xref: /openbmc/linux/kernel/exit.c (revision 547840bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71 
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *uninitialized_var(tty);
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead)
107 		posix_cpu_timers_exit_group(tsk);
108 #endif
109 
110 	if (group_dead) {
111 		tty = sig->tty;
112 		sig->tty = NULL;
113 	} else {
114 		/*
115 		 * If there is any task waiting for the group exit
116 		 * then notify it:
117 		 */
118 		if (sig->notify_count > 0 && !--sig->notify_count)
119 			wake_up_process(sig->group_exit_task);
120 
121 		if (tsk == sig->curr_target)
122 			sig->curr_target = next_thread(tsk);
123 	}
124 
125 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 			      sizeof(unsigned long long));
127 
128 	/*
129 	 * Accumulate here the counters for all threads as they die. We could
130 	 * skip the group leader because it is the last user of signal_struct,
131 	 * but we want to avoid the race with thread_group_cputime() which can
132 	 * see the empty ->thread_head list.
133 	 */
134 	task_cputime(tsk, &utime, &stime);
135 	write_seqlock(&sig->stats_lock);
136 	sig->utime += utime;
137 	sig->stime += stime;
138 	sig->gtime += task_gtime(tsk);
139 	sig->min_flt += tsk->min_flt;
140 	sig->maj_flt += tsk->maj_flt;
141 	sig->nvcsw += tsk->nvcsw;
142 	sig->nivcsw += tsk->nivcsw;
143 	sig->inblock += task_io_get_inblock(tsk);
144 	sig->oublock += task_io_get_oublock(tsk);
145 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 	sig->nr_threads--;
148 	__unhash_process(tsk, group_dead);
149 	write_sequnlock(&sig->stats_lock);
150 
151 	/*
152 	 * Do this under ->siglock, we can race with another thread
153 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 	 */
155 	flush_sigqueue(&tsk->pending);
156 	tsk->sighand = NULL;
157 	spin_unlock(&sighand->siglock);
158 
159 	__cleanup_sighand(sighand);
160 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 	if (group_dead) {
162 		flush_sigqueue(&sig->shared_pending);
163 		tty_kref_put(tty);
164 	}
165 }
166 
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170 
171 	perf_event_delayed_put(tsk);
172 	trace_sched_process_free(tsk);
173 	put_task_struct(tsk);
174 }
175 
176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178 	if (refcount_dec_and_test(&task->rcu_users))
179 		call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181 
182 void release_task(struct task_struct *p)
183 {
184 	struct task_struct *leader;
185 	struct pid *thread_pid;
186 	int zap_leader;
187 repeat:
188 	/* don't need to get the RCU readlock here - the process is dead and
189 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
190 	rcu_read_lock();
191 	atomic_dec(&__task_cred(p)->user->processes);
192 	rcu_read_unlock();
193 
194 	cgroup_release(p);
195 
196 	write_lock_irq(&tasklist_lock);
197 	ptrace_release_task(p);
198 	thread_pid = get_pid(p->thread_pid);
199 	__exit_signal(p);
200 
201 	/*
202 	 * If we are the last non-leader member of the thread
203 	 * group, and the leader is zombie, then notify the
204 	 * group leader's parent process. (if it wants notification.)
205 	 */
206 	zap_leader = 0;
207 	leader = p->group_leader;
208 	if (leader != p && thread_group_empty(leader)
209 			&& leader->exit_state == EXIT_ZOMBIE) {
210 		/*
211 		 * If we were the last child thread and the leader has
212 		 * exited already, and the leader's parent ignores SIGCHLD,
213 		 * then we are the one who should release the leader.
214 		 */
215 		zap_leader = do_notify_parent(leader, leader->exit_signal);
216 		if (zap_leader)
217 			leader->exit_state = EXIT_DEAD;
218 	}
219 
220 	write_unlock_irq(&tasklist_lock);
221 	proc_flush_pid(thread_pid);
222 	put_pid(thread_pid);
223 	release_thread(p);
224 	put_task_struct_rcu_user(p);
225 
226 	p = leader;
227 	if (unlikely(zap_leader))
228 		goto repeat;
229 }
230 
231 int rcuwait_wake_up(struct rcuwait *w)
232 {
233 	int ret = 0;
234 	struct task_struct *task;
235 
236 	rcu_read_lock();
237 
238 	/*
239 	 * Order condition vs @task, such that everything prior to the load
240 	 * of @task is visible. This is the condition as to why the user called
241 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
242 	 * barrier (A) in rcuwait_wait_event().
243 	 *
244 	 *    WAIT                WAKE
245 	 *    [S] tsk = current	  [S] cond = true
246 	 *        MB (A)	      MB (B)
247 	 *    [L] cond		  [L] tsk
248 	 */
249 	smp_mb(); /* (B) */
250 
251 	task = rcu_dereference(w->task);
252 	if (task)
253 		ret = wake_up_process(task);
254 	rcu_read_unlock();
255 
256 	return ret;
257 }
258 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
259 
260 /*
261  * Determine if a process group is "orphaned", according to the POSIX
262  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
263  * by terminal-generated stop signals.  Newly orphaned process groups are
264  * to receive a SIGHUP and a SIGCONT.
265  *
266  * "I ask you, have you ever known what it is to be an orphan?"
267  */
268 static int will_become_orphaned_pgrp(struct pid *pgrp,
269 					struct task_struct *ignored_task)
270 {
271 	struct task_struct *p;
272 
273 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
274 		if ((p == ignored_task) ||
275 		    (p->exit_state && thread_group_empty(p)) ||
276 		    is_global_init(p->real_parent))
277 			continue;
278 
279 		if (task_pgrp(p->real_parent) != pgrp &&
280 		    task_session(p->real_parent) == task_session(p))
281 			return 0;
282 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
283 
284 	return 1;
285 }
286 
287 int is_current_pgrp_orphaned(void)
288 {
289 	int retval;
290 
291 	read_lock(&tasklist_lock);
292 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
293 	read_unlock(&tasklist_lock);
294 
295 	return retval;
296 }
297 
298 static bool has_stopped_jobs(struct pid *pgrp)
299 {
300 	struct task_struct *p;
301 
302 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
303 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
304 			return true;
305 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
306 
307 	return false;
308 }
309 
310 /*
311  * Check to see if any process groups have become orphaned as
312  * a result of our exiting, and if they have any stopped jobs,
313  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
314  */
315 static void
316 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
317 {
318 	struct pid *pgrp = task_pgrp(tsk);
319 	struct task_struct *ignored_task = tsk;
320 
321 	if (!parent)
322 		/* exit: our father is in a different pgrp than
323 		 * we are and we were the only connection outside.
324 		 */
325 		parent = tsk->real_parent;
326 	else
327 		/* reparent: our child is in a different pgrp than
328 		 * we are, and it was the only connection outside.
329 		 */
330 		ignored_task = NULL;
331 
332 	if (task_pgrp(parent) != pgrp &&
333 	    task_session(parent) == task_session(tsk) &&
334 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
335 	    has_stopped_jobs(pgrp)) {
336 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
337 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
338 	}
339 }
340 
341 #ifdef CONFIG_MEMCG
342 /*
343  * A task is exiting.   If it owned this mm, find a new owner for the mm.
344  */
345 void mm_update_next_owner(struct mm_struct *mm)
346 {
347 	struct task_struct *c, *g, *p = current;
348 
349 retry:
350 	/*
351 	 * If the exiting or execing task is not the owner, it's
352 	 * someone else's problem.
353 	 */
354 	if (mm->owner != p)
355 		return;
356 	/*
357 	 * The current owner is exiting/execing and there are no other
358 	 * candidates.  Do not leave the mm pointing to a possibly
359 	 * freed task structure.
360 	 */
361 	if (atomic_read(&mm->mm_users) <= 1) {
362 		WRITE_ONCE(mm->owner, NULL);
363 		return;
364 	}
365 
366 	read_lock(&tasklist_lock);
367 	/*
368 	 * Search in the children
369 	 */
370 	list_for_each_entry(c, &p->children, sibling) {
371 		if (c->mm == mm)
372 			goto assign_new_owner;
373 	}
374 
375 	/*
376 	 * Search in the siblings
377 	 */
378 	list_for_each_entry(c, &p->real_parent->children, sibling) {
379 		if (c->mm == mm)
380 			goto assign_new_owner;
381 	}
382 
383 	/*
384 	 * Search through everything else, we should not get here often.
385 	 */
386 	for_each_process(g) {
387 		if (g->flags & PF_KTHREAD)
388 			continue;
389 		for_each_thread(g, c) {
390 			if (c->mm == mm)
391 				goto assign_new_owner;
392 			if (c->mm)
393 				break;
394 		}
395 	}
396 	read_unlock(&tasklist_lock);
397 	/*
398 	 * We found no owner yet mm_users > 1: this implies that we are
399 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
400 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
401 	 */
402 	WRITE_ONCE(mm->owner, NULL);
403 	return;
404 
405 assign_new_owner:
406 	BUG_ON(c == p);
407 	get_task_struct(c);
408 	/*
409 	 * The task_lock protects c->mm from changing.
410 	 * We always want mm->owner->mm == mm
411 	 */
412 	task_lock(c);
413 	/*
414 	 * Delay read_unlock() till we have the task_lock()
415 	 * to ensure that c does not slip away underneath us
416 	 */
417 	read_unlock(&tasklist_lock);
418 	if (c->mm != mm) {
419 		task_unlock(c);
420 		put_task_struct(c);
421 		goto retry;
422 	}
423 	WRITE_ONCE(mm->owner, c);
424 	task_unlock(c);
425 	put_task_struct(c);
426 }
427 #endif /* CONFIG_MEMCG */
428 
429 /*
430  * Turn us into a lazy TLB process if we
431  * aren't already..
432  */
433 static void exit_mm(void)
434 {
435 	struct mm_struct *mm = current->mm;
436 	struct core_state *core_state;
437 
438 	exit_mm_release(current, mm);
439 	if (!mm)
440 		return;
441 	sync_mm_rss(mm);
442 	/*
443 	 * Serialize with any possible pending coredump.
444 	 * We must hold mmap_sem around checking core_state
445 	 * and clearing tsk->mm.  The core-inducing thread
446 	 * will increment ->nr_threads for each thread in the
447 	 * group with ->mm != NULL.
448 	 */
449 	down_read(&mm->mmap_sem);
450 	core_state = mm->core_state;
451 	if (core_state) {
452 		struct core_thread self;
453 
454 		up_read(&mm->mmap_sem);
455 
456 		self.task = current;
457 		self.next = xchg(&core_state->dumper.next, &self);
458 		/*
459 		 * Implies mb(), the result of xchg() must be visible
460 		 * to core_state->dumper.
461 		 */
462 		if (atomic_dec_and_test(&core_state->nr_threads))
463 			complete(&core_state->startup);
464 
465 		for (;;) {
466 			set_current_state(TASK_UNINTERRUPTIBLE);
467 			if (!self.task) /* see coredump_finish() */
468 				break;
469 			freezable_schedule();
470 		}
471 		__set_current_state(TASK_RUNNING);
472 		down_read(&mm->mmap_sem);
473 	}
474 	mmgrab(mm);
475 	BUG_ON(mm != current->active_mm);
476 	/* more a memory barrier than a real lock */
477 	task_lock(current);
478 	current->mm = NULL;
479 	up_read(&mm->mmap_sem);
480 	enter_lazy_tlb(mm, current);
481 	task_unlock(current);
482 	mm_update_next_owner(mm);
483 	mmput(mm);
484 	if (test_thread_flag(TIF_MEMDIE))
485 		exit_oom_victim();
486 }
487 
488 static struct task_struct *find_alive_thread(struct task_struct *p)
489 {
490 	struct task_struct *t;
491 
492 	for_each_thread(p, t) {
493 		if (!(t->flags & PF_EXITING))
494 			return t;
495 	}
496 	return NULL;
497 }
498 
499 static struct task_struct *find_child_reaper(struct task_struct *father,
500 						struct list_head *dead)
501 	__releases(&tasklist_lock)
502 	__acquires(&tasklist_lock)
503 {
504 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
505 	struct task_struct *reaper = pid_ns->child_reaper;
506 	struct task_struct *p, *n;
507 
508 	if (likely(reaper != father))
509 		return reaper;
510 
511 	reaper = find_alive_thread(father);
512 	if (reaper) {
513 		pid_ns->child_reaper = reaper;
514 		return reaper;
515 	}
516 
517 	write_unlock_irq(&tasklist_lock);
518 
519 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
520 		list_del_init(&p->ptrace_entry);
521 		release_task(p);
522 	}
523 
524 	zap_pid_ns_processes(pid_ns);
525 	write_lock_irq(&tasklist_lock);
526 
527 	return father;
528 }
529 
530 /*
531  * When we die, we re-parent all our children, and try to:
532  * 1. give them to another thread in our thread group, if such a member exists
533  * 2. give it to the first ancestor process which prctl'd itself as a
534  *    child_subreaper for its children (like a service manager)
535  * 3. give it to the init process (PID 1) in our pid namespace
536  */
537 static struct task_struct *find_new_reaper(struct task_struct *father,
538 					   struct task_struct *child_reaper)
539 {
540 	struct task_struct *thread, *reaper;
541 
542 	thread = find_alive_thread(father);
543 	if (thread)
544 		return thread;
545 
546 	if (father->signal->has_child_subreaper) {
547 		unsigned int ns_level = task_pid(father)->level;
548 		/*
549 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
550 		 * We can't check reaper != child_reaper to ensure we do not
551 		 * cross the namespaces, the exiting parent could be injected
552 		 * by setns() + fork().
553 		 * We check pid->level, this is slightly more efficient than
554 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
555 		 */
556 		for (reaper = father->real_parent;
557 		     task_pid(reaper)->level == ns_level;
558 		     reaper = reaper->real_parent) {
559 			if (reaper == &init_task)
560 				break;
561 			if (!reaper->signal->is_child_subreaper)
562 				continue;
563 			thread = find_alive_thread(reaper);
564 			if (thread)
565 				return thread;
566 		}
567 	}
568 
569 	return child_reaper;
570 }
571 
572 /*
573 * Any that need to be release_task'd are put on the @dead list.
574  */
575 static void reparent_leader(struct task_struct *father, struct task_struct *p,
576 				struct list_head *dead)
577 {
578 	if (unlikely(p->exit_state == EXIT_DEAD))
579 		return;
580 
581 	/* We don't want people slaying init. */
582 	p->exit_signal = SIGCHLD;
583 
584 	/* If it has exited notify the new parent about this child's death. */
585 	if (!p->ptrace &&
586 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
587 		if (do_notify_parent(p, p->exit_signal)) {
588 			p->exit_state = EXIT_DEAD;
589 			list_add(&p->ptrace_entry, dead);
590 		}
591 	}
592 
593 	kill_orphaned_pgrp(p, father);
594 }
595 
596 /*
597  * This does two things:
598  *
599  * A.  Make init inherit all the child processes
600  * B.  Check to see if any process groups have become orphaned
601  *	as a result of our exiting, and if they have any stopped
602  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
603  */
604 static void forget_original_parent(struct task_struct *father,
605 					struct list_head *dead)
606 {
607 	struct task_struct *p, *t, *reaper;
608 
609 	if (unlikely(!list_empty(&father->ptraced)))
610 		exit_ptrace(father, dead);
611 
612 	/* Can drop and reacquire tasklist_lock */
613 	reaper = find_child_reaper(father, dead);
614 	if (list_empty(&father->children))
615 		return;
616 
617 	reaper = find_new_reaper(father, reaper);
618 	list_for_each_entry(p, &father->children, sibling) {
619 		for_each_thread(p, t) {
620 			RCU_INIT_POINTER(t->real_parent, reaper);
621 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
622 			if (likely(!t->ptrace))
623 				t->parent = t->real_parent;
624 			if (t->pdeath_signal)
625 				group_send_sig_info(t->pdeath_signal,
626 						    SEND_SIG_NOINFO, t,
627 						    PIDTYPE_TGID);
628 		}
629 		/*
630 		 * If this is a threaded reparent there is no need to
631 		 * notify anyone anything has happened.
632 		 */
633 		if (!same_thread_group(reaper, father))
634 			reparent_leader(father, p, dead);
635 	}
636 	list_splice_tail_init(&father->children, &reaper->children);
637 }
638 
639 /*
640  * Send signals to all our closest relatives so that they know
641  * to properly mourn us..
642  */
643 static void exit_notify(struct task_struct *tsk, int group_dead)
644 {
645 	bool autoreap;
646 	struct task_struct *p, *n;
647 	LIST_HEAD(dead);
648 
649 	write_lock_irq(&tasklist_lock);
650 	forget_original_parent(tsk, &dead);
651 
652 	if (group_dead)
653 		kill_orphaned_pgrp(tsk->group_leader, NULL);
654 
655 	tsk->exit_state = EXIT_ZOMBIE;
656 	if (unlikely(tsk->ptrace)) {
657 		int sig = thread_group_leader(tsk) &&
658 				thread_group_empty(tsk) &&
659 				!ptrace_reparented(tsk) ?
660 			tsk->exit_signal : SIGCHLD;
661 		autoreap = do_notify_parent(tsk, sig);
662 	} else if (thread_group_leader(tsk)) {
663 		autoreap = thread_group_empty(tsk) &&
664 			do_notify_parent(tsk, tsk->exit_signal);
665 	} else {
666 		autoreap = true;
667 	}
668 
669 	if (autoreap) {
670 		tsk->exit_state = EXIT_DEAD;
671 		list_add(&tsk->ptrace_entry, &dead);
672 	}
673 
674 	/* mt-exec, de_thread() is waiting for group leader */
675 	if (unlikely(tsk->signal->notify_count < 0))
676 		wake_up_process(tsk->signal->group_exit_task);
677 	write_unlock_irq(&tasklist_lock);
678 
679 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
680 		list_del_init(&p->ptrace_entry);
681 		release_task(p);
682 	}
683 }
684 
685 #ifdef CONFIG_DEBUG_STACK_USAGE
686 static void check_stack_usage(void)
687 {
688 	static DEFINE_SPINLOCK(low_water_lock);
689 	static int lowest_to_date = THREAD_SIZE;
690 	unsigned long free;
691 
692 	free = stack_not_used(current);
693 
694 	if (free >= lowest_to_date)
695 		return;
696 
697 	spin_lock(&low_water_lock);
698 	if (free < lowest_to_date) {
699 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
700 			current->comm, task_pid_nr(current), free);
701 		lowest_to_date = free;
702 	}
703 	spin_unlock(&low_water_lock);
704 }
705 #else
706 static inline void check_stack_usage(void) {}
707 #endif
708 
709 void __noreturn do_exit(long code)
710 {
711 	struct task_struct *tsk = current;
712 	int group_dead;
713 
714 	/*
715 	 * We can get here from a kernel oops, sometimes with preemption off.
716 	 * Start by checking for critical errors.
717 	 * Then fix up important state like USER_DS and preemption.
718 	 * Then do everything else.
719 	 */
720 
721 	WARN_ON(blk_needs_flush_plug(tsk));
722 
723 	if (unlikely(in_interrupt()))
724 		panic("Aiee, killing interrupt handler!");
725 	if (unlikely(!tsk->pid))
726 		panic("Attempted to kill the idle task!");
727 
728 	/*
729 	 * If do_exit is called because this processes oopsed, it's possible
730 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
731 	 * continuing. Amongst other possible reasons, this is to prevent
732 	 * mm_release()->clear_child_tid() from writing to a user-controlled
733 	 * kernel address.
734 	 */
735 	set_fs(USER_DS);
736 
737 	if (unlikely(in_atomic())) {
738 		pr_info("note: %s[%d] exited with preempt_count %d\n",
739 			current->comm, task_pid_nr(current),
740 			preempt_count());
741 		preempt_count_set(PREEMPT_ENABLED);
742 	}
743 
744 	profile_task_exit(tsk);
745 	kcov_task_exit(tsk);
746 
747 	ptrace_event(PTRACE_EVENT_EXIT, code);
748 
749 	validate_creds_for_do_exit(tsk);
750 
751 	/*
752 	 * We're taking recursive faults here in do_exit. Safest is to just
753 	 * leave this task alone and wait for reboot.
754 	 */
755 	if (unlikely(tsk->flags & PF_EXITING)) {
756 		pr_alert("Fixing recursive fault but reboot is needed!\n");
757 		futex_exit_recursive(tsk);
758 		set_current_state(TASK_UNINTERRUPTIBLE);
759 		schedule();
760 	}
761 
762 	exit_signals(tsk);  /* sets PF_EXITING */
763 
764 	/* sync mm's RSS info before statistics gathering */
765 	if (tsk->mm)
766 		sync_mm_rss(tsk->mm);
767 	acct_update_integrals(tsk);
768 	group_dead = atomic_dec_and_test(&tsk->signal->live);
769 	if (group_dead) {
770 		/*
771 		 * If the last thread of global init has exited, panic
772 		 * immediately to get a useable coredump.
773 		 */
774 		if (unlikely(is_global_init(tsk)))
775 			panic("Attempted to kill init! exitcode=0x%08x\n",
776 				tsk->signal->group_exit_code ?: (int)code);
777 
778 #ifdef CONFIG_POSIX_TIMERS
779 		hrtimer_cancel(&tsk->signal->real_timer);
780 		exit_itimers(tsk->signal);
781 #endif
782 		if (tsk->mm)
783 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
784 	}
785 	acct_collect(code, group_dead);
786 	if (group_dead)
787 		tty_audit_exit();
788 	audit_free(tsk);
789 
790 	tsk->exit_code = code;
791 	taskstats_exit(tsk, group_dead);
792 
793 	exit_mm();
794 
795 	if (group_dead)
796 		acct_process();
797 	trace_sched_process_exit(tsk);
798 
799 	exit_sem(tsk);
800 	exit_shm(tsk);
801 	exit_files(tsk);
802 	exit_fs(tsk);
803 	if (group_dead)
804 		disassociate_ctty(1);
805 	exit_task_namespaces(tsk);
806 	exit_task_work(tsk);
807 	exit_thread(tsk);
808 	exit_umh(tsk);
809 
810 	/*
811 	 * Flush inherited counters to the parent - before the parent
812 	 * gets woken up by child-exit notifications.
813 	 *
814 	 * because of cgroup mode, must be called before cgroup_exit()
815 	 */
816 	perf_event_exit_task(tsk);
817 
818 	sched_autogroup_exit_task(tsk);
819 	cgroup_exit(tsk);
820 
821 	/*
822 	 * FIXME: do that only when needed, using sched_exit tracepoint
823 	 */
824 	flush_ptrace_hw_breakpoint(tsk);
825 
826 	exit_tasks_rcu_start();
827 	exit_notify(tsk, group_dead);
828 	proc_exit_connector(tsk);
829 	mpol_put_task_policy(tsk);
830 #ifdef CONFIG_FUTEX
831 	if (unlikely(current->pi_state_cache))
832 		kfree(current->pi_state_cache);
833 #endif
834 	/*
835 	 * Make sure we are holding no locks:
836 	 */
837 	debug_check_no_locks_held();
838 
839 	if (tsk->io_context)
840 		exit_io_context(tsk);
841 
842 	if (tsk->splice_pipe)
843 		free_pipe_info(tsk->splice_pipe);
844 
845 	if (tsk->task_frag.page)
846 		put_page(tsk->task_frag.page);
847 
848 	validate_creds_for_do_exit(tsk);
849 
850 	check_stack_usage();
851 	preempt_disable();
852 	if (tsk->nr_dirtied)
853 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
854 	exit_rcu();
855 	exit_tasks_rcu_finish();
856 
857 	lockdep_free_task(tsk);
858 	do_task_dead();
859 }
860 EXPORT_SYMBOL_GPL(do_exit);
861 
862 void complete_and_exit(struct completion *comp, long code)
863 {
864 	if (comp)
865 		complete(comp);
866 
867 	do_exit(code);
868 }
869 EXPORT_SYMBOL(complete_and_exit);
870 
871 SYSCALL_DEFINE1(exit, int, error_code)
872 {
873 	do_exit((error_code&0xff)<<8);
874 }
875 
876 /*
877  * Take down every thread in the group.  This is called by fatal signals
878  * as well as by sys_exit_group (below).
879  */
880 void
881 do_group_exit(int exit_code)
882 {
883 	struct signal_struct *sig = current->signal;
884 
885 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
886 
887 	if (signal_group_exit(sig))
888 		exit_code = sig->group_exit_code;
889 	else if (!thread_group_empty(current)) {
890 		struct sighand_struct *const sighand = current->sighand;
891 
892 		spin_lock_irq(&sighand->siglock);
893 		if (signal_group_exit(sig))
894 			/* Another thread got here before we took the lock.  */
895 			exit_code = sig->group_exit_code;
896 		else {
897 			sig->group_exit_code = exit_code;
898 			sig->flags = SIGNAL_GROUP_EXIT;
899 			zap_other_threads(current);
900 		}
901 		spin_unlock_irq(&sighand->siglock);
902 	}
903 
904 	do_exit(exit_code);
905 	/* NOTREACHED */
906 }
907 
908 /*
909  * this kills every thread in the thread group. Note that any externally
910  * wait4()-ing process will get the correct exit code - even if this
911  * thread is not the thread group leader.
912  */
913 SYSCALL_DEFINE1(exit_group, int, error_code)
914 {
915 	do_group_exit((error_code & 0xff) << 8);
916 	/* NOTREACHED */
917 	return 0;
918 }
919 
920 struct waitid_info {
921 	pid_t pid;
922 	uid_t uid;
923 	int status;
924 	int cause;
925 };
926 
927 struct wait_opts {
928 	enum pid_type		wo_type;
929 	int			wo_flags;
930 	struct pid		*wo_pid;
931 
932 	struct waitid_info	*wo_info;
933 	int			wo_stat;
934 	struct rusage		*wo_rusage;
935 
936 	wait_queue_entry_t		child_wait;
937 	int			notask_error;
938 };
939 
940 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
941 {
942 	return	wo->wo_type == PIDTYPE_MAX ||
943 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
944 }
945 
946 static int
947 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
948 {
949 	if (!eligible_pid(wo, p))
950 		return 0;
951 
952 	/*
953 	 * Wait for all children (clone and not) if __WALL is set or
954 	 * if it is traced by us.
955 	 */
956 	if (ptrace || (wo->wo_flags & __WALL))
957 		return 1;
958 
959 	/*
960 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
961 	 * otherwise, wait for non-clone children *only*.
962 	 *
963 	 * Note: a "clone" child here is one that reports to its parent
964 	 * using a signal other than SIGCHLD, or a non-leader thread which
965 	 * we can only see if it is traced by us.
966 	 */
967 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
968 		return 0;
969 
970 	return 1;
971 }
972 
973 /*
974  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
975  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
976  * the lock and this task is uninteresting.  If we return nonzero, we have
977  * released the lock and the system call should return.
978  */
979 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
980 {
981 	int state, status;
982 	pid_t pid = task_pid_vnr(p);
983 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
984 	struct waitid_info *infop;
985 
986 	if (!likely(wo->wo_flags & WEXITED))
987 		return 0;
988 
989 	if (unlikely(wo->wo_flags & WNOWAIT)) {
990 		status = p->exit_code;
991 		get_task_struct(p);
992 		read_unlock(&tasklist_lock);
993 		sched_annotate_sleep();
994 		if (wo->wo_rusage)
995 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
996 		put_task_struct(p);
997 		goto out_info;
998 	}
999 	/*
1000 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1001 	 */
1002 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1003 		EXIT_TRACE : EXIT_DEAD;
1004 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1005 		return 0;
1006 	/*
1007 	 * We own this thread, nobody else can reap it.
1008 	 */
1009 	read_unlock(&tasklist_lock);
1010 	sched_annotate_sleep();
1011 
1012 	/*
1013 	 * Check thread_group_leader() to exclude the traced sub-threads.
1014 	 */
1015 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1016 		struct signal_struct *sig = p->signal;
1017 		struct signal_struct *psig = current->signal;
1018 		unsigned long maxrss;
1019 		u64 tgutime, tgstime;
1020 
1021 		/*
1022 		 * The resource counters for the group leader are in its
1023 		 * own task_struct.  Those for dead threads in the group
1024 		 * are in its signal_struct, as are those for the child
1025 		 * processes it has previously reaped.  All these
1026 		 * accumulate in the parent's signal_struct c* fields.
1027 		 *
1028 		 * We don't bother to take a lock here to protect these
1029 		 * p->signal fields because the whole thread group is dead
1030 		 * and nobody can change them.
1031 		 *
1032 		 * psig->stats_lock also protects us from our sub-theads
1033 		 * which can reap other children at the same time. Until
1034 		 * we change k_getrusage()-like users to rely on this lock
1035 		 * we have to take ->siglock as well.
1036 		 *
1037 		 * We use thread_group_cputime_adjusted() to get times for
1038 		 * the thread group, which consolidates times for all threads
1039 		 * in the group including the group leader.
1040 		 */
1041 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1042 		spin_lock_irq(&current->sighand->siglock);
1043 		write_seqlock(&psig->stats_lock);
1044 		psig->cutime += tgutime + sig->cutime;
1045 		psig->cstime += tgstime + sig->cstime;
1046 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1047 		psig->cmin_flt +=
1048 			p->min_flt + sig->min_flt + sig->cmin_flt;
1049 		psig->cmaj_flt +=
1050 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1051 		psig->cnvcsw +=
1052 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1053 		psig->cnivcsw +=
1054 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1055 		psig->cinblock +=
1056 			task_io_get_inblock(p) +
1057 			sig->inblock + sig->cinblock;
1058 		psig->coublock +=
1059 			task_io_get_oublock(p) +
1060 			sig->oublock + sig->coublock;
1061 		maxrss = max(sig->maxrss, sig->cmaxrss);
1062 		if (psig->cmaxrss < maxrss)
1063 			psig->cmaxrss = maxrss;
1064 		task_io_accounting_add(&psig->ioac, &p->ioac);
1065 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1066 		write_sequnlock(&psig->stats_lock);
1067 		spin_unlock_irq(&current->sighand->siglock);
1068 	}
1069 
1070 	if (wo->wo_rusage)
1071 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1072 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1073 		? p->signal->group_exit_code : p->exit_code;
1074 	wo->wo_stat = status;
1075 
1076 	if (state == EXIT_TRACE) {
1077 		write_lock_irq(&tasklist_lock);
1078 		/* We dropped tasklist, ptracer could die and untrace */
1079 		ptrace_unlink(p);
1080 
1081 		/* If parent wants a zombie, don't release it now */
1082 		state = EXIT_ZOMBIE;
1083 		if (do_notify_parent(p, p->exit_signal))
1084 			state = EXIT_DEAD;
1085 		p->exit_state = state;
1086 		write_unlock_irq(&tasklist_lock);
1087 	}
1088 	if (state == EXIT_DEAD)
1089 		release_task(p);
1090 
1091 out_info:
1092 	infop = wo->wo_info;
1093 	if (infop) {
1094 		if ((status & 0x7f) == 0) {
1095 			infop->cause = CLD_EXITED;
1096 			infop->status = status >> 8;
1097 		} else {
1098 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1099 			infop->status = status & 0x7f;
1100 		}
1101 		infop->pid = pid;
1102 		infop->uid = uid;
1103 	}
1104 
1105 	return pid;
1106 }
1107 
1108 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1109 {
1110 	if (ptrace) {
1111 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1112 			return &p->exit_code;
1113 	} else {
1114 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1115 			return &p->signal->group_exit_code;
1116 	}
1117 	return NULL;
1118 }
1119 
1120 /**
1121  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1122  * @wo: wait options
1123  * @ptrace: is the wait for ptrace
1124  * @p: task to wait for
1125  *
1126  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1127  *
1128  * CONTEXT:
1129  * read_lock(&tasklist_lock), which is released if return value is
1130  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1131  *
1132  * RETURNS:
1133  * 0 if wait condition didn't exist and search for other wait conditions
1134  * should continue.  Non-zero return, -errno on failure and @p's pid on
1135  * success, implies that tasklist_lock is released and wait condition
1136  * search should terminate.
1137  */
1138 static int wait_task_stopped(struct wait_opts *wo,
1139 				int ptrace, struct task_struct *p)
1140 {
1141 	struct waitid_info *infop;
1142 	int exit_code, *p_code, why;
1143 	uid_t uid = 0; /* unneeded, required by compiler */
1144 	pid_t pid;
1145 
1146 	/*
1147 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1148 	 */
1149 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1150 		return 0;
1151 
1152 	if (!task_stopped_code(p, ptrace))
1153 		return 0;
1154 
1155 	exit_code = 0;
1156 	spin_lock_irq(&p->sighand->siglock);
1157 
1158 	p_code = task_stopped_code(p, ptrace);
1159 	if (unlikely(!p_code))
1160 		goto unlock_sig;
1161 
1162 	exit_code = *p_code;
1163 	if (!exit_code)
1164 		goto unlock_sig;
1165 
1166 	if (!unlikely(wo->wo_flags & WNOWAIT))
1167 		*p_code = 0;
1168 
1169 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1170 unlock_sig:
1171 	spin_unlock_irq(&p->sighand->siglock);
1172 	if (!exit_code)
1173 		return 0;
1174 
1175 	/*
1176 	 * Now we are pretty sure this task is interesting.
1177 	 * Make sure it doesn't get reaped out from under us while we
1178 	 * give up the lock and then examine it below.  We don't want to
1179 	 * keep holding onto the tasklist_lock while we call getrusage and
1180 	 * possibly take page faults for user memory.
1181 	 */
1182 	get_task_struct(p);
1183 	pid = task_pid_vnr(p);
1184 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1185 	read_unlock(&tasklist_lock);
1186 	sched_annotate_sleep();
1187 	if (wo->wo_rusage)
1188 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1189 	put_task_struct(p);
1190 
1191 	if (likely(!(wo->wo_flags & WNOWAIT)))
1192 		wo->wo_stat = (exit_code << 8) | 0x7f;
1193 
1194 	infop = wo->wo_info;
1195 	if (infop) {
1196 		infop->cause = why;
1197 		infop->status = exit_code;
1198 		infop->pid = pid;
1199 		infop->uid = uid;
1200 	}
1201 	return pid;
1202 }
1203 
1204 /*
1205  * Handle do_wait work for one task in a live, non-stopped state.
1206  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1207  * the lock and this task is uninteresting.  If we return nonzero, we have
1208  * released the lock and the system call should return.
1209  */
1210 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1211 {
1212 	struct waitid_info *infop;
1213 	pid_t pid;
1214 	uid_t uid;
1215 
1216 	if (!unlikely(wo->wo_flags & WCONTINUED))
1217 		return 0;
1218 
1219 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1220 		return 0;
1221 
1222 	spin_lock_irq(&p->sighand->siglock);
1223 	/* Re-check with the lock held.  */
1224 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1225 		spin_unlock_irq(&p->sighand->siglock);
1226 		return 0;
1227 	}
1228 	if (!unlikely(wo->wo_flags & WNOWAIT))
1229 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1230 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1231 	spin_unlock_irq(&p->sighand->siglock);
1232 
1233 	pid = task_pid_vnr(p);
1234 	get_task_struct(p);
1235 	read_unlock(&tasklist_lock);
1236 	sched_annotate_sleep();
1237 	if (wo->wo_rusage)
1238 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1239 	put_task_struct(p);
1240 
1241 	infop = wo->wo_info;
1242 	if (!infop) {
1243 		wo->wo_stat = 0xffff;
1244 	} else {
1245 		infop->cause = CLD_CONTINUED;
1246 		infop->pid = pid;
1247 		infop->uid = uid;
1248 		infop->status = SIGCONT;
1249 	}
1250 	return pid;
1251 }
1252 
1253 /*
1254  * Consider @p for a wait by @parent.
1255  *
1256  * -ECHILD should be in ->notask_error before the first call.
1257  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1258  * Returns zero if the search for a child should continue;
1259  * then ->notask_error is 0 if @p is an eligible child,
1260  * or still -ECHILD.
1261  */
1262 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1263 				struct task_struct *p)
1264 {
1265 	/*
1266 	 * We can race with wait_task_zombie() from another thread.
1267 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1268 	 * can't confuse the checks below.
1269 	 */
1270 	int exit_state = READ_ONCE(p->exit_state);
1271 	int ret;
1272 
1273 	if (unlikely(exit_state == EXIT_DEAD))
1274 		return 0;
1275 
1276 	ret = eligible_child(wo, ptrace, p);
1277 	if (!ret)
1278 		return ret;
1279 
1280 	if (unlikely(exit_state == EXIT_TRACE)) {
1281 		/*
1282 		 * ptrace == 0 means we are the natural parent. In this case
1283 		 * we should clear notask_error, debugger will notify us.
1284 		 */
1285 		if (likely(!ptrace))
1286 			wo->notask_error = 0;
1287 		return 0;
1288 	}
1289 
1290 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1291 		/*
1292 		 * If it is traced by its real parent's group, just pretend
1293 		 * the caller is ptrace_do_wait() and reap this child if it
1294 		 * is zombie.
1295 		 *
1296 		 * This also hides group stop state from real parent; otherwise
1297 		 * a single stop can be reported twice as group and ptrace stop.
1298 		 * If a ptracer wants to distinguish these two events for its
1299 		 * own children it should create a separate process which takes
1300 		 * the role of real parent.
1301 		 */
1302 		if (!ptrace_reparented(p))
1303 			ptrace = 1;
1304 	}
1305 
1306 	/* slay zombie? */
1307 	if (exit_state == EXIT_ZOMBIE) {
1308 		/* we don't reap group leaders with subthreads */
1309 		if (!delay_group_leader(p)) {
1310 			/*
1311 			 * A zombie ptracee is only visible to its ptracer.
1312 			 * Notification and reaping will be cascaded to the
1313 			 * real parent when the ptracer detaches.
1314 			 */
1315 			if (unlikely(ptrace) || likely(!p->ptrace))
1316 				return wait_task_zombie(wo, p);
1317 		}
1318 
1319 		/*
1320 		 * Allow access to stopped/continued state via zombie by
1321 		 * falling through.  Clearing of notask_error is complex.
1322 		 *
1323 		 * When !@ptrace:
1324 		 *
1325 		 * If WEXITED is set, notask_error should naturally be
1326 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1327 		 * so, if there are live subthreads, there are events to
1328 		 * wait for.  If all subthreads are dead, it's still safe
1329 		 * to clear - this function will be called again in finite
1330 		 * amount time once all the subthreads are released and
1331 		 * will then return without clearing.
1332 		 *
1333 		 * When @ptrace:
1334 		 *
1335 		 * Stopped state is per-task and thus can't change once the
1336 		 * target task dies.  Only continued and exited can happen.
1337 		 * Clear notask_error if WCONTINUED | WEXITED.
1338 		 */
1339 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1340 			wo->notask_error = 0;
1341 	} else {
1342 		/*
1343 		 * @p is alive and it's gonna stop, continue or exit, so
1344 		 * there always is something to wait for.
1345 		 */
1346 		wo->notask_error = 0;
1347 	}
1348 
1349 	/*
1350 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1351 	 * is used and the two don't interact with each other.
1352 	 */
1353 	ret = wait_task_stopped(wo, ptrace, p);
1354 	if (ret)
1355 		return ret;
1356 
1357 	/*
1358 	 * Wait for continued.  There's only one continued state and the
1359 	 * ptracer can consume it which can confuse the real parent.  Don't
1360 	 * use WCONTINUED from ptracer.  You don't need or want it.
1361 	 */
1362 	return wait_task_continued(wo, p);
1363 }
1364 
1365 /*
1366  * Do the work of do_wait() for one thread in the group, @tsk.
1367  *
1368  * -ECHILD should be in ->notask_error before the first call.
1369  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1370  * Returns zero if the search for a child should continue; then
1371  * ->notask_error is 0 if there were any eligible children,
1372  * or still -ECHILD.
1373  */
1374 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1375 {
1376 	struct task_struct *p;
1377 
1378 	list_for_each_entry(p, &tsk->children, sibling) {
1379 		int ret = wait_consider_task(wo, 0, p);
1380 
1381 		if (ret)
1382 			return ret;
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1389 {
1390 	struct task_struct *p;
1391 
1392 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1393 		int ret = wait_consider_task(wo, 1, p);
1394 
1395 		if (ret)
1396 			return ret;
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1403 				int sync, void *key)
1404 {
1405 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1406 						child_wait);
1407 	struct task_struct *p = key;
1408 
1409 	if (!eligible_pid(wo, p))
1410 		return 0;
1411 
1412 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1413 		return 0;
1414 
1415 	return default_wake_function(wait, mode, sync, key);
1416 }
1417 
1418 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1419 {
1420 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1421 			   TASK_INTERRUPTIBLE, p);
1422 }
1423 
1424 static long do_wait(struct wait_opts *wo)
1425 {
1426 	struct task_struct *tsk;
1427 	int retval;
1428 
1429 	trace_sched_process_wait(wo->wo_pid);
1430 
1431 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1432 	wo->child_wait.private = current;
1433 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1434 repeat:
1435 	/*
1436 	 * If there is nothing that can match our criteria, just get out.
1437 	 * We will clear ->notask_error to zero if we see any child that
1438 	 * might later match our criteria, even if we are not able to reap
1439 	 * it yet.
1440 	 */
1441 	wo->notask_error = -ECHILD;
1442 	if ((wo->wo_type < PIDTYPE_MAX) &&
1443 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1444 		goto notask;
1445 
1446 	set_current_state(TASK_INTERRUPTIBLE);
1447 	read_lock(&tasklist_lock);
1448 	tsk = current;
1449 	do {
1450 		retval = do_wait_thread(wo, tsk);
1451 		if (retval)
1452 			goto end;
1453 
1454 		retval = ptrace_do_wait(wo, tsk);
1455 		if (retval)
1456 			goto end;
1457 
1458 		if (wo->wo_flags & __WNOTHREAD)
1459 			break;
1460 	} while_each_thread(current, tsk);
1461 	read_unlock(&tasklist_lock);
1462 
1463 notask:
1464 	retval = wo->notask_error;
1465 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1466 		retval = -ERESTARTSYS;
1467 		if (!signal_pending(current)) {
1468 			schedule();
1469 			goto repeat;
1470 		}
1471 	}
1472 end:
1473 	__set_current_state(TASK_RUNNING);
1474 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1475 	return retval;
1476 }
1477 
1478 static struct pid *pidfd_get_pid(unsigned int fd)
1479 {
1480 	struct fd f;
1481 	struct pid *pid;
1482 
1483 	f = fdget(fd);
1484 	if (!f.file)
1485 		return ERR_PTR(-EBADF);
1486 
1487 	pid = pidfd_pid(f.file);
1488 	if (!IS_ERR(pid))
1489 		get_pid(pid);
1490 
1491 	fdput(f);
1492 	return pid;
1493 }
1494 
1495 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1496 			  int options, struct rusage *ru)
1497 {
1498 	struct wait_opts wo;
1499 	struct pid *pid = NULL;
1500 	enum pid_type type;
1501 	long ret;
1502 
1503 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1504 			__WNOTHREAD|__WCLONE|__WALL))
1505 		return -EINVAL;
1506 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1507 		return -EINVAL;
1508 
1509 	switch (which) {
1510 	case P_ALL:
1511 		type = PIDTYPE_MAX;
1512 		break;
1513 	case P_PID:
1514 		type = PIDTYPE_PID;
1515 		if (upid <= 0)
1516 			return -EINVAL;
1517 
1518 		pid = find_get_pid(upid);
1519 		break;
1520 	case P_PGID:
1521 		type = PIDTYPE_PGID;
1522 		if (upid < 0)
1523 			return -EINVAL;
1524 
1525 		if (upid)
1526 			pid = find_get_pid(upid);
1527 		else
1528 			pid = get_task_pid(current, PIDTYPE_PGID);
1529 		break;
1530 	case P_PIDFD:
1531 		type = PIDTYPE_PID;
1532 		if (upid < 0)
1533 			return -EINVAL;
1534 
1535 		pid = pidfd_get_pid(upid);
1536 		if (IS_ERR(pid))
1537 			return PTR_ERR(pid);
1538 		break;
1539 	default:
1540 		return -EINVAL;
1541 	}
1542 
1543 	wo.wo_type	= type;
1544 	wo.wo_pid	= pid;
1545 	wo.wo_flags	= options;
1546 	wo.wo_info	= infop;
1547 	wo.wo_rusage	= ru;
1548 	ret = do_wait(&wo);
1549 
1550 	put_pid(pid);
1551 	return ret;
1552 }
1553 
1554 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1555 		infop, int, options, struct rusage __user *, ru)
1556 {
1557 	struct rusage r;
1558 	struct waitid_info info = {.status = 0};
1559 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1560 	int signo = 0;
1561 
1562 	if (err > 0) {
1563 		signo = SIGCHLD;
1564 		err = 0;
1565 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1566 			return -EFAULT;
1567 	}
1568 	if (!infop)
1569 		return err;
1570 
1571 	if (!user_write_access_begin(infop, sizeof(*infop)))
1572 		return -EFAULT;
1573 
1574 	unsafe_put_user(signo, &infop->si_signo, Efault);
1575 	unsafe_put_user(0, &infop->si_errno, Efault);
1576 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1577 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1578 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1579 	unsafe_put_user(info.status, &infop->si_status, Efault);
1580 	user_write_access_end();
1581 	return err;
1582 Efault:
1583 	user_write_access_end();
1584 	return -EFAULT;
1585 }
1586 
1587 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1588 		  struct rusage *ru)
1589 {
1590 	struct wait_opts wo;
1591 	struct pid *pid = NULL;
1592 	enum pid_type type;
1593 	long ret;
1594 
1595 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1596 			__WNOTHREAD|__WCLONE|__WALL))
1597 		return -EINVAL;
1598 
1599 	/* -INT_MIN is not defined */
1600 	if (upid == INT_MIN)
1601 		return -ESRCH;
1602 
1603 	if (upid == -1)
1604 		type = PIDTYPE_MAX;
1605 	else if (upid < 0) {
1606 		type = PIDTYPE_PGID;
1607 		pid = find_get_pid(-upid);
1608 	} else if (upid == 0) {
1609 		type = PIDTYPE_PGID;
1610 		pid = get_task_pid(current, PIDTYPE_PGID);
1611 	} else /* upid > 0 */ {
1612 		type = PIDTYPE_PID;
1613 		pid = find_get_pid(upid);
1614 	}
1615 
1616 	wo.wo_type	= type;
1617 	wo.wo_pid	= pid;
1618 	wo.wo_flags	= options | WEXITED;
1619 	wo.wo_info	= NULL;
1620 	wo.wo_stat	= 0;
1621 	wo.wo_rusage	= ru;
1622 	ret = do_wait(&wo);
1623 	put_pid(pid);
1624 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1625 		ret = -EFAULT;
1626 
1627 	return ret;
1628 }
1629 
1630 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1631 		int, options, struct rusage __user *, ru)
1632 {
1633 	struct rusage r;
1634 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1635 
1636 	if (err > 0) {
1637 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1638 			return -EFAULT;
1639 	}
1640 	return err;
1641 }
1642 
1643 #ifdef __ARCH_WANT_SYS_WAITPID
1644 
1645 /*
1646  * sys_waitpid() remains for compatibility. waitpid() should be
1647  * implemented by calling sys_wait4() from libc.a.
1648  */
1649 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1650 {
1651 	return kernel_wait4(pid, stat_addr, options, NULL);
1652 }
1653 
1654 #endif
1655 
1656 #ifdef CONFIG_COMPAT
1657 COMPAT_SYSCALL_DEFINE4(wait4,
1658 	compat_pid_t, pid,
1659 	compat_uint_t __user *, stat_addr,
1660 	int, options,
1661 	struct compat_rusage __user *, ru)
1662 {
1663 	struct rusage r;
1664 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1665 	if (err > 0) {
1666 		if (ru && put_compat_rusage(&r, ru))
1667 			return -EFAULT;
1668 	}
1669 	return err;
1670 }
1671 
1672 COMPAT_SYSCALL_DEFINE5(waitid,
1673 		int, which, compat_pid_t, pid,
1674 		struct compat_siginfo __user *, infop, int, options,
1675 		struct compat_rusage __user *, uru)
1676 {
1677 	struct rusage ru;
1678 	struct waitid_info info = {.status = 0};
1679 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1680 	int signo = 0;
1681 	if (err > 0) {
1682 		signo = SIGCHLD;
1683 		err = 0;
1684 		if (uru) {
1685 			/* kernel_waitid() overwrites everything in ru */
1686 			if (COMPAT_USE_64BIT_TIME)
1687 				err = copy_to_user(uru, &ru, sizeof(ru));
1688 			else
1689 				err = put_compat_rusage(&ru, uru);
1690 			if (err)
1691 				return -EFAULT;
1692 		}
1693 	}
1694 
1695 	if (!infop)
1696 		return err;
1697 
1698 	if (!user_write_access_begin(infop, sizeof(*infop)))
1699 		return -EFAULT;
1700 
1701 	unsafe_put_user(signo, &infop->si_signo, Efault);
1702 	unsafe_put_user(0, &infop->si_errno, Efault);
1703 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1704 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1705 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1706 	unsafe_put_user(info.status, &infop->si_status, Efault);
1707 	user_write_access_end();
1708 	return err;
1709 Efault:
1710 	user_write_access_end();
1711 	return -EFAULT;
1712 }
1713 #endif
1714 
1715 __weak void abort(void)
1716 {
1717 	BUG();
1718 
1719 	/* if that doesn't kill us, halt */
1720 	panic("Oops failed to kill thread");
1721 }
1722 EXPORT_SYMBOL(abort);
1723