xref: /openbmc/linux/kernel/exit.c (revision 56a0eccd)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 
58 #include <asm/uaccess.h>
59 #include <asm/unistd.h>
60 #include <asm/pgtable.h>
61 #include <asm/mmu_context.h>
62 
63 static void __unhash_process(struct task_struct *p, bool group_dead)
64 {
65 	nr_threads--;
66 	detach_pid(p, PIDTYPE_PID);
67 	if (group_dead) {
68 		detach_pid(p, PIDTYPE_PGID);
69 		detach_pid(p, PIDTYPE_SID);
70 
71 		list_del_rcu(&p->tasks);
72 		list_del_init(&p->sibling);
73 		__this_cpu_dec(process_counts);
74 	}
75 	list_del_rcu(&p->thread_group);
76 	list_del_rcu(&p->thread_node);
77 }
78 
79 /*
80  * This function expects the tasklist_lock write-locked.
81  */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 	struct signal_struct *sig = tsk->signal;
85 	bool group_dead = thread_group_leader(tsk);
86 	struct sighand_struct *sighand;
87 	struct tty_struct *uninitialized_var(tty);
88 	cputime_t utime, stime;
89 
90 	sighand = rcu_dereference_check(tsk->sighand,
91 					lockdep_tasklist_lock_is_held());
92 	spin_lock(&sighand->siglock);
93 
94 	posix_cpu_timers_exit(tsk);
95 	if (group_dead) {
96 		posix_cpu_timers_exit_group(tsk);
97 		tty = sig->tty;
98 		sig->tty = NULL;
99 	} else {
100 		/*
101 		 * This can only happen if the caller is de_thread().
102 		 * FIXME: this is the temporary hack, we should teach
103 		 * posix-cpu-timers to handle this case correctly.
104 		 */
105 		if (unlikely(has_group_leader_pid(tsk)))
106 			posix_cpu_timers_exit_group(tsk);
107 
108 		/*
109 		 * If there is any task waiting for the group exit
110 		 * then notify it:
111 		 */
112 		if (sig->notify_count > 0 && !--sig->notify_count)
113 			wake_up_process(sig->group_exit_task);
114 
115 		if (tsk == sig->curr_target)
116 			sig->curr_target = next_thread(tsk);
117 	}
118 
119 	/*
120 	 * Accumulate here the counters for all threads as they die. We could
121 	 * skip the group leader because it is the last user of signal_struct,
122 	 * but we want to avoid the race with thread_group_cputime() which can
123 	 * see the empty ->thread_head list.
124 	 */
125 	task_cputime(tsk, &utime, &stime);
126 	write_seqlock(&sig->stats_lock);
127 	sig->utime += utime;
128 	sig->stime += stime;
129 	sig->gtime += task_gtime(tsk);
130 	sig->min_flt += tsk->min_flt;
131 	sig->maj_flt += tsk->maj_flt;
132 	sig->nvcsw += tsk->nvcsw;
133 	sig->nivcsw += tsk->nivcsw;
134 	sig->inblock += task_io_get_inblock(tsk);
135 	sig->oublock += task_io_get_oublock(tsk);
136 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
137 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
138 	sig->nr_threads--;
139 	__unhash_process(tsk, group_dead);
140 	write_sequnlock(&sig->stats_lock);
141 
142 	/*
143 	 * Do this under ->siglock, we can race with another thread
144 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 	 */
146 	flush_sigqueue(&tsk->pending);
147 	tsk->sighand = NULL;
148 	spin_unlock(&sighand->siglock);
149 
150 	__cleanup_sighand(sighand);
151 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
152 	if (group_dead) {
153 		flush_sigqueue(&sig->shared_pending);
154 		tty_kref_put(tty);
155 	}
156 }
157 
158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 
162 	perf_event_delayed_put(tsk);
163 	trace_sched_process_free(tsk);
164 	put_task_struct(tsk);
165 }
166 
167 
168 void release_task(struct task_struct *p)
169 {
170 	struct task_struct *leader;
171 	int zap_leader;
172 repeat:
173 	/* don't need to get the RCU readlock here - the process is dead and
174 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 	rcu_read_lock();
176 	atomic_dec(&__task_cred(p)->user->processes);
177 	rcu_read_unlock();
178 
179 	proc_flush_task(p);
180 
181 	write_lock_irq(&tasklist_lock);
182 	ptrace_release_task(p);
183 	__exit_signal(p);
184 
185 	/*
186 	 * If we are the last non-leader member of the thread
187 	 * group, and the leader is zombie, then notify the
188 	 * group leader's parent process. (if it wants notification.)
189 	 */
190 	zap_leader = 0;
191 	leader = p->group_leader;
192 	if (leader != p && thread_group_empty(leader)
193 			&& leader->exit_state == EXIT_ZOMBIE) {
194 		/*
195 		 * If we were the last child thread and the leader has
196 		 * exited already, and the leader's parent ignores SIGCHLD,
197 		 * then we are the one who should release the leader.
198 		 */
199 		zap_leader = do_notify_parent(leader, leader->exit_signal);
200 		if (zap_leader)
201 			leader->exit_state = EXIT_DEAD;
202 	}
203 
204 	write_unlock_irq(&tasklist_lock);
205 	release_thread(p);
206 	call_rcu(&p->rcu, delayed_put_task_struct);
207 
208 	p = leader;
209 	if (unlikely(zap_leader))
210 		goto repeat;
211 }
212 
213 /*
214  * Determine if a process group is "orphaned", according to the POSIX
215  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
216  * by terminal-generated stop signals.  Newly orphaned process groups are
217  * to receive a SIGHUP and a SIGCONT.
218  *
219  * "I ask you, have you ever known what it is to be an orphan?"
220  */
221 static int will_become_orphaned_pgrp(struct pid *pgrp,
222 					struct task_struct *ignored_task)
223 {
224 	struct task_struct *p;
225 
226 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
227 		if ((p == ignored_task) ||
228 		    (p->exit_state && thread_group_empty(p)) ||
229 		    is_global_init(p->real_parent))
230 			continue;
231 
232 		if (task_pgrp(p->real_parent) != pgrp &&
233 		    task_session(p->real_parent) == task_session(p))
234 			return 0;
235 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
236 
237 	return 1;
238 }
239 
240 int is_current_pgrp_orphaned(void)
241 {
242 	int retval;
243 
244 	read_lock(&tasklist_lock);
245 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
246 	read_unlock(&tasklist_lock);
247 
248 	return retval;
249 }
250 
251 static bool has_stopped_jobs(struct pid *pgrp)
252 {
253 	struct task_struct *p;
254 
255 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
257 			return true;
258 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
259 
260 	return false;
261 }
262 
263 /*
264  * Check to see if any process groups have become orphaned as
265  * a result of our exiting, and if they have any stopped jobs,
266  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
267  */
268 static void
269 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
270 {
271 	struct pid *pgrp = task_pgrp(tsk);
272 	struct task_struct *ignored_task = tsk;
273 
274 	if (!parent)
275 		/* exit: our father is in a different pgrp than
276 		 * we are and we were the only connection outside.
277 		 */
278 		parent = tsk->real_parent;
279 	else
280 		/* reparent: our child is in a different pgrp than
281 		 * we are, and it was the only connection outside.
282 		 */
283 		ignored_task = NULL;
284 
285 	if (task_pgrp(parent) != pgrp &&
286 	    task_session(parent) == task_session(tsk) &&
287 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
288 	    has_stopped_jobs(pgrp)) {
289 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
290 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
291 	}
292 }
293 
294 #ifdef CONFIG_MEMCG
295 /*
296  * A task is exiting.   If it owned this mm, find a new owner for the mm.
297  */
298 void mm_update_next_owner(struct mm_struct *mm)
299 {
300 	struct task_struct *c, *g, *p = current;
301 
302 retry:
303 	/*
304 	 * If the exiting or execing task is not the owner, it's
305 	 * someone else's problem.
306 	 */
307 	if (mm->owner != p)
308 		return;
309 	/*
310 	 * The current owner is exiting/execing and there are no other
311 	 * candidates.  Do not leave the mm pointing to a possibly
312 	 * freed task structure.
313 	 */
314 	if (atomic_read(&mm->mm_users) <= 1) {
315 		mm->owner = NULL;
316 		return;
317 	}
318 
319 	read_lock(&tasklist_lock);
320 	/*
321 	 * Search in the children
322 	 */
323 	list_for_each_entry(c, &p->children, sibling) {
324 		if (c->mm == mm)
325 			goto assign_new_owner;
326 	}
327 
328 	/*
329 	 * Search in the siblings
330 	 */
331 	list_for_each_entry(c, &p->real_parent->children, sibling) {
332 		if (c->mm == mm)
333 			goto assign_new_owner;
334 	}
335 
336 	/*
337 	 * Search through everything else, we should not get here often.
338 	 */
339 	for_each_process(g) {
340 		if (g->flags & PF_KTHREAD)
341 			continue;
342 		for_each_thread(g, c) {
343 			if (c->mm == mm)
344 				goto assign_new_owner;
345 			if (c->mm)
346 				break;
347 		}
348 	}
349 	read_unlock(&tasklist_lock);
350 	/*
351 	 * We found no owner yet mm_users > 1: this implies that we are
352 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
353 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
354 	 */
355 	mm->owner = NULL;
356 	return;
357 
358 assign_new_owner:
359 	BUG_ON(c == p);
360 	get_task_struct(c);
361 	/*
362 	 * The task_lock protects c->mm from changing.
363 	 * We always want mm->owner->mm == mm
364 	 */
365 	task_lock(c);
366 	/*
367 	 * Delay read_unlock() till we have the task_lock()
368 	 * to ensure that c does not slip away underneath us
369 	 */
370 	read_unlock(&tasklist_lock);
371 	if (c->mm != mm) {
372 		task_unlock(c);
373 		put_task_struct(c);
374 		goto retry;
375 	}
376 	mm->owner = c;
377 	task_unlock(c);
378 	put_task_struct(c);
379 }
380 #endif /* CONFIG_MEMCG */
381 
382 /*
383  * Turn us into a lazy TLB process if we
384  * aren't already..
385  */
386 static void exit_mm(struct task_struct *tsk)
387 {
388 	struct mm_struct *mm = tsk->mm;
389 	struct core_state *core_state;
390 
391 	mm_release(tsk, mm);
392 	if (!mm)
393 		return;
394 	sync_mm_rss(mm);
395 	/*
396 	 * Serialize with any possible pending coredump.
397 	 * We must hold mmap_sem around checking core_state
398 	 * and clearing tsk->mm.  The core-inducing thread
399 	 * will increment ->nr_threads for each thread in the
400 	 * group with ->mm != NULL.
401 	 */
402 	down_read(&mm->mmap_sem);
403 	core_state = mm->core_state;
404 	if (core_state) {
405 		struct core_thread self;
406 
407 		up_read(&mm->mmap_sem);
408 
409 		self.task = tsk;
410 		self.next = xchg(&core_state->dumper.next, &self);
411 		/*
412 		 * Implies mb(), the result of xchg() must be visible
413 		 * to core_state->dumper.
414 		 */
415 		if (atomic_dec_and_test(&core_state->nr_threads))
416 			complete(&core_state->startup);
417 
418 		for (;;) {
419 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
420 			if (!self.task) /* see coredump_finish() */
421 				break;
422 			freezable_schedule();
423 		}
424 		__set_task_state(tsk, TASK_RUNNING);
425 		down_read(&mm->mmap_sem);
426 	}
427 	atomic_inc(&mm->mm_count);
428 	BUG_ON(mm != tsk->active_mm);
429 	/* more a memory barrier than a real lock */
430 	task_lock(tsk);
431 	tsk->mm = NULL;
432 	up_read(&mm->mmap_sem);
433 	enter_lazy_tlb(mm, current);
434 	task_unlock(tsk);
435 	mm_update_next_owner(mm);
436 	mmput(mm);
437 	if (test_thread_flag(TIF_MEMDIE))
438 		exit_oom_victim(tsk);
439 }
440 
441 static struct task_struct *find_alive_thread(struct task_struct *p)
442 {
443 	struct task_struct *t;
444 
445 	for_each_thread(p, t) {
446 		if (!(t->flags & PF_EXITING))
447 			return t;
448 	}
449 	return NULL;
450 }
451 
452 static struct task_struct *find_child_reaper(struct task_struct *father)
453 	__releases(&tasklist_lock)
454 	__acquires(&tasklist_lock)
455 {
456 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
457 	struct task_struct *reaper = pid_ns->child_reaper;
458 
459 	if (likely(reaper != father))
460 		return reaper;
461 
462 	reaper = find_alive_thread(father);
463 	if (reaper) {
464 		pid_ns->child_reaper = reaper;
465 		return reaper;
466 	}
467 
468 	write_unlock_irq(&tasklist_lock);
469 	if (unlikely(pid_ns == &init_pid_ns)) {
470 		panic("Attempted to kill init! exitcode=0x%08x\n",
471 			father->signal->group_exit_code ?: father->exit_code);
472 	}
473 	zap_pid_ns_processes(pid_ns);
474 	write_lock_irq(&tasklist_lock);
475 
476 	return father;
477 }
478 
479 /*
480  * When we die, we re-parent all our children, and try to:
481  * 1. give them to another thread in our thread group, if such a member exists
482  * 2. give it to the first ancestor process which prctl'd itself as a
483  *    child_subreaper for its children (like a service manager)
484  * 3. give it to the init process (PID 1) in our pid namespace
485  */
486 static struct task_struct *find_new_reaper(struct task_struct *father,
487 					   struct task_struct *child_reaper)
488 {
489 	struct task_struct *thread, *reaper;
490 
491 	thread = find_alive_thread(father);
492 	if (thread)
493 		return thread;
494 
495 	if (father->signal->has_child_subreaper) {
496 		/*
497 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
498 		 * We start from father to ensure we can not look into another
499 		 * namespace, this is safe because all its threads are dead.
500 		 */
501 		for (reaper = father;
502 		     !same_thread_group(reaper, child_reaper);
503 		     reaper = reaper->real_parent) {
504 			/* call_usermodehelper() descendants need this check */
505 			if (reaper == &init_task)
506 				break;
507 			if (!reaper->signal->is_child_subreaper)
508 				continue;
509 			thread = find_alive_thread(reaper);
510 			if (thread)
511 				return thread;
512 		}
513 	}
514 
515 	return child_reaper;
516 }
517 
518 /*
519 * Any that need to be release_task'd are put on the @dead list.
520  */
521 static void reparent_leader(struct task_struct *father, struct task_struct *p,
522 				struct list_head *dead)
523 {
524 	if (unlikely(p->exit_state == EXIT_DEAD))
525 		return;
526 
527 	/* We don't want people slaying init. */
528 	p->exit_signal = SIGCHLD;
529 
530 	/* If it has exited notify the new parent about this child's death. */
531 	if (!p->ptrace &&
532 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
533 		if (do_notify_parent(p, p->exit_signal)) {
534 			p->exit_state = EXIT_DEAD;
535 			list_add(&p->ptrace_entry, dead);
536 		}
537 	}
538 
539 	kill_orphaned_pgrp(p, father);
540 }
541 
542 /*
543  * This does two things:
544  *
545  * A.  Make init inherit all the child processes
546  * B.  Check to see if any process groups have become orphaned
547  *	as a result of our exiting, and if they have any stopped
548  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
549  */
550 static void forget_original_parent(struct task_struct *father,
551 					struct list_head *dead)
552 {
553 	struct task_struct *p, *t, *reaper;
554 
555 	if (unlikely(!list_empty(&father->ptraced)))
556 		exit_ptrace(father, dead);
557 
558 	/* Can drop and reacquire tasklist_lock */
559 	reaper = find_child_reaper(father);
560 	if (list_empty(&father->children))
561 		return;
562 
563 	reaper = find_new_reaper(father, reaper);
564 	list_for_each_entry(p, &father->children, sibling) {
565 		for_each_thread(p, t) {
566 			t->real_parent = reaper;
567 			BUG_ON((!t->ptrace) != (t->parent == father));
568 			if (likely(!t->ptrace))
569 				t->parent = t->real_parent;
570 			if (t->pdeath_signal)
571 				group_send_sig_info(t->pdeath_signal,
572 						    SEND_SIG_NOINFO, t);
573 		}
574 		/*
575 		 * If this is a threaded reparent there is no need to
576 		 * notify anyone anything has happened.
577 		 */
578 		if (!same_thread_group(reaper, father))
579 			reparent_leader(father, p, dead);
580 	}
581 	list_splice_tail_init(&father->children, &reaper->children);
582 }
583 
584 /*
585  * Send signals to all our closest relatives so that they know
586  * to properly mourn us..
587  */
588 static void exit_notify(struct task_struct *tsk, int group_dead)
589 {
590 	bool autoreap;
591 	struct task_struct *p, *n;
592 	LIST_HEAD(dead);
593 
594 	write_lock_irq(&tasklist_lock);
595 	forget_original_parent(tsk, &dead);
596 
597 	if (group_dead)
598 		kill_orphaned_pgrp(tsk->group_leader, NULL);
599 
600 	if (unlikely(tsk->ptrace)) {
601 		int sig = thread_group_leader(tsk) &&
602 				thread_group_empty(tsk) &&
603 				!ptrace_reparented(tsk) ?
604 			tsk->exit_signal : SIGCHLD;
605 		autoreap = do_notify_parent(tsk, sig);
606 	} else if (thread_group_leader(tsk)) {
607 		autoreap = thread_group_empty(tsk) &&
608 			do_notify_parent(tsk, tsk->exit_signal);
609 	} else {
610 		autoreap = true;
611 	}
612 
613 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
614 	if (tsk->exit_state == EXIT_DEAD)
615 		list_add(&tsk->ptrace_entry, &dead);
616 
617 	/* mt-exec, de_thread() is waiting for group leader */
618 	if (unlikely(tsk->signal->notify_count < 0))
619 		wake_up_process(tsk->signal->group_exit_task);
620 	write_unlock_irq(&tasklist_lock);
621 
622 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
623 		list_del_init(&p->ptrace_entry);
624 		release_task(p);
625 	}
626 }
627 
628 #ifdef CONFIG_DEBUG_STACK_USAGE
629 static void check_stack_usage(void)
630 {
631 	static DEFINE_SPINLOCK(low_water_lock);
632 	static int lowest_to_date = THREAD_SIZE;
633 	unsigned long free;
634 
635 	free = stack_not_used(current);
636 
637 	if (free >= lowest_to_date)
638 		return;
639 
640 	spin_lock(&low_water_lock);
641 	if (free < lowest_to_date) {
642 		pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
643 			current->comm, task_pid_nr(current), free);
644 		lowest_to_date = free;
645 	}
646 	spin_unlock(&low_water_lock);
647 }
648 #else
649 static inline void check_stack_usage(void) {}
650 #endif
651 
652 void do_exit(long code)
653 {
654 	struct task_struct *tsk = current;
655 	int group_dead;
656 	TASKS_RCU(int tasks_rcu_i);
657 
658 	profile_task_exit(tsk);
659 	kcov_task_exit(tsk);
660 
661 	WARN_ON(blk_needs_flush_plug(tsk));
662 
663 	if (unlikely(in_interrupt()))
664 		panic("Aiee, killing interrupt handler!");
665 	if (unlikely(!tsk->pid))
666 		panic("Attempted to kill the idle task!");
667 
668 	/*
669 	 * If do_exit is called because this processes oopsed, it's possible
670 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
671 	 * continuing. Amongst other possible reasons, this is to prevent
672 	 * mm_release()->clear_child_tid() from writing to a user-controlled
673 	 * kernel address.
674 	 */
675 	set_fs(USER_DS);
676 
677 	ptrace_event(PTRACE_EVENT_EXIT, code);
678 
679 	validate_creds_for_do_exit(tsk);
680 
681 	/*
682 	 * We're taking recursive faults here in do_exit. Safest is to just
683 	 * leave this task alone and wait for reboot.
684 	 */
685 	if (unlikely(tsk->flags & PF_EXITING)) {
686 		pr_alert("Fixing recursive fault but reboot is needed!\n");
687 		/*
688 		 * We can do this unlocked here. The futex code uses
689 		 * this flag just to verify whether the pi state
690 		 * cleanup has been done or not. In the worst case it
691 		 * loops once more. We pretend that the cleanup was
692 		 * done as there is no way to return. Either the
693 		 * OWNER_DIED bit is set by now or we push the blocked
694 		 * task into the wait for ever nirwana as well.
695 		 */
696 		tsk->flags |= PF_EXITPIDONE;
697 		set_current_state(TASK_UNINTERRUPTIBLE);
698 		schedule();
699 	}
700 
701 	exit_signals(tsk);  /* sets PF_EXITING */
702 	/*
703 	 * tsk->flags are checked in the futex code to protect against
704 	 * an exiting task cleaning up the robust pi futexes.
705 	 */
706 	smp_mb();
707 	raw_spin_unlock_wait(&tsk->pi_lock);
708 
709 	if (unlikely(in_atomic())) {
710 		pr_info("note: %s[%d] exited with preempt_count %d\n",
711 			current->comm, task_pid_nr(current),
712 			preempt_count());
713 		preempt_count_set(PREEMPT_ENABLED);
714 	}
715 
716 	/* sync mm's RSS info before statistics gathering */
717 	if (tsk->mm)
718 		sync_mm_rss(tsk->mm);
719 	acct_update_integrals(tsk);
720 	group_dead = atomic_dec_and_test(&tsk->signal->live);
721 	if (group_dead) {
722 		hrtimer_cancel(&tsk->signal->real_timer);
723 		exit_itimers(tsk->signal);
724 		if (tsk->mm)
725 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
726 	}
727 	acct_collect(code, group_dead);
728 	if (group_dead)
729 		tty_audit_exit();
730 	audit_free(tsk);
731 
732 	tsk->exit_code = code;
733 	taskstats_exit(tsk, group_dead);
734 
735 	exit_mm(tsk);
736 
737 	if (group_dead)
738 		acct_process();
739 	trace_sched_process_exit(tsk);
740 
741 	exit_sem(tsk);
742 	exit_shm(tsk);
743 	exit_files(tsk);
744 	exit_fs(tsk);
745 	if (group_dead)
746 		disassociate_ctty(1);
747 	exit_task_namespaces(tsk);
748 	exit_task_work(tsk);
749 	exit_thread();
750 
751 	/*
752 	 * Flush inherited counters to the parent - before the parent
753 	 * gets woken up by child-exit notifications.
754 	 *
755 	 * because of cgroup mode, must be called before cgroup_exit()
756 	 */
757 	perf_event_exit_task(tsk);
758 
759 	cgroup_exit(tsk);
760 
761 	/*
762 	 * FIXME: do that only when needed, using sched_exit tracepoint
763 	 */
764 	flush_ptrace_hw_breakpoint(tsk);
765 
766 	TASKS_RCU(preempt_disable());
767 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
768 	TASKS_RCU(preempt_enable());
769 	exit_notify(tsk, group_dead);
770 	proc_exit_connector(tsk);
771 #ifdef CONFIG_NUMA
772 	task_lock(tsk);
773 	mpol_put(tsk->mempolicy);
774 	tsk->mempolicy = NULL;
775 	task_unlock(tsk);
776 #endif
777 #ifdef CONFIG_FUTEX
778 	if (unlikely(current->pi_state_cache))
779 		kfree(current->pi_state_cache);
780 #endif
781 	/*
782 	 * Make sure we are holding no locks:
783 	 */
784 	debug_check_no_locks_held();
785 	/*
786 	 * We can do this unlocked here. The futex code uses this flag
787 	 * just to verify whether the pi state cleanup has been done
788 	 * or not. In the worst case it loops once more.
789 	 */
790 	tsk->flags |= PF_EXITPIDONE;
791 
792 	if (tsk->io_context)
793 		exit_io_context(tsk);
794 
795 	if (tsk->splice_pipe)
796 		free_pipe_info(tsk->splice_pipe);
797 
798 	if (tsk->task_frag.page)
799 		put_page(tsk->task_frag.page);
800 
801 	validate_creds_for_do_exit(tsk);
802 
803 	check_stack_usage();
804 	preempt_disable();
805 	if (tsk->nr_dirtied)
806 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
807 	exit_rcu();
808 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
809 
810 	/*
811 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
812 	 * when the following two conditions become true.
813 	 *   - There is race condition of mmap_sem (It is acquired by
814 	 *     exit_mm()), and
815 	 *   - SMI occurs before setting TASK_RUNINNG.
816 	 *     (or hypervisor of virtual machine switches to other guest)
817 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
818 	 *
819 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
820 	 * is held by try_to_wake_up()
821 	 */
822 	smp_mb();
823 	raw_spin_unlock_wait(&tsk->pi_lock);
824 
825 	/* causes final put_task_struct in finish_task_switch(). */
826 	tsk->state = TASK_DEAD;
827 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
828 	schedule();
829 	BUG();
830 	/* Avoid "noreturn function does return".  */
831 	for (;;)
832 		cpu_relax();	/* For when BUG is null */
833 }
834 EXPORT_SYMBOL_GPL(do_exit);
835 
836 void complete_and_exit(struct completion *comp, long code)
837 {
838 	if (comp)
839 		complete(comp);
840 
841 	do_exit(code);
842 }
843 EXPORT_SYMBOL(complete_and_exit);
844 
845 SYSCALL_DEFINE1(exit, int, error_code)
846 {
847 	do_exit((error_code&0xff)<<8);
848 }
849 
850 /*
851  * Take down every thread in the group.  This is called by fatal signals
852  * as well as by sys_exit_group (below).
853  */
854 void
855 do_group_exit(int exit_code)
856 {
857 	struct signal_struct *sig = current->signal;
858 
859 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
860 
861 	if (signal_group_exit(sig))
862 		exit_code = sig->group_exit_code;
863 	else if (!thread_group_empty(current)) {
864 		struct sighand_struct *const sighand = current->sighand;
865 
866 		spin_lock_irq(&sighand->siglock);
867 		if (signal_group_exit(sig))
868 			/* Another thread got here before we took the lock.  */
869 			exit_code = sig->group_exit_code;
870 		else {
871 			sig->group_exit_code = exit_code;
872 			sig->flags = SIGNAL_GROUP_EXIT;
873 			zap_other_threads(current);
874 		}
875 		spin_unlock_irq(&sighand->siglock);
876 	}
877 
878 	do_exit(exit_code);
879 	/* NOTREACHED */
880 }
881 
882 /*
883  * this kills every thread in the thread group. Note that any externally
884  * wait4()-ing process will get the correct exit code - even if this
885  * thread is not the thread group leader.
886  */
887 SYSCALL_DEFINE1(exit_group, int, error_code)
888 {
889 	do_group_exit((error_code & 0xff) << 8);
890 	/* NOTREACHED */
891 	return 0;
892 }
893 
894 struct wait_opts {
895 	enum pid_type		wo_type;
896 	int			wo_flags;
897 	struct pid		*wo_pid;
898 
899 	struct siginfo __user	*wo_info;
900 	int __user		*wo_stat;
901 	struct rusage __user	*wo_rusage;
902 
903 	wait_queue_t		child_wait;
904 	int			notask_error;
905 };
906 
907 static inline
908 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
909 {
910 	if (type != PIDTYPE_PID)
911 		task = task->group_leader;
912 	return task->pids[type].pid;
913 }
914 
915 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
916 {
917 	return	wo->wo_type == PIDTYPE_MAX ||
918 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
919 }
920 
921 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
922 {
923 	if (!eligible_pid(wo, p))
924 		return 0;
925 	/* Wait for all children (clone and not) if __WALL is set;
926 	 * otherwise, wait for clone children *only* if __WCLONE is
927 	 * set; otherwise, wait for non-clone children *only*.  (Note:
928 	 * A "clone" child here is one that reports to its parent
929 	 * using a signal other than SIGCHLD.) */
930 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
931 	    && !(wo->wo_flags & __WALL))
932 		return 0;
933 
934 	return 1;
935 }
936 
937 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
938 				pid_t pid, uid_t uid, int why, int status)
939 {
940 	struct siginfo __user *infop;
941 	int retval = wo->wo_rusage
942 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
943 
944 	put_task_struct(p);
945 	infop = wo->wo_info;
946 	if (infop) {
947 		if (!retval)
948 			retval = put_user(SIGCHLD, &infop->si_signo);
949 		if (!retval)
950 			retval = put_user(0, &infop->si_errno);
951 		if (!retval)
952 			retval = put_user((short)why, &infop->si_code);
953 		if (!retval)
954 			retval = put_user(pid, &infop->si_pid);
955 		if (!retval)
956 			retval = put_user(uid, &infop->si_uid);
957 		if (!retval)
958 			retval = put_user(status, &infop->si_status);
959 	}
960 	if (!retval)
961 		retval = pid;
962 	return retval;
963 }
964 
965 /*
966  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
967  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
968  * the lock and this task is uninteresting.  If we return nonzero, we have
969  * released the lock and the system call should return.
970  */
971 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
972 {
973 	int state, retval, status;
974 	pid_t pid = task_pid_vnr(p);
975 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
976 	struct siginfo __user *infop;
977 
978 	if (!likely(wo->wo_flags & WEXITED))
979 		return 0;
980 
981 	if (unlikely(wo->wo_flags & WNOWAIT)) {
982 		int exit_code = p->exit_code;
983 		int why;
984 
985 		get_task_struct(p);
986 		read_unlock(&tasklist_lock);
987 		sched_annotate_sleep();
988 
989 		if ((exit_code & 0x7f) == 0) {
990 			why = CLD_EXITED;
991 			status = exit_code >> 8;
992 		} else {
993 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
994 			status = exit_code & 0x7f;
995 		}
996 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
997 	}
998 	/*
999 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1000 	 */
1001 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1002 		EXIT_TRACE : EXIT_DEAD;
1003 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1004 		return 0;
1005 	/*
1006 	 * We own this thread, nobody else can reap it.
1007 	 */
1008 	read_unlock(&tasklist_lock);
1009 	sched_annotate_sleep();
1010 
1011 	/*
1012 	 * Check thread_group_leader() to exclude the traced sub-threads.
1013 	 */
1014 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1015 		struct signal_struct *sig = p->signal;
1016 		struct signal_struct *psig = current->signal;
1017 		unsigned long maxrss;
1018 		cputime_t tgutime, tgstime;
1019 
1020 		/*
1021 		 * The resource counters for the group leader are in its
1022 		 * own task_struct.  Those for dead threads in the group
1023 		 * are in its signal_struct, as are those for the child
1024 		 * processes it has previously reaped.  All these
1025 		 * accumulate in the parent's signal_struct c* fields.
1026 		 *
1027 		 * We don't bother to take a lock here to protect these
1028 		 * p->signal fields because the whole thread group is dead
1029 		 * and nobody can change them.
1030 		 *
1031 		 * psig->stats_lock also protects us from our sub-theads
1032 		 * which can reap other children at the same time. Until
1033 		 * we change k_getrusage()-like users to rely on this lock
1034 		 * we have to take ->siglock as well.
1035 		 *
1036 		 * We use thread_group_cputime_adjusted() to get times for
1037 		 * the thread group, which consolidates times for all threads
1038 		 * in the group including the group leader.
1039 		 */
1040 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1041 		spin_lock_irq(&current->sighand->siglock);
1042 		write_seqlock(&psig->stats_lock);
1043 		psig->cutime += tgutime + sig->cutime;
1044 		psig->cstime += tgstime + sig->cstime;
1045 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1046 		psig->cmin_flt +=
1047 			p->min_flt + sig->min_flt + sig->cmin_flt;
1048 		psig->cmaj_flt +=
1049 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1050 		psig->cnvcsw +=
1051 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1052 		psig->cnivcsw +=
1053 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1054 		psig->cinblock +=
1055 			task_io_get_inblock(p) +
1056 			sig->inblock + sig->cinblock;
1057 		psig->coublock +=
1058 			task_io_get_oublock(p) +
1059 			sig->oublock + sig->coublock;
1060 		maxrss = max(sig->maxrss, sig->cmaxrss);
1061 		if (psig->cmaxrss < maxrss)
1062 			psig->cmaxrss = maxrss;
1063 		task_io_accounting_add(&psig->ioac, &p->ioac);
1064 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1065 		write_sequnlock(&psig->stats_lock);
1066 		spin_unlock_irq(&current->sighand->siglock);
1067 	}
1068 
1069 	retval = wo->wo_rusage
1070 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1071 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1072 		? p->signal->group_exit_code : p->exit_code;
1073 	if (!retval && wo->wo_stat)
1074 		retval = put_user(status, wo->wo_stat);
1075 
1076 	infop = wo->wo_info;
1077 	if (!retval && infop)
1078 		retval = put_user(SIGCHLD, &infop->si_signo);
1079 	if (!retval && infop)
1080 		retval = put_user(0, &infop->si_errno);
1081 	if (!retval && infop) {
1082 		int why;
1083 
1084 		if ((status & 0x7f) == 0) {
1085 			why = CLD_EXITED;
1086 			status >>= 8;
1087 		} else {
1088 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1089 			status &= 0x7f;
1090 		}
1091 		retval = put_user((short)why, &infop->si_code);
1092 		if (!retval)
1093 			retval = put_user(status, &infop->si_status);
1094 	}
1095 	if (!retval && infop)
1096 		retval = put_user(pid, &infop->si_pid);
1097 	if (!retval && infop)
1098 		retval = put_user(uid, &infop->si_uid);
1099 	if (!retval)
1100 		retval = pid;
1101 
1102 	if (state == EXIT_TRACE) {
1103 		write_lock_irq(&tasklist_lock);
1104 		/* We dropped tasklist, ptracer could die and untrace */
1105 		ptrace_unlink(p);
1106 
1107 		/* If parent wants a zombie, don't release it now */
1108 		state = EXIT_ZOMBIE;
1109 		if (do_notify_parent(p, p->exit_signal))
1110 			state = EXIT_DEAD;
1111 		p->exit_state = state;
1112 		write_unlock_irq(&tasklist_lock);
1113 	}
1114 	if (state == EXIT_DEAD)
1115 		release_task(p);
1116 
1117 	return retval;
1118 }
1119 
1120 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1121 {
1122 	if (ptrace) {
1123 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1124 			return &p->exit_code;
1125 	} else {
1126 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1127 			return &p->signal->group_exit_code;
1128 	}
1129 	return NULL;
1130 }
1131 
1132 /**
1133  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1134  * @wo: wait options
1135  * @ptrace: is the wait for ptrace
1136  * @p: task to wait for
1137  *
1138  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1139  *
1140  * CONTEXT:
1141  * read_lock(&tasklist_lock), which is released if return value is
1142  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1143  *
1144  * RETURNS:
1145  * 0 if wait condition didn't exist and search for other wait conditions
1146  * should continue.  Non-zero return, -errno on failure and @p's pid on
1147  * success, implies that tasklist_lock is released and wait condition
1148  * search should terminate.
1149  */
1150 static int wait_task_stopped(struct wait_opts *wo,
1151 				int ptrace, struct task_struct *p)
1152 {
1153 	struct siginfo __user *infop;
1154 	int retval, exit_code, *p_code, why;
1155 	uid_t uid = 0; /* unneeded, required by compiler */
1156 	pid_t pid;
1157 
1158 	/*
1159 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1160 	 */
1161 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1162 		return 0;
1163 
1164 	if (!task_stopped_code(p, ptrace))
1165 		return 0;
1166 
1167 	exit_code = 0;
1168 	spin_lock_irq(&p->sighand->siglock);
1169 
1170 	p_code = task_stopped_code(p, ptrace);
1171 	if (unlikely(!p_code))
1172 		goto unlock_sig;
1173 
1174 	exit_code = *p_code;
1175 	if (!exit_code)
1176 		goto unlock_sig;
1177 
1178 	if (!unlikely(wo->wo_flags & WNOWAIT))
1179 		*p_code = 0;
1180 
1181 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1182 unlock_sig:
1183 	spin_unlock_irq(&p->sighand->siglock);
1184 	if (!exit_code)
1185 		return 0;
1186 
1187 	/*
1188 	 * Now we are pretty sure this task is interesting.
1189 	 * Make sure it doesn't get reaped out from under us while we
1190 	 * give up the lock and then examine it below.  We don't want to
1191 	 * keep holding onto the tasklist_lock while we call getrusage and
1192 	 * possibly take page faults for user memory.
1193 	 */
1194 	get_task_struct(p);
1195 	pid = task_pid_vnr(p);
1196 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1197 	read_unlock(&tasklist_lock);
1198 	sched_annotate_sleep();
1199 
1200 	if (unlikely(wo->wo_flags & WNOWAIT))
1201 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1202 
1203 	retval = wo->wo_rusage
1204 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1205 	if (!retval && wo->wo_stat)
1206 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1207 
1208 	infop = wo->wo_info;
1209 	if (!retval && infop)
1210 		retval = put_user(SIGCHLD, &infop->si_signo);
1211 	if (!retval && infop)
1212 		retval = put_user(0, &infop->si_errno);
1213 	if (!retval && infop)
1214 		retval = put_user((short)why, &infop->si_code);
1215 	if (!retval && infop)
1216 		retval = put_user(exit_code, &infop->si_status);
1217 	if (!retval && infop)
1218 		retval = put_user(pid, &infop->si_pid);
1219 	if (!retval && infop)
1220 		retval = put_user(uid, &infop->si_uid);
1221 	if (!retval)
1222 		retval = pid;
1223 	put_task_struct(p);
1224 
1225 	BUG_ON(!retval);
1226 	return retval;
1227 }
1228 
1229 /*
1230  * Handle do_wait work for one task in a live, non-stopped state.
1231  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1232  * the lock and this task is uninteresting.  If we return nonzero, we have
1233  * released the lock and the system call should return.
1234  */
1235 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1236 {
1237 	int retval;
1238 	pid_t pid;
1239 	uid_t uid;
1240 
1241 	if (!unlikely(wo->wo_flags & WCONTINUED))
1242 		return 0;
1243 
1244 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1245 		return 0;
1246 
1247 	spin_lock_irq(&p->sighand->siglock);
1248 	/* Re-check with the lock held.  */
1249 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1250 		spin_unlock_irq(&p->sighand->siglock);
1251 		return 0;
1252 	}
1253 	if (!unlikely(wo->wo_flags & WNOWAIT))
1254 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1255 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1256 	spin_unlock_irq(&p->sighand->siglock);
1257 
1258 	pid = task_pid_vnr(p);
1259 	get_task_struct(p);
1260 	read_unlock(&tasklist_lock);
1261 	sched_annotate_sleep();
1262 
1263 	if (!wo->wo_info) {
1264 		retval = wo->wo_rusage
1265 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1266 		put_task_struct(p);
1267 		if (!retval && wo->wo_stat)
1268 			retval = put_user(0xffff, wo->wo_stat);
1269 		if (!retval)
1270 			retval = pid;
1271 	} else {
1272 		retval = wait_noreap_copyout(wo, p, pid, uid,
1273 					     CLD_CONTINUED, SIGCONT);
1274 		BUG_ON(retval == 0);
1275 	}
1276 
1277 	return retval;
1278 }
1279 
1280 /*
1281  * Consider @p for a wait by @parent.
1282  *
1283  * -ECHILD should be in ->notask_error before the first call.
1284  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1285  * Returns zero if the search for a child should continue;
1286  * then ->notask_error is 0 if @p is an eligible child,
1287  * or another error from security_task_wait(), or still -ECHILD.
1288  */
1289 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1290 				struct task_struct *p)
1291 {
1292 	/*
1293 	 * We can race with wait_task_zombie() from another thread.
1294 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1295 	 * can't confuse the checks below.
1296 	 */
1297 	int exit_state = ACCESS_ONCE(p->exit_state);
1298 	int ret;
1299 
1300 	if (unlikely(exit_state == EXIT_DEAD))
1301 		return 0;
1302 
1303 	ret = eligible_child(wo, p);
1304 	if (!ret)
1305 		return ret;
1306 
1307 	ret = security_task_wait(p);
1308 	if (unlikely(ret < 0)) {
1309 		/*
1310 		 * If we have not yet seen any eligible child,
1311 		 * then let this error code replace -ECHILD.
1312 		 * A permission error will give the user a clue
1313 		 * to look for security policy problems, rather
1314 		 * than for mysterious wait bugs.
1315 		 */
1316 		if (wo->notask_error)
1317 			wo->notask_error = ret;
1318 		return 0;
1319 	}
1320 
1321 	if (unlikely(exit_state == EXIT_TRACE)) {
1322 		/*
1323 		 * ptrace == 0 means we are the natural parent. In this case
1324 		 * we should clear notask_error, debugger will notify us.
1325 		 */
1326 		if (likely(!ptrace))
1327 			wo->notask_error = 0;
1328 		return 0;
1329 	}
1330 
1331 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1332 		/*
1333 		 * If it is traced by its real parent's group, just pretend
1334 		 * the caller is ptrace_do_wait() and reap this child if it
1335 		 * is zombie.
1336 		 *
1337 		 * This also hides group stop state from real parent; otherwise
1338 		 * a single stop can be reported twice as group and ptrace stop.
1339 		 * If a ptracer wants to distinguish these two events for its
1340 		 * own children it should create a separate process which takes
1341 		 * the role of real parent.
1342 		 */
1343 		if (!ptrace_reparented(p))
1344 			ptrace = 1;
1345 	}
1346 
1347 	/* slay zombie? */
1348 	if (exit_state == EXIT_ZOMBIE) {
1349 		/* we don't reap group leaders with subthreads */
1350 		if (!delay_group_leader(p)) {
1351 			/*
1352 			 * A zombie ptracee is only visible to its ptracer.
1353 			 * Notification and reaping will be cascaded to the
1354 			 * real parent when the ptracer detaches.
1355 			 */
1356 			if (unlikely(ptrace) || likely(!p->ptrace))
1357 				return wait_task_zombie(wo, p);
1358 		}
1359 
1360 		/*
1361 		 * Allow access to stopped/continued state via zombie by
1362 		 * falling through.  Clearing of notask_error is complex.
1363 		 *
1364 		 * When !@ptrace:
1365 		 *
1366 		 * If WEXITED is set, notask_error should naturally be
1367 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1368 		 * so, if there are live subthreads, there are events to
1369 		 * wait for.  If all subthreads are dead, it's still safe
1370 		 * to clear - this function will be called again in finite
1371 		 * amount time once all the subthreads are released and
1372 		 * will then return without clearing.
1373 		 *
1374 		 * When @ptrace:
1375 		 *
1376 		 * Stopped state is per-task and thus can't change once the
1377 		 * target task dies.  Only continued and exited can happen.
1378 		 * Clear notask_error if WCONTINUED | WEXITED.
1379 		 */
1380 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1381 			wo->notask_error = 0;
1382 	} else {
1383 		/*
1384 		 * @p is alive and it's gonna stop, continue or exit, so
1385 		 * there always is something to wait for.
1386 		 */
1387 		wo->notask_error = 0;
1388 	}
1389 
1390 	/*
1391 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1392 	 * is used and the two don't interact with each other.
1393 	 */
1394 	ret = wait_task_stopped(wo, ptrace, p);
1395 	if (ret)
1396 		return ret;
1397 
1398 	/*
1399 	 * Wait for continued.  There's only one continued state and the
1400 	 * ptracer can consume it which can confuse the real parent.  Don't
1401 	 * use WCONTINUED from ptracer.  You don't need or want it.
1402 	 */
1403 	return wait_task_continued(wo, p);
1404 }
1405 
1406 /*
1407  * Do the work of do_wait() for one thread in the group, @tsk.
1408  *
1409  * -ECHILD should be in ->notask_error before the first call.
1410  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1411  * Returns zero if the search for a child should continue; then
1412  * ->notask_error is 0 if there were any eligible children,
1413  * or another error from security_task_wait(), or still -ECHILD.
1414  */
1415 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1416 {
1417 	struct task_struct *p;
1418 
1419 	list_for_each_entry(p, &tsk->children, sibling) {
1420 		int ret = wait_consider_task(wo, 0, p);
1421 
1422 		if (ret)
1423 			return ret;
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1430 {
1431 	struct task_struct *p;
1432 
1433 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1434 		int ret = wait_consider_task(wo, 1, p);
1435 
1436 		if (ret)
1437 			return ret;
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1444 				int sync, void *key)
1445 {
1446 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1447 						child_wait);
1448 	struct task_struct *p = key;
1449 
1450 	if (!eligible_pid(wo, p))
1451 		return 0;
1452 
1453 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1454 		return 0;
1455 
1456 	return default_wake_function(wait, mode, sync, key);
1457 }
1458 
1459 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1460 {
1461 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1462 				TASK_INTERRUPTIBLE, 1, p);
1463 }
1464 
1465 static long do_wait(struct wait_opts *wo)
1466 {
1467 	struct task_struct *tsk;
1468 	int retval;
1469 
1470 	trace_sched_process_wait(wo->wo_pid);
1471 
1472 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1473 	wo->child_wait.private = current;
1474 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1475 repeat:
1476 	/*
1477 	 * If there is nothing that can match our criteria, just get out.
1478 	 * We will clear ->notask_error to zero if we see any child that
1479 	 * might later match our criteria, even if we are not able to reap
1480 	 * it yet.
1481 	 */
1482 	wo->notask_error = -ECHILD;
1483 	if ((wo->wo_type < PIDTYPE_MAX) &&
1484 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1485 		goto notask;
1486 
1487 	set_current_state(TASK_INTERRUPTIBLE);
1488 	read_lock(&tasklist_lock);
1489 	tsk = current;
1490 	do {
1491 		retval = do_wait_thread(wo, tsk);
1492 		if (retval)
1493 			goto end;
1494 
1495 		retval = ptrace_do_wait(wo, tsk);
1496 		if (retval)
1497 			goto end;
1498 
1499 		if (wo->wo_flags & __WNOTHREAD)
1500 			break;
1501 	} while_each_thread(current, tsk);
1502 	read_unlock(&tasklist_lock);
1503 
1504 notask:
1505 	retval = wo->notask_error;
1506 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1507 		retval = -ERESTARTSYS;
1508 		if (!signal_pending(current)) {
1509 			schedule();
1510 			goto repeat;
1511 		}
1512 	}
1513 end:
1514 	__set_current_state(TASK_RUNNING);
1515 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1516 	return retval;
1517 }
1518 
1519 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1520 		infop, int, options, struct rusage __user *, ru)
1521 {
1522 	struct wait_opts wo;
1523 	struct pid *pid = NULL;
1524 	enum pid_type type;
1525 	long ret;
1526 
1527 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1528 		return -EINVAL;
1529 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1530 		return -EINVAL;
1531 
1532 	switch (which) {
1533 	case P_ALL:
1534 		type = PIDTYPE_MAX;
1535 		break;
1536 	case P_PID:
1537 		type = PIDTYPE_PID;
1538 		if (upid <= 0)
1539 			return -EINVAL;
1540 		break;
1541 	case P_PGID:
1542 		type = PIDTYPE_PGID;
1543 		if (upid <= 0)
1544 			return -EINVAL;
1545 		break;
1546 	default:
1547 		return -EINVAL;
1548 	}
1549 
1550 	if (type < PIDTYPE_MAX)
1551 		pid = find_get_pid(upid);
1552 
1553 	wo.wo_type	= type;
1554 	wo.wo_pid	= pid;
1555 	wo.wo_flags	= options;
1556 	wo.wo_info	= infop;
1557 	wo.wo_stat	= NULL;
1558 	wo.wo_rusage	= ru;
1559 	ret = do_wait(&wo);
1560 
1561 	if (ret > 0) {
1562 		ret = 0;
1563 	} else if (infop) {
1564 		/*
1565 		 * For a WNOHANG return, clear out all the fields
1566 		 * we would set so the user can easily tell the
1567 		 * difference.
1568 		 */
1569 		if (!ret)
1570 			ret = put_user(0, &infop->si_signo);
1571 		if (!ret)
1572 			ret = put_user(0, &infop->si_errno);
1573 		if (!ret)
1574 			ret = put_user(0, &infop->si_code);
1575 		if (!ret)
1576 			ret = put_user(0, &infop->si_pid);
1577 		if (!ret)
1578 			ret = put_user(0, &infop->si_uid);
1579 		if (!ret)
1580 			ret = put_user(0, &infop->si_status);
1581 	}
1582 
1583 	put_pid(pid);
1584 	return ret;
1585 }
1586 
1587 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1588 		int, options, struct rusage __user *, ru)
1589 {
1590 	struct wait_opts wo;
1591 	struct pid *pid = NULL;
1592 	enum pid_type type;
1593 	long ret;
1594 
1595 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1596 			__WNOTHREAD|__WCLONE|__WALL))
1597 		return -EINVAL;
1598 
1599 	if (upid == -1)
1600 		type = PIDTYPE_MAX;
1601 	else if (upid < 0) {
1602 		type = PIDTYPE_PGID;
1603 		pid = find_get_pid(-upid);
1604 	} else if (upid == 0) {
1605 		type = PIDTYPE_PGID;
1606 		pid = get_task_pid(current, PIDTYPE_PGID);
1607 	} else /* upid > 0 */ {
1608 		type = PIDTYPE_PID;
1609 		pid = find_get_pid(upid);
1610 	}
1611 
1612 	wo.wo_type	= type;
1613 	wo.wo_pid	= pid;
1614 	wo.wo_flags	= options | WEXITED;
1615 	wo.wo_info	= NULL;
1616 	wo.wo_stat	= stat_addr;
1617 	wo.wo_rusage	= ru;
1618 	ret = do_wait(&wo);
1619 	put_pid(pid);
1620 
1621 	return ret;
1622 }
1623 
1624 #ifdef __ARCH_WANT_SYS_WAITPID
1625 
1626 /*
1627  * sys_waitpid() remains for compatibility. waitpid() should be
1628  * implemented by calling sys_wait4() from libc.a.
1629  */
1630 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1631 {
1632 	return sys_wait4(pid, stat_addr, options, NULL);
1633 }
1634 
1635 #endif
1636