1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void exit_mm(struct task_struct * tsk); 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 } 76 list_del_rcu(&p->thread_group); 77 list_del_rcu(&p->thread_node); 78 } 79 80 /* 81 * This function expects the tasklist_lock write-locked. 82 */ 83 static void __exit_signal(struct task_struct *tsk) 84 { 85 struct signal_struct *sig = tsk->signal; 86 bool group_dead = thread_group_leader(tsk); 87 struct sighand_struct *sighand; 88 struct tty_struct *uninitialized_var(tty); 89 cputime_t utime, stime; 90 91 sighand = rcu_dereference_check(tsk->sighand, 92 lockdep_tasklist_lock_is_held()); 93 spin_lock(&sighand->siglock); 94 95 posix_cpu_timers_exit(tsk); 96 if (group_dead) { 97 posix_cpu_timers_exit_group(tsk); 98 tty = sig->tty; 99 sig->tty = NULL; 100 } else { 101 /* 102 * This can only happen if the caller is de_thread(). 103 * FIXME: this is the temporary hack, we should teach 104 * posix-cpu-timers to handle this case correctly. 105 */ 106 if (unlikely(has_group_leader_pid(tsk))) 107 posix_cpu_timers_exit_group(tsk); 108 109 /* 110 * If there is any task waiting for the group exit 111 * then notify it: 112 */ 113 if (sig->notify_count > 0 && !--sig->notify_count) 114 wake_up_process(sig->group_exit_task); 115 116 if (tsk == sig->curr_target) 117 sig->curr_target = next_thread(tsk); 118 /* 119 * Accumulate here the counters for all threads but the 120 * group leader as they die, so they can be added into 121 * the process-wide totals when those are taken. 122 * The group leader stays around as a zombie as long 123 * as there are other threads. When it gets reaped, 124 * the exit.c code will add its counts into these totals. 125 * We won't ever get here for the group leader, since it 126 * will have been the last reference on the signal_struct. 127 */ 128 task_cputime(tsk, &utime, &stime); 129 sig->utime += utime; 130 sig->stime += stime; 131 sig->gtime += task_gtime(tsk); 132 sig->min_flt += tsk->min_flt; 133 sig->maj_flt += tsk->maj_flt; 134 sig->nvcsw += tsk->nvcsw; 135 sig->nivcsw += tsk->nivcsw; 136 sig->inblock += task_io_get_inblock(tsk); 137 sig->oublock += task_io_get_oublock(tsk); 138 task_io_accounting_add(&sig->ioac, &tsk->ioac); 139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 140 } 141 142 sig->nr_threads--; 143 __unhash_process(tsk, group_dead); 144 145 /* 146 * Do this under ->siglock, we can race with another thread 147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 148 */ 149 flush_sigqueue(&tsk->pending); 150 tsk->sighand = NULL; 151 spin_unlock(&sighand->siglock); 152 153 __cleanup_sighand(sighand); 154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 155 if (group_dead) { 156 flush_sigqueue(&sig->shared_pending); 157 tty_kref_put(tty); 158 } 159 } 160 161 static void delayed_put_task_struct(struct rcu_head *rhp) 162 { 163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 164 165 perf_event_delayed_put(tsk); 166 trace_sched_process_free(tsk); 167 put_task_struct(tsk); 168 } 169 170 171 void release_task(struct task_struct * p) 172 { 173 struct task_struct *leader; 174 int zap_leader; 175 repeat: 176 /* don't need to get the RCU readlock here - the process is dead and 177 * can't be modifying its own credentials. But shut RCU-lockdep up */ 178 rcu_read_lock(); 179 atomic_dec(&__task_cred(p)->user->processes); 180 rcu_read_unlock(); 181 182 proc_flush_task(p); 183 184 write_lock_irq(&tasklist_lock); 185 ptrace_release_task(p); 186 __exit_signal(p); 187 188 /* 189 * If we are the last non-leader member of the thread 190 * group, and the leader is zombie, then notify the 191 * group leader's parent process. (if it wants notification.) 192 */ 193 zap_leader = 0; 194 leader = p->group_leader; 195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 196 /* 197 * If we were the last child thread and the leader has 198 * exited already, and the leader's parent ignores SIGCHLD, 199 * then we are the one who should release the leader. 200 */ 201 zap_leader = do_notify_parent(leader, leader->exit_signal); 202 if (zap_leader) 203 leader->exit_state = EXIT_DEAD; 204 } 205 206 write_unlock_irq(&tasklist_lock); 207 release_thread(p); 208 call_rcu(&p->rcu, delayed_put_task_struct); 209 210 p = leader; 211 if (unlikely(zap_leader)) 212 goto repeat; 213 } 214 215 /* 216 * This checks not only the pgrp, but falls back on the pid if no 217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 218 * without this... 219 * 220 * The caller must hold rcu lock or the tasklist lock. 221 */ 222 struct pid *session_of_pgrp(struct pid *pgrp) 223 { 224 struct task_struct *p; 225 struct pid *sid = NULL; 226 227 p = pid_task(pgrp, PIDTYPE_PGID); 228 if (p == NULL) 229 p = pid_task(pgrp, PIDTYPE_PID); 230 if (p != NULL) 231 sid = task_session(p); 232 233 return sid; 234 } 235 236 /* 237 * Determine if a process group is "orphaned", according to the POSIX 238 * definition in 2.2.2.52. Orphaned process groups are not to be affected 239 * by terminal-generated stop signals. Newly orphaned process groups are 240 * to receive a SIGHUP and a SIGCONT. 241 * 242 * "I ask you, have you ever known what it is to be an orphan?" 243 */ 244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 245 { 246 struct task_struct *p; 247 248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 249 if ((p == ignored_task) || 250 (p->exit_state && thread_group_empty(p)) || 251 is_global_init(p->real_parent)) 252 continue; 253 254 if (task_pgrp(p->real_parent) != pgrp && 255 task_session(p->real_parent) == task_session(p)) 256 return 0; 257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 258 259 return 1; 260 } 261 262 int is_current_pgrp_orphaned(void) 263 { 264 int retval; 265 266 read_lock(&tasklist_lock); 267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 268 read_unlock(&tasklist_lock); 269 270 return retval; 271 } 272 273 static bool has_stopped_jobs(struct pid *pgrp) 274 { 275 struct task_struct *p; 276 277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 278 if (p->signal->flags & SIGNAL_STOP_STOPPED) 279 return true; 280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 281 282 return false; 283 } 284 285 /* 286 * Check to see if any process groups have become orphaned as 287 * a result of our exiting, and if they have any stopped jobs, 288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 289 */ 290 static void 291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 292 { 293 struct pid *pgrp = task_pgrp(tsk); 294 struct task_struct *ignored_task = tsk; 295 296 if (!parent) 297 /* exit: our father is in a different pgrp than 298 * we are and we were the only connection outside. 299 */ 300 parent = tsk->real_parent; 301 else 302 /* reparent: our child is in a different pgrp than 303 * we are, and it was the only connection outside. 304 */ 305 ignored_task = NULL; 306 307 if (task_pgrp(parent) != pgrp && 308 task_session(parent) == task_session(tsk) && 309 will_become_orphaned_pgrp(pgrp, ignored_task) && 310 has_stopped_jobs(pgrp)) { 311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 313 } 314 } 315 316 #ifdef CONFIG_MEMCG 317 /* 318 * A task is exiting. If it owned this mm, find a new owner for the mm. 319 */ 320 void mm_update_next_owner(struct mm_struct *mm) 321 { 322 struct task_struct *c, *g, *p = current; 323 324 retry: 325 /* 326 * If the exiting or execing task is not the owner, it's 327 * someone else's problem. 328 */ 329 if (mm->owner != p) 330 return; 331 /* 332 * The current owner is exiting/execing and there are no other 333 * candidates. Do not leave the mm pointing to a possibly 334 * freed task structure. 335 */ 336 if (atomic_read(&mm->mm_users) <= 1) { 337 mm->owner = NULL; 338 return; 339 } 340 341 read_lock(&tasklist_lock); 342 /* 343 * Search in the children 344 */ 345 list_for_each_entry(c, &p->children, sibling) { 346 if (c->mm == mm) 347 goto assign_new_owner; 348 } 349 350 /* 351 * Search in the siblings 352 */ 353 list_for_each_entry(c, &p->real_parent->children, sibling) { 354 if (c->mm == mm) 355 goto assign_new_owner; 356 } 357 358 /* 359 * Search through everything else, we should not get here often. 360 */ 361 for_each_process(g) { 362 if (g->flags & PF_KTHREAD) 363 continue; 364 for_each_thread(g, c) { 365 if (c->mm == mm) 366 goto assign_new_owner; 367 if (c->mm) 368 break; 369 } 370 } 371 read_unlock(&tasklist_lock); 372 /* 373 * We found no owner yet mm_users > 1: this implies that we are 374 * most likely racing with swapoff (try_to_unuse()) or /proc or 375 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 376 */ 377 mm->owner = NULL; 378 return; 379 380 assign_new_owner: 381 BUG_ON(c == p); 382 get_task_struct(c); 383 /* 384 * The task_lock protects c->mm from changing. 385 * We always want mm->owner->mm == mm 386 */ 387 task_lock(c); 388 /* 389 * Delay read_unlock() till we have the task_lock() 390 * to ensure that c does not slip away underneath us 391 */ 392 read_unlock(&tasklist_lock); 393 if (c->mm != mm) { 394 task_unlock(c); 395 put_task_struct(c); 396 goto retry; 397 } 398 mm->owner = c; 399 task_unlock(c); 400 put_task_struct(c); 401 } 402 #endif /* CONFIG_MEMCG */ 403 404 /* 405 * Turn us into a lazy TLB process if we 406 * aren't already.. 407 */ 408 static void exit_mm(struct task_struct * tsk) 409 { 410 struct mm_struct *mm = tsk->mm; 411 struct core_state *core_state; 412 413 mm_release(tsk, mm); 414 if (!mm) 415 return; 416 sync_mm_rss(mm); 417 /* 418 * Serialize with any possible pending coredump. 419 * We must hold mmap_sem around checking core_state 420 * and clearing tsk->mm. The core-inducing thread 421 * will increment ->nr_threads for each thread in the 422 * group with ->mm != NULL. 423 */ 424 down_read(&mm->mmap_sem); 425 core_state = mm->core_state; 426 if (core_state) { 427 struct core_thread self; 428 up_read(&mm->mmap_sem); 429 430 self.task = tsk; 431 self.next = xchg(&core_state->dumper.next, &self); 432 /* 433 * Implies mb(), the result of xchg() must be visible 434 * to core_state->dumper. 435 */ 436 if (atomic_dec_and_test(&core_state->nr_threads)) 437 complete(&core_state->startup); 438 439 for (;;) { 440 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 441 if (!self.task) /* see coredump_finish() */ 442 break; 443 freezable_schedule(); 444 } 445 __set_task_state(tsk, TASK_RUNNING); 446 down_read(&mm->mmap_sem); 447 } 448 atomic_inc(&mm->mm_count); 449 BUG_ON(mm != tsk->active_mm); 450 /* more a memory barrier than a real lock */ 451 task_lock(tsk); 452 tsk->mm = NULL; 453 up_read(&mm->mmap_sem); 454 enter_lazy_tlb(mm, current); 455 task_unlock(tsk); 456 mm_update_next_owner(mm); 457 mmput(mm); 458 clear_thread_flag(TIF_MEMDIE); 459 } 460 461 /* 462 * When we die, we re-parent all our children, and try to: 463 * 1. give them to another thread in our thread group, if such a member exists 464 * 2. give it to the first ancestor process which prctl'd itself as a 465 * child_subreaper for its children (like a service manager) 466 * 3. give it to the init process (PID 1) in our pid namespace 467 */ 468 static struct task_struct *find_new_reaper(struct task_struct *father) 469 __releases(&tasklist_lock) 470 __acquires(&tasklist_lock) 471 { 472 struct pid_namespace *pid_ns = task_active_pid_ns(father); 473 struct task_struct *thread; 474 475 thread = father; 476 while_each_thread(father, thread) { 477 if (thread->flags & PF_EXITING) 478 continue; 479 if (unlikely(pid_ns->child_reaper == father)) 480 pid_ns->child_reaper = thread; 481 return thread; 482 } 483 484 if (unlikely(pid_ns->child_reaper == father)) { 485 write_unlock_irq(&tasklist_lock); 486 if (unlikely(pid_ns == &init_pid_ns)) { 487 panic("Attempted to kill init! exitcode=0x%08x\n", 488 father->signal->group_exit_code ?: 489 father->exit_code); 490 } 491 492 zap_pid_ns_processes(pid_ns); 493 write_lock_irq(&tasklist_lock); 494 } else if (father->signal->has_child_subreaper) { 495 struct task_struct *reaper; 496 497 /* 498 * Find the first ancestor marked as child_subreaper. 499 * Note that the code below checks same_thread_group(reaper, 500 * pid_ns->child_reaper). This is what we need to DTRT in a 501 * PID namespace. However we still need the check above, see 502 * http://marc.info/?l=linux-kernel&m=131385460420380 503 */ 504 for (reaper = father->real_parent; 505 reaper != &init_task; 506 reaper = reaper->real_parent) { 507 if (same_thread_group(reaper, pid_ns->child_reaper)) 508 break; 509 if (!reaper->signal->is_child_subreaper) 510 continue; 511 thread = reaper; 512 do { 513 if (!(thread->flags & PF_EXITING)) 514 return reaper; 515 } while_each_thread(reaper, thread); 516 } 517 } 518 519 return pid_ns->child_reaper; 520 } 521 522 /* 523 * Any that need to be release_task'd are put on the @dead list. 524 */ 525 static void reparent_leader(struct task_struct *father, struct task_struct *p, 526 struct list_head *dead) 527 { 528 list_move_tail(&p->sibling, &p->real_parent->children); 529 530 if (p->exit_state == EXIT_DEAD) 531 return; 532 /* 533 * If this is a threaded reparent there is no need to 534 * notify anyone anything has happened. 535 */ 536 if (same_thread_group(p->real_parent, father)) 537 return; 538 539 /* We don't want people slaying init. */ 540 p->exit_signal = SIGCHLD; 541 542 /* If it has exited notify the new parent about this child's death. */ 543 if (!p->ptrace && 544 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 545 if (do_notify_parent(p, p->exit_signal)) { 546 p->exit_state = EXIT_DEAD; 547 list_move_tail(&p->sibling, dead); 548 } 549 } 550 551 kill_orphaned_pgrp(p, father); 552 } 553 554 static void forget_original_parent(struct task_struct *father) 555 { 556 struct task_struct *p, *n, *reaper; 557 LIST_HEAD(dead_children); 558 559 write_lock_irq(&tasklist_lock); 560 /* 561 * Note that exit_ptrace() and find_new_reaper() might 562 * drop tasklist_lock and reacquire it. 563 */ 564 exit_ptrace(father); 565 reaper = find_new_reaper(father); 566 567 list_for_each_entry_safe(p, n, &father->children, sibling) { 568 struct task_struct *t = p; 569 do { 570 t->real_parent = reaper; 571 if (t->parent == father) { 572 BUG_ON(t->ptrace); 573 t->parent = t->real_parent; 574 } 575 if (t->pdeath_signal) 576 group_send_sig_info(t->pdeath_signal, 577 SEND_SIG_NOINFO, t); 578 } while_each_thread(p, t); 579 reparent_leader(father, p, &dead_children); 580 } 581 write_unlock_irq(&tasklist_lock); 582 583 BUG_ON(!list_empty(&father->children)); 584 585 list_for_each_entry_safe(p, n, &dead_children, sibling) { 586 list_del_init(&p->sibling); 587 release_task(p); 588 } 589 } 590 591 /* 592 * Send signals to all our closest relatives so that they know 593 * to properly mourn us.. 594 */ 595 static void exit_notify(struct task_struct *tsk, int group_dead) 596 { 597 bool autoreap; 598 599 /* 600 * This does two things: 601 * 602 * A. Make init inherit all the child processes 603 * B. Check to see if any process groups have become orphaned 604 * as a result of our exiting, and if they have any stopped 605 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 606 */ 607 forget_original_parent(tsk); 608 609 write_lock_irq(&tasklist_lock); 610 if (group_dead) 611 kill_orphaned_pgrp(tsk->group_leader, NULL); 612 613 if (unlikely(tsk->ptrace)) { 614 int sig = thread_group_leader(tsk) && 615 thread_group_empty(tsk) && 616 !ptrace_reparented(tsk) ? 617 tsk->exit_signal : SIGCHLD; 618 autoreap = do_notify_parent(tsk, sig); 619 } else if (thread_group_leader(tsk)) { 620 autoreap = thread_group_empty(tsk) && 621 do_notify_parent(tsk, tsk->exit_signal); 622 } else { 623 autoreap = true; 624 } 625 626 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 627 628 /* mt-exec, de_thread() is waiting for group leader */ 629 if (unlikely(tsk->signal->notify_count < 0)) 630 wake_up_process(tsk->signal->group_exit_task); 631 write_unlock_irq(&tasklist_lock); 632 633 /* If the process is dead, release it - nobody will wait for it */ 634 if (autoreap) 635 release_task(tsk); 636 } 637 638 #ifdef CONFIG_DEBUG_STACK_USAGE 639 static void check_stack_usage(void) 640 { 641 static DEFINE_SPINLOCK(low_water_lock); 642 static int lowest_to_date = THREAD_SIZE; 643 unsigned long free; 644 645 free = stack_not_used(current); 646 647 if (free >= lowest_to_date) 648 return; 649 650 spin_lock(&low_water_lock); 651 if (free < lowest_to_date) { 652 printk(KERN_WARNING "%s (%d) used greatest stack depth: " 653 "%lu bytes left\n", 654 current->comm, task_pid_nr(current), free); 655 lowest_to_date = free; 656 } 657 spin_unlock(&low_water_lock); 658 } 659 #else 660 static inline void check_stack_usage(void) {} 661 #endif 662 663 void do_exit(long code) 664 { 665 struct task_struct *tsk = current; 666 int group_dead; 667 668 profile_task_exit(tsk); 669 670 WARN_ON(blk_needs_flush_plug(tsk)); 671 672 if (unlikely(in_interrupt())) 673 panic("Aiee, killing interrupt handler!"); 674 if (unlikely(!tsk->pid)) 675 panic("Attempted to kill the idle task!"); 676 677 /* 678 * If do_exit is called because this processes oopsed, it's possible 679 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 680 * continuing. Amongst other possible reasons, this is to prevent 681 * mm_release()->clear_child_tid() from writing to a user-controlled 682 * kernel address. 683 */ 684 set_fs(USER_DS); 685 686 ptrace_event(PTRACE_EVENT_EXIT, code); 687 688 validate_creds_for_do_exit(tsk); 689 690 /* 691 * We're taking recursive faults here in do_exit. Safest is to just 692 * leave this task alone and wait for reboot. 693 */ 694 if (unlikely(tsk->flags & PF_EXITING)) { 695 printk(KERN_ALERT 696 "Fixing recursive fault but reboot is needed!\n"); 697 /* 698 * We can do this unlocked here. The futex code uses 699 * this flag just to verify whether the pi state 700 * cleanup has been done or not. In the worst case it 701 * loops once more. We pretend that the cleanup was 702 * done as there is no way to return. Either the 703 * OWNER_DIED bit is set by now or we push the blocked 704 * task into the wait for ever nirwana as well. 705 */ 706 tsk->flags |= PF_EXITPIDONE; 707 set_current_state(TASK_UNINTERRUPTIBLE); 708 schedule(); 709 } 710 711 exit_signals(tsk); /* sets PF_EXITING */ 712 /* 713 * tsk->flags are checked in the futex code to protect against 714 * an exiting task cleaning up the robust pi futexes. 715 */ 716 smp_mb(); 717 raw_spin_unlock_wait(&tsk->pi_lock); 718 719 if (unlikely(in_atomic())) 720 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 721 current->comm, task_pid_nr(current), 722 preempt_count()); 723 724 acct_update_integrals(tsk); 725 /* sync mm's RSS info before statistics gathering */ 726 if (tsk->mm) 727 sync_mm_rss(tsk->mm); 728 group_dead = atomic_dec_and_test(&tsk->signal->live); 729 if (group_dead) { 730 hrtimer_cancel(&tsk->signal->real_timer); 731 exit_itimers(tsk->signal); 732 if (tsk->mm) 733 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 734 } 735 acct_collect(code, group_dead); 736 if (group_dead) 737 tty_audit_exit(); 738 audit_free(tsk); 739 740 tsk->exit_code = code; 741 taskstats_exit(tsk, group_dead); 742 743 exit_mm(tsk); 744 745 if (group_dead) 746 acct_process(); 747 trace_sched_process_exit(tsk); 748 749 exit_sem(tsk); 750 exit_shm(tsk); 751 exit_files(tsk); 752 exit_fs(tsk); 753 if (group_dead) 754 disassociate_ctty(1); 755 exit_task_namespaces(tsk); 756 exit_task_work(tsk); 757 exit_thread(); 758 759 /* 760 * Flush inherited counters to the parent - before the parent 761 * gets woken up by child-exit notifications. 762 * 763 * because of cgroup mode, must be called before cgroup_exit() 764 */ 765 perf_event_exit_task(tsk); 766 767 cgroup_exit(tsk); 768 769 module_put(task_thread_info(tsk)->exec_domain->module); 770 771 /* 772 * FIXME: do that only when needed, using sched_exit tracepoint 773 */ 774 flush_ptrace_hw_breakpoint(tsk); 775 776 exit_notify(tsk, group_dead); 777 proc_exit_connector(tsk); 778 #ifdef CONFIG_NUMA 779 task_lock(tsk); 780 mpol_put(tsk->mempolicy); 781 tsk->mempolicy = NULL; 782 task_unlock(tsk); 783 #endif 784 #ifdef CONFIG_FUTEX 785 if (unlikely(current->pi_state_cache)) 786 kfree(current->pi_state_cache); 787 #endif 788 /* 789 * Make sure we are holding no locks: 790 */ 791 debug_check_no_locks_held(); 792 /* 793 * We can do this unlocked here. The futex code uses this flag 794 * just to verify whether the pi state cleanup has been done 795 * or not. In the worst case it loops once more. 796 */ 797 tsk->flags |= PF_EXITPIDONE; 798 799 if (tsk->io_context) 800 exit_io_context(tsk); 801 802 if (tsk->splice_pipe) 803 free_pipe_info(tsk->splice_pipe); 804 805 if (tsk->task_frag.page) 806 put_page(tsk->task_frag.page); 807 808 validate_creds_for_do_exit(tsk); 809 810 check_stack_usage(); 811 preempt_disable(); 812 if (tsk->nr_dirtied) 813 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 814 exit_rcu(); 815 816 /* 817 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 818 * when the following two conditions become true. 819 * - There is race condition of mmap_sem (It is acquired by 820 * exit_mm()), and 821 * - SMI occurs before setting TASK_RUNINNG. 822 * (or hypervisor of virtual machine switches to other guest) 823 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 824 * 825 * To avoid it, we have to wait for releasing tsk->pi_lock which 826 * is held by try_to_wake_up() 827 */ 828 smp_mb(); 829 raw_spin_unlock_wait(&tsk->pi_lock); 830 831 /* causes final put_task_struct in finish_task_switch(). */ 832 tsk->state = TASK_DEAD; 833 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 834 schedule(); 835 BUG(); 836 /* Avoid "noreturn function does return". */ 837 for (;;) 838 cpu_relax(); /* For when BUG is null */ 839 } 840 841 EXPORT_SYMBOL_GPL(do_exit); 842 843 void complete_and_exit(struct completion *comp, long code) 844 { 845 if (comp) 846 complete(comp); 847 848 do_exit(code); 849 } 850 851 EXPORT_SYMBOL(complete_and_exit); 852 853 SYSCALL_DEFINE1(exit, int, error_code) 854 { 855 do_exit((error_code&0xff)<<8); 856 } 857 858 /* 859 * Take down every thread in the group. This is called by fatal signals 860 * as well as by sys_exit_group (below). 861 */ 862 void 863 do_group_exit(int exit_code) 864 { 865 struct signal_struct *sig = current->signal; 866 867 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 868 869 if (signal_group_exit(sig)) 870 exit_code = sig->group_exit_code; 871 else if (!thread_group_empty(current)) { 872 struct sighand_struct *const sighand = current->sighand; 873 spin_lock_irq(&sighand->siglock); 874 if (signal_group_exit(sig)) 875 /* Another thread got here before we took the lock. */ 876 exit_code = sig->group_exit_code; 877 else { 878 sig->group_exit_code = exit_code; 879 sig->flags = SIGNAL_GROUP_EXIT; 880 zap_other_threads(current); 881 } 882 spin_unlock_irq(&sighand->siglock); 883 } 884 885 do_exit(exit_code); 886 /* NOTREACHED */ 887 } 888 889 /* 890 * this kills every thread in the thread group. Note that any externally 891 * wait4()-ing process will get the correct exit code - even if this 892 * thread is not the thread group leader. 893 */ 894 SYSCALL_DEFINE1(exit_group, int, error_code) 895 { 896 do_group_exit((error_code & 0xff) << 8); 897 /* NOTREACHED */ 898 return 0; 899 } 900 901 struct wait_opts { 902 enum pid_type wo_type; 903 int wo_flags; 904 struct pid *wo_pid; 905 906 struct siginfo __user *wo_info; 907 int __user *wo_stat; 908 struct rusage __user *wo_rusage; 909 910 wait_queue_t child_wait; 911 int notask_error; 912 }; 913 914 static inline 915 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 916 { 917 if (type != PIDTYPE_PID) 918 task = task->group_leader; 919 return task->pids[type].pid; 920 } 921 922 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 923 { 924 return wo->wo_type == PIDTYPE_MAX || 925 task_pid_type(p, wo->wo_type) == wo->wo_pid; 926 } 927 928 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 929 { 930 if (!eligible_pid(wo, p)) 931 return 0; 932 /* Wait for all children (clone and not) if __WALL is set; 933 * otherwise, wait for clone children *only* if __WCLONE is 934 * set; otherwise, wait for non-clone children *only*. (Note: 935 * A "clone" child here is one that reports to its parent 936 * using a signal other than SIGCHLD.) */ 937 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 938 && !(wo->wo_flags & __WALL)) 939 return 0; 940 941 return 1; 942 } 943 944 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 945 pid_t pid, uid_t uid, int why, int status) 946 { 947 struct siginfo __user *infop; 948 int retval = wo->wo_rusage 949 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 950 951 put_task_struct(p); 952 infop = wo->wo_info; 953 if (infop) { 954 if (!retval) 955 retval = put_user(SIGCHLD, &infop->si_signo); 956 if (!retval) 957 retval = put_user(0, &infop->si_errno); 958 if (!retval) 959 retval = put_user((short)why, &infop->si_code); 960 if (!retval) 961 retval = put_user(pid, &infop->si_pid); 962 if (!retval) 963 retval = put_user(uid, &infop->si_uid); 964 if (!retval) 965 retval = put_user(status, &infop->si_status); 966 } 967 if (!retval) 968 retval = pid; 969 return retval; 970 } 971 972 /* 973 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 974 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 975 * the lock and this task is uninteresting. If we return nonzero, we have 976 * released the lock and the system call should return. 977 */ 978 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 979 { 980 unsigned long state; 981 int retval, status, traced; 982 pid_t pid = task_pid_vnr(p); 983 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 984 struct siginfo __user *infop; 985 986 if (!likely(wo->wo_flags & WEXITED)) 987 return 0; 988 989 if (unlikely(wo->wo_flags & WNOWAIT)) { 990 int exit_code = p->exit_code; 991 int why; 992 993 get_task_struct(p); 994 read_unlock(&tasklist_lock); 995 if ((exit_code & 0x7f) == 0) { 996 why = CLD_EXITED; 997 status = exit_code >> 8; 998 } else { 999 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1000 status = exit_code & 0x7f; 1001 } 1002 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1003 } 1004 1005 traced = ptrace_reparented(p); 1006 /* 1007 * Move the task's state to DEAD/TRACE, only one thread can do this. 1008 */ 1009 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD; 1010 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1011 return 0; 1012 /* 1013 * It can be ptraced but not reparented, check 1014 * thread_group_leader() to filter out sub-threads. 1015 */ 1016 if (likely(!traced) && thread_group_leader(p)) { 1017 struct signal_struct *psig; 1018 struct signal_struct *sig; 1019 unsigned long maxrss; 1020 cputime_t tgutime, tgstime; 1021 1022 /* 1023 * The resource counters for the group leader are in its 1024 * own task_struct. Those for dead threads in the group 1025 * are in its signal_struct, as are those for the child 1026 * processes it has previously reaped. All these 1027 * accumulate in the parent's signal_struct c* fields. 1028 * 1029 * We don't bother to take a lock here to protect these 1030 * p->signal fields, because they are only touched by 1031 * __exit_signal, which runs with tasklist_lock 1032 * write-locked anyway, and so is excluded here. We do 1033 * need to protect the access to parent->signal fields, 1034 * as other threads in the parent group can be right 1035 * here reaping other children at the same time. 1036 * 1037 * We use thread_group_cputime_adjusted() to get times for the thread 1038 * group, which consolidates times for all threads in the 1039 * group including the group leader. 1040 */ 1041 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1042 spin_lock_irq(&p->real_parent->sighand->siglock); 1043 psig = p->real_parent->signal; 1044 sig = p->signal; 1045 psig->cutime += tgutime + sig->cutime; 1046 psig->cstime += tgstime + sig->cstime; 1047 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1048 psig->cmin_flt += 1049 p->min_flt + sig->min_flt + sig->cmin_flt; 1050 psig->cmaj_flt += 1051 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1052 psig->cnvcsw += 1053 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1054 psig->cnivcsw += 1055 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1056 psig->cinblock += 1057 task_io_get_inblock(p) + 1058 sig->inblock + sig->cinblock; 1059 psig->coublock += 1060 task_io_get_oublock(p) + 1061 sig->oublock + sig->coublock; 1062 maxrss = max(sig->maxrss, sig->cmaxrss); 1063 if (psig->cmaxrss < maxrss) 1064 psig->cmaxrss = maxrss; 1065 task_io_accounting_add(&psig->ioac, &p->ioac); 1066 task_io_accounting_add(&psig->ioac, &sig->ioac); 1067 spin_unlock_irq(&p->real_parent->sighand->siglock); 1068 } 1069 1070 /* 1071 * Now we are sure this task is interesting, and no other 1072 * thread can reap it because we its state == DEAD/TRACE. 1073 */ 1074 read_unlock(&tasklist_lock); 1075 1076 retval = wo->wo_rusage 1077 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1078 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1079 ? p->signal->group_exit_code : p->exit_code; 1080 if (!retval && wo->wo_stat) 1081 retval = put_user(status, wo->wo_stat); 1082 1083 infop = wo->wo_info; 1084 if (!retval && infop) 1085 retval = put_user(SIGCHLD, &infop->si_signo); 1086 if (!retval && infop) 1087 retval = put_user(0, &infop->si_errno); 1088 if (!retval && infop) { 1089 int why; 1090 1091 if ((status & 0x7f) == 0) { 1092 why = CLD_EXITED; 1093 status >>= 8; 1094 } else { 1095 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1096 status &= 0x7f; 1097 } 1098 retval = put_user((short)why, &infop->si_code); 1099 if (!retval) 1100 retval = put_user(status, &infop->si_status); 1101 } 1102 if (!retval && infop) 1103 retval = put_user(pid, &infop->si_pid); 1104 if (!retval && infop) 1105 retval = put_user(uid, &infop->si_uid); 1106 if (!retval) 1107 retval = pid; 1108 1109 if (state == EXIT_TRACE) { 1110 write_lock_irq(&tasklist_lock); 1111 /* We dropped tasklist, ptracer could die and untrace */ 1112 ptrace_unlink(p); 1113 1114 /* If parent wants a zombie, don't release it now */ 1115 state = EXIT_ZOMBIE; 1116 if (do_notify_parent(p, p->exit_signal)) 1117 state = EXIT_DEAD; 1118 p->exit_state = state; 1119 write_unlock_irq(&tasklist_lock); 1120 } 1121 if (state == EXIT_DEAD) 1122 release_task(p); 1123 1124 return retval; 1125 } 1126 1127 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1128 { 1129 if (ptrace) { 1130 if (task_is_stopped_or_traced(p) && 1131 !(p->jobctl & JOBCTL_LISTENING)) 1132 return &p->exit_code; 1133 } else { 1134 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1135 return &p->signal->group_exit_code; 1136 } 1137 return NULL; 1138 } 1139 1140 /** 1141 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1142 * @wo: wait options 1143 * @ptrace: is the wait for ptrace 1144 * @p: task to wait for 1145 * 1146 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1147 * 1148 * CONTEXT: 1149 * read_lock(&tasklist_lock), which is released if return value is 1150 * non-zero. Also, grabs and releases @p->sighand->siglock. 1151 * 1152 * RETURNS: 1153 * 0 if wait condition didn't exist and search for other wait conditions 1154 * should continue. Non-zero return, -errno on failure and @p's pid on 1155 * success, implies that tasklist_lock is released and wait condition 1156 * search should terminate. 1157 */ 1158 static int wait_task_stopped(struct wait_opts *wo, 1159 int ptrace, struct task_struct *p) 1160 { 1161 struct siginfo __user *infop; 1162 int retval, exit_code, *p_code, why; 1163 uid_t uid = 0; /* unneeded, required by compiler */ 1164 pid_t pid; 1165 1166 /* 1167 * Traditionally we see ptrace'd stopped tasks regardless of options. 1168 */ 1169 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1170 return 0; 1171 1172 if (!task_stopped_code(p, ptrace)) 1173 return 0; 1174 1175 exit_code = 0; 1176 spin_lock_irq(&p->sighand->siglock); 1177 1178 p_code = task_stopped_code(p, ptrace); 1179 if (unlikely(!p_code)) 1180 goto unlock_sig; 1181 1182 exit_code = *p_code; 1183 if (!exit_code) 1184 goto unlock_sig; 1185 1186 if (!unlikely(wo->wo_flags & WNOWAIT)) 1187 *p_code = 0; 1188 1189 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1190 unlock_sig: 1191 spin_unlock_irq(&p->sighand->siglock); 1192 if (!exit_code) 1193 return 0; 1194 1195 /* 1196 * Now we are pretty sure this task is interesting. 1197 * Make sure it doesn't get reaped out from under us while we 1198 * give up the lock and then examine it below. We don't want to 1199 * keep holding onto the tasklist_lock while we call getrusage and 1200 * possibly take page faults for user memory. 1201 */ 1202 get_task_struct(p); 1203 pid = task_pid_vnr(p); 1204 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1205 read_unlock(&tasklist_lock); 1206 1207 if (unlikely(wo->wo_flags & WNOWAIT)) 1208 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1209 1210 retval = wo->wo_rusage 1211 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1212 if (!retval && wo->wo_stat) 1213 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1214 1215 infop = wo->wo_info; 1216 if (!retval && infop) 1217 retval = put_user(SIGCHLD, &infop->si_signo); 1218 if (!retval && infop) 1219 retval = put_user(0, &infop->si_errno); 1220 if (!retval && infop) 1221 retval = put_user((short)why, &infop->si_code); 1222 if (!retval && infop) 1223 retval = put_user(exit_code, &infop->si_status); 1224 if (!retval && infop) 1225 retval = put_user(pid, &infop->si_pid); 1226 if (!retval && infop) 1227 retval = put_user(uid, &infop->si_uid); 1228 if (!retval) 1229 retval = pid; 1230 put_task_struct(p); 1231 1232 BUG_ON(!retval); 1233 return retval; 1234 } 1235 1236 /* 1237 * Handle do_wait work for one task in a live, non-stopped state. 1238 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1239 * the lock and this task is uninteresting. If we return nonzero, we have 1240 * released the lock and the system call should return. 1241 */ 1242 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1243 { 1244 int retval; 1245 pid_t pid; 1246 uid_t uid; 1247 1248 if (!unlikely(wo->wo_flags & WCONTINUED)) 1249 return 0; 1250 1251 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1252 return 0; 1253 1254 spin_lock_irq(&p->sighand->siglock); 1255 /* Re-check with the lock held. */ 1256 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1257 spin_unlock_irq(&p->sighand->siglock); 1258 return 0; 1259 } 1260 if (!unlikely(wo->wo_flags & WNOWAIT)) 1261 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1262 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1263 spin_unlock_irq(&p->sighand->siglock); 1264 1265 pid = task_pid_vnr(p); 1266 get_task_struct(p); 1267 read_unlock(&tasklist_lock); 1268 1269 if (!wo->wo_info) { 1270 retval = wo->wo_rusage 1271 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1272 put_task_struct(p); 1273 if (!retval && wo->wo_stat) 1274 retval = put_user(0xffff, wo->wo_stat); 1275 if (!retval) 1276 retval = pid; 1277 } else { 1278 retval = wait_noreap_copyout(wo, p, pid, uid, 1279 CLD_CONTINUED, SIGCONT); 1280 BUG_ON(retval == 0); 1281 } 1282 1283 return retval; 1284 } 1285 1286 /* 1287 * Consider @p for a wait by @parent. 1288 * 1289 * -ECHILD should be in ->notask_error before the first call. 1290 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1291 * Returns zero if the search for a child should continue; 1292 * then ->notask_error is 0 if @p is an eligible child, 1293 * or another error from security_task_wait(), or still -ECHILD. 1294 */ 1295 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1296 struct task_struct *p) 1297 { 1298 int ret; 1299 1300 if (unlikely(p->exit_state == EXIT_DEAD)) 1301 return 0; 1302 1303 ret = eligible_child(wo, p); 1304 if (!ret) 1305 return ret; 1306 1307 ret = security_task_wait(p); 1308 if (unlikely(ret < 0)) { 1309 /* 1310 * If we have not yet seen any eligible child, 1311 * then let this error code replace -ECHILD. 1312 * A permission error will give the user a clue 1313 * to look for security policy problems, rather 1314 * than for mysterious wait bugs. 1315 */ 1316 if (wo->notask_error) 1317 wo->notask_error = ret; 1318 return 0; 1319 } 1320 1321 if (unlikely(p->exit_state == EXIT_TRACE)) { 1322 /* 1323 * ptrace == 0 means we are the natural parent. In this case 1324 * we should clear notask_error, debugger will notify us. 1325 */ 1326 if (likely(!ptrace)) 1327 wo->notask_error = 0; 1328 return 0; 1329 } 1330 1331 if (likely(!ptrace) && unlikely(p->ptrace)) { 1332 /* 1333 * If it is traced by its real parent's group, just pretend 1334 * the caller is ptrace_do_wait() and reap this child if it 1335 * is zombie. 1336 * 1337 * This also hides group stop state from real parent; otherwise 1338 * a single stop can be reported twice as group and ptrace stop. 1339 * If a ptracer wants to distinguish these two events for its 1340 * own children it should create a separate process which takes 1341 * the role of real parent. 1342 */ 1343 if (!ptrace_reparented(p)) 1344 ptrace = 1; 1345 } 1346 1347 /* slay zombie? */ 1348 if (p->exit_state == EXIT_ZOMBIE) { 1349 /* we don't reap group leaders with subthreads */ 1350 if (!delay_group_leader(p)) { 1351 /* 1352 * A zombie ptracee is only visible to its ptracer. 1353 * Notification and reaping will be cascaded to the 1354 * real parent when the ptracer detaches. 1355 */ 1356 if (unlikely(ptrace) || likely(!p->ptrace)) 1357 return wait_task_zombie(wo, p); 1358 } 1359 1360 /* 1361 * Allow access to stopped/continued state via zombie by 1362 * falling through. Clearing of notask_error is complex. 1363 * 1364 * When !@ptrace: 1365 * 1366 * If WEXITED is set, notask_error should naturally be 1367 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1368 * so, if there are live subthreads, there are events to 1369 * wait for. If all subthreads are dead, it's still safe 1370 * to clear - this function will be called again in finite 1371 * amount time once all the subthreads are released and 1372 * will then return without clearing. 1373 * 1374 * When @ptrace: 1375 * 1376 * Stopped state is per-task and thus can't change once the 1377 * target task dies. Only continued and exited can happen. 1378 * Clear notask_error if WCONTINUED | WEXITED. 1379 */ 1380 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1381 wo->notask_error = 0; 1382 } else { 1383 /* 1384 * @p is alive and it's gonna stop, continue or exit, so 1385 * there always is something to wait for. 1386 */ 1387 wo->notask_error = 0; 1388 } 1389 1390 /* 1391 * Wait for stopped. Depending on @ptrace, different stopped state 1392 * is used and the two don't interact with each other. 1393 */ 1394 ret = wait_task_stopped(wo, ptrace, p); 1395 if (ret) 1396 return ret; 1397 1398 /* 1399 * Wait for continued. There's only one continued state and the 1400 * ptracer can consume it which can confuse the real parent. Don't 1401 * use WCONTINUED from ptracer. You don't need or want it. 1402 */ 1403 return wait_task_continued(wo, p); 1404 } 1405 1406 /* 1407 * Do the work of do_wait() for one thread in the group, @tsk. 1408 * 1409 * -ECHILD should be in ->notask_error before the first call. 1410 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1411 * Returns zero if the search for a child should continue; then 1412 * ->notask_error is 0 if there were any eligible children, 1413 * or another error from security_task_wait(), or still -ECHILD. 1414 */ 1415 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1416 { 1417 struct task_struct *p; 1418 1419 list_for_each_entry(p, &tsk->children, sibling) { 1420 int ret = wait_consider_task(wo, 0, p); 1421 if (ret) 1422 return ret; 1423 } 1424 1425 return 0; 1426 } 1427 1428 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1429 { 1430 struct task_struct *p; 1431 1432 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1433 int ret = wait_consider_task(wo, 1, p); 1434 if (ret) 1435 return ret; 1436 } 1437 1438 return 0; 1439 } 1440 1441 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1442 int sync, void *key) 1443 { 1444 struct wait_opts *wo = container_of(wait, struct wait_opts, 1445 child_wait); 1446 struct task_struct *p = key; 1447 1448 if (!eligible_pid(wo, p)) 1449 return 0; 1450 1451 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1452 return 0; 1453 1454 return default_wake_function(wait, mode, sync, key); 1455 } 1456 1457 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1458 { 1459 __wake_up_sync_key(&parent->signal->wait_chldexit, 1460 TASK_INTERRUPTIBLE, 1, p); 1461 } 1462 1463 static long do_wait(struct wait_opts *wo) 1464 { 1465 struct task_struct *tsk; 1466 int retval; 1467 1468 trace_sched_process_wait(wo->wo_pid); 1469 1470 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1471 wo->child_wait.private = current; 1472 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1473 repeat: 1474 /* 1475 * If there is nothing that can match our critiera just get out. 1476 * We will clear ->notask_error to zero if we see any child that 1477 * might later match our criteria, even if we are not able to reap 1478 * it yet. 1479 */ 1480 wo->notask_error = -ECHILD; 1481 if ((wo->wo_type < PIDTYPE_MAX) && 1482 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1483 goto notask; 1484 1485 set_current_state(TASK_INTERRUPTIBLE); 1486 read_lock(&tasklist_lock); 1487 tsk = current; 1488 do { 1489 retval = do_wait_thread(wo, tsk); 1490 if (retval) 1491 goto end; 1492 1493 retval = ptrace_do_wait(wo, tsk); 1494 if (retval) 1495 goto end; 1496 1497 if (wo->wo_flags & __WNOTHREAD) 1498 break; 1499 } while_each_thread(current, tsk); 1500 read_unlock(&tasklist_lock); 1501 1502 notask: 1503 retval = wo->notask_error; 1504 if (!retval && !(wo->wo_flags & WNOHANG)) { 1505 retval = -ERESTARTSYS; 1506 if (!signal_pending(current)) { 1507 schedule(); 1508 goto repeat; 1509 } 1510 } 1511 end: 1512 __set_current_state(TASK_RUNNING); 1513 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1514 return retval; 1515 } 1516 1517 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1518 infop, int, options, struct rusage __user *, ru) 1519 { 1520 struct wait_opts wo; 1521 struct pid *pid = NULL; 1522 enum pid_type type; 1523 long ret; 1524 1525 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1526 return -EINVAL; 1527 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1528 return -EINVAL; 1529 1530 switch (which) { 1531 case P_ALL: 1532 type = PIDTYPE_MAX; 1533 break; 1534 case P_PID: 1535 type = PIDTYPE_PID; 1536 if (upid <= 0) 1537 return -EINVAL; 1538 break; 1539 case P_PGID: 1540 type = PIDTYPE_PGID; 1541 if (upid <= 0) 1542 return -EINVAL; 1543 break; 1544 default: 1545 return -EINVAL; 1546 } 1547 1548 if (type < PIDTYPE_MAX) 1549 pid = find_get_pid(upid); 1550 1551 wo.wo_type = type; 1552 wo.wo_pid = pid; 1553 wo.wo_flags = options; 1554 wo.wo_info = infop; 1555 wo.wo_stat = NULL; 1556 wo.wo_rusage = ru; 1557 ret = do_wait(&wo); 1558 1559 if (ret > 0) { 1560 ret = 0; 1561 } else if (infop) { 1562 /* 1563 * For a WNOHANG return, clear out all the fields 1564 * we would set so the user can easily tell the 1565 * difference. 1566 */ 1567 if (!ret) 1568 ret = put_user(0, &infop->si_signo); 1569 if (!ret) 1570 ret = put_user(0, &infop->si_errno); 1571 if (!ret) 1572 ret = put_user(0, &infop->si_code); 1573 if (!ret) 1574 ret = put_user(0, &infop->si_pid); 1575 if (!ret) 1576 ret = put_user(0, &infop->si_uid); 1577 if (!ret) 1578 ret = put_user(0, &infop->si_status); 1579 } 1580 1581 put_pid(pid); 1582 return ret; 1583 } 1584 1585 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1586 int, options, struct rusage __user *, ru) 1587 { 1588 struct wait_opts wo; 1589 struct pid *pid = NULL; 1590 enum pid_type type; 1591 long ret; 1592 1593 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1594 __WNOTHREAD|__WCLONE|__WALL)) 1595 return -EINVAL; 1596 1597 if (upid == -1) 1598 type = PIDTYPE_MAX; 1599 else if (upid < 0) { 1600 type = PIDTYPE_PGID; 1601 pid = find_get_pid(-upid); 1602 } else if (upid == 0) { 1603 type = PIDTYPE_PGID; 1604 pid = get_task_pid(current, PIDTYPE_PGID); 1605 } else /* upid > 0 */ { 1606 type = PIDTYPE_PID; 1607 pid = find_get_pid(upid); 1608 } 1609 1610 wo.wo_type = type; 1611 wo.wo_pid = pid; 1612 wo.wo_flags = options | WEXITED; 1613 wo.wo_info = NULL; 1614 wo.wo_stat = stat_addr; 1615 wo.wo_rusage = ru; 1616 ret = do_wait(&wo); 1617 put_pid(pid); 1618 1619 return ret; 1620 } 1621 1622 #ifdef __ARCH_WANT_SYS_WAITPID 1623 1624 /* 1625 * sys_waitpid() remains for compatibility. waitpid() should be 1626 * implemented by calling sys_wait4() from libc.a. 1627 */ 1628 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1629 { 1630 return sys_wait4(pid, stat_addr, options, NULL); 1631 } 1632 1633 #endif 1634