1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void exit_mm(struct task_struct *tsk); 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 } 76 list_del_rcu(&p->thread_group); 77 list_del_rcu(&p->thread_node); 78 } 79 80 /* 81 * This function expects the tasklist_lock write-locked. 82 */ 83 static void __exit_signal(struct task_struct *tsk) 84 { 85 struct signal_struct *sig = tsk->signal; 86 bool group_dead = thread_group_leader(tsk); 87 struct sighand_struct *sighand; 88 struct tty_struct *uninitialized_var(tty); 89 cputime_t utime, stime; 90 91 sighand = rcu_dereference_check(tsk->sighand, 92 lockdep_tasklist_lock_is_held()); 93 spin_lock(&sighand->siglock); 94 95 posix_cpu_timers_exit(tsk); 96 if (group_dead) { 97 posix_cpu_timers_exit_group(tsk); 98 tty = sig->tty; 99 sig->tty = NULL; 100 } else { 101 /* 102 * This can only happen if the caller is de_thread(). 103 * FIXME: this is the temporary hack, we should teach 104 * posix-cpu-timers to handle this case correctly. 105 */ 106 if (unlikely(has_group_leader_pid(tsk))) 107 posix_cpu_timers_exit_group(tsk); 108 109 /* 110 * If there is any task waiting for the group exit 111 * then notify it: 112 */ 113 if (sig->notify_count > 0 && !--sig->notify_count) 114 wake_up_process(sig->group_exit_task); 115 116 if (tsk == sig->curr_target) 117 sig->curr_target = next_thread(tsk); 118 } 119 120 /* 121 * Accumulate here the counters for all threads but the group leader 122 * as they die, so they can be added into the process-wide totals 123 * when those are taken. The group leader stays around as a zombie as 124 * long as there are other threads. When it gets reaped, the exit.c 125 * code will add its counts into these totals. We won't ever get here 126 * for the group leader, since it will have been the last reference on 127 * the signal_struct. 128 */ 129 task_cputime(tsk, &utime, &stime); 130 write_seqlock(&sig->stats_lock); 131 sig->utime += utime; 132 sig->stime += stime; 133 sig->gtime += task_gtime(tsk); 134 sig->min_flt += tsk->min_flt; 135 sig->maj_flt += tsk->maj_flt; 136 sig->nvcsw += tsk->nvcsw; 137 sig->nivcsw += tsk->nivcsw; 138 sig->inblock += task_io_get_inblock(tsk); 139 sig->oublock += task_io_get_oublock(tsk); 140 task_io_accounting_add(&sig->ioac, &tsk->ioac); 141 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 142 sig->nr_threads--; 143 __unhash_process(tsk, group_dead); 144 write_sequnlock(&sig->stats_lock); 145 146 /* 147 * Do this under ->siglock, we can race with another thread 148 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 149 */ 150 flush_sigqueue(&tsk->pending); 151 tsk->sighand = NULL; 152 spin_unlock(&sighand->siglock); 153 154 __cleanup_sighand(sighand); 155 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 156 if (group_dead) { 157 flush_sigqueue(&sig->shared_pending); 158 tty_kref_put(tty); 159 } 160 } 161 162 static void delayed_put_task_struct(struct rcu_head *rhp) 163 { 164 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 165 166 perf_event_delayed_put(tsk); 167 trace_sched_process_free(tsk); 168 put_task_struct(tsk); 169 } 170 171 172 void release_task(struct task_struct *p) 173 { 174 struct task_struct *leader; 175 int zap_leader; 176 repeat: 177 /* don't need to get the RCU readlock here - the process is dead and 178 * can't be modifying its own credentials. But shut RCU-lockdep up */ 179 rcu_read_lock(); 180 atomic_dec(&__task_cred(p)->user->processes); 181 rcu_read_unlock(); 182 183 proc_flush_task(p); 184 185 write_lock_irq(&tasklist_lock); 186 ptrace_release_task(p); 187 __exit_signal(p); 188 189 /* 190 * If we are the last non-leader member of the thread 191 * group, and the leader is zombie, then notify the 192 * group leader's parent process. (if it wants notification.) 193 */ 194 zap_leader = 0; 195 leader = p->group_leader; 196 if (leader != p && thread_group_empty(leader) 197 && leader->exit_state == EXIT_ZOMBIE) { 198 /* 199 * If we were the last child thread and the leader has 200 * exited already, and the leader's parent ignores SIGCHLD, 201 * then we are the one who should release the leader. 202 */ 203 zap_leader = do_notify_parent(leader, leader->exit_signal); 204 if (zap_leader) 205 leader->exit_state = EXIT_DEAD; 206 } 207 208 write_unlock_irq(&tasklist_lock); 209 release_thread(p); 210 call_rcu(&p->rcu, delayed_put_task_struct); 211 212 p = leader; 213 if (unlikely(zap_leader)) 214 goto repeat; 215 } 216 217 /* 218 * This checks not only the pgrp, but falls back on the pid if no 219 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 220 * without this... 221 * 222 * The caller must hold rcu lock or the tasklist lock. 223 */ 224 struct pid *session_of_pgrp(struct pid *pgrp) 225 { 226 struct task_struct *p; 227 struct pid *sid = NULL; 228 229 p = pid_task(pgrp, PIDTYPE_PGID); 230 if (p == NULL) 231 p = pid_task(pgrp, PIDTYPE_PID); 232 if (p != NULL) 233 sid = task_session(p); 234 235 return sid; 236 } 237 238 /* 239 * Determine if a process group is "orphaned", according to the POSIX 240 * definition in 2.2.2.52. Orphaned process groups are not to be affected 241 * by terminal-generated stop signals. Newly orphaned process groups are 242 * to receive a SIGHUP and a SIGCONT. 243 * 244 * "I ask you, have you ever known what it is to be an orphan?" 245 */ 246 static int will_become_orphaned_pgrp(struct pid *pgrp, 247 struct task_struct *ignored_task) 248 { 249 struct task_struct *p; 250 251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 252 if ((p == ignored_task) || 253 (p->exit_state && thread_group_empty(p)) || 254 is_global_init(p->real_parent)) 255 continue; 256 257 if (task_pgrp(p->real_parent) != pgrp && 258 task_session(p->real_parent) == task_session(p)) 259 return 0; 260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 261 262 return 1; 263 } 264 265 int is_current_pgrp_orphaned(void) 266 { 267 int retval; 268 269 read_lock(&tasklist_lock); 270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 271 read_unlock(&tasklist_lock); 272 273 return retval; 274 } 275 276 static bool has_stopped_jobs(struct pid *pgrp) 277 { 278 struct task_struct *p; 279 280 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 281 if (p->signal->flags & SIGNAL_STOP_STOPPED) 282 return true; 283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 284 285 return false; 286 } 287 288 /* 289 * Check to see if any process groups have become orphaned as 290 * a result of our exiting, and if they have any stopped jobs, 291 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 292 */ 293 static void 294 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 295 { 296 struct pid *pgrp = task_pgrp(tsk); 297 struct task_struct *ignored_task = tsk; 298 299 if (!parent) 300 /* exit: our father is in a different pgrp than 301 * we are and we were the only connection outside. 302 */ 303 parent = tsk->real_parent; 304 else 305 /* reparent: our child is in a different pgrp than 306 * we are, and it was the only connection outside. 307 */ 308 ignored_task = NULL; 309 310 if (task_pgrp(parent) != pgrp && 311 task_session(parent) == task_session(tsk) && 312 will_become_orphaned_pgrp(pgrp, ignored_task) && 313 has_stopped_jobs(pgrp)) { 314 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 315 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 316 } 317 } 318 319 #ifdef CONFIG_MEMCG 320 /* 321 * A task is exiting. If it owned this mm, find a new owner for the mm. 322 */ 323 void mm_update_next_owner(struct mm_struct *mm) 324 { 325 struct task_struct *c, *g, *p = current; 326 327 retry: 328 /* 329 * If the exiting or execing task is not the owner, it's 330 * someone else's problem. 331 */ 332 if (mm->owner != p) 333 return; 334 /* 335 * The current owner is exiting/execing and there are no other 336 * candidates. Do not leave the mm pointing to a possibly 337 * freed task structure. 338 */ 339 if (atomic_read(&mm->mm_users) <= 1) { 340 mm->owner = NULL; 341 return; 342 } 343 344 read_lock(&tasklist_lock); 345 /* 346 * Search in the children 347 */ 348 list_for_each_entry(c, &p->children, sibling) { 349 if (c->mm == mm) 350 goto assign_new_owner; 351 } 352 353 /* 354 * Search in the siblings 355 */ 356 list_for_each_entry(c, &p->real_parent->children, sibling) { 357 if (c->mm == mm) 358 goto assign_new_owner; 359 } 360 361 /* 362 * Search through everything else, we should not get here often. 363 */ 364 for_each_process(g) { 365 if (g->flags & PF_KTHREAD) 366 continue; 367 for_each_thread(g, c) { 368 if (c->mm == mm) 369 goto assign_new_owner; 370 if (c->mm) 371 break; 372 } 373 } 374 read_unlock(&tasklist_lock); 375 /* 376 * We found no owner yet mm_users > 1: this implies that we are 377 * most likely racing with swapoff (try_to_unuse()) or /proc or 378 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 379 */ 380 mm->owner = NULL; 381 return; 382 383 assign_new_owner: 384 BUG_ON(c == p); 385 get_task_struct(c); 386 /* 387 * The task_lock protects c->mm from changing. 388 * We always want mm->owner->mm == mm 389 */ 390 task_lock(c); 391 /* 392 * Delay read_unlock() till we have the task_lock() 393 * to ensure that c does not slip away underneath us 394 */ 395 read_unlock(&tasklist_lock); 396 if (c->mm != mm) { 397 task_unlock(c); 398 put_task_struct(c); 399 goto retry; 400 } 401 mm->owner = c; 402 task_unlock(c); 403 put_task_struct(c); 404 } 405 #endif /* CONFIG_MEMCG */ 406 407 /* 408 * Turn us into a lazy TLB process if we 409 * aren't already.. 410 */ 411 static void exit_mm(struct task_struct *tsk) 412 { 413 struct mm_struct *mm = tsk->mm; 414 struct core_state *core_state; 415 416 mm_release(tsk, mm); 417 if (!mm) 418 return; 419 sync_mm_rss(mm); 420 /* 421 * Serialize with any possible pending coredump. 422 * We must hold mmap_sem around checking core_state 423 * and clearing tsk->mm. The core-inducing thread 424 * will increment ->nr_threads for each thread in the 425 * group with ->mm != NULL. 426 */ 427 down_read(&mm->mmap_sem); 428 core_state = mm->core_state; 429 if (core_state) { 430 struct core_thread self; 431 432 up_read(&mm->mmap_sem); 433 434 self.task = tsk; 435 self.next = xchg(&core_state->dumper.next, &self); 436 /* 437 * Implies mb(), the result of xchg() must be visible 438 * to core_state->dumper. 439 */ 440 if (atomic_dec_and_test(&core_state->nr_threads)) 441 complete(&core_state->startup); 442 443 for (;;) { 444 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 445 if (!self.task) /* see coredump_finish() */ 446 break; 447 freezable_schedule(); 448 } 449 __set_task_state(tsk, TASK_RUNNING); 450 down_read(&mm->mmap_sem); 451 } 452 atomic_inc(&mm->mm_count); 453 BUG_ON(mm != tsk->active_mm); 454 /* more a memory barrier than a real lock */ 455 task_lock(tsk); 456 tsk->mm = NULL; 457 up_read(&mm->mmap_sem); 458 enter_lazy_tlb(mm, current); 459 task_unlock(tsk); 460 mm_update_next_owner(mm); 461 mmput(mm); 462 clear_thread_flag(TIF_MEMDIE); 463 } 464 465 /* 466 * When we die, we re-parent all our children, and try to: 467 * 1. give them to another thread in our thread group, if such a member exists 468 * 2. give it to the first ancestor process which prctl'd itself as a 469 * child_subreaper for its children (like a service manager) 470 * 3. give it to the init process (PID 1) in our pid namespace 471 */ 472 static struct task_struct *find_new_reaper(struct task_struct *father) 473 __releases(&tasklist_lock) 474 __acquires(&tasklist_lock) 475 { 476 struct pid_namespace *pid_ns = task_active_pid_ns(father); 477 struct task_struct *thread; 478 479 thread = father; 480 while_each_thread(father, thread) { 481 if (thread->flags & PF_EXITING) 482 continue; 483 if (unlikely(pid_ns->child_reaper == father)) 484 pid_ns->child_reaper = thread; 485 return thread; 486 } 487 488 if (unlikely(pid_ns->child_reaper == father)) { 489 write_unlock_irq(&tasklist_lock); 490 if (unlikely(pid_ns == &init_pid_ns)) { 491 panic("Attempted to kill init! exitcode=0x%08x\n", 492 father->signal->group_exit_code ?: 493 father->exit_code); 494 } 495 496 zap_pid_ns_processes(pid_ns); 497 write_lock_irq(&tasklist_lock); 498 } else if (father->signal->has_child_subreaper) { 499 struct task_struct *reaper; 500 501 /* 502 * Find the first ancestor marked as child_subreaper. 503 * Note that the code below checks same_thread_group(reaper, 504 * pid_ns->child_reaper). This is what we need to DTRT in a 505 * PID namespace. However we still need the check above, see 506 * http://marc.info/?l=linux-kernel&m=131385460420380 507 */ 508 for (reaper = father->real_parent; 509 reaper != &init_task; 510 reaper = reaper->real_parent) { 511 if (same_thread_group(reaper, pid_ns->child_reaper)) 512 break; 513 if (!reaper->signal->is_child_subreaper) 514 continue; 515 thread = reaper; 516 do { 517 if (!(thread->flags & PF_EXITING)) 518 return reaper; 519 } while_each_thread(reaper, thread); 520 } 521 } 522 523 return pid_ns->child_reaper; 524 } 525 526 /* 527 * Any that need to be release_task'd are put on the @dead list. 528 */ 529 static void reparent_leader(struct task_struct *father, struct task_struct *p, 530 struct list_head *dead) 531 { 532 list_move_tail(&p->sibling, &p->real_parent->children); 533 534 if (p->exit_state == EXIT_DEAD) 535 return; 536 /* 537 * If this is a threaded reparent there is no need to 538 * notify anyone anything has happened. 539 */ 540 if (same_thread_group(p->real_parent, father)) 541 return; 542 543 /* We don't want people slaying init. */ 544 p->exit_signal = SIGCHLD; 545 546 /* If it has exited notify the new parent about this child's death. */ 547 if (!p->ptrace && 548 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 549 if (do_notify_parent(p, p->exit_signal)) { 550 p->exit_state = EXIT_DEAD; 551 list_move_tail(&p->sibling, dead); 552 } 553 } 554 555 kill_orphaned_pgrp(p, father); 556 } 557 558 static void forget_original_parent(struct task_struct *father) 559 { 560 struct task_struct *p, *n, *reaper; 561 LIST_HEAD(dead_children); 562 563 write_lock_irq(&tasklist_lock); 564 /* 565 * Note that exit_ptrace() and find_new_reaper() might 566 * drop tasklist_lock and reacquire it. 567 */ 568 exit_ptrace(father); 569 reaper = find_new_reaper(father); 570 571 list_for_each_entry_safe(p, n, &father->children, sibling) { 572 struct task_struct *t = p; 573 574 do { 575 t->real_parent = reaper; 576 if (t->parent == father) { 577 BUG_ON(t->ptrace); 578 t->parent = t->real_parent; 579 } 580 if (t->pdeath_signal) 581 group_send_sig_info(t->pdeath_signal, 582 SEND_SIG_NOINFO, t); 583 } while_each_thread(p, t); 584 reparent_leader(father, p, &dead_children); 585 } 586 write_unlock_irq(&tasklist_lock); 587 588 BUG_ON(!list_empty(&father->children)); 589 590 list_for_each_entry_safe(p, n, &dead_children, sibling) { 591 list_del_init(&p->sibling); 592 release_task(p); 593 } 594 } 595 596 /* 597 * Send signals to all our closest relatives so that they know 598 * to properly mourn us.. 599 */ 600 static void exit_notify(struct task_struct *tsk, int group_dead) 601 { 602 bool autoreap; 603 604 /* 605 * This does two things: 606 * 607 * A. Make init inherit all the child processes 608 * B. Check to see if any process groups have become orphaned 609 * as a result of our exiting, and if they have any stopped 610 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 611 */ 612 forget_original_parent(tsk); 613 614 write_lock_irq(&tasklist_lock); 615 if (group_dead) 616 kill_orphaned_pgrp(tsk->group_leader, NULL); 617 618 if (unlikely(tsk->ptrace)) { 619 int sig = thread_group_leader(tsk) && 620 thread_group_empty(tsk) && 621 !ptrace_reparented(tsk) ? 622 tsk->exit_signal : SIGCHLD; 623 autoreap = do_notify_parent(tsk, sig); 624 } else if (thread_group_leader(tsk)) { 625 autoreap = thread_group_empty(tsk) && 626 do_notify_parent(tsk, tsk->exit_signal); 627 } else { 628 autoreap = true; 629 } 630 631 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 632 633 /* mt-exec, de_thread() is waiting for group leader */ 634 if (unlikely(tsk->signal->notify_count < 0)) 635 wake_up_process(tsk->signal->group_exit_task); 636 write_unlock_irq(&tasklist_lock); 637 638 /* If the process is dead, release it - nobody will wait for it */ 639 if (autoreap) 640 release_task(tsk); 641 } 642 643 #ifdef CONFIG_DEBUG_STACK_USAGE 644 static void check_stack_usage(void) 645 { 646 static DEFINE_SPINLOCK(low_water_lock); 647 static int lowest_to_date = THREAD_SIZE; 648 unsigned long free; 649 650 free = stack_not_used(current); 651 652 if (free >= lowest_to_date) 653 return; 654 655 spin_lock(&low_water_lock); 656 if (free < lowest_to_date) { 657 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n", 658 current->comm, task_pid_nr(current), free); 659 lowest_to_date = free; 660 } 661 spin_unlock(&low_water_lock); 662 } 663 #else 664 static inline void check_stack_usage(void) {} 665 #endif 666 667 void do_exit(long code) 668 { 669 struct task_struct *tsk = current; 670 int group_dead; 671 TASKS_RCU(int tasks_rcu_i); 672 673 profile_task_exit(tsk); 674 675 WARN_ON(blk_needs_flush_plug(tsk)); 676 677 if (unlikely(in_interrupt())) 678 panic("Aiee, killing interrupt handler!"); 679 if (unlikely(!tsk->pid)) 680 panic("Attempted to kill the idle task!"); 681 682 /* 683 * If do_exit is called because this processes oopsed, it's possible 684 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 685 * continuing. Amongst other possible reasons, this is to prevent 686 * mm_release()->clear_child_tid() from writing to a user-controlled 687 * kernel address. 688 */ 689 set_fs(USER_DS); 690 691 ptrace_event(PTRACE_EVENT_EXIT, code); 692 693 validate_creds_for_do_exit(tsk); 694 695 /* 696 * We're taking recursive faults here in do_exit. Safest is to just 697 * leave this task alone and wait for reboot. 698 */ 699 if (unlikely(tsk->flags & PF_EXITING)) { 700 pr_alert("Fixing recursive fault but reboot is needed!\n"); 701 /* 702 * We can do this unlocked here. The futex code uses 703 * this flag just to verify whether the pi state 704 * cleanup has been done or not. In the worst case it 705 * loops once more. We pretend that the cleanup was 706 * done as there is no way to return. Either the 707 * OWNER_DIED bit is set by now or we push the blocked 708 * task into the wait for ever nirwana as well. 709 */ 710 tsk->flags |= PF_EXITPIDONE; 711 set_current_state(TASK_UNINTERRUPTIBLE); 712 schedule(); 713 } 714 715 exit_signals(tsk); /* sets PF_EXITING */ 716 /* 717 * tsk->flags are checked in the futex code to protect against 718 * an exiting task cleaning up the robust pi futexes. 719 */ 720 smp_mb(); 721 raw_spin_unlock_wait(&tsk->pi_lock); 722 723 if (unlikely(in_atomic())) 724 pr_info("note: %s[%d] exited with preempt_count %d\n", 725 current->comm, task_pid_nr(current), 726 preempt_count()); 727 728 acct_update_integrals(tsk); 729 /* sync mm's RSS info before statistics gathering */ 730 if (tsk->mm) 731 sync_mm_rss(tsk->mm); 732 group_dead = atomic_dec_and_test(&tsk->signal->live); 733 if (group_dead) { 734 hrtimer_cancel(&tsk->signal->real_timer); 735 exit_itimers(tsk->signal); 736 if (tsk->mm) 737 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 738 } 739 acct_collect(code, group_dead); 740 if (group_dead) 741 tty_audit_exit(); 742 audit_free(tsk); 743 744 tsk->exit_code = code; 745 taskstats_exit(tsk, group_dead); 746 747 exit_mm(tsk); 748 749 if (group_dead) 750 acct_process(); 751 trace_sched_process_exit(tsk); 752 753 exit_sem(tsk); 754 exit_shm(tsk); 755 exit_files(tsk); 756 exit_fs(tsk); 757 if (group_dead) 758 disassociate_ctty(1); 759 exit_task_namespaces(tsk); 760 exit_task_work(tsk); 761 exit_thread(); 762 763 /* 764 * Flush inherited counters to the parent - before the parent 765 * gets woken up by child-exit notifications. 766 * 767 * because of cgroup mode, must be called before cgroup_exit() 768 */ 769 perf_event_exit_task(tsk); 770 771 cgroup_exit(tsk); 772 773 module_put(task_thread_info(tsk)->exec_domain->module); 774 775 /* 776 * FIXME: do that only when needed, using sched_exit tracepoint 777 */ 778 flush_ptrace_hw_breakpoint(tsk); 779 780 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 781 exit_notify(tsk, group_dead); 782 proc_exit_connector(tsk); 783 #ifdef CONFIG_NUMA 784 task_lock(tsk); 785 mpol_put(tsk->mempolicy); 786 tsk->mempolicy = NULL; 787 task_unlock(tsk); 788 #endif 789 #ifdef CONFIG_FUTEX 790 if (unlikely(current->pi_state_cache)) 791 kfree(current->pi_state_cache); 792 #endif 793 /* 794 * Make sure we are holding no locks: 795 */ 796 debug_check_no_locks_held(); 797 /* 798 * We can do this unlocked here. The futex code uses this flag 799 * just to verify whether the pi state cleanup has been done 800 * or not. In the worst case it loops once more. 801 */ 802 tsk->flags |= PF_EXITPIDONE; 803 804 if (tsk->io_context) 805 exit_io_context(tsk); 806 807 if (tsk->splice_pipe) 808 free_pipe_info(tsk->splice_pipe); 809 810 if (tsk->task_frag.page) 811 put_page(tsk->task_frag.page); 812 813 validate_creds_for_do_exit(tsk); 814 815 check_stack_usage(); 816 preempt_disable(); 817 if (tsk->nr_dirtied) 818 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 819 exit_rcu(); 820 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 821 822 /* 823 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 824 * when the following two conditions become true. 825 * - There is race condition of mmap_sem (It is acquired by 826 * exit_mm()), and 827 * - SMI occurs before setting TASK_RUNINNG. 828 * (or hypervisor of virtual machine switches to other guest) 829 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 830 * 831 * To avoid it, we have to wait for releasing tsk->pi_lock which 832 * is held by try_to_wake_up() 833 */ 834 smp_mb(); 835 raw_spin_unlock_wait(&tsk->pi_lock); 836 837 /* causes final put_task_struct in finish_task_switch(). */ 838 tsk->state = TASK_DEAD; 839 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 840 schedule(); 841 BUG(); 842 /* Avoid "noreturn function does return". */ 843 for (;;) 844 cpu_relax(); /* For when BUG is null */ 845 } 846 EXPORT_SYMBOL_GPL(do_exit); 847 848 void complete_and_exit(struct completion *comp, long code) 849 { 850 if (comp) 851 complete(comp); 852 853 do_exit(code); 854 } 855 EXPORT_SYMBOL(complete_and_exit); 856 857 SYSCALL_DEFINE1(exit, int, error_code) 858 { 859 do_exit((error_code&0xff)<<8); 860 } 861 862 /* 863 * Take down every thread in the group. This is called by fatal signals 864 * as well as by sys_exit_group (below). 865 */ 866 void 867 do_group_exit(int exit_code) 868 { 869 struct signal_struct *sig = current->signal; 870 871 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 872 873 if (signal_group_exit(sig)) 874 exit_code = sig->group_exit_code; 875 else if (!thread_group_empty(current)) { 876 struct sighand_struct *const sighand = current->sighand; 877 878 spin_lock_irq(&sighand->siglock); 879 if (signal_group_exit(sig)) 880 /* Another thread got here before we took the lock. */ 881 exit_code = sig->group_exit_code; 882 else { 883 sig->group_exit_code = exit_code; 884 sig->flags = SIGNAL_GROUP_EXIT; 885 zap_other_threads(current); 886 } 887 spin_unlock_irq(&sighand->siglock); 888 } 889 890 do_exit(exit_code); 891 /* NOTREACHED */ 892 } 893 894 /* 895 * this kills every thread in the thread group. Note that any externally 896 * wait4()-ing process will get the correct exit code - even if this 897 * thread is not the thread group leader. 898 */ 899 SYSCALL_DEFINE1(exit_group, int, error_code) 900 { 901 do_group_exit((error_code & 0xff) << 8); 902 /* NOTREACHED */ 903 return 0; 904 } 905 906 struct wait_opts { 907 enum pid_type wo_type; 908 int wo_flags; 909 struct pid *wo_pid; 910 911 struct siginfo __user *wo_info; 912 int __user *wo_stat; 913 struct rusage __user *wo_rusage; 914 915 wait_queue_t child_wait; 916 int notask_error; 917 }; 918 919 static inline 920 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 921 { 922 if (type != PIDTYPE_PID) 923 task = task->group_leader; 924 return task->pids[type].pid; 925 } 926 927 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 928 { 929 return wo->wo_type == PIDTYPE_MAX || 930 task_pid_type(p, wo->wo_type) == wo->wo_pid; 931 } 932 933 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 934 { 935 if (!eligible_pid(wo, p)) 936 return 0; 937 /* Wait for all children (clone and not) if __WALL is set; 938 * otherwise, wait for clone children *only* if __WCLONE is 939 * set; otherwise, wait for non-clone children *only*. (Note: 940 * A "clone" child here is one that reports to its parent 941 * using a signal other than SIGCHLD.) */ 942 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 943 && !(wo->wo_flags & __WALL)) 944 return 0; 945 946 return 1; 947 } 948 949 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 950 pid_t pid, uid_t uid, int why, int status) 951 { 952 struct siginfo __user *infop; 953 int retval = wo->wo_rusage 954 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 955 956 put_task_struct(p); 957 infop = wo->wo_info; 958 if (infop) { 959 if (!retval) 960 retval = put_user(SIGCHLD, &infop->si_signo); 961 if (!retval) 962 retval = put_user(0, &infop->si_errno); 963 if (!retval) 964 retval = put_user((short)why, &infop->si_code); 965 if (!retval) 966 retval = put_user(pid, &infop->si_pid); 967 if (!retval) 968 retval = put_user(uid, &infop->si_uid); 969 if (!retval) 970 retval = put_user(status, &infop->si_status); 971 } 972 if (!retval) 973 retval = pid; 974 return retval; 975 } 976 977 /* 978 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 979 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 980 * the lock and this task is uninteresting. If we return nonzero, we have 981 * released the lock and the system call should return. 982 */ 983 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 984 { 985 unsigned long state; 986 int retval, status, traced; 987 pid_t pid = task_pid_vnr(p); 988 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 989 struct siginfo __user *infop; 990 991 if (!likely(wo->wo_flags & WEXITED)) 992 return 0; 993 994 if (unlikely(wo->wo_flags & WNOWAIT)) { 995 int exit_code = p->exit_code; 996 int why; 997 998 get_task_struct(p); 999 read_unlock(&tasklist_lock); 1000 if ((exit_code & 0x7f) == 0) { 1001 why = CLD_EXITED; 1002 status = exit_code >> 8; 1003 } else { 1004 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1005 status = exit_code & 0x7f; 1006 } 1007 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1008 } 1009 1010 traced = ptrace_reparented(p); 1011 /* 1012 * Move the task's state to DEAD/TRACE, only one thread can do this. 1013 */ 1014 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD; 1015 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1016 return 0; 1017 /* 1018 * It can be ptraced but not reparented, check 1019 * thread_group_leader() to filter out sub-threads. 1020 */ 1021 if (likely(!traced) && thread_group_leader(p)) { 1022 struct signal_struct *psig; 1023 struct signal_struct *sig; 1024 unsigned long maxrss; 1025 cputime_t tgutime, tgstime; 1026 1027 /* 1028 * The resource counters for the group leader are in its 1029 * own task_struct. Those for dead threads in the group 1030 * are in its signal_struct, as are those for the child 1031 * processes it has previously reaped. All these 1032 * accumulate in the parent's signal_struct c* fields. 1033 * 1034 * We don't bother to take a lock here to protect these 1035 * p->signal fields, because they are only touched by 1036 * __exit_signal, which runs with tasklist_lock 1037 * write-locked anyway, and so is excluded here. We do 1038 * need to protect the access to parent->signal fields, 1039 * as other threads in the parent group can be right 1040 * here reaping other children at the same time. 1041 * 1042 * We use thread_group_cputime_adjusted() to get times for 1043 * the thread group, which consolidates times for all threads 1044 * in the group including the group leader. 1045 */ 1046 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1047 spin_lock_irq(&p->real_parent->sighand->siglock); 1048 psig = p->real_parent->signal; 1049 sig = p->signal; 1050 write_seqlock(&psig->stats_lock); 1051 psig->cutime += tgutime + sig->cutime; 1052 psig->cstime += tgstime + sig->cstime; 1053 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1054 psig->cmin_flt += 1055 p->min_flt + sig->min_flt + sig->cmin_flt; 1056 psig->cmaj_flt += 1057 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1058 psig->cnvcsw += 1059 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1060 psig->cnivcsw += 1061 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1062 psig->cinblock += 1063 task_io_get_inblock(p) + 1064 sig->inblock + sig->cinblock; 1065 psig->coublock += 1066 task_io_get_oublock(p) + 1067 sig->oublock + sig->coublock; 1068 maxrss = max(sig->maxrss, sig->cmaxrss); 1069 if (psig->cmaxrss < maxrss) 1070 psig->cmaxrss = maxrss; 1071 task_io_accounting_add(&psig->ioac, &p->ioac); 1072 task_io_accounting_add(&psig->ioac, &sig->ioac); 1073 write_sequnlock(&psig->stats_lock); 1074 spin_unlock_irq(&p->real_parent->sighand->siglock); 1075 } 1076 1077 /* 1078 * Now we are sure this task is interesting, and no other 1079 * thread can reap it because we its state == DEAD/TRACE. 1080 */ 1081 read_unlock(&tasklist_lock); 1082 1083 retval = wo->wo_rusage 1084 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1085 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1086 ? p->signal->group_exit_code : p->exit_code; 1087 if (!retval && wo->wo_stat) 1088 retval = put_user(status, wo->wo_stat); 1089 1090 infop = wo->wo_info; 1091 if (!retval && infop) 1092 retval = put_user(SIGCHLD, &infop->si_signo); 1093 if (!retval && infop) 1094 retval = put_user(0, &infop->si_errno); 1095 if (!retval && infop) { 1096 int why; 1097 1098 if ((status & 0x7f) == 0) { 1099 why = CLD_EXITED; 1100 status >>= 8; 1101 } else { 1102 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1103 status &= 0x7f; 1104 } 1105 retval = put_user((short)why, &infop->si_code); 1106 if (!retval) 1107 retval = put_user(status, &infop->si_status); 1108 } 1109 if (!retval && infop) 1110 retval = put_user(pid, &infop->si_pid); 1111 if (!retval && infop) 1112 retval = put_user(uid, &infop->si_uid); 1113 if (!retval) 1114 retval = pid; 1115 1116 if (state == EXIT_TRACE) { 1117 write_lock_irq(&tasklist_lock); 1118 /* We dropped tasklist, ptracer could die and untrace */ 1119 ptrace_unlink(p); 1120 1121 /* If parent wants a zombie, don't release it now */ 1122 state = EXIT_ZOMBIE; 1123 if (do_notify_parent(p, p->exit_signal)) 1124 state = EXIT_DEAD; 1125 p->exit_state = state; 1126 write_unlock_irq(&tasklist_lock); 1127 } 1128 if (state == EXIT_DEAD) 1129 release_task(p); 1130 1131 return retval; 1132 } 1133 1134 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1135 { 1136 if (ptrace) { 1137 if (task_is_stopped_or_traced(p) && 1138 !(p->jobctl & JOBCTL_LISTENING)) 1139 return &p->exit_code; 1140 } else { 1141 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1142 return &p->signal->group_exit_code; 1143 } 1144 return NULL; 1145 } 1146 1147 /** 1148 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1149 * @wo: wait options 1150 * @ptrace: is the wait for ptrace 1151 * @p: task to wait for 1152 * 1153 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1154 * 1155 * CONTEXT: 1156 * read_lock(&tasklist_lock), which is released if return value is 1157 * non-zero. Also, grabs and releases @p->sighand->siglock. 1158 * 1159 * RETURNS: 1160 * 0 if wait condition didn't exist and search for other wait conditions 1161 * should continue. Non-zero return, -errno on failure and @p's pid on 1162 * success, implies that tasklist_lock is released and wait condition 1163 * search should terminate. 1164 */ 1165 static int wait_task_stopped(struct wait_opts *wo, 1166 int ptrace, struct task_struct *p) 1167 { 1168 struct siginfo __user *infop; 1169 int retval, exit_code, *p_code, why; 1170 uid_t uid = 0; /* unneeded, required by compiler */ 1171 pid_t pid; 1172 1173 /* 1174 * Traditionally we see ptrace'd stopped tasks regardless of options. 1175 */ 1176 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1177 return 0; 1178 1179 if (!task_stopped_code(p, ptrace)) 1180 return 0; 1181 1182 exit_code = 0; 1183 spin_lock_irq(&p->sighand->siglock); 1184 1185 p_code = task_stopped_code(p, ptrace); 1186 if (unlikely(!p_code)) 1187 goto unlock_sig; 1188 1189 exit_code = *p_code; 1190 if (!exit_code) 1191 goto unlock_sig; 1192 1193 if (!unlikely(wo->wo_flags & WNOWAIT)) 1194 *p_code = 0; 1195 1196 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1197 unlock_sig: 1198 spin_unlock_irq(&p->sighand->siglock); 1199 if (!exit_code) 1200 return 0; 1201 1202 /* 1203 * Now we are pretty sure this task is interesting. 1204 * Make sure it doesn't get reaped out from under us while we 1205 * give up the lock and then examine it below. We don't want to 1206 * keep holding onto the tasklist_lock while we call getrusage and 1207 * possibly take page faults for user memory. 1208 */ 1209 get_task_struct(p); 1210 pid = task_pid_vnr(p); 1211 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1212 read_unlock(&tasklist_lock); 1213 1214 if (unlikely(wo->wo_flags & WNOWAIT)) 1215 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1216 1217 retval = wo->wo_rusage 1218 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1219 if (!retval && wo->wo_stat) 1220 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1221 1222 infop = wo->wo_info; 1223 if (!retval && infop) 1224 retval = put_user(SIGCHLD, &infop->si_signo); 1225 if (!retval && infop) 1226 retval = put_user(0, &infop->si_errno); 1227 if (!retval && infop) 1228 retval = put_user((short)why, &infop->si_code); 1229 if (!retval && infop) 1230 retval = put_user(exit_code, &infop->si_status); 1231 if (!retval && infop) 1232 retval = put_user(pid, &infop->si_pid); 1233 if (!retval && infop) 1234 retval = put_user(uid, &infop->si_uid); 1235 if (!retval) 1236 retval = pid; 1237 put_task_struct(p); 1238 1239 BUG_ON(!retval); 1240 return retval; 1241 } 1242 1243 /* 1244 * Handle do_wait work for one task in a live, non-stopped state. 1245 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1246 * the lock and this task is uninteresting. If we return nonzero, we have 1247 * released the lock and the system call should return. 1248 */ 1249 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1250 { 1251 int retval; 1252 pid_t pid; 1253 uid_t uid; 1254 1255 if (!unlikely(wo->wo_flags & WCONTINUED)) 1256 return 0; 1257 1258 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1259 return 0; 1260 1261 spin_lock_irq(&p->sighand->siglock); 1262 /* Re-check with the lock held. */ 1263 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1264 spin_unlock_irq(&p->sighand->siglock); 1265 return 0; 1266 } 1267 if (!unlikely(wo->wo_flags & WNOWAIT)) 1268 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1269 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1270 spin_unlock_irq(&p->sighand->siglock); 1271 1272 pid = task_pid_vnr(p); 1273 get_task_struct(p); 1274 read_unlock(&tasklist_lock); 1275 1276 if (!wo->wo_info) { 1277 retval = wo->wo_rusage 1278 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1279 put_task_struct(p); 1280 if (!retval && wo->wo_stat) 1281 retval = put_user(0xffff, wo->wo_stat); 1282 if (!retval) 1283 retval = pid; 1284 } else { 1285 retval = wait_noreap_copyout(wo, p, pid, uid, 1286 CLD_CONTINUED, SIGCONT); 1287 BUG_ON(retval == 0); 1288 } 1289 1290 return retval; 1291 } 1292 1293 /* 1294 * Consider @p for a wait by @parent. 1295 * 1296 * -ECHILD should be in ->notask_error before the first call. 1297 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1298 * Returns zero if the search for a child should continue; 1299 * then ->notask_error is 0 if @p is an eligible child, 1300 * or another error from security_task_wait(), or still -ECHILD. 1301 */ 1302 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1303 struct task_struct *p) 1304 { 1305 int ret; 1306 1307 if (unlikely(p->exit_state == EXIT_DEAD)) 1308 return 0; 1309 1310 ret = eligible_child(wo, p); 1311 if (!ret) 1312 return ret; 1313 1314 ret = security_task_wait(p); 1315 if (unlikely(ret < 0)) { 1316 /* 1317 * If we have not yet seen any eligible child, 1318 * then let this error code replace -ECHILD. 1319 * A permission error will give the user a clue 1320 * to look for security policy problems, rather 1321 * than for mysterious wait bugs. 1322 */ 1323 if (wo->notask_error) 1324 wo->notask_error = ret; 1325 return 0; 1326 } 1327 1328 if (unlikely(p->exit_state == EXIT_TRACE)) { 1329 /* 1330 * ptrace == 0 means we are the natural parent. In this case 1331 * we should clear notask_error, debugger will notify us. 1332 */ 1333 if (likely(!ptrace)) 1334 wo->notask_error = 0; 1335 return 0; 1336 } 1337 1338 if (likely(!ptrace) && unlikely(p->ptrace)) { 1339 /* 1340 * If it is traced by its real parent's group, just pretend 1341 * the caller is ptrace_do_wait() and reap this child if it 1342 * is zombie. 1343 * 1344 * This also hides group stop state from real parent; otherwise 1345 * a single stop can be reported twice as group and ptrace stop. 1346 * If a ptracer wants to distinguish these two events for its 1347 * own children it should create a separate process which takes 1348 * the role of real parent. 1349 */ 1350 if (!ptrace_reparented(p)) 1351 ptrace = 1; 1352 } 1353 1354 /* slay zombie? */ 1355 if (p->exit_state == EXIT_ZOMBIE) { 1356 /* we don't reap group leaders with subthreads */ 1357 if (!delay_group_leader(p)) { 1358 /* 1359 * A zombie ptracee is only visible to its ptracer. 1360 * Notification and reaping will be cascaded to the 1361 * real parent when the ptracer detaches. 1362 */ 1363 if (unlikely(ptrace) || likely(!p->ptrace)) 1364 return wait_task_zombie(wo, p); 1365 } 1366 1367 /* 1368 * Allow access to stopped/continued state via zombie by 1369 * falling through. Clearing of notask_error is complex. 1370 * 1371 * When !@ptrace: 1372 * 1373 * If WEXITED is set, notask_error should naturally be 1374 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1375 * so, if there are live subthreads, there are events to 1376 * wait for. If all subthreads are dead, it's still safe 1377 * to clear - this function will be called again in finite 1378 * amount time once all the subthreads are released and 1379 * will then return without clearing. 1380 * 1381 * When @ptrace: 1382 * 1383 * Stopped state is per-task and thus can't change once the 1384 * target task dies. Only continued and exited can happen. 1385 * Clear notask_error if WCONTINUED | WEXITED. 1386 */ 1387 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1388 wo->notask_error = 0; 1389 } else { 1390 /* 1391 * @p is alive and it's gonna stop, continue or exit, so 1392 * there always is something to wait for. 1393 */ 1394 wo->notask_error = 0; 1395 } 1396 1397 /* 1398 * Wait for stopped. Depending on @ptrace, different stopped state 1399 * is used and the two don't interact with each other. 1400 */ 1401 ret = wait_task_stopped(wo, ptrace, p); 1402 if (ret) 1403 return ret; 1404 1405 /* 1406 * Wait for continued. There's only one continued state and the 1407 * ptracer can consume it which can confuse the real parent. Don't 1408 * use WCONTINUED from ptracer. You don't need or want it. 1409 */ 1410 return wait_task_continued(wo, p); 1411 } 1412 1413 /* 1414 * Do the work of do_wait() for one thread in the group, @tsk. 1415 * 1416 * -ECHILD should be in ->notask_error before the first call. 1417 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1418 * Returns zero if the search for a child should continue; then 1419 * ->notask_error is 0 if there were any eligible children, 1420 * or another error from security_task_wait(), or still -ECHILD. 1421 */ 1422 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1423 { 1424 struct task_struct *p; 1425 1426 list_for_each_entry(p, &tsk->children, sibling) { 1427 int ret = wait_consider_task(wo, 0, p); 1428 1429 if (ret) 1430 return ret; 1431 } 1432 1433 return 0; 1434 } 1435 1436 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1437 { 1438 struct task_struct *p; 1439 1440 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1441 int ret = wait_consider_task(wo, 1, p); 1442 1443 if (ret) 1444 return ret; 1445 } 1446 1447 return 0; 1448 } 1449 1450 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1451 int sync, void *key) 1452 { 1453 struct wait_opts *wo = container_of(wait, struct wait_opts, 1454 child_wait); 1455 struct task_struct *p = key; 1456 1457 if (!eligible_pid(wo, p)) 1458 return 0; 1459 1460 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1461 return 0; 1462 1463 return default_wake_function(wait, mode, sync, key); 1464 } 1465 1466 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1467 { 1468 __wake_up_sync_key(&parent->signal->wait_chldexit, 1469 TASK_INTERRUPTIBLE, 1, p); 1470 } 1471 1472 static long do_wait(struct wait_opts *wo) 1473 { 1474 struct task_struct *tsk; 1475 int retval; 1476 1477 trace_sched_process_wait(wo->wo_pid); 1478 1479 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1480 wo->child_wait.private = current; 1481 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1482 repeat: 1483 /* 1484 * If there is nothing that can match our critiera just get out. 1485 * We will clear ->notask_error to zero if we see any child that 1486 * might later match our criteria, even if we are not able to reap 1487 * it yet. 1488 */ 1489 wo->notask_error = -ECHILD; 1490 if ((wo->wo_type < PIDTYPE_MAX) && 1491 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1492 goto notask; 1493 1494 set_current_state(TASK_INTERRUPTIBLE); 1495 read_lock(&tasklist_lock); 1496 tsk = current; 1497 do { 1498 retval = do_wait_thread(wo, tsk); 1499 if (retval) 1500 goto end; 1501 1502 retval = ptrace_do_wait(wo, tsk); 1503 if (retval) 1504 goto end; 1505 1506 if (wo->wo_flags & __WNOTHREAD) 1507 break; 1508 } while_each_thread(current, tsk); 1509 read_unlock(&tasklist_lock); 1510 1511 notask: 1512 retval = wo->notask_error; 1513 if (!retval && !(wo->wo_flags & WNOHANG)) { 1514 retval = -ERESTARTSYS; 1515 if (!signal_pending(current)) { 1516 schedule(); 1517 goto repeat; 1518 } 1519 } 1520 end: 1521 __set_current_state(TASK_RUNNING); 1522 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1523 return retval; 1524 } 1525 1526 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1527 infop, int, options, struct rusage __user *, ru) 1528 { 1529 struct wait_opts wo; 1530 struct pid *pid = NULL; 1531 enum pid_type type; 1532 long ret; 1533 1534 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1535 return -EINVAL; 1536 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1537 return -EINVAL; 1538 1539 switch (which) { 1540 case P_ALL: 1541 type = PIDTYPE_MAX; 1542 break; 1543 case P_PID: 1544 type = PIDTYPE_PID; 1545 if (upid <= 0) 1546 return -EINVAL; 1547 break; 1548 case P_PGID: 1549 type = PIDTYPE_PGID; 1550 if (upid <= 0) 1551 return -EINVAL; 1552 break; 1553 default: 1554 return -EINVAL; 1555 } 1556 1557 if (type < PIDTYPE_MAX) 1558 pid = find_get_pid(upid); 1559 1560 wo.wo_type = type; 1561 wo.wo_pid = pid; 1562 wo.wo_flags = options; 1563 wo.wo_info = infop; 1564 wo.wo_stat = NULL; 1565 wo.wo_rusage = ru; 1566 ret = do_wait(&wo); 1567 1568 if (ret > 0) { 1569 ret = 0; 1570 } else if (infop) { 1571 /* 1572 * For a WNOHANG return, clear out all the fields 1573 * we would set so the user can easily tell the 1574 * difference. 1575 */ 1576 if (!ret) 1577 ret = put_user(0, &infop->si_signo); 1578 if (!ret) 1579 ret = put_user(0, &infop->si_errno); 1580 if (!ret) 1581 ret = put_user(0, &infop->si_code); 1582 if (!ret) 1583 ret = put_user(0, &infop->si_pid); 1584 if (!ret) 1585 ret = put_user(0, &infop->si_uid); 1586 if (!ret) 1587 ret = put_user(0, &infop->si_status); 1588 } 1589 1590 put_pid(pid); 1591 return ret; 1592 } 1593 1594 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1595 int, options, struct rusage __user *, ru) 1596 { 1597 struct wait_opts wo; 1598 struct pid *pid = NULL; 1599 enum pid_type type; 1600 long ret; 1601 1602 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1603 __WNOTHREAD|__WCLONE|__WALL)) 1604 return -EINVAL; 1605 1606 if (upid == -1) 1607 type = PIDTYPE_MAX; 1608 else if (upid < 0) { 1609 type = PIDTYPE_PGID; 1610 pid = find_get_pid(-upid); 1611 } else if (upid == 0) { 1612 type = PIDTYPE_PGID; 1613 pid = get_task_pid(current, PIDTYPE_PGID); 1614 } else /* upid > 0 */ { 1615 type = PIDTYPE_PID; 1616 pid = find_get_pid(upid); 1617 } 1618 1619 wo.wo_type = type; 1620 wo.wo_pid = pid; 1621 wo.wo_flags = options | WEXITED; 1622 wo.wo_info = NULL; 1623 wo.wo_stat = stat_addr; 1624 wo.wo_rusage = ru; 1625 ret = do_wait(&wo); 1626 put_pid(pid); 1627 1628 return ret; 1629 } 1630 1631 #ifdef __ARCH_WANT_SYS_WAITPID 1632 1633 /* 1634 * sys_waitpid() remains for compatibility. waitpid() should be 1635 * implemented by calling sys_wait4() from libc.a. 1636 */ 1637 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1638 { 1639 return sys_wait4(pid, stat_addr, options, NULL); 1640 } 1641 1642 #endif 1643