1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/cpu.h> 18 #include <linux/acct.h> 19 #include <linux/tsacct_kern.h> 20 #include <linux/file.h> 21 #include <linux/fdtable.h> 22 #include <linux/freezer.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/cgroup.h> 35 #include <linux/syscalls.h> 36 #include <linux/signal.h> 37 #include <linux/posix-timers.h> 38 #include <linux/cn_proc.h> 39 #include <linux/mutex.h> 40 #include <linux/futex.h> 41 #include <linux/pipe_fs_i.h> 42 #include <linux/audit.h> /* for audit_free() */ 43 #include <linux/resource.h> 44 #include <linux/blkdev.h> 45 #include <linux/task_io_accounting_ops.h> 46 #include <linux/tracehook.h> 47 #include <linux/fs_struct.h> 48 #include <linux/userfaultfd_k.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 #include <linux/kcov.h> 57 #include <linux/random.h> 58 #include <linux/rcuwait.h> 59 60 #include <linux/uaccess.h> 61 #include <asm/unistd.h> 62 #include <asm/pgtable.h> 63 #include <asm/mmu_context.h> 64 65 static void __unhash_process(struct task_struct *p, bool group_dead) 66 { 67 nr_threads--; 68 detach_pid(p, PIDTYPE_PID); 69 if (group_dead) { 70 detach_pid(p, PIDTYPE_PGID); 71 detach_pid(p, PIDTYPE_SID); 72 73 list_del_rcu(&p->tasks); 74 list_del_init(&p->sibling); 75 __this_cpu_dec(process_counts); 76 } 77 list_del_rcu(&p->thread_group); 78 list_del_rcu(&p->thread_node); 79 } 80 81 /* 82 * This function expects the tasklist_lock write-locked. 83 */ 84 static void __exit_signal(struct task_struct *tsk) 85 { 86 struct signal_struct *sig = tsk->signal; 87 bool group_dead = thread_group_leader(tsk); 88 struct sighand_struct *sighand; 89 struct tty_struct *uninitialized_var(tty); 90 u64 utime, stime; 91 92 sighand = rcu_dereference_check(tsk->sighand, 93 lockdep_tasklist_lock_is_held()); 94 spin_lock(&sighand->siglock); 95 96 #ifdef CONFIG_POSIX_TIMERS 97 posix_cpu_timers_exit(tsk); 98 if (group_dead) { 99 posix_cpu_timers_exit_group(tsk); 100 } else { 101 /* 102 * This can only happen if the caller is de_thread(). 103 * FIXME: this is the temporary hack, we should teach 104 * posix-cpu-timers to handle this case correctly. 105 */ 106 if (unlikely(has_group_leader_pid(tsk))) 107 posix_cpu_timers_exit_group(tsk); 108 } 109 #endif 110 111 if (group_dead) { 112 tty = sig->tty; 113 sig->tty = NULL; 114 } else { 115 /* 116 * If there is any task waiting for the group exit 117 * then notify it: 118 */ 119 if (sig->notify_count > 0 && !--sig->notify_count) 120 wake_up_process(sig->group_exit_task); 121 122 if (tsk == sig->curr_target) 123 sig->curr_target = next_thread(tsk); 124 } 125 126 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 127 sizeof(unsigned long long)); 128 129 /* 130 * Accumulate here the counters for all threads as they die. We could 131 * skip the group leader because it is the last user of signal_struct, 132 * but we want to avoid the race with thread_group_cputime() which can 133 * see the empty ->thread_head list. 134 */ 135 task_cputime(tsk, &utime, &stime); 136 write_seqlock(&sig->stats_lock); 137 sig->utime += utime; 138 sig->stime += stime; 139 sig->gtime += task_gtime(tsk); 140 sig->min_flt += tsk->min_flt; 141 sig->maj_flt += tsk->maj_flt; 142 sig->nvcsw += tsk->nvcsw; 143 sig->nivcsw += tsk->nivcsw; 144 sig->inblock += task_io_get_inblock(tsk); 145 sig->oublock += task_io_get_oublock(tsk); 146 task_io_accounting_add(&sig->ioac, &tsk->ioac); 147 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 148 sig->nr_threads--; 149 __unhash_process(tsk, group_dead); 150 write_sequnlock(&sig->stats_lock); 151 152 /* 153 * Do this under ->siglock, we can race with another thread 154 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 155 */ 156 flush_sigqueue(&tsk->pending); 157 tsk->sighand = NULL; 158 spin_unlock(&sighand->siglock); 159 160 __cleanup_sighand(sighand); 161 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 162 if (group_dead) { 163 flush_sigqueue(&sig->shared_pending); 164 tty_kref_put(tty); 165 } 166 } 167 168 static void delayed_put_task_struct(struct rcu_head *rhp) 169 { 170 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 171 172 perf_event_delayed_put(tsk); 173 trace_sched_process_free(tsk); 174 put_task_struct(tsk); 175 } 176 177 178 void release_task(struct task_struct *p) 179 { 180 struct task_struct *leader; 181 int zap_leader; 182 repeat: 183 /* don't need to get the RCU readlock here - the process is dead and 184 * can't be modifying its own credentials. But shut RCU-lockdep up */ 185 rcu_read_lock(); 186 atomic_dec(&__task_cred(p)->user->processes); 187 rcu_read_unlock(); 188 189 proc_flush_task(p); 190 191 write_lock_irq(&tasklist_lock); 192 ptrace_release_task(p); 193 __exit_signal(p); 194 195 /* 196 * If we are the last non-leader member of the thread 197 * group, and the leader is zombie, then notify the 198 * group leader's parent process. (if it wants notification.) 199 */ 200 zap_leader = 0; 201 leader = p->group_leader; 202 if (leader != p && thread_group_empty(leader) 203 && leader->exit_state == EXIT_ZOMBIE) { 204 /* 205 * If we were the last child thread and the leader has 206 * exited already, and the leader's parent ignores SIGCHLD, 207 * then we are the one who should release the leader. 208 */ 209 zap_leader = do_notify_parent(leader, leader->exit_signal); 210 if (zap_leader) 211 leader->exit_state = EXIT_DEAD; 212 } 213 214 write_unlock_irq(&tasklist_lock); 215 release_thread(p); 216 call_rcu(&p->rcu, delayed_put_task_struct); 217 218 p = leader; 219 if (unlikely(zap_leader)) 220 goto repeat; 221 } 222 223 /* 224 * Note that if this function returns a valid task_struct pointer (!NULL) 225 * task->usage must remain >0 for the duration of the RCU critical section. 226 */ 227 struct task_struct *task_rcu_dereference(struct task_struct **ptask) 228 { 229 struct sighand_struct *sighand; 230 struct task_struct *task; 231 232 /* 233 * We need to verify that release_task() was not called and thus 234 * delayed_put_task_struct() can't run and drop the last reference 235 * before rcu_read_unlock(). We check task->sighand != NULL, 236 * but we can read the already freed and reused memory. 237 */ 238 retry: 239 task = rcu_dereference(*ptask); 240 if (!task) 241 return NULL; 242 243 probe_kernel_address(&task->sighand, sighand); 244 245 /* 246 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task 247 * was already freed we can not miss the preceding update of this 248 * pointer. 249 */ 250 smp_rmb(); 251 if (unlikely(task != READ_ONCE(*ptask))) 252 goto retry; 253 254 /* 255 * We've re-checked that "task == *ptask", now we have two different 256 * cases: 257 * 258 * 1. This is actually the same task/task_struct. In this case 259 * sighand != NULL tells us it is still alive. 260 * 261 * 2. This is another task which got the same memory for task_struct. 262 * We can't know this of course, and we can not trust 263 * sighand != NULL. 264 * 265 * In this case we actually return a random value, but this is 266 * correct. 267 * 268 * If we return NULL - we can pretend that we actually noticed that 269 * *ptask was updated when the previous task has exited. Or pretend 270 * that probe_slab_address(&sighand) reads NULL. 271 * 272 * If we return the new task (because sighand is not NULL for any 273 * reason) - this is fine too. This (new) task can't go away before 274 * another gp pass. 275 * 276 * And note: We could even eliminate the false positive if re-read 277 * task->sighand once again to avoid the falsely NULL. But this case 278 * is very unlikely so we don't care. 279 */ 280 if (!sighand) 281 return NULL; 282 283 return task; 284 } 285 286 void rcuwait_wake_up(struct rcuwait *w) 287 { 288 struct task_struct *task; 289 290 rcu_read_lock(); 291 292 /* 293 * Order condition vs @task, such that everything prior to the load 294 * of @task is visible. This is the condition as to why the user called 295 * rcuwait_trywake() in the first place. Pairs with set_current_state() 296 * barrier (A) in rcuwait_wait_event(). 297 * 298 * WAIT WAKE 299 * [S] tsk = current [S] cond = true 300 * MB (A) MB (B) 301 * [L] cond [L] tsk 302 */ 303 smp_rmb(); /* (B) */ 304 305 /* 306 * Avoid using task_rcu_dereference() magic as long as we are careful, 307 * see comment in rcuwait_wait_event() regarding ->exit_state. 308 */ 309 task = rcu_dereference(w->task); 310 if (task) 311 wake_up_process(task); 312 rcu_read_unlock(); 313 } 314 315 struct task_struct *try_get_task_struct(struct task_struct **ptask) 316 { 317 struct task_struct *task; 318 319 rcu_read_lock(); 320 task = task_rcu_dereference(ptask); 321 if (task) 322 get_task_struct(task); 323 rcu_read_unlock(); 324 325 return task; 326 } 327 328 /* 329 * Determine if a process group is "orphaned", according to the POSIX 330 * definition in 2.2.2.52. Orphaned process groups are not to be affected 331 * by terminal-generated stop signals. Newly orphaned process groups are 332 * to receive a SIGHUP and a SIGCONT. 333 * 334 * "I ask you, have you ever known what it is to be an orphan?" 335 */ 336 static int will_become_orphaned_pgrp(struct pid *pgrp, 337 struct task_struct *ignored_task) 338 { 339 struct task_struct *p; 340 341 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 342 if ((p == ignored_task) || 343 (p->exit_state && thread_group_empty(p)) || 344 is_global_init(p->real_parent)) 345 continue; 346 347 if (task_pgrp(p->real_parent) != pgrp && 348 task_session(p->real_parent) == task_session(p)) 349 return 0; 350 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 351 352 return 1; 353 } 354 355 int is_current_pgrp_orphaned(void) 356 { 357 int retval; 358 359 read_lock(&tasklist_lock); 360 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 361 read_unlock(&tasklist_lock); 362 363 return retval; 364 } 365 366 static bool has_stopped_jobs(struct pid *pgrp) 367 { 368 struct task_struct *p; 369 370 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 371 if (p->signal->flags & SIGNAL_STOP_STOPPED) 372 return true; 373 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 374 375 return false; 376 } 377 378 /* 379 * Check to see if any process groups have become orphaned as 380 * a result of our exiting, and if they have any stopped jobs, 381 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 382 */ 383 static void 384 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 385 { 386 struct pid *pgrp = task_pgrp(tsk); 387 struct task_struct *ignored_task = tsk; 388 389 if (!parent) 390 /* exit: our father is in a different pgrp than 391 * we are and we were the only connection outside. 392 */ 393 parent = tsk->real_parent; 394 else 395 /* reparent: our child is in a different pgrp than 396 * we are, and it was the only connection outside. 397 */ 398 ignored_task = NULL; 399 400 if (task_pgrp(parent) != pgrp && 401 task_session(parent) == task_session(tsk) && 402 will_become_orphaned_pgrp(pgrp, ignored_task) && 403 has_stopped_jobs(pgrp)) { 404 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 405 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 406 } 407 } 408 409 #ifdef CONFIG_MEMCG 410 /* 411 * A task is exiting. If it owned this mm, find a new owner for the mm. 412 */ 413 void mm_update_next_owner(struct mm_struct *mm) 414 { 415 struct task_struct *c, *g, *p = current; 416 417 retry: 418 /* 419 * If the exiting or execing task is not the owner, it's 420 * someone else's problem. 421 */ 422 if (mm->owner != p) 423 return; 424 /* 425 * The current owner is exiting/execing and there are no other 426 * candidates. Do not leave the mm pointing to a possibly 427 * freed task structure. 428 */ 429 if (atomic_read(&mm->mm_users) <= 1) { 430 mm->owner = NULL; 431 return; 432 } 433 434 read_lock(&tasklist_lock); 435 /* 436 * Search in the children 437 */ 438 list_for_each_entry(c, &p->children, sibling) { 439 if (c->mm == mm) 440 goto assign_new_owner; 441 } 442 443 /* 444 * Search in the siblings 445 */ 446 list_for_each_entry(c, &p->real_parent->children, sibling) { 447 if (c->mm == mm) 448 goto assign_new_owner; 449 } 450 451 /* 452 * Search through everything else, we should not get here often. 453 */ 454 for_each_process(g) { 455 if (g->flags & PF_KTHREAD) 456 continue; 457 for_each_thread(g, c) { 458 if (c->mm == mm) 459 goto assign_new_owner; 460 if (c->mm) 461 break; 462 } 463 } 464 read_unlock(&tasklist_lock); 465 /* 466 * We found no owner yet mm_users > 1: this implies that we are 467 * most likely racing with swapoff (try_to_unuse()) or /proc or 468 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 469 */ 470 mm->owner = NULL; 471 return; 472 473 assign_new_owner: 474 BUG_ON(c == p); 475 get_task_struct(c); 476 /* 477 * The task_lock protects c->mm from changing. 478 * We always want mm->owner->mm == mm 479 */ 480 task_lock(c); 481 /* 482 * Delay read_unlock() till we have the task_lock() 483 * to ensure that c does not slip away underneath us 484 */ 485 read_unlock(&tasklist_lock); 486 if (c->mm != mm) { 487 task_unlock(c); 488 put_task_struct(c); 489 goto retry; 490 } 491 mm->owner = c; 492 task_unlock(c); 493 put_task_struct(c); 494 } 495 #endif /* CONFIG_MEMCG */ 496 497 /* 498 * Turn us into a lazy TLB process if we 499 * aren't already.. 500 */ 501 static void exit_mm(void) 502 { 503 struct mm_struct *mm = current->mm; 504 struct core_state *core_state; 505 506 mm_release(current, mm); 507 if (!mm) 508 return; 509 sync_mm_rss(mm); 510 /* 511 * Serialize with any possible pending coredump. 512 * We must hold mmap_sem around checking core_state 513 * and clearing tsk->mm. The core-inducing thread 514 * will increment ->nr_threads for each thread in the 515 * group with ->mm != NULL. 516 */ 517 down_read(&mm->mmap_sem); 518 core_state = mm->core_state; 519 if (core_state) { 520 struct core_thread self; 521 522 up_read(&mm->mmap_sem); 523 524 self.task = current; 525 self.next = xchg(&core_state->dumper.next, &self); 526 /* 527 * Implies mb(), the result of xchg() must be visible 528 * to core_state->dumper. 529 */ 530 if (atomic_dec_and_test(&core_state->nr_threads)) 531 complete(&core_state->startup); 532 533 for (;;) { 534 set_current_state(TASK_UNINTERRUPTIBLE); 535 if (!self.task) /* see coredump_finish() */ 536 break; 537 freezable_schedule(); 538 } 539 __set_current_state(TASK_RUNNING); 540 down_read(&mm->mmap_sem); 541 } 542 atomic_inc(&mm->mm_count); 543 BUG_ON(mm != current->active_mm); 544 /* more a memory barrier than a real lock */ 545 task_lock(current); 546 current->mm = NULL; 547 up_read(&mm->mmap_sem); 548 enter_lazy_tlb(mm, current); 549 task_unlock(current); 550 mm_update_next_owner(mm); 551 userfaultfd_exit(mm); 552 mmput(mm); 553 if (test_thread_flag(TIF_MEMDIE)) 554 exit_oom_victim(); 555 } 556 557 static struct task_struct *find_alive_thread(struct task_struct *p) 558 { 559 struct task_struct *t; 560 561 for_each_thread(p, t) { 562 if (!(t->flags & PF_EXITING)) 563 return t; 564 } 565 return NULL; 566 } 567 568 static struct task_struct *find_child_reaper(struct task_struct *father) 569 __releases(&tasklist_lock) 570 __acquires(&tasklist_lock) 571 { 572 struct pid_namespace *pid_ns = task_active_pid_ns(father); 573 struct task_struct *reaper = pid_ns->child_reaper; 574 575 if (likely(reaper != father)) 576 return reaper; 577 578 reaper = find_alive_thread(father); 579 if (reaper) { 580 pid_ns->child_reaper = reaper; 581 return reaper; 582 } 583 584 write_unlock_irq(&tasklist_lock); 585 if (unlikely(pid_ns == &init_pid_ns)) { 586 panic("Attempted to kill init! exitcode=0x%08x\n", 587 father->signal->group_exit_code ?: father->exit_code); 588 } 589 zap_pid_ns_processes(pid_ns); 590 write_lock_irq(&tasklist_lock); 591 592 return father; 593 } 594 595 /* 596 * When we die, we re-parent all our children, and try to: 597 * 1. give them to another thread in our thread group, if such a member exists 598 * 2. give it to the first ancestor process which prctl'd itself as a 599 * child_subreaper for its children (like a service manager) 600 * 3. give it to the init process (PID 1) in our pid namespace 601 */ 602 static struct task_struct *find_new_reaper(struct task_struct *father, 603 struct task_struct *child_reaper) 604 { 605 struct task_struct *thread, *reaper; 606 607 thread = find_alive_thread(father); 608 if (thread) 609 return thread; 610 611 if (father->signal->has_child_subreaper) { 612 unsigned int ns_level = task_pid(father)->level; 613 /* 614 * Find the first ->is_child_subreaper ancestor in our pid_ns. 615 * We can't check reaper != child_reaper to ensure we do not 616 * cross the namespaces, the exiting parent could be injected 617 * by setns() + fork(). 618 * We check pid->level, this is slightly more efficient than 619 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 620 */ 621 for (reaper = father->real_parent; 622 task_pid(reaper)->level == ns_level; 623 reaper = reaper->real_parent) { 624 if (reaper == &init_task) 625 break; 626 if (!reaper->signal->is_child_subreaper) 627 continue; 628 thread = find_alive_thread(reaper); 629 if (thread) 630 return thread; 631 } 632 } 633 634 return child_reaper; 635 } 636 637 /* 638 * Any that need to be release_task'd are put on the @dead list. 639 */ 640 static void reparent_leader(struct task_struct *father, struct task_struct *p, 641 struct list_head *dead) 642 { 643 if (unlikely(p->exit_state == EXIT_DEAD)) 644 return; 645 646 /* We don't want people slaying init. */ 647 p->exit_signal = SIGCHLD; 648 649 /* If it has exited notify the new parent about this child's death. */ 650 if (!p->ptrace && 651 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 652 if (do_notify_parent(p, p->exit_signal)) { 653 p->exit_state = EXIT_DEAD; 654 list_add(&p->ptrace_entry, dead); 655 } 656 } 657 658 kill_orphaned_pgrp(p, father); 659 } 660 661 /* 662 * This does two things: 663 * 664 * A. Make init inherit all the child processes 665 * B. Check to see if any process groups have become orphaned 666 * as a result of our exiting, and if they have any stopped 667 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 668 */ 669 static void forget_original_parent(struct task_struct *father, 670 struct list_head *dead) 671 { 672 struct task_struct *p, *t, *reaper; 673 674 if (unlikely(!list_empty(&father->ptraced))) 675 exit_ptrace(father, dead); 676 677 /* Can drop and reacquire tasklist_lock */ 678 reaper = find_child_reaper(father); 679 if (list_empty(&father->children)) 680 return; 681 682 reaper = find_new_reaper(father, reaper); 683 list_for_each_entry(p, &father->children, sibling) { 684 for_each_thread(p, t) { 685 t->real_parent = reaper; 686 BUG_ON((!t->ptrace) != (t->parent == father)); 687 if (likely(!t->ptrace)) 688 t->parent = t->real_parent; 689 if (t->pdeath_signal) 690 group_send_sig_info(t->pdeath_signal, 691 SEND_SIG_NOINFO, t); 692 } 693 /* 694 * If this is a threaded reparent there is no need to 695 * notify anyone anything has happened. 696 */ 697 if (!same_thread_group(reaper, father)) 698 reparent_leader(father, p, dead); 699 } 700 list_splice_tail_init(&father->children, &reaper->children); 701 } 702 703 /* 704 * Send signals to all our closest relatives so that they know 705 * to properly mourn us.. 706 */ 707 static void exit_notify(struct task_struct *tsk, int group_dead) 708 { 709 bool autoreap; 710 struct task_struct *p, *n; 711 LIST_HEAD(dead); 712 713 write_lock_irq(&tasklist_lock); 714 forget_original_parent(tsk, &dead); 715 716 if (group_dead) 717 kill_orphaned_pgrp(tsk->group_leader, NULL); 718 719 if (unlikely(tsk->ptrace)) { 720 int sig = thread_group_leader(tsk) && 721 thread_group_empty(tsk) && 722 !ptrace_reparented(tsk) ? 723 tsk->exit_signal : SIGCHLD; 724 autoreap = do_notify_parent(tsk, sig); 725 } else if (thread_group_leader(tsk)) { 726 autoreap = thread_group_empty(tsk) && 727 do_notify_parent(tsk, tsk->exit_signal); 728 } else { 729 autoreap = true; 730 } 731 732 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 733 if (tsk->exit_state == EXIT_DEAD) 734 list_add(&tsk->ptrace_entry, &dead); 735 736 /* mt-exec, de_thread() is waiting for group leader */ 737 if (unlikely(tsk->signal->notify_count < 0)) 738 wake_up_process(tsk->signal->group_exit_task); 739 write_unlock_irq(&tasklist_lock); 740 741 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 742 list_del_init(&p->ptrace_entry); 743 release_task(p); 744 } 745 } 746 747 #ifdef CONFIG_DEBUG_STACK_USAGE 748 static void check_stack_usage(void) 749 { 750 static DEFINE_SPINLOCK(low_water_lock); 751 static int lowest_to_date = THREAD_SIZE; 752 unsigned long free; 753 754 free = stack_not_used(current); 755 756 if (free >= lowest_to_date) 757 return; 758 759 spin_lock(&low_water_lock); 760 if (free < lowest_to_date) { 761 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 762 current->comm, task_pid_nr(current), free); 763 lowest_to_date = free; 764 } 765 spin_unlock(&low_water_lock); 766 } 767 #else 768 static inline void check_stack_usage(void) {} 769 #endif 770 771 void __noreturn do_exit(long code) 772 { 773 struct task_struct *tsk = current; 774 int group_dead; 775 TASKS_RCU(int tasks_rcu_i); 776 777 profile_task_exit(tsk); 778 kcov_task_exit(tsk); 779 780 WARN_ON(blk_needs_flush_plug(tsk)); 781 782 if (unlikely(in_interrupt())) 783 panic("Aiee, killing interrupt handler!"); 784 if (unlikely(!tsk->pid)) 785 panic("Attempted to kill the idle task!"); 786 787 /* 788 * If do_exit is called because this processes oopsed, it's possible 789 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 790 * continuing. Amongst other possible reasons, this is to prevent 791 * mm_release()->clear_child_tid() from writing to a user-controlled 792 * kernel address. 793 */ 794 set_fs(USER_DS); 795 796 ptrace_event(PTRACE_EVENT_EXIT, code); 797 798 validate_creds_for_do_exit(tsk); 799 800 /* 801 * We're taking recursive faults here in do_exit. Safest is to just 802 * leave this task alone and wait for reboot. 803 */ 804 if (unlikely(tsk->flags & PF_EXITING)) { 805 pr_alert("Fixing recursive fault but reboot is needed!\n"); 806 /* 807 * We can do this unlocked here. The futex code uses 808 * this flag just to verify whether the pi state 809 * cleanup has been done or not. In the worst case it 810 * loops once more. We pretend that the cleanup was 811 * done as there is no way to return. Either the 812 * OWNER_DIED bit is set by now or we push the blocked 813 * task into the wait for ever nirwana as well. 814 */ 815 tsk->flags |= PF_EXITPIDONE; 816 set_current_state(TASK_UNINTERRUPTIBLE); 817 schedule(); 818 } 819 820 exit_signals(tsk); /* sets PF_EXITING */ 821 /* 822 * Ensure that all new tsk->pi_lock acquisitions must observe 823 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner(). 824 */ 825 smp_mb(); 826 /* 827 * Ensure that we must observe the pi_state in exit_mm() -> 828 * mm_release() -> exit_pi_state_list(). 829 */ 830 raw_spin_unlock_wait(&tsk->pi_lock); 831 832 if (unlikely(in_atomic())) { 833 pr_info("note: %s[%d] exited with preempt_count %d\n", 834 current->comm, task_pid_nr(current), 835 preempt_count()); 836 preempt_count_set(PREEMPT_ENABLED); 837 } 838 839 /* sync mm's RSS info before statistics gathering */ 840 if (tsk->mm) 841 sync_mm_rss(tsk->mm); 842 acct_update_integrals(tsk); 843 group_dead = atomic_dec_and_test(&tsk->signal->live); 844 if (group_dead) { 845 #ifdef CONFIG_POSIX_TIMERS 846 hrtimer_cancel(&tsk->signal->real_timer); 847 exit_itimers(tsk->signal); 848 #endif 849 if (tsk->mm) 850 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 851 } 852 acct_collect(code, group_dead); 853 if (group_dead) 854 tty_audit_exit(); 855 audit_free(tsk); 856 857 tsk->exit_code = code; 858 taskstats_exit(tsk, group_dead); 859 860 exit_mm(); 861 862 if (group_dead) 863 acct_process(); 864 trace_sched_process_exit(tsk); 865 866 exit_sem(tsk); 867 exit_shm(tsk); 868 exit_files(tsk); 869 exit_fs(tsk); 870 if (group_dead) 871 disassociate_ctty(1); 872 exit_task_namespaces(tsk); 873 exit_task_work(tsk); 874 exit_thread(tsk); 875 876 /* 877 * Flush inherited counters to the parent - before the parent 878 * gets woken up by child-exit notifications. 879 * 880 * because of cgroup mode, must be called before cgroup_exit() 881 */ 882 perf_event_exit_task(tsk); 883 884 sched_autogroup_exit_task(tsk); 885 cgroup_exit(tsk); 886 887 /* 888 * FIXME: do that only when needed, using sched_exit tracepoint 889 */ 890 flush_ptrace_hw_breakpoint(tsk); 891 892 TASKS_RCU(preempt_disable()); 893 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 894 TASKS_RCU(preempt_enable()); 895 exit_notify(tsk, group_dead); 896 proc_exit_connector(tsk); 897 mpol_put_task_policy(tsk); 898 #ifdef CONFIG_FUTEX 899 if (unlikely(current->pi_state_cache)) 900 kfree(current->pi_state_cache); 901 #endif 902 /* 903 * Make sure we are holding no locks: 904 */ 905 debug_check_no_locks_held(); 906 /* 907 * We can do this unlocked here. The futex code uses this flag 908 * just to verify whether the pi state cleanup has been done 909 * or not. In the worst case it loops once more. 910 */ 911 tsk->flags |= PF_EXITPIDONE; 912 913 if (tsk->io_context) 914 exit_io_context(tsk); 915 916 if (tsk->splice_pipe) 917 free_pipe_info(tsk->splice_pipe); 918 919 if (tsk->task_frag.page) 920 put_page(tsk->task_frag.page); 921 922 validate_creds_for_do_exit(tsk); 923 924 check_stack_usage(); 925 preempt_disable(); 926 if (tsk->nr_dirtied) 927 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 928 exit_rcu(); 929 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 930 931 do_task_dead(); 932 } 933 EXPORT_SYMBOL_GPL(do_exit); 934 935 void complete_and_exit(struct completion *comp, long code) 936 { 937 if (comp) 938 complete(comp); 939 940 do_exit(code); 941 } 942 EXPORT_SYMBOL(complete_and_exit); 943 944 SYSCALL_DEFINE1(exit, int, error_code) 945 { 946 do_exit((error_code&0xff)<<8); 947 } 948 949 /* 950 * Take down every thread in the group. This is called by fatal signals 951 * as well as by sys_exit_group (below). 952 */ 953 void 954 do_group_exit(int exit_code) 955 { 956 struct signal_struct *sig = current->signal; 957 958 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 959 960 if (signal_group_exit(sig)) 961 exit_code = sig->group_exit_code; 962 else if (!thread_group_empty(current)) { 963 struct sighand_struct *const sighand = current->sighand; 964 965 spin_lock_irq(&sighand->siglock); 966 if (signal_group_exit(sig)) 967 /* Another thread got here before we took the lock. */ 968 exit_code = sig->group_exit_code; 969 else { 970 sig->group_exit_code = exit_code; 971 sig->flags = SIGNAL_GROUP_EXIT; 972 zap_other_threads(current); 973 } 974 spin_unlock_irq(&sighand->siglock); 975 } 976 977 do_exit(exit_code); 978 /* NOTREACHED */ 979 } 980 981 /* 982 * this kills every thread in the thread group. Note that any externally 983 * wait4()-ing process will get the correct exit code - even if this 984 * thread is not the thread group leader. 985 */ 986 SYSCALL_DEFINE1(exit_group, int, error_code) 987 { 988 do_group_exit((error_code & 0xff) << 8); 989 /* NOTREACHED */ 990 return 0; 991 } 992 993 struct wait_opts { 994 enum pid_type wo_type; 995 int wo_flags; 996 struct pid *wo_pid; 997 998 struct siginfo __user *wo_info; 999 int __user *wo_stat; 1000 struct rusage __user *wo_rusage; 1001 1002 wait_queue_t child_wait; 1003 int notask_error; 1004 }; 1005 1006 static inline 1007 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1008 { 1009 if (type != PIDTYPE_PID) 1010 task = task->group_leader; 1011 return task->pids[type].pid; 1012 } 1013 1014 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1015 { 1016 return wo->wo_type == PIDTYPE_MAX || 1017 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1018 } 1019 1020 static int 1021 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1022 { 1023 if (!eligible_pid(wo, p)) 1024 return 0; 1025 1026 /* 1027 * Wait for all children (clone and not) if __WALL is set or 1028 * if it is traced by us. 1029 */ 1030 if (ptrace || (wo->wo_flags & __WALL)) 1031 return 1; 1032 1033 /* 1034 * Otherwise, wait for clone children *only* if __WCLONE is set; 1035 * otherwise, wait for non-clone children *only*. 1036 * 1037 * Note: a "clone" child here is one that reports to its parent 1038 * using a signal other than SIGCHLD, or a non-leader thread which 1039 * we can only see if it is traced by us. 1040 */ 1041 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1042 return 0; 1043 1044 return 1; 1045 } 1046 1047 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1048 pid_t pid, uid_t uid, int why, int status) 1049 { 1050 struct siginfo __user *infop; 1051 int retval = wo->wo_rusage 1052 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1053 1054 put_task_struct(p); 1055 infop = wo->wo_info; 1056 if (infop) { 1057 if (!retval) 1058 retval = put_user(SIGCHLD, &infop->si_signo); 1059 if (!retval) 1060 retval = put_user(0, &infop->si_errno); 1061 if (!retval) 1062 retval = put_user((short)why, &infop->si_code); 1063 if (!retval) 1064 retval = put_user(pid, &infop->si_pid); 1065 if (!retval) 1066 retval = put_user(uid, &infop->si_uid); 1067 if (!retval) 1068 retval = put_user(status, &infop->si_status); 1069 } 1070 if (!retval) 1071 retval = pid; 1072 return retval; 1073 } 1074 1075 /* 1076 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1077 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1078 * the lock and this task is uninteresting. If we return nonzero, we have 1079 * released the lock and the system call should return. 1080 */ 1081 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1082 { 1083 int state, retval, status; 1084 pid_t pid = task_pid_vnr(p); 1085 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1086 struct siginfo __user *infop; 1087 1088 if (!likely(wo->wo_flags & WEXITED)) 1089 return 0; 1090 1091 if (unlikely(wo->wo_flags & WNOWAIT)) { 1092 int exit_code = p->exit_code; 1093 int why; 1094 1095 get_task_struct(p); 1096 read_unlock(&tasklist_lock); 1097 sched_annotate_sleep(); 1098 1099 if ((exit_code & 0x7f) == 0) { 1100 why = CLD_EXITED; 1101 status = exit_code >> 8; 1102 } else { 1103 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1104 status = exit_code & 0x7f; 1105 } 1106 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1107 } 1108 /* 1109 * Move the task's state to DEAD/TRACE, only one thread can do this. 1110 */ 1111 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1112 EXIT_TRACE : EXIT_DEAD; 1113 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1114 return 0; 1115 /* 1116 * We own this thread, nobody else can reap it. 1117 */ 1118 read_unlock(&tasklist_lock); 1119 sched_annotate_sleep(); 1120 1121 /* 1122 * Check thread_group_leader() to exclude the traced sub-threads. 1123 */ 1124 if (state == EXIT_DEAD && thread_group_leader(p)) { 1125 struct signal_struct *sig = p->signal; 1126 struct signal_struct *psig = current->signal; 1127 unsigned long maxrss; 1128 u64 tgutime, tgstime; 1129 1130 /* 1131 * The resource counters for the group leader are in its 1132 * own task_struct. Those for dead threads in the group 1133 * are in its signal_struct, as are those for the child 1134 * processes it has previously reaped. All these 1135 * accumulate in the parent's signal_struct c* fields. 1136 * 1137 * We don't bother to take a lock here to protect these 1138 * p->signal fields because the whole thread group is dead 1139 * and nobody can change them. 1140 * 1141 * psig->stats_lock also protects us from our sub-theads 1142 * which can reap other children at the same time. Until 1143 * we change k_getrusage()-like users to rely on this lock 1144 * we have to take ->siglock as well. 1145 * 1146 * We use thread_group_cputime_adjusted() to get times for 1147 * the thread group, which consolidates times for all threads 1148 * in the group including the group leader. 1149 */ 1150 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1151 spin_lock_irq(¤t->sighand->siglock); 1152 write_seqlock(&psig->stats_lock); 1153 psig->cutime += tgutime + sig->cutime; 1154 psig->cstime += tgstime + sig->cstime; 1155 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1156 psig->cmin_flt += 1157 p->min_flt + sig->min_flt + sig->cmin_flt; 1158 psig->cmaj_flt += 1159 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1160 psig->cnvcsw += 1161 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1162 psig->cnivcsw += 1163 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1164 psig->cinblock += 1165 task_io_get_inblock(p) + 1166 sig->inblock + sig->cinblock; 1167 psig->coublock += 1168 task_io_get_oublock(p) + 1169 sig->oublock + sig->coublock; 1170 maxrss = max(sig->maxrss, sig->cmaxrss); 1171 if (psig->cmaxrss < maxrss) 1172 psig->cmaxrss = maxrss; 1173 task_io_accounting_add(&psig->ioac, &p->ioac); 1174 task_io_accounting_add(&psig->ioac, &sig->ioac); 1175 write_sequnlock(&psig->stats_lock); 1176 spin_unlock_irq(¤t->sighand->siglock); 1177 } 1178 1179 retval = wo->wo_rusage 1180 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1181 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1182 ? p->signal->group_exit_code : p->exit_code; 1183 if (!retval && wo->wo_stat) 1184 retval = put_user(status, wo->wo_stat); 1185 1186 infop = wo->wo_info; 1187 if (!retval && infop) 1188 retval = put_user(SIGCHLD, &infop->si_signo); 1189 if (!retval && infop) 1190 retval = put_user(0, &infop->si_errno); 1191 if (!retval && infop) { 1192 int why; 1193 1194 if ((status & 0x7f) == 0) { 1195 why = CLD_EXITED; 1196 status >>= 8; 1197 } else { 1198 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1199 status &= 0x7f; 1200 } 1201 retval = put_user((short)why, &infop->si_code); 1202 if (!retval) 1203 retval = put_user(status, &infop->si_status); 1204 } 1205 if (!retval && infop) 1206 retval = put_user(pid, &infop->si_pid); 1207 if (!retval && infop) 1208 retval = put_user(uid, &infop->si_uid); 1209 if (!retval) 1210 retval = pid; 1211 1212 if (state == EXIT_TRACE) { 1213 write_lock_irq(&tasklist_lock); 1214 /* We dropped tasklist, ptracer could die and untrace */ 1215 ptrace_unlink(p); 1216 1217 /* If parent wants a zombie, don't release it now */ 1218 state = EXIT_ZOMBIE; 1219 if (do_notify_parent(p, p->exit_signal)) 1220 state = EXIT_DEAD; 1221 p->exit_state = state; 1222 write_unlock_irq(&tasklist_lock); 1223 } 1224 if (state == EXIT_DEAD) 1225 release_task(p); 1226 1227 return retval; 1228 } 1229 1230 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1231 { 1232 if (ptrace) { 1233 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1234 return &p->exit_code; 1235 } else { 1236 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1237 return &p->signal->group_exit_code; 1238 } 1239 return NULL; 1240 } 1241 1242 /** 1243 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1244 * @wo: wait options 1245 * @ptrace: is the wait for ptrace 1246 * @p: task to wait for 1247 * 1248 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1249 * 1250 * CONTEXT: 1251 * read_lock(&tasklist_lock), which is released if return value is 1252 * non-zero. Also, grabs and releases @p->sighand->siglock. 1253 * 1254 * RETURNS: 1255 * 0 if wait condition didn't exist and search for other wait conditions 1256 * should continue. Non-zero return, -errno on failure and @p's pid on 1257 * success, implies that tasklist_lock is released and wait condition 1258 * search should terminate. 1259 */ 1260 static int wait_task_stopped(struct wait_opts *wo, 1261 int ptrace, struct task_struct *p) 1262 { 1263 struct siginfo __user *infop; 1264 int retval, exit_code, *p_code, why; 1265 uid_t uid = 0; /* unneeded, required by compiler */ 1266 pid_t pid; 1267 1268 /* 1269 * Traditionally we see ptrace'd stopped tasks regardless of options. 1270 */ 1271 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1272 return 0; 1273 1274 if (!task_stopped_code(p, ptrace)) 1275 return 0; 1276 1277 exit_code = 0; 1278 spin_lock_irq(&p->sighand->siglock); 1279 1280 p_code = task_stopped_code(p, ptrace); 1281 if (unlikely(!p_code)) 1282 goto unlock_sig; 1283 1284 exit_code = *p_code; 1285 if (!exit_code) 1286 goto unlock_sig; 1287 1288 if (!unlikely(wo->wo_flags & WNOWAIT)) 1289 *p_code = 0; 1290 1291 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1292 unlock_sig: 1293 spin_unlock_irq(&p->sighand->siglock); 1294 if (!exit_code) 1295 return 0; 1296 1297 /* 1298 * Now we are pretty sure this task is interesting. 1299 * Make sure it doesn't get reaped out from under us while we 1300 * give up the lock and then examine it below. We don't want to 1301 * keep holding onto the tasklist_lock while we call getrusage and 1302 * possibly take page faults for user memory. 1303 */ 1304 get_task_struct(p); 1305 pid = task_pid_vnr(p); 1306 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1307 read_unlock(&tasklist_lock); 1308 sched_annotate_sleep(); 1309 1310 if (unlikely(wo->wo_flags & WNOWAIT)) 1311 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1312 1313 retval = wo->wo_rusage 1314 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1315 if (!retval && wo->wo_stat) 1316 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1317 1318 infop = wo->wo_info; 1319 if (!retval && infop) 1320 retval = put_user(SIGCHLD, &infop->si_signo); 1321 if (!retval && infop) 1322 retval = put_user(0, &infop->si_errno); 1323 if (!retval && infop) 1324 retval = put_user((short)why, &infop->si_code); 1325 if (!retval && infop) 1326 retval = put_user(exit_code, &infop->si_status); 1327 if (!retval && infop) 1328 retval = put_user(pid, &infop->si_pid); 1329 if (!retval && infop) 1330 retval = put_user(uid, &infop->si_uid); 1331 if (!retval) 1332 retval = pid; 1333 put_task_struct(p); 1334 1335 BUG_ON(!retval); 1336 return retval; 1337 } 1338 1339 /* 1340 * Handle do_wait work for one task in a live, non-stopped state. 1341 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1342 * the lock and this task is uninteresting. If we return nonzero, we have 1343 * released the lock and the system call should return. 1344 */ 1345 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1346 { 1347 int retval; 1348 pid_t pid; 1349 uid_t uid; 1350 1351 if (!unlikely(wo->wo_flags & WCONTINUED)) 1352 return 0; 1353 1354 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1355 return 0; 1356 1357 spin_lock_irq(&p->sighand->siglock); 1358 /* Re-check with the lock held. */ 1359 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1360 spin_unlock_irq(&p->sighand->siglock); 1361 return 0; 1362 } 1363 if (!unlikely(wo->wo_flags & WNOWAIT)) 1364 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1365 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1366 spin_unlock_irq(&p->sighand->siglock); 1367 1368 pid = task_pid_vnr(p); 1369 get_task_struct(p); 1370 read_unlock(&tasklist_lock); 1371 sched_annotate_sleep(); 1372 1373 if (!wo->wo_info) { 1374 retval = wo->wo_rusage 1375 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1376 put_task_struct(p); 1377 if (!retval && wo->wo_stat) 1378 retval = put_user(0xffff, wo->wo_stat); 1379 if (!retval) 1380 retval = pid; 1381 } else { 1382 retval = wait_noreap_copyout(wo, p, pid, uid, 1383 CLD_CONTINUED, SIGCONT); 1384 BUG_ON(retval == 0); 1385 } 1386 1387 return retval; 1388 } 1389 1390 /* 1391 * Consider @p for a wait by @parent. 1392 * 1393 * -ECHILD should be in ->notask_error before the first call. 1394 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1395 * Returns zero if the search for a child should continue; 1396 * then ->notask_error is 0 if @p is an eligible child, 1397 * or still -ECHILD. 1398 */ 1399 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1400 struct task_struct *p) 1401 { 1402 /* 1403 * We can race with wait_task_zombie() from another thread. 1404 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1405 * can't confuse the checks below. 1406 */ 1407 int exit_state = ACCESS_ONCE(p->exit_state); 1408 int ret; 1409 1410 if (unlikely(exit_state == EXIT_DEAD)) 1411 return 0; 1412 1413 ret = eligible_child(wo, ptrace, p); 1414 if (!ret) 1415 return ret; 1416 1417 if (unlikely(exit_state == EXIT_TRACE)) { 1418 /* 1419 * ptrace == 0 means we are the natural parent. In this case 1420 * we should clear notask_error, debugger will notify us. 1421 */ 1422 if (likely(!ptrace)) 1423 wo->notask_error = 0; 1424 return 0; 1425 } 1426 1427 if (likely(!ptrace) && unlikely(p->ptrace)) { 1428 /* 1429 * If it is traced by its real parent's group, just pretend 1430 * the caller is ptrace_do_wait() and reap this child if it 1431 * is zombie. 1432 * 1433 * This also hides group stop state from real parent; otherwise 1434 * a single stop can be reported twice as group and ptrace stop. 1435 * If a ptracer wants to distinguish these two events for its 1436 * own children it should create a separate process which takes 1437 * the role of real parent. 1438 */ 1439 if (!ptrace_reparented(p)) 1440 ptrace = 1; 1441 } 1442 1443 /* slay zombie? */ 1444 if (exit_state == EXIT_ZOMBIE) { 1445 /* we don't reap group leaders with subthreads */ 1446 if (!delay_group_leader(p)) { 1447 /* 1448 * A zombie ptracee is only visible to its ptracer. 1449 * Notification and reaping will be cascaded to the 1450 * real parent when the ptracer detaches. 1451 */ 1452 if (unlikely(ptrace) || likely(!p->ptrace)) 1453 return wait_task_zombie(wo, p); 1454 } 1455 1456 /* 1457 * Allow access to stopped/continued state via zombie by 1458 * falling through. Clearing of notask_error is complex. 1459 * 1460 * When !@ptrace: 1461 * 1462 * If WEXITED is set, notask_error should naturally be 1463 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1464 * so, if there are live subthreads, there are events to 1465 * wait for. If all subthreads are dead, it's still safe 1466 * to clear - this function will be called again in finite 1467 * amount time once all the subthreads are released and 1468 * will then return without clearing. 1469 * 1470 * When @ptrace: 1471 * 1472 * Stopped state is per-task and thus can't change once the 1473 * target task dies. Only continued and exited can happen. 1474 * Clear notask_error if WCONTINUED | WEXITED. 1475 */ 1476 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1477 wo->notask_error = 0; 1478 } else { 1479 /* 1480 * @p is alive and it's gonna stop, continue or exit, so 1481 * there always is something to wait for. 1482 */ 1483 wo->notask_error = 0; 1484 } 1485 1486 /* 1487 * Wait for stopped. Depending on @ptrace, different stopped state 1488 * is used and the two don't interact with each other. 1489 */ 1490 ret = wait_task_stopped(wo, ptrace, p); 1491 if (ret) 1492 return ret; 1493 1494 /* 1495 * Wait for continued. There's only one continued state and the 1496 * ptracer can consume it which can confuse the real parent. Don't 1497 * use WCONTINUED from ptracer. You don't need or want it. 1498 */ 1499 return wait_task_continued(wo, p); 1500 } 1501 1502 /* 1503 * Do the work of do_wait() for one thread in the group, @tsk. 1504 * 1505 * -ECHILD should be in ->notask_error before the first call. 1506 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1507 * Returns zero if the search for a child should continue; then 1508 * ->notask_error is 0 if there were any eligible children, 1509 * or still -ECHILD. 1510 */ 1511 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1512 { 1513 struct task_struct *p; 1514 1515 list_for_each_entry(p, &tsk->children, sibling) { 1516 int ret = wait_consider_task(wo, 0, p); 1517 1518 if (ret) 1519 return ret; 1520 } 1521 1522 return 0; 1523 } 1524 1525 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1526 { 1527 struct task_struct *p; 1528 1529 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1530 int ret = wait_consider_task(wo, 1, p); 1531 1532 if (ret) 1533 return ret; 1534 } 1535 1536 return 0; 1537 } 1538 1539 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1540 int sync, void *key) 1541 { 1542 struct wait_opts *wo = container_of(wait, struct wait_opts, 1543 child_wait); 1544 struct task_struct *p = key; 1545 1546 if (!eligible_pid(wo, p)) 1547 return 0; 1548 1549 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1550 return 0; 1551 1552 return default_wake_function(wait, mode, sync, key); 1553 } 1554 1555 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1556 { 1557 __wake_up_sync_key(&parent->signal->wait_chldexit, 1558 TASK_INTERRUPTIBLE, 1, p); 1559 } 1560 1561 static long do_wait(struct wait_opts *wo) 1562 { 1563 struct task_struct *tsk; 1564 int retval; 1565 1566 trace_sched_process_wait(wo->wo_pid); 1567 1568 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1569 wo->child_wait.private = current; 1570 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1571 repeat: 1572 /* 1573 * If there is nothing that can match our criteria, just get out. 1574 * We will clear ->notask_error to zero if we see any child that 1575 * might later match our criteria, even if we are not able to reap 1576 * it yet. 1577 */ 1578 wo->notask_error = -ECHILD; 1579 if ((wo->wo_type < PIDTYPE_MAX) && 1580 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1581 goto notask; 1582 1583 set_current_state(TASK_INTERRUPTIBLE); 1584 read_lock(&tasklist_lock); 1585 tsk = current; 1586 do { 1587 retval = do_wait_thread(wo, tsk); 1588 if (retval) 1589 goto end; 1590 1591 retval = ptrace_do_wait(wo, tsk); 1592 if (retval) 1593 goto end; 1594 1595 if (wo->wo_flags & __WNOTHREAD) 1596 break; 1597 } while_each_thread(current, tsk); 1598 read_unlock(&tasklist_lock); 1599 1600 notask: 1601 retval = wo->notask_error; 1602 if (!retval && !(wo->wo_flags & WNOHANG)) { 1603 retval = -ERESTARTSYS; 1604 if (!signal_pending(current)) { 1605 schedule(); 1606 goto repeat; 1607 } 1608 } 1609 end: 1610 __set_current_state(TASK_RUNNING); 1611 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1612 return retval; 1613 } 1614 1615 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1616 infop, int, options, struct rusage __user *, ru) 1617 { 1618 struct wait_opts wo; 1619 struct pid *pid = NULL; 1620 enum pid_type type; 1621 long ret; 1622 1623 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1624 __WNOTHREAD|__WCLONE|__WALL)) 1625 return -EINVAL; 1626 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1627 return -EINVAL; 1628 1629 switch (which) { 1630 case P_ALL: 1631 type = PIDTYPE_MAX; 1632 break; 1633 case P_PID: 1634 type = PIDTYPE_PID; 1635 if (upid <= 0) 1636 return -EINVAL; 1637 break; 1638 case P_PGID: 1639 type = PIDTYPE_PGID; 1640 if (upid <= 0) 1641 return -EINVAL; 1642 break; 1643 default: 1644 return -EINVAL; 1645 } 1646 1647 if (type < PIDTYPE_MAX) 1648 pid = find_get_pid(upid); 1649 1650 wo.wo_type = type; 1651 wo.wo_pid = pid; 1652 wo.wo_flags = options; 1653 wo.wo_info = infop; 1654 wo.wo_stat = NULL; 1655 wo.wo_rusage = ru; 1656 ret = do_wait(&wo); 1657 1658 if (ret > 0) { 1659 ret = 0; 1660 } else if (infop) { 1661 /* 1662 * For a WNOHANG return, clear out all the fields 1663 * we would set so the user can easily tell the 1664 * difference. 1665 */ 1666 if (!ret) 1667 ret = put_user(0, &infop->si_signo); 1668 if (!ret) 1669 ret = put_user(0, &infop->si_errno); 1670 if (!ret) 1671 ret = put_user(0, &infop->si_code); 1672 if (!ret) 1673 ret = put_user(0, &infop->si_pid); 1674 if (!ret) 1675 ret = put_user(0, &infop->si_uid); 1676 if (!ret) 1677 ret = put_user(0, &infop->si_status); 1678 } 1679 1680 put_pid(pid); 1681 return ret; 1682 } 1683 1684 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1685 int, options, struct rusage __user *, ru) 1686 { 1687 struct wait_opts wo; 1688 struct pid *pid = NULL; 1689 enum pid_type type; 1690 long ret; 1691 1692 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1693 __WNOTHREAD|__WCLONE|__WALL)) 1694 return -EINVAL; 1695 1696 if (upid == -1) 1697 type = PIDTYPE_MAX; 1698 else if (upid < 0) { 1699 type = PIDTYPE_PGID; 1700 pid = find_get_pid(-upid); 1701 } else if (upid == 0) { 1702 type = PIDTYPE_PGID; 1703 pid = get_task_pid(current, PIDTYPE_PGID); 1704 } else /* upid > 0 */ { 1705 type = PIDTYPE_PID; 1706 pid = find_get_pid(upid); 1707 } 1708 1709 wo.wo_type = type; 1710 wo.wo_pid = pid; 1711 wo.wo_flags = options | WEXITED; 1712 wo.wo_info = NULL; 1713 wo.wo_stat = stat_addr; 1714 wo.wo_rusage = ru; 1715 ret = do_wait(&wo); 1716 put_pid(pid); 1717 1718 return ret; 1719 } 1720 1721 #ifdef __ARCH_WANT_SYS_WAITPID 1722 1723 /* 1724 * sys_waitpid() remains for compatibility. waitpid() should be 1725 * implemented by calling sys_wait4() from libc.a. 1726 */ 1727 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1728 { 1729 return sys_wait4(pid, stat_addr, options, NULL); 1730 } 1731 1732 #endif 1733