_error before the first call.
1410  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1411  * Returns zero if the search for a child should continue; then
1412  * ->notask_error is 0 if there were any eligible children,
1413  * or another error from security_task_wait(), or still -ECHILD.
1414  */
1415 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1416 {
1417 	struct task_struct *p;
1418 
1419 	list_for_each_entry(p, &tsk->children, sibling) {
1420 		int ret = wait_consider_task(wo, 0, p);
1421 		if (ret)
1422 			return ret;
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1429 {
1430 	struct task_struct *p;
1431 
1432 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1433 		int ret = wait_consider_task(wo, 1, p);
1434 		if (ret)
1435 			return ret;
1436 	}
1437 
1438 	return 0;
1439 }
1440 
1441 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1442 				int sync, void *key)
1443 {
1444 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1445 						child_wait);
1446 	struct task_struct *p = key;
1447 
1448 	if (!eligible_pid(wo, p))
1449 		return 0;
1450 
1451 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1452 		return 0;
1453 
1454 	return default_wake_function(wait, mode, sync, key);
1455 }
1456 
1457 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1458 {
1459 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1460 				TASK_INTERRUPTIBLE, 1, p);
1461 }
1462 
1463 static long do_wait(struct wait_opts *wo)
1464 {
1465 	struct task_struct *tsk;
1466 	int retval;
1467 
1468 	trace_sched_process_wait(wo->wo_pid);
1469 
1470 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1471 	wo->child_wait.private = current;
1472 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1473 repeat:
1474 	/*
1475 	 * If there is nothing that can match our critiera just get out.
1476 	 * We will clear ->notask_error to zero if we see any child that
1477 	 * might later match our criteria, even if we are not able to reap
1478 	 * it yet.
1479 	 */
1480 	wo->notask_error = -ECHILD;
1481 	if ((wo->wo_type < PIDTYPE_MAX) &&
1482 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1483 		goto notask;
1484 
1485 	set_current_state(TASK_INTERRUPTIBLE);
1486 	read_lock(&tasklist_lock);
1487 	tsk = current;
1488 	do {
1489 		retval = do_wait_thread(wo, tsk);
1490 		if (retval)
1491 			goto end;
1492 
1493 		retval = ptrace_do_wait(wo, tsk);
1494 		if (retval)
1495 			goto end;
1496 
1497 		if (wo->wo_flags & __WNOTHREAD)
1498 			break;
1499 	} while_each_thread(current, tsk);
1500 	read_unlock(&tasklist_lock);
1501 
1502 notask:
1503 	retval = wo->notask_error;
1504 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1505 		retval = -ERESTARTSYS;
1506 		if (!signal_pending(current)) {
1507 			schedule();
1508 			goto repeat;
1509 		}
1510 	}
1511 end:
1512 	__set_current_state(TASK_RUNNING);
1513 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1514 	return retval;
1515 }
1516 
1517 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1518 		infop, int, options, struct rusage __user *, ru)
1519 {
1520 	struct wait_opts wo;
1521 	struct pid *pid = NULL;
1522 	enum pid_type type;
1523 	long ret;
1524 
1525 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1526 		return -EINVAL;
1527 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1528 		return -EINVAL;
1529 
1530 	switch (which) {
1531 	case P_ALL:
1532 		type = PIDTYPE_MAX;
1533 		break;
1534 	case P_PID:
1535 		type = PIDTYPE_PID;
1536 		if (upid <= 0)
1537 			return -EINVAL;
1538 		break;
1539 	case P_PGID:
1540 		type = PIDTYPE_PGID;
1541 		if (upid <= 0)
1542 			return -EINVAL;
1543 		break;
1544 	default:
1545 		return -EINVAL;
1546 	}
1547 
1548 	if (type < PIDTYPE_MAX)
1549 		pid = find_get_pid(upid);
1550 
1551 	wo.wo_type	= type;
1552 	wo.wo_pid	= pid;
1553 	wo.wo_flags	= options;
1554 	wo.wo_info	= infop;
1555 	wo.wo_stat	= NULL;
1556 	wo.wo_rusage	= ru;
1557 	ret = do_wait(&wo);
1558 
1559 	if (ret > 0) {
1560 		ret = 0;
1561 	} else if (infop) {
1562 		/*
1563 		 * For a WNOHANG return, clear out all the fields
1564 		 * we would set so the user can easily tell the
1565 		 * difference.
1566 		 */
1567 		if (!ret)
1568 			ret = put_user(0, &infop->si_signo);
1569 		if (!ret)
1570 			ret = put_user(0, &infop->si_errno);
1571 		if (!ret)
1572 			ret = put_user(0, &infop->si_code);
1573 		if (!ret)
1574 			ret = put_user(0, &infop->si_pid);
1575 		if (!ret)
1576 			ret = put_user(0, &infop->si_uid);
1577 		if (!ret)
1578 			ret = put_user(0, &infop->si_status);
1579 	}
1580 
1581 	put_pid(pid);
1582 	return ret;
1583 }
1584 
1585 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1586 		int, options, struct rusage __user *, ru)
1587 {
1588 	struct wait_opts wo;
1589 	struct pid *pid = NULL;
1590 	enum pid_type type;
1591 	long ret;
1592 
1593 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1594 			__WNOTHREAD|__WCLONE|__WALL))
1595 		return -EINVAL;
1596 
1597 	if (upid == -1)
1598 		type = PIDTYPE_MAX;
1599 	else if (upid < 0) {
1600 		type = PIDTYPE_PGID;
1601 		pid = find_get_pid(-upid);
1602 	} else if (upid == 0) {
1603 		type = PIDTYPE_PGID;
1604 		pid = get_task_pid(current, PIDTYPE_PGID);
1605 	} else /* upid > 0 */ {
1606 		type = PIDTYPE_PID;
1607 		pid = find_get_pid(upid);
1608 	}
1609 
1610 	wo.wo_type	= type;
1611 	wo.wo_pid	= pid;
1612 	wo.wo_flags	= options | WEXITED;
1613 	wo.wo_info	= NULL;
1614 	wo.wo_stat	= stat_addr;
1615 	wo.wo_rusage	= ru;
1616 	ret = do_wait(&wo);
1617 	put_pid(pid);
1618 
1619 	return ret;
1620 }
1621 
1622 #ifdef __ARCH_WANT_SYS_WAITPID
1623 
1624 /*
1625  * sys_waitpid() remains for compatibility. waitpid() should be
1626  * implemented by calling sys_wait4() from libc.a.
1627  */
1628 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1629 {
1630 	return sys_wait4(pid, stat_addr, options, NULL);
1631 }
1632 
1633 #endif
1634