xref: /openbmc/linux/kernel/exit.c (revision 56bbd862)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 #include <linux/random.h>
58 
59 #include <linux/uaccess.h>
60 #include <asm/unistd.h>
61 #include <asm/pgtable.h>
62 #include <asm/mmu_context.h>
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 	list_del_rcu(&p->thread_node);
78 }
79 
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 	struct signal_struct *sig = tsk->signal;
86 	bool group_dead = thread_group_leader(tsk);
87 	struct sighand_struct *sighand;
88 	struct tty_struct *uninitialized_var(tty);
89 	cputime_t utime, stime;
90 
91 	sighand = rcu_dereference_check(tsk->sighand,
92 					lockdep_tasklist_lock_is_held());
93 	spin_lock(&sighand->siglock);
94 
95 #ifdef CONFIG_POSIX_TIMERS
96 	posix_cpu_timers_exit(tsk);
97 	if (group_dead) {
98 		posix_cpu_timers_exit_group(tsk);
99 	} else {
100 		/*
101 		 * This can only happen if the caller is de_thread().
102 		 * FIXME: this is the temporary hack, we should teach
103 		 * posix-cpu-timers to handle this case correctly.
104 		 */
105 		if (unlikely(has_group_leader_pid(tsk)))
106 			posix_cpu_timers_exit_group(tsk);
107 	}
108 #endif
109 
110 	if (group_dead) {
111 		tty = sig->tty;
112 		sig->tty = NULL;
113 	} else {
114 		/*
115 		 * If there is any task waiting for the group exit
116 		 * then notify it:
117 		 */
118 		if (sig->notify_count > 0 && !--sig->notify_count)
119 			wake_up_process(sig->group_exit_task);
120 
121 		if (tsk == sig->curr_target)
122 			sig->curr_target = next_thread(tsk);
123 	}
124 
125 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 			      sizeof(unsigned long long));
127 
128 	/*
129 	 * Accumulate here the counters for all threads as they die. We could
130 	 * skip the group leader because it is the last user of signal_struct,
131 	 * but we want to avoid the race with thread_group_cputime() which can
132 	 * see the empty ->thread_head list.
133 	 */
134 	task_cputime(tsk, &utime, &stime);
135 	write_seqlock(&sig->stats_lock);
136 	sig->utime += utime;
137 	sig->stime += stime;
138 	sig->gtime += task_gtime(tsk);
139 	sig->min_flt += tsk->min_flt;
140 	sig->maj_flt += tsk->maj_flt;
141 	sig->nvcsw += tsk->nvcsw;
142 	sig->nivcsw += tsk->nivcsw;
143 	sig->inblock += task_io_get_inblock(tsk);
144 	sig->oublock += task_io_get_oublock(tsk);
145 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 	sig->nr_threads--;
148 	__unhash_process(tsk, group_dead);
149 	write_sequnlock(&sig->stats_lock);
150 
151 	/*
152 	 * Do this under ->siglock, we can race with another thread
153 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 	 */
155 	flush_sigqueue(&tsk->pending);
156 	tsk->sighand = NULL;
157 	spin_unlock(&sighand->siglock);
158 
159 	__cleanup_sighand(sighand);
160 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 	if (group_dead) {
162 		flush_sigqueue(&sig->shared_pending);
163 		tty_kref_put(tty);
164 	}
165 }
166 
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170 
171 	perf_event_delayed_put(tsk);
172 	trace_sched_process_free(tsk);
173 	put_task_struct(tsk);
174 }
175 
176 
177 void release_task(struct task_struct *p)
178 {
179 	struct task_struct *leader;
180 	int zap_leader;
181 repeat:
182 	/* don't need to get the RCU readlock here - the process is dead and
183 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
184 	rcu_read_lock();
185 	atomic_dec(&__task_cred(p)->user->processes);
186 	rcu_read_unlock();
187 
188 	proc_flush_task(p);
189 
190 	write_lock_irq(&tasklist_lock);
191 	ptrace_release_task(p);
192 	__exit_signal(p);
193 
194 	/*
195 	 * If we are the last non-leader member of the thread
196 	 * group, and the leader is zombie, then notify the
197 	 * group leader's parent process. (if it wants notification.)
198 	 */
199 	zap_leader = 0;
200 	leader = p->group_leader;
201 	if (leader != p && thread_group_empty(leader)
202 			&& leader->exit_state == EXIT_ZOMBIE) {
203 		/*
204 		 * If we were the last child thread and the leader has
205 		 * exited already, and the leader's parent ignores SIGCHLD,
206 		 * then we are the one who should release the leader.
207 		 */
208 		zap_leader = do_notify_parent(leader, leader->exit_signal);
209 		if (zap_leader)
210 			leader->exit_state = EXIT_DEAD;
211 	}
212 
213 	write_unlock_irq(&tasklist_lock);
214 	release_thread(p);
215 	call_rcu(&p->rcu, delayed_put_task_struct);
216 
217 	p = leader;
218 	if (unlikely(zap_leader))
219 		goto repeat;
220 }
221 
222 /*
223  * Note that if this function returns a valid task_struct pointer (!NULL)
224  * task->usage must remain >0 for the duration of the RCU critical section.
225  */
226 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
227 {
228 	struct sighand_struct *sighand;
229 	struct task_struct *task;
230 
231 	/*
232 	 * We need to verify that release_task() was not called and thus
233 	 * delayed_put_task_struct() can't run and drop the last reference
234 	 * before rcu_read_unlock(). We check task->sighand != NULL,
235 	 * but we can read the already freed and reused memory.
236 	 */
237 retry:
238 	task = rcu_dereference(*ptask);
239 	if (!task)
240 		return NULL;
241 
242 	probe_kernel_address(&task->sighand, sighand);
243 
244 	/*
245 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
246 	 * was already freed we can not miss the preceding update of this
247 	 * pointer.
248 	 */
249 	smp_rmb();
250 	if (unlikely(task != READ_ONCE(*ptask)))
251 		goto retry;
252 
253 	/*
254 	 * We've re-checked that "task == *ptask", now we have two different
255 	 * cases:
256 	 *
257 	 * 1. This is actually the same task/task_struct. In this case
258 	 *    sighand != NULL tells us it is still alive.
259 	 *
260 	 * 2. This is another task which got the same memory for task_struct.
261 	 *    We can't know this of course, and we can not trust
262 	 *    sighand != NULL.
263 	 *
264 	 *    In this case we actually return a random value, but this is
265 	 *    correct.
266 	 *
267 	 *    If we return NULL - we can pretend that we actually noticed that
268 	 *    *ptask was updated when the previous task has exited. Or pretend
269 	 *    that probe_slab_address(&sighand) reads NULL.
270 	 *
271 	 *    If we return the new task (because sighand is not NULL for any
272 	 *    reason) - this is fine too. This (new) task can't go away before
273 	 *    another gp pass.
274 	 *
275 	 *    And note: We could even eliminate the false positive if re-read
276 	 *    task->sighand once again to avoid the falsely NULL. But this case
277 	 *    is very unlikely so we don't care.
278 	 */
279 	if (!sighand)
280 		return NULL;
281 
282 	return task;
283 }
284 
285 struct task_struct *try_get_task_struct(struct task_struct **ptask)
286 {
287 	struct task_struct *task;
288 
289 	rcu_read_lock();
290 	task = task_rcu_dereference(ptask);
291 	if (task)
292 		get_task_struct(task);
293 	rcu_read_unlock();
294 
295 	return task;
296 }
297 
298 /*
299  * Determine if a process group is "orphaned", according to the POSIX
300  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
301  * by terminal-generated stop signals.  Newly orphaned process groups are
302  * to receive a SIGHUP and a SIGCONT.
303  *
304  * "I ask you, have you ever known what it is to be an orphan?"
305  */
306 static int will_become_orphaned_pgrp(struct pid *pgrp,
307 					struct task_struct *ignored_task)
308 {
309 	struct task_struct *p;
310 
311 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
312 		if ((p == ignored_task) ||
313 		    (p->exit_state && thread_group_empty(p)) ||
314 		    is_global_init(p->real_parent))
315 			continue;
316 
317 		if (task_pgrp(p->real_parent) != pgrp &&
318 		    task_session(p->real_parent) == task_session(p))
319 			return 0;
320 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
321 
322 	return 1;
323 }
324 
325 int is_current_pgrp_orphaned(void)
326 {
327 	int retval;
328 
329 	read_lock(&tasklist_lock);
330 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
331 	read_unlock(&tasklist_lock);
332 
333 	return retval;
334 }
335 
336 static bool has_stopped_jobs(struct pid *pgrp)
337 {
338 	struct task_struct *p;
339 
340 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
341 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
342 			return true;
343 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
344 
345 	return false;
346 }
347 
348 /*
349  * Check to see if any process groups have become orphaned as
350  * a result of our exiting, and if they have any stopped jobs,
351  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
352  */
353 static void
354 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
355 {
356 	struct pid *pgrp = task_pgrp(tsk);
357 	struct task_struct *ignored_task = tsk;
358 
359 	if (!parent)
360 		/* exit: our father is in a different pgrp than
361 		 * we are and we were the only connection outside.
362 		 */
363 		parent = tsk->real_parent;
364 	else
365 		/* reparent: our child is in a different pgrp than
366 		 * we are, and it was the only connection outside.
367 		 */
368 		ignored_task = NULL;
369 
370 	if (task_pgrp(parent) != pgrp &&
371 	    task_session(parent) == task_session(tsk) &&
372 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
373 	    has_stopped_jobs(pgrp)) {
374 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
375 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
376 	}
377 }
378 
379 #ifdef CONFIG_MEMCG
380 /*
381  * A task is exiting.   If it owned this mm, find a new owner for the mm.
382  */
383 void mm_update_next_owner(struct mm_struct *mm)
384 {
385 	struct task_struct *c, *g, *p = current;
386 
387 retry:
388 	/*
389 	 * If the exiting or execing task is not the owner, it's
390 	 * someone else's problem.
391 	 */
392 	if (mm->owner != p)
393 		return;
394 	/*
395 	 * The current owner is exiting/execing and there are no other
396 	 * candidates.  Do not leave the mm pointing to a possibly
397 	 * freed task structure.
398 	 */
399 	if (atomic_read(&mm->mm_users) <= 1) {
400 		mm->owner = NULL;
401 		return;
402 	}
403 
404 	read_lock(&tasklist_lock);
405 	/*
406 	 * Search in the children
407 	 */
408 	list_for_each_entry(c, &p->children, sibling) {
409 		if (c->mm == mm)
410 			goto assign_new_owner;
411 	}
412 
413 	/*
414 	 * Search in the siblings
415 	 */
416 	list_for_each_entry(c, &p->real_parent->children, sibling) {
417 		if (c->mm == mm)
418 			goto assign_new_owner;
419 	}
420 
421 	/*
422 	 * Search through everything else, we should not get here often.
423 	 */
424 	for_each_process(g) {
425 		if (g->flags & PF_KTHREAD)
426 			continue;
427 		for_each_thread(g, c) {
428 			if (c->mm == mm)
429 				goto assign_new_owner;
430 			if (c->mm)
431 				break;
432 		}
433 	}
434 	read_unlock(&tasklist_lock);
435 	/*
436 	 * We found no owner yet mm_users > 1: this implies that we are
437 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
438 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
439 	 */
440 	mm->owner = NULL;
441 	return;
442 
443 assign_new_owner:
444 	BUG_ON(c == p);
445 	get_task_struct(c);
446 	/*
447 	 * The task_lock protects c->mm from changing.
448 	 * We always want mm->owner->mm == mm
449 	 */
450 	task_lock(c);
451 	/*
452 	 * Delay read_unlock() till we have the task_lock()
453 	 * to ensure that c does not slip away underneath us
454 	 */
455 	read_unlock(&tasklist_lock);
456 	if (c->mm != mm) {
457 		task_unlock(c);
458 		put_task_struct(c);
459 		goto retry;
460 	}
461 	mm->owner = c;
462 	task_unlock(c);
463 	put_task_struct(c);
464 }
465 #endif /* CONFIG_MEMCG */
466 
467 /*
468  * Turn us into a lazy TLB process if we
469  * aren't already..
470  */
471 static void exit_mm(struct task_struct *tsk)
472 {
473 	struct mm_struct *mm = tsk->mm;
474 	struct core_state *core_state;
475 
476 	mm_release(tsk, mm);
477 	if (!mm)
478 		return;
479 	sync_mm_rss(mm);
480 	/*
481 	 * Serialize with any possible pending coredump.
482 	 * We must hold mmap_sem around checking core_state
483 	 * and clearing tsk->mm.  The core-inducing thread
484 	 * will increment ->nr_threads for each thread in the
485 	 * group with ->mm != NULL.
486 	 */
487 	down_read(&mm->mmap_sem);
488 	core_state = mm->core_state;
489 	if (core_state) {
490 		struct core_thread self;
491 
492 		up_read(&mm->mmap_sem);
493 
494 		self.task = tsk;
495 		self.next = xchg(&core_state->dumper.next, &self);
496 		/*
497 		 * Implies mb(), the result of xchg() must be visible
498 		 * to core_state->dumper.
499 		 */
500 		if (atomic_dec_and_test(&core_state->nr_threads))
501 			complete(&core_state->startup);
502 
503 		for (;;) {
504 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
505 			if (!self.task) /* see coredump_finish() */
506 				break;
507 			freezable_schedule();
508 		}
509 		__set_task_state(tsk, TASK_RUNNING);
510 		down_read(&mm->mmap_sem);
511 	}
512 	atomic_inc(&mm->mm_count);
513 	BUG_ON(mm != tsk->active_mm);
514 	/* more a memory barrier than a real lock */
515 	task_lock(tsk);
516 	tsk->mm = NULL;
517 	up_read(&mm->mmap_sem);
518 	enter_lazy_tlb(mm, current);
519 	task_unlock(tsk);
520 	mm_update_next_owner(mm);
521 	mmput(mm);
522 	if (test_thread_flag(TIF_MEMDIE))
523 		exit_oom_victim();
524 }
525 
526 static struct task_struct *find_alive_thread(struct task_struct *p)
527 {
528 	struct task_struct *t;
529 
530 	for_each_thread(p, t) {
531 		if (!(t->flags & PF_EXITING))
532 			return t;
533 	}
534 	return NULL;
535 }
536 
537 static struct task_struct *find_child_reaper(struct task_struct *father)
538 	__releases(&tasklist_lock)
539 	__acquires(&tasklist_lock)
540 {
541 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
542 	struct task_struct *reaper = pid_ns->child_reaper;
543 
544 	if (likely(reaper != father))
545 		return reaper;
546 
547 	reaper = find_alive_thread(father);
548 	if (reaper) {
549 		pid_ns->child_reaper = reaper;
550 		return reaper;
551 	}
552 
553 	write_unlock_irq(&tasklist_lock);
554 	if (unlikely(pid_ns == &init_pid_ns)) {
555 		panic("Attempted to kill init! exitcode=0x%08x\n",
556 			father->signal->group_exit_code ?: father->exit_code);
557 	}
558 	zap_pid_ns_processes(pid_ns);
559 	write_lock_irq(&tasklist_lock);
560 
561 	return father;
562 }
563 
564 /*
565  * When we die, we re-parent all our children, and try to:
566  * 1. give them to another thread in our thread group, if such a member exists
567  * 2. give it to the first ancestor process which prctl'd itself as a
568  *    child_subreaper for its children (like a service manager)
569  * 3. give it to the init process (PID 1) in our pid namespace
570  */
571 static struct task_struct *find_new_reaper(struct task_struct *father,
572 					   struct task_struct *child_reaper)
573 {
574 	struct task_struct *thread, *reaper;
575 
576 	thread = find_alive_thread(father);
577 	if (thread)
578 		return thread;
579 
580 	if (father->signal->has_child_subreaper) {
581 		/*
582 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
583 		 * We start from father to ensure we can not look into another
584 		 * namespace, this is safe because all its threads are dead.
585 		 */
586 		for (reaper = father;
587 		     !same_thread_group(reaper, child_reaper);
588 		     reaper = reaper->real_parent) {
589 			/* call_usermodehelper() descendants need this check */
590 			if (reaper == &init_task)
591 				break;
592 			if (!reaper->signal->is_child_subreaper)
593 				continue;
594 			thread = find_alive_thread(reaper);
595 			if (thread)
596 				return thread;
597 		}
598 	}
599 
600 	return child_reaper;
601 }
602 
603 /*
604 * Any that need to be release_task'd are put on the @dead list.
605  */
606 static void reparent_leader(struct task_struct *father, struct task_struct *p,
607 				struct list_head *dead)
608 {
609 	if (unlikely(p->exit_state == EXIT_DEAD))
610 		return;
611 
612 	/* We don't want people slaying init. */
613 	p->exit_signal = SIGCHLD;
614 
615 	/* If it has exited notify the new parent about this child's death. */
616 	if (!p->ptrace &&
617 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
618 		if (do_notify_parent(p, p->exit_signal)) {
619 			p->exit_state = EXIT_DEAD;
620 			list_add(&p->ptrace_entry, dead);
621 		}
622 	}
623 
624 	kill_orphaned_pgrp(p, father);
625 }
626 
627 /*
628  * This does two things:
629  *
630  * A.  Make init inherit all the child processes
631  * B.  Check to see if any process groups have become orphaned
632  *	as a result of our exiting, and if they have any stopped
633  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
634  */
635 static void forget_original_parent(struct task_struct *father,
636 					struct list_head *dead)
637 {
638 	struct task_struct *p, *t, *reaper;
639 
640 	if (unlikely(!list_empty(&father->ptraced)))
641 		exit_ptrace(father, dead);
642 
643 	/* Can drop and reacquire tasklist_lock */
644 	reaper = find_child_reaper(father);
645 	if (list_empty(&father->children))
646 		return;
647 
648 	reaper = find_new_reaper(father, reaper);
649 	list_for_each_entry(p, &father->children, sibling) {
650 		for_each_thread(p, t) {
651 			t->real_parent = reaper;
652 			BUG_ON((!t->ptrace) != (t->parent == father));
653 			if (likely(!t->ptrace))
654 				t->parent = t->real_parent;
655 			if (t->pdeath_signal)
656 				group_send_sig_info(t->pdeath_signal,
657 						    SEND_SIG_NOINFO, t);
658 		}
659 		/*
660 		 * If this is a threaded reparent there is no need to
661 		 * notify anyone anything has happened.
662 		 */
663 		if (!same_thread_group(reaper, father))
664 			reparent_leader(father, p, dead);
665 	}
666 	list_splice_tail_init(&father->children, &reaper->children);
667 }
668 
669 /*
670  * Send signals to all our closest relatives so that they know
671  * to properly mourn us..
672  */
673 static void exit_notify(struct task_struct *tsk, int group_dead)
674 {
675 	bool autoreap;
676 	struct task_struct *p, *n;
677 	LIST_HEAD(dead);
678 
679 	write_lock_irq(&tasklist_lock);
680 	forget_original_parent(tsk, &dead);
681 
682 	if (group_dead)
683 		kill_orphaned_pgrp(tsk->group_leader, NULL);
684 
685 	if (unlikely(tsk->ptrace)) {
686 		int sig = thread_group_leader(tsk) &&
687 				thread_group_empty(tsk) &&
688 				!ptrace_reparented(tsk) ?
689 			tsk->exit_signal : SIGCHLD;
690 		autoreap = do_notify_parent(tsk, sig);
691 	} else if (thread_group_leader(tsk)) {
692 		autoreap = thread_group_empty(tsk) &&
693 			do_notify_parent(tsk, tsk->exit_signal);
694 	} else {
695 		autoreap = true;
696 	}
697 
698 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
699 	if (tsk->exit_state == EXIT_DEAD)
700 		list_add(&tsk->ptrace_entry, &dead);
701 
702 	/* mt-exec, de_thread() is waiting for group leader */
703 	if (unlikely(tsk->signal->notify_count < 0))
704 		wake_up_process(tsk->signal->group_exit_task);
705 	write_unlock_irq(&tasklist_lock);
706 
707 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
708 		list_del_init(&p->ptrace_entry);
709 		release_task(p);
710 	}
711 }
712 
713 #ifdef CONFIG_DEBUG_STACK_USAGE
714 static void check_stack_usage(void)
715 {
716 	static DEFINE_SPINLOCK(low_water_lock);
717 	static int lowest_to_date = THREAD_SIZE;
718 	unsigned long free;
719 
720 	free = stack_not_used(current);
721 
722 	if (free >= lowest_to_date)
723 		return;
724 
725 	spin_lock(&low_water_lock);
726 	if (free < lowest_to_date) {
727 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
728 			current->comm, task_pid_nr(current), free);
729 		lowest_to_date = free;
730 	}
731 	spin_unlock(&low_water_lock);
732 }
733 #else
734 static inline void check_stack_usage(void) {}
735 #endif
736 
737 void __noreturn do_exit(long code)
738 {
739 	struct task_struct *tsk = current;
740 	int group_dead;
741 	TASKS_RCU(int tasks_rcu_i);
742 
743 	profile_task_exit(tsk);
744 	kcov_task_exit(tsk);
745 
746 	WARN_ON(blk_needs_flush_plug(tsk));
747 
748 	if (unlikely(in_interrupt()))
749 		panic("Aiee, killing interrupt handler!");
750 	if (unlikely(!tsk->pid))
751 		panic("Attempted to kill the idle task!");
752 
753 	/*
754 	 * If do_exit is called because this processes oopsed, it's possible
755 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
756 	 * continuing. Amongst other possible reasons, this is to prevent
757 	 * mm_release()->clear_child_tid() from writing to a user-controlled
758 	 * kernel address.
759 	 */
760 	set_fs(USER_DS);
761 
762 	ptrace_event(PTRACE_EVENT_EXIT, code);
763 
764 	validate_creds_for_do_exit(tsk);
765 
766 	/*
767 	 * We're taking recursive faults here in do_exit. Safest is to just
768 	 * leave this task alone and wait for reboot.
769 	 */
770 	if (unlikely(tsk->flags & PF_EXITING)) {
771 		pr_alert("Fixing recursive fault but reboot is needed!\n");
772 		/*
773 		 * We can do this unlocked here. The futex code uses
774 		 * this flag just to verify whether the pi state
775 		 * cleanup has been done or not. In the worst case it
776 		 * loops once more. We pretend that the cleanup was
777 		 * done as there is no way to return. Either the
778 		 * OWNER_DIED bit is set by now or we push the blocked
779 		 * task into the wait for ever nirwana as well.
780 		 */
781 		tsk->flags |= PF_EXITPIDONE;
782 		set_current_state(TASK_UNINTERRUPTIBLE);
783 		schedule();
784 	}
785 
786 	exit_signals(tsk);  /* sets PF_EXITING */
787 	/*
788 	 * Ensure that all new tsk->pi_lock acquisitions must observe
789 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
790 	 */
791 	smp_mb();
792 	/*
793 	 * Ensure that we must observe the pi_state in exit_mm() ->
794 	 * mm_release() -> exit_pi_state_list().
795 	 */
796 	raw_spin_unlock_wait(&tsk->pi_lock);
797 
798 	if (unlikely(in_atomic())) {
799 		pr_info("note: %s[%d] exited with preempt_count %d\n",
800 			current->comm, task_pid_nr(current),
801 			preempt_count());
802 		preempt_count_set(PREEMPT_ENABLED);
803 	}
804 
805 	/* sync mm's RSS info before statistics gathering */
806 	if (tsk->mm)
807 		sync_mm_rss(tsk->mm);
808 	acct_update_integrals(tsk);
809 	group_dead = atomic_dec_and_test(&tsk->signal->live);
810 	if (group_dead) {
811 #ifdef CONFIG_POSIX_TIMERS
812 		hrtimer_cancel(&tsk->signal->real_timer);
813 		exit_itimers(tsk->signal);
814 #endif
815 		if (tsk->mm)
816 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
817 	}
818 	acct_collect(code, group_dead);
819 	if (group_dead)
820 		tty_audit_exit();
821 	audit_free(tsk);
822 
823 	tsk->exit_code = code;
824 	taskstats_exit(tsk, group_dead);
825 
826 	exit_mm(tsk);
827 
828 	if (group_dead)
829 		acct_process();
830 	trace_sched_process_exit(tsk);
831 
832 	exit_sem(tsk);
833 	exit_shm(tsk);
834 	exit_files(tsk);
835 	exit_fs(tsk);
836 	if (group_dead)
837 		disassociate_ctty(1);
838 	exit_task_namespaces(tsk);
839 	exit_task_work(tsk);
840 	exit_thread(tsk);
841 
842 	/*
843 	 * Flush inherited counters to the parent - before the parent
844 	 * gets woken up by child-exit notifications.
845 	 *
846 	 * because of cgroup mode, must be called before cgroup_exit()
847 	 */
848 	perf_event_exit_task(tsk);
849 
850 	sched_autogroup_exit_task(tsk);
851 	cgroup_exit(tsk);
852 
853 	/*
854 	 * FIXME: do that only when needed, using sched_exit tracepoint
855 	 */
856 	flush_ptrace_hw_breakpoint(tsk);
857 
858 	TASKS_RCU(preempt_disable());
859 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
860 	TASKS_RCU(preempt_enable());
861 	exit_notify(tsk, group_dead);
862 	proc_exit_connector(tsk);
863 	mpol_put_task_policy(tsk);
864 #ifdef CONFIG_FUTEX
865 	if (unlikely(current->pi_state_cache))
866 		kfree(current->pi_state_cache);
867 #endif
868 	/*
869 	 * Make sure we are holding no locks:
870 	 */
871 	debug_check_no_locks_held();
872 	/*
873 	 * We can do this unlocked here. The futex code uses this flag
874 	 * just to verify whether the pi state cleanup has been done
875 	 * or not. In the worst case it loops once more.
876 	 */
877 	tsk->flags |= PF_EXITPIDONE;
878 
879 	if (tsk->io_context)
880 		exit_io_context(tsk);
881 
882 	if (tsk->splice_pipe)
883 		free_pipe_info(tsk->splice_pipe);
884 
885 	if (tsk->task_frag.page)
886 		put_page(tsk->task_frag.page);
887 
888 	validate_creds_for_do_exit(tsk);
889 
890 	check_stack_usage();
891 	preempt_disable();
892 	if (tsk->nr_dirtied)
893 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
894 	exit_rcu();
895 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
896 
897 	do_task_dead();
898 }
899 EXPORT_SYMBOL_GPL(do_exit);
900 
901 void complete_and_exit(struct completion *comp, long code)
902 {
903 	if (comp)
904 		complete(comp);
905 
906 	do_exit(code);
907 }
908 EXPORT_SYMBOL(complete_and_exit);
909 
910 SYSCALL_DEFINE1(exit, int, error_code)
911 {
912 	do_exit((error_code&0xff)<<8);
913 }
914 
915 /*
916  * Take down every thread in the group.  This is called by fatal signals
917  * as well as by sys_exit_group (below).
918  */
919 void
920 do_group_exit(int exit_code)
921 {
922 	struct signal_struct *sig = current->signal;
923 
924 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
925 
926 	if (signal_group_exit(sig))
927 		exit_code = sig->group_exit_code;
928 	else if (!thread_group_empty(current)) {
929 		struct sighand_struct *const sighand = current->sighand;
930 
931 		spin_lock_irq(&sighand->siglock);
932 		if (signal_group_exit(sig))
933 			/* Another thread got here before we took the lock.  */
934 			exit_code = sig->group_exit_code;
935 		else {
936 			sig->group_exit_code = exit_code;
937 			sig->flags = SIGNAL_GROUP_EXIT;
938 			zap_other_threads(current);
939 		}
940 		spin_unlock_irq(&sighand->siglock);
941 	}
942 
943 	do_exit(exit_code);
944 	/* NOTREACHED */
945 }
946 
947 /*
948  * this kills every thread in the thread group. Note that any externally
949  * wait4()-ing process will get the correct exit code - even if this
950  * thread is not the thread group leader.
951  */
952 SYSCALL_DEFINE1(exit_group, int, error_code)
953 {
954 	do_group_exit((error_code & 0xff) << 8);
955 	/* NOTREACHED */
956 	return 0;
957 }
958 
959 struct wait_opts {
960 	enum pid_type		wo_type;
961 	int			wo_flags;
962 	struct pid		*wo_pid;
963 
964 	struct siginfo __user	*wo_info;
965 	int __user		*wo_stat;
966 	struct rusage __user	*wo_rusage;
967 
968 	wait_queue_t		child_wait;
969 	int			notask_error;
970 };
971 
972 static inline
973 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
974 {
975 	if (type != PIDTYPE_PID)
976 		task = task->group_leader;
977 	return task->pids[type].pid;
978 }
979 
980 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
981 {
982 	return	wo->wo_type == PIDTYPE_MAX ||
983 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
984 }
985 
986 static int
987 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
988 {
989 	if (!eligible_pid(wo, p))
990 		return 0;
991 
992 	/*
993 	 * Wait for all children (clone and not) if __WALL is set or
994 	 * if it is traced by us.
995 	 */
996 	if (ptrace || (wo->wo_flags & __WALL))
997 		return 1;
998 
999 	/*
1000 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1001 	 * otherwise, wait for non-clone children *only*.
1002 	 *
1003 	 * Note: a "clone" child here is one that reports to its parent
1004 	 * using a signal other than SIGCHLD, or a non-leader thread which
1005 	 * we can only see if it is traced by us.
1006 	 */
1007 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1008 		return 0;
1009 
1010 	return 1;
1011 }
1012 
1013 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1014 				pid_t pid, uid_t uid, int why, int status)
1015 {
1016 	struct siginfo __user *infop;
1017 	int retval = wo->wo_rusage
1018 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1019 
1020 	put_task_struct(p);
1021 	infop = wo->wo_info;
1022 	if (infop) {
1023 		if (!retval)
1024 			retval = put_user(SIGCHLD, &infop->si_signo);
1025 		if (!retval)
1026 			retval = put_user(0, &infop->si_errno);
1027 		if (!retval)
1028 			retval = put_user((short)why, &infop->si_code);
1029 		if (!retval)
1030 			retval = put_user(pid, &infop->si_pid);
1031 		if (!retval)
1032 			retval = put_user(uid, &infop->si_uid);
1033 		if (!retval)
1034 			retval = put_user(status, &infop->si_status);
1035 	}
1036 	if (!retval)
1037 		retval = pid;
1038 	return retval;
1039 }
1040 
1041 /*
1042  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1043  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1044  * the lock and this task is uninteresting.  If we return nonzero, we have
1045  * released the lock and the system call should return.
1046  */
1047 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1048 {
1049 	int state, retval, status;
1050 	pid_t pid = task_pid_vnr(p);
1051 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1052 	struct siginfo __user *infop;
1053 
1054 	if (!likely(wo->wo_flags & WEXITED))
1055 		return 0;
1056 
1057 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1058 		int exit_code = p->exit_code;
1059 		int why;
1060 
1061 		get_task_struct(p);
1062 		read_unlock(&tasklist_lock);
1063 		sched_annotate_sleep();
1064 
1065 		if ((exit_code & 0x7f) == 0) {
1066 			why = CLD_EXITED;
1067 			status = exit_code >> 8;
1068 		} else {
1069 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1070 			status = exit_code & 0x7f;
1071 		}
1072 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1073 	}
1074 	/*
1075 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1076 	 */
1077 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1078 		EXIT_TRACE : EXIT_DEAD;
1079 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1080 		return 0;
1081 	/*
1082 	 * We own this thread, nobody else can reap it.
1083 	 */
1084 	read_unlock(&tasklist_lock);
1085 	sched_annotate_sleep();
1086 
1087 	/*
1088 	 * Check thread_group_leader() to exclude the traced sub-threads.
1089 	 */
1090 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1091 		struct signal_struct *sig = p->signal;
1092 		struct signal_struct *psig = current->signal;
1093 		unsigned long maxrss;
1094 		cputime_t tgutime, tgstime;
1095 
1096 		/*
1097 		 * The resource counters for the group leader are in its
1098 		 * own task_struct.  Those for dead threads in the group
1099 		 * are in its signal_struct, as are those for the child
1100 		 * processes it has previously reaped.  All these
1101 		 * accumulate in the parent's signal_struct c* fields.
1102 		 *
1103 		 * We don't bother to take a lock here to protect these
1104 		 * p->signal fields because the whole thread group is dead
1105 		 * and nobody can change them.
1106 		 *
1107 		 * psig->stats_lock also protects us from our sub-theads
1108 		 * which can reap other children at the same time. Until
1109 		 * we change k_getrusage()-like users to rely on this lock
1110 		 * we have to take ->siglock as well.
1111 		 *
1112 		 * We use thread_group_cputime_adjusted() to get times for
1113 		 * the thread group, which consolidates times for all threads
1114 		 * in the group including the group leader.
1115 		 */
1116 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1117 		spin_lock_irq(&current->sighand->siglock);
1118 		write_seqlock(&psig->stats_lock);
1119 		psig->cutime += tgutime + sig->cutime;
1120 		psig->cstime += tgstime + sig->cstime;
1121 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1122 		psig->cmin_flt +=
1123 			p->min_flt + sig->min_flt + sig->cmin_flt;
1124 		psig->cmaj_flt +=
1125 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1126 		psig->cnvcsw +=
1127 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1128 		psig->cnivcsw +=
1129 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1130 		psig->cinblock +=
1131 			task_io_get_inblock(p) +
1132 			sig->inblock + sig->cinblock;
1133 		psig->coublock +=
1134 			task_io_get_oublock(p) +
1135 			sig->oublock + sig->coublock;
1136 		maxrss = max(sig->maxrss, sig->cmaxrss);
1137 		if (psig->cmaxrss < maxrss)
1138 			psig->cmaxrss = maxrss;
1139 		task_io_accounting_add(&psig->ioac, &p->ioac);
1140 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1141 		write_sequnlock(&psig->stats_lock);
1142 		spin_unlock_irq(&current->sighand->siglock);
1143 	}
1144 
1145 	retval = wo->wo_rusage
1146 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1147 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1148 		? p->signal->group_exit_code : p->exit_code;
1149 	if (!retval && wo->wo_stat)
1150 		retval = put_user(status, wo->wo_stat);
1151 
1152 	infop = wo->wo_info;
1153 	if (!retval && infop)
1154 		retval = put_user(SIGCHLD, &infop->si_signo);
1155 	if (!retval && infop)
1156 		retval = put_user(0, &infop->si_errno);
1157 	if (!retval && infop) {
1158 		int why;
1159 
1160 		if ((status & 0x7f) == 0) {
1161 			why = CLD_EXITED;
1162 			status >>= 8;
1163 		} else {
1164 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1165 			status &= 0x7f;
1166 		}
1167 		retval = put_user((short)why, &infop->si_code);
1168 		if (!retval)
1169 			retval = put_user(status, &infop->si_status);
1170 	}
1171 	if (!retval && infop)
1172 		retval = put_user(pid, &infop->si_pid);
1173 	if (!retval && infop)
1174 		retval = put_user(uid, &infop->si_uid);
1175 	if (!retval)
1176 		retval = pid;
1177 
1178 	if (state == EXIT_TRACE) {
1179 		write_lock_irq(&tasklist_lock);
1180 		/* We dropped tasklist, ptracer could die and untrace */
1181 		ptrace_unlink(p);
1182 
1183 		/* If parent wants a zombie, don't release it now */
1184 		state = EXIT_ZOMBIE;
1185 		if (do_notify_parent(p, p->exit_signal))
1186 			state = EXIT_DEAD;
1187 		p->exit_state = state;
1188 		write_unlock_irq(&tasklist_lock);
1189 	}
1190 	if (state == EXIT_DEAD)
1191 		release_task(p);
1192 
1193 	return retval;
1194 }
1195 
1196 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1197 {
1198 	if (ptrace) {
1199 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1200 			return &p->exit_code;
1201 	} else {
1202 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1203 			return &p->signal->group_exit_code;
1204 	}
1205 	return NULL;
1206 }
1207 
1208 /**
1209  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1210  * @wo: wait options
1211  * @ptrace: is the wait for ptrace
1212  * @p: task to wait for
1213  *
1214  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1215  *
1216  * CONTEXT:
1217  * read_lock(&tasklist_lock), which is released if return value is
1218  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1219  *
1220  * RETURNS:
1221  * 0 if wait condition didn't exist and search for other wait conditions
1222  * should continue.  Non-zero return, -errno on failure and @p's pid on
1223  * success, implies that tasklist_lock is released and wait condition
1224  * search should terminate.
1225  */
1226 static int wait_task_stopped(struct wait_opts *wo,
1227 				int ptrace, struct task_struct *p)
1228 {
1229 	struct siginfo __user *infop;
1230 	int retval, exit_code, *p_code, why;
1231 	uid_t uid = 0; /* unneeded, required by compiler */
1232 	pid_t pid;
1233 
1234 	/*
1235 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1236 	 */
1237 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1238 		return 0;
1239 
1240 	if (!task_stopped_code(p, ptrace))
1241 		return 0;
1242 
1243 	exit_code = 0;
1244 	spin_lock_irq(&p->sighand->siglock);
1245 
1246 	p_code = task_stopped_code(p, ptrace);
1247 	if (unlikely(!p_code))
1248 		goto unlock_sig;
1249 
1250 	exit_code = *p_code;
1251 	if (!exit_code)
1252 		goto unlock_sig;
1253 
1254 	if (!unlikely(wo->wo_flags & WNOWAIT))
1255 		*p_code = 0;
1256 
1257 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1258 unlock_sig:
1259 	spin_unlock_irq(&p->sighand->siglock);
1260 	if (!exit_code)
1261 		return 0;
1262 
1263 	/*
1264 	 * Now we are pretty sure this task is interesting.
1265 	 * Make sure it doesn't get reaped out from under us while we
1266 	 * give up the lock and then examine it below.  We don't want to
1267 	 * keep holding onto the tasklist_lock while we call getrusage and
1268 	 * possibly take page faults for user memory.
1269 	 */
1270 	get_task_struct(p);
1271 	pid = task_pid_vnr(p);
1272 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1273 	read_unlock(&tasklist_lock);
1274 	sched_annotate_sleep();
1275 
1276 	if (unlikely(wo->wo_flags & WNOWAIT))
1277 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1278 
1279 	retval = wo->wo_rusage
1280 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1281 	if (!retval && wo->wo_stat)
1282 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1283 
1284 	infop = wo->wo_info;
1285 	if (!retval && infop)
1286 		retval = put_user(SIGCHLD, &infop->si_signo);
1287 	if (!retval && infop)
1288 		retval = put_user(0, &infop->si_errno);
1289 	if (!retval && infop)
1290 		retval = put_user((short)why, &infop->si_code);
1291 	if (!retval && infop)
1292 		retval = put_user(exit_code, &infop->si_status);
1293 	if (!retval && infop)
1294 		retval = put_user(pid, &infop->si_pid);
1295 	if (!retval && infop)
1296 		retval = put_user(uid, &infop->si_uid);
1297 	if (!retval)
1298 		retval = pid;
1299 	put_task_struct(p);
1300 
1301 	BUG_ON(!retval);
1302 	return retval;
1303 }
1304 
1305 /*
1306  * Handle do_wait work for one task in a live, non-stopped state.
1307  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1308  * the lock and this task is uninteresting.  If we return nonzero, we have
1309  * released the lock and the system call should return.
1310  */
1311 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1312 {
1313 	int retval;
1314 	pid_t pid;
1315 	uid_t uid;
1316 
1317 	if (!unlikely(wo->wo_flags & WCONTINUED))
1318 		return 0;
1319 
1320 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1321 		return 0;
1322 
1323 	spin_lock_irq(&p->sighand->siglock);
1324 	/* Re-check with the lock held.  */
1325 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1326 		spin_unlock_irq(&p->sighand->siglock);
1327 		return 0;
1328 	}
1329 	if (!unlikely(wo->wo_flags & WNOWAIT))
1330 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1331 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1332 	spin_unlock_irq(&p->sighand->siglock);
1333 
1334 	pid = task_pid_vnr(p);
1335 	get_task_struct(p);
1336 	read_unlock(&tasklist_lock);
1337 	sched_annotate_sleep();
1338 
1339 	if (!wo->wo_info) {
1340 		retval = wo->wo_rusage
1341 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1342 		put_task_struct(p);
1343 		if (!retval && wo->wo_stat)
1344 			retval = put_user(0xffff, wo->wo_stat);
1345 		if (!retval)
1346 			retval = pid;
1347 	} else {
1348 		retval = wait_noreap_copyout(wo, p, pid, uid,
1349 					     CLD_CONTINUED, SIGCONT);
1350 		BUG_ON(retval == 0);
1351 	}
1352 
1353 	return retval;
1354 }
1355 
1356 /*
1357  * Consider @p for a wait by @parent.
1358  *
1359  * -ECHILD should be in ->notask_error before the first call.
1360  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1361  * Returns zero if the search for a child should continue;
1362  * then ->notask_error is 0 if @p is an eligible child,
1363  * or another error from security_task_wait(), or still -ECHILD.
1364  */
1365 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1366 				struct task_struct *p)
1367 {
1368 	/*
1369 	 * We can race with wait_task_zombie() from another thread.
1370 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1371 	 * can't confuse the checks below.
1372 	 */
1373 	int exit_state = ACCESS_ONCE(p->exit_state);
1374 	int ret;
1375 
1376 	if (unlikely(exit_state == EXIT_DEAD))
1377 		return 0;
1378 
1379 	ret = eligible_child(wo, ptrace, p);
1380 	if (!ret)
1381 		return ret;
1382 
1383 	ret = security_task_wait(p);
1384 	if (unlikely(ret < 0)) {
1385 		/*
1386 		 * If we have not yet seen any eligible child,
1387 		 * then let this error code replace -ECHILD.
1388 		 * A permission error will give the user a clue
1389 		 * to look for security policy problems, rather
1390 		 * than for mysterious wait bugs.
1391 		 */
1392 		if (wo->notask_error)
1393 			wo->notask_error = ret;
1394 		return 0;
1395 	}
1396 
1397 	if (unlikely(exit_state == EXIT_TRACE)) {
1398 		/*
1399 		 * ptrace == 0 means we are the natural parent. In this case
1400 		 * we should clear notask_error, debugger will notify us.
1401 		 */
1402 		if (likely(!ptrace))
1403 			wo->notask_error = 0;
1404 		return 0;
1405 	}
1406 
1407 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1408 		/*
1409 		 * If it is traced by its real parent's group, just pretend
1410 		 * the caller is ptrace_do_wait() and reap this child if it
1411 		 * is zombie.
1412 		 *
1413 		 * This also hides group stop state from real parent; otherwise
1414 		 * a single stop can be reported twice as group and ptrace stop.
1415 		 * If a ptracer wants to distinguish these two events for its
1416 		 * own children it should create a separate process which takes
1417 		 * the role of real parent.
1418 		 */
1419 		if (!ptrace_reparented(p))
1420 			ptrace = 1;
1421 	}
1422 
1423 	/* slay zombie? */
1424 	if (exit_state == EXIT_ZOMBIE) {
1425 		/* we don't reap group leaders with subthreads */
1426 		if (!delay_group_leader(p)) {
1427 			/*
1428 			 * A zombie ptracee is only visible to its ptracer.
1429 			 * Notification and reaping will be cascaded to the
1430 			 * real parent when the ptracer detaches.
1431 			 */
1432 			if (unlikely(ptrace) || likely(!p->ptrace))
1433 				return wait_task_zombie(wo, p);
1434 		}
1435 
1436 		/*
1437 		 * Allow access to stopped/continued state via zombie by
1438 		 * falling through.  Clearing of notask_error is complex.
1439 		 *
1440 		 * When !@ptrace:
1441 		 *
1442 		 * If WEXITED is set, notask_error should naturally be
1443 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1444 		 * so, if there are live subthreads, there are events to
1445 		 * wait for.  If all subthreads are dead, it's still safe
1446 		 * to clear - this function will be called again in finite
1447 		 * amount time once all the subthreads are released and
1448 		 * will then return without clearing.
1449 		 *
1450 		 * When @ptrace:
1451 		 *
1452 		 * Stopped state is per-task and thus can't change once the
1453 		 * target task dies.  Only continued and exited can happen.
1454 		 * Clear notask_error if WCONTINUED | WEXITED.
1455 		 */
1456 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1457 			wo->notask_error = 0;
1458 	} else {
1459 		/*
1460 		 * @p is alive and it's gonna stop, continue or exit, so
1461 		 * there always is something to wait for.
1462 		 */
1463 		wo->notask_error = 0;
1464 	}
1465 
1466 	/*
1467 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1468 	 * is used and the two don't interact with each other.
1469 	 */
1470 	ret = wait_task_stopped(wo, ptrace, p);
1471 	if (ret)
1472 		return ret;
1473 
1474 	/*
1475 	 * Wait for continued.  There's only one continued state and the
1476 	 * ptracer can consume it which can confuse the real parent.  Don't
1477 	 * use WCONTINUED from ptracer.  You don't need or want it.
1478 	 */
1479 	return wait_task_continued(wo, p);
1480 }
1481 
1482 /*
1483  * Do the work of do_wait() for one thread in the group, @tsk.
1484  *
1485  * -ECHILD should be in ->notask_error before the first call.
1486  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1487  * Returns zero if the search for a child should continue; then
1488  * ->notask_error is 0 if there were any eligible children,
1489  * or another error from security_task_wait(), or still -ECHILD.
1490  */
1491 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1492 {
1493 	struct task_struct *p;
1494 
1495 	list_for_each_entry(p, &tsk->children, sibling) {
1496 		int ret = wait_consider_task(wo, 0, p);
1497 
1498 		if (ret)
1499 			return ret;
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1506 {
1507 	struct task_struct *p;
1508 
1509 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1510 		int ret = wait_consider_task(wo, 1, p);
1511 
1512 		if (ret)
1513 			return ret;
1514 	}
1515 
1516 	return 0;
1517 }
1518 
1519 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1520 				int sync, void *key)
1521 {
1522 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1523 						child_wait);
1524 	struct task_struct *p = key;
1525 
1526 	if (!eligible_pid(wo, p))
1527 		return 0;
1528 
1529 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1530 		return 0;
1531 
1532 	return default_wake_function(wait, mode, sync, key);
1533 }
1534 
1535 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1536 {
1537 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1538 				TASK_INTERRUPTIBLE, 1, p);
1539 }
1540 
1541 static long do_wait(struct wait_opts *wo)
1542 {
1543 	struct task_struct *tsk;
1544 	int retval;
1545 
1546 	trace_sched_process_wait(wo->wo_pid);
1547 
1548 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1549 	wo->child_wait.private = current;
1550 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1551 repeat:
1552 	/*
1553 	 * If there is nothing that can match our criteria, just get out.
1554 	 * We will clear ->notask_error to zero if we see any child that
1555 	 * might later match our criteria, even if we are not able to reap
1556 	 * it yet.
1557 	 */
1558 	wo->notask_error = -ECHILD;
1559 	if ((wo->wo_type < PIDTYPE_MAX) &&
1560 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1561 		goto notask;
1562 
1563 	set_current_state(TASK_INTERRUPTIBLE);
1564 	read_lock(&tasklist_lock);
1565 	tsk = current;
1566 	do {
1567 		retval = do_wait_thread(wo, tsk);
1568 		if (retval)
1569 			goto end;
1570 
1571 		retval = ptrace_do_wait(wo, tsk);
1572 		if (retval)
1573 			goto end;
1574 
1575 		if (wo->wo_flags & __WNOTHREAD)
1576 			break;
1577 	} while_each_thread(current, tsk);
1578 	read_unlock(&tasklist_lock);
1579 
1580 notask:
1581 	retval = wo->notask_error;
1582 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1583 		retval = -ERESTARTSYS;
1584 		if (!signal_pending(current)) {
1585 			schedule();
1586 			goto repeat;
1587 		}
1588 	}
1589 end:
1590 	__set_current_state(TASK_RUNNING);
1591 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1592 	return retval;
1593 }
1594 
1595 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1596 		infop, int, options, struct rusage __user *, ru)
1597 {
1598 	struct wait_opts wo;
1599 	struct pid *pid = NULL;
1600 	enum pid_type type;
1601 	long ret;
1602 
1603 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1604 			__WNOTHREAD|__WCLONE|__WALL))
1605 		return -EINVAL;
1606 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1607 		return -EINVAL;
1608 
1609 	switch (which) {
1610 	case P_ALL:
1611 		type = PIDTYPE_MAX;
1612 		break;
1613 	case P_PID:
1614 		type = PIDTYPE_PID;
1615 		if (upid <= 0)
1616 			return -EINVAL;
1617 		break;
1618 	case P_PGID:
1619 		type = PIDTYPE_PGID;
1620 		if (upid <= 0)
1621 			return -EINVAL;
1622 		break;
1623 	default:
1624 		return -EINVAL;
1625 	}
1626 
1627 	if (type < PIDTYPE_MAX)
1628 		pid = find_get_pid(upid);
1629 
1630 	wo.wo_type	= type;
1631 	wo.wo_pid	= pid;
1632 	wo.wo_flags	= options;
1633 	wo.wo_info	= infop;
1634 	wo.wo_stat	= NULL;
1635 	wo.wo_rusage	= ru;
1636 	ret = do_wait(&wo);
1637 
1638 	if (ret > 0) {
1639 		ret = 0;
1640 	} else if (infop) {
1641 		/*
1642 		 * For a WNOHANG return, clear out all the fields
1643 		 * we would set so the user can easily tell the
1644 		 * difference.
1645 		 */
1646 		if (!ret)
1647 			ret = put_user(0, &infop->si_signo);
1648 		if (!ret)
1649 			ret = put_user(0, &infop->si_errno);
1650 		if (!ret)
1651 			ret = put_user(0, &infop->si_code);
1652 		if (!ret)
1653 			ret = put_user(0, &infop->si_pid);
1654 		if (!ret)
1655 			ret = put_user(0, &infop->si_uid);
1656 		if (!ret)
1657 			ret = put_user(0, &infop->si_status);
1658 	}
1659 
1660 	put_pid(pid);
1661 	return ret;
1662 }
1663 
1664 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1665 		int, options, struct rusage __user *, ru)
1666 {
1667 	struct wait_opts wo;
1668 	struct pid *pid = NULL;
1669 	enum pid_type type;
1670 	long ret;
1671 
1672 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1673 			__WNOTHREAD|__WCLONE|__WALL))
1674 		return -EINVAL;
1675 
1676 	if (upid == -1)
1677 		type = PIDTYPE_MAX;
1678 	else if (upid < 0) {
1679 		type = PIDTYPE_PGID;
1680 		pid = find_get_pid(-upid);
1681 	} else if (upid == 0) {
1682 		type = PIDTYPE_PGID;
1683 		pid = get_task_pid(current, PIDTYPE_PGID);
1684 	} else /* upid > 0 */ {
1685 		type = PIDTYPE_PID;
1686 		pid = find_get_pid(upid);
1687 	}
1688 
1689 	wo.wo_type	= type;
1690 	wo.wo_pid	= pid;
1691 	wo.wo_flags	= options | WEXITED;
1692 	wo.wo_info	= NULL;
1693 	wo.wo_stat	= stat_addr;
1694 	wo.wo_rusage	= ru;
1695 	ret = do_wait(&wo);
1696 	put_pid(pid);
1697 
1698 	return ret;
1699 }
1700 
1701 #ifdef __ARCH_WANT_SYS_WAITPID
1702 
1703 /*
1704  * sys_waitpid() remains for compatibility. waitpid() should be
1705  * implemented by calling sys_wait4() from libc.a.
1706  */
1707 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1708 {
1709 	return sys_wait4(pid, stat_addr, options, NULL);
1710 }
1711 
1712 #endif
1713