xref: /openbmc/linux/kernel/exit.c (revision 4dc7ccf7)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58 #include "cred-internals.h"
59 
60 static void exit_mm(struct task_struct * tsk);
61 
62 static void __unhash_process(struct task_struct *p)
63 {
64 	nr_threads--;
65 	detach_pid(p, PIDTYPE_PID);
66 	if (thread_group_leader(p)) {
67 		detach_pid(p, PIDTYPE_PGID);
68 		detach_pid(p, PIDTYPE_SID);
69 
70 		list_del_rcu(&p->tasks);
71 		list_del_init(&p->sibling);
72 		__get_cpu_var(process_counts)--;
73 	}
74 	list_del_rcu(&p->thread_group);
75 }
76 
77 /*
78  * This function expects the tasklist_lock write-locked.
79  */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 	struct signal_struct *sig = tsk->signal;
83 	struct sighand_struct *sighand;
84 
85 	BUG_ON(!sig);
86 	BUG_ON(!atomic_read(&sig->count));
87 
88 	sighand = rcu_dereference_check(tsk->sighand,
89 					rcu_read_lock_held() ||
90 					lockdep_tasklist_lock_is_held());
91 	spin_lock(&sighand->siglock);
92 
93 	posix_cpu_timers_exit(tsk);
94 	if (atomic_dec_and_test(&sig->count))
95 		posix_cpu_timers_exit_group(tsk);
96 	else {
97 		/*
98 		 * If there is any task waiting for the group exit
99 		 * then notify it:
100 		 */
101 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
102 			wake_up_process(sig->group_exit_task);
103 
104 		if (tsk == sig->curr_target)
105 			sig->curr_target = next_thread(tsk);
106 		/*
107 		 * Accumulate here the counters for all threads but the
108 		 * group leader as they die, so they can be added into
109 		 * the process-wide totals when those are taken.
110 		 * The group leader stays around as a zombie as long
111 		 * as there are other threads.  When it gets reaped,
112 		 * the exit.c code will add its counts into these totals.
113 		 * We won't ever get here for the group leader, since it
114 		 * will have been the last reference on the signal_struct.
115 		 */
116 		sig->utime = cputime_add(sig->utime, tsk->utime);
117 		sig->stime = cputime_add(sig->stime, tsk->stime);
118 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
119 		sig->min_flt += tsk->min_flt;
120 		sig->maj_flt += tsk->maj_flt;
121 		sig->nvcsw += tsk->nvcsw;
122 		sig->nivcsw += tsk->nivcsw;
123 		sig->inblock += task_io_get_inblock(tsk);
124 		sig->oublock += task_io_get_oublock(tsk);
125 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
126 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
127 		sig = NULL; /* Marker for below. */
128 	}
129 
130 	__unhash_process(tsk);
131 
132 	/*
133 	 * Do this under ->siglock, we can race with another thread
134 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
135 	 */
136 	flush_sigqueue(&tsk->pending);
137 
138 	tsk->signal = NULL;
139 	tsk->sighand = NULL;
140 	spin_unlock(&sighand->siglock);
141 
142 	__cleanup_sighand(sighand);
143 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
144 	if (sig) {
145 		flush_sigqueue(&sig->shared_pending);
146 		taskstats_tgid_free(sig);
147 		/*
148 		 * Make sure ->signal can't go away under rq->lock,
149 		 * see account_group_exec_runtime().
150 		 */
151 		task_rq_unlock_wait(tsk);
152 		__cleanup_signal(sig);
153 	}
154 }
155 
156 static void delayed_put_task_struct(struct rcu_head *rhp)
157 {
158 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
159 
160 #ifdef CONFIG_PERF_EVENTS
161 	WARN_ON_ONCE(tsk->perf_event_ctxp);
162 #endif
163 	trace_sched_process_free(tsk);
164 	put_task_struct(tsk);
165 }
166 
167 
168 void release_task(struct task_struct * p)
169 {
170 	struct task_struct *leader;
171 	int zap_leader;
172 repeat:
173 	tracehook_prepare_release_task(p);
174 	/* don't need to get the RCU readlock here - the process is dead and
175 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
176 	rcu_read_lock();
177 	atomic_dec(&__task_cred(p)->user->processes);
178 	rcu_read_unlock();
179 
180 	proc_flush_task(p);
181 
182 	write_lock_irq(&tasklist_lock);
183 	tracehook_finish_release_task(p);
184 	__exit_signal(p);
185 
186 	/*
187 	 * If we are the last non-leader member of the thread
188 	 * group, and the leader is zombie, then notify the
189 	 * group leader's parent process. (if it wants notification.)
190 	 */
191 	zap_leader = 0;
192 	leader = p->group_leader;
193 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
194 		BUG_ON(task_detached(leader));
195 		do_notify_parent(leader, leader->exit_signal);
196 		/*
197 		 * If we were the last child thread and the leader has
198 		 * exited already, and the leader's parent ignores SIGCHLD,
199 		 * then we are the one who should release the leader.
200 		 *
201 		 * do_notify_parent() will have marked it self-reaping in
202 		 * that case.
203 		 */
204 		zap_leader = task_detached(leader);
205 
206 		/*
207 		 * This maintains the invariant that release_task()
208 		 * only runs on a task in EXIT_DEAD, just for sanity.
209 		 */
210 		if (zap_leader)
211 			leader->exit_state = EXIT_DEAD;
212 	}
213 
214 	write_unlock_irq(&tasklist_lock);
215 	release_thread(p);
216 	call_rcu(&p->rcu, delayed_put_task_struct);
217 
218 	p = leader;
219 	if (unlikely(zap_leader))
220 		goto repeat;
221 }
222 
223 /*
224  * This checks not only the pgrp, but falls back on the pid if no
225  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
226  * without this...
227  *
228  * The caller must hold rcu lock or the tasklist lock.
229  */
230 struct pid *session_of_pgrp(struct pid *pgrp)
231 {
232 	struct task_struct *p;
233 	struct pid *sid = NULL;
234 
235 	p = pid_task(pgrp, PIDTYPE_PGID);
236 	if (p == NULL)
237 		p = pid_task(pgrp, PIDTYPE_PID);
238 	if (p != NULL)
239 		sid = task_session(p);
240 
241 	return sid;
242 }
243 
244 /*
245  * Determine if a process group is "orphaned", according to the POSIX
246  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
247  * by terminal-generated stop signals.  Newly orphaned process groups are
248  * to receive a SIGHUP and a SIGCONT.
249  *
250  * "I ask you, have you ever known what it is to be an orphan?"
251  */
252 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
253 {
254 	struct task_struct *p;
255 
256 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
257 		if ((p == ignored_task) ||
258 		    (p->exit_state && thread_group_empty(p)) ||
259 		    is_global_init(p->real_parent))
260 			continue;
261 
262 		if (task_pgrp(p->real_parent) != pgrp &&
263 		    task_session(p->real_parent) == task_session(p))
264 			return 0;
265 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
266 
267 	return 1;
268 }
269 
270 int is_current_pgrp_orphaned(void)
271 {
272 	int retval;
273 
274 	read_lock(&tasklist_lock);
275 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
276 	read_unlock(&tasklist_lock);
277 
278 	return retval;
279 }
280 
281 static int has_stopped_jobs(struct pid *pgrp)
282 {
283 	int retval = 0;
284 	struct task_struct *p;
285 
286 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
287 		if (!task_is_stopped(p))
288 			continue;
289 		retval = 1;
290 		break;
291 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
292 	return retval;
293 }
294 
295 /*
296  * Check to see if any process groups have become orphaned as
297  * a result of our exiting, and if they have any stopped jobs,
298  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
299  */
300 static void
301 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
302 {
303 	struct pid *pgrp = task_pgrp(tsk);
304 	struct task_struct *ignored_task = tsk;
305 
306 	if (!parent)
307 		 /* exit: our father is in a different pgrp than
308 		  * we are and we were the only connection outside.
309 		  */
310 		parent = tsk->real_parent;
311 	else
312 		/* reparent: our child is in a different pgrp than
313 		 * we are, and it was the only connection outside.
314 		 */
315 		ignored_task = NULL;
316 
317 	if (task_pgrp(parent) != pgrp &&
318 	    task_session(parent) == task_session(tsk) &&
319 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
320 	    has_stopped_jobs(pgrp)) {
321 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
322 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
323 	}
324 }
325 
326 /**
327  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
328  *
329  * If a kernel thread is launched as a result of a system call, or if
330  * it ever exits, it should generally reparent itself to kthreadd so it
331  * isn't in the way of other processes and is correctly cleaned up on exit.
332  *
333  * The various task state such as scheduling policy and priority may have
334  * been inherited from a user process, so we reset them to sane values here.
335  *
336  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
337  */
338 static void reparent_to_kthreadd(void)
339 {
340 	write_lock_irq(&tasklist_lock);
341 
342 	ptrace_unlink(current);
343 	/* Reparent to init */
344 	current->real_parent = current->parent = kthreadd_task;
345 	list_move_tail(&current->sibling, &current->real_parent->children);
346 
347 	/* Set the exit signal to SIGCHLD so we signal init on exit */
348 	current->exit_signal = SIGCHLD;
349 
350 	if (task_nice(current) < 0)
351 		set_user_nice(current, 0);
352 	/* cpus_allowed? */
353 	/* rt_priority? */
354 	/* signals? */
355 	memcpy(current->signal->rlim, init_task.signal->rlim,
356 	       sizeof(current->signal->rlim));
357 
358 	atomic_inc(&init_cred.usage);
359 	commit_creds(&init_cred);
360 	write_unlock_irq(&tasklist_lock);
361 }
362 
363 void __set_special_pids(struct pid *pid)
364 {
365 	struct task_struct *curr = current->group_leader;
366 
367 	if (task_session(curr) != pid)
368 		change_pid(curr, PIDTYPE_SID, pid);
369 
370 	if (task_pgrp(curr) != pid)
371 		change_pid(curr, PIDTYPE_PGID, pid);
372 }
373 
374 static void set_special_pids(struct pid *pid)
375 {
376 	write_lock_irq(&tasklist_lock);
377 	__set_special_pids(pid);
378 	write_unlock_irq(&tasklist_lock);
379 }
380 
381 /*
382  * Let kernel threads use this to say that they allow a certain signal.
383  * Must not be used if kthread was cloned with CLONE_SIGHAND.
384  */
385 int allow_signal(int sig)
386 {
387 	if (!valid_signal(sig) || sig < 1)
388 		return -EINVAL;
389 
390 	spin_lock_irq(&current->sighand->siglock);
391 	/* This is only needed for daemonize()'ed kthreads */
392 	sigdelset(&current->blocked, sig);
393 	/*
394 	 * Kernel threads handle their own signals. Let the signal code
395 	 * know it'll be handled, so that they don't get converted to
396 	 * SIGKILL or just silently dropped.
397 	 */
398 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
399 	recalc_sigpending();
400 	spin_unlock_irq(&current->sighand->siglock);
401 	return 0;
402 }
403 
404 EXPORT_SYMBOL(allow_signal);
405 
406 int disallow_signal(int sig)
407 {
408 	if (!valid_signal(sig) || sig < 1)
409 		return -EINVAL;
410 
411 	spin_lock_irq(&current->sighand->siglock);
412 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
413 	recalc_sigpending();
414 	spin_unlock_irq(&current->sighand->siglock);
415 	return 0;
416 }
417 
418 EXPORT_SYMBOL(disallow_signal);
419 
420 /*
421  *	Put all the gunge required to become a kernel thread without
422  *	attached user resources in one place where it belongs.
423  */
424 
425 void daemonize(const char *name, ...)
426 {
427 	va_list args;
428 	sigset_t blocked;
429 
430 	va_start(args, name);
431 	vsnprintf(current->comm, sizeof(current->comm), name, args);
432 	va_end(args);
433 
434 	/*
435 	 * If we were started as result of loading a module, close all of the
436 	 * user space pages.  We don't need them, and if we didn't close them
437 	 * they would be locked into memory.
438 	 */
439 	exit_mm(current);
440 	/*
441 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
442 	 * or suspend transition begins right now.
443 	 */
444 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
445 
446 	if (current->nsproxy != &init_nsproxy) {
447 		get_nsproxy(&init_nsproxy);
448 		switch_task_namespaces(current, &init_nsproxy);
449 	}
450 	set_special_pids(&init_struct_pid);
451 	proc_clear_tty(current);
452 
453 	/* Block and flush all signals */
454 	sigfillset(&blocked);
455 	sigprocmask(SIG_BLOCK, &blocked, NULL);
456 	flush_signals(current);
457 
458 	/* Become as one with the init task */
459 
460 	daemonize_fs_struct();
461 	exit_files(current);
462 	current->files = init_task.files;
463 	atomic_inc(&current->files->count);
464 
465 	reparent_to_kthreadd();
466 }
467 
468 EXPORT_SYMBOL(daemonize);
469 
470 static void close_files(struct files_struct * files)
471 {
472 	int i, j;
473 	struct fdtable *fdt;
474 
475 	j = 0;
476 
477 	/*
478 	 * It is safe to dereference the fd table without RCU or
479 	 * ->file_lock because this is the last reference to the
480 	 * files structure.  But use RCU to shut RCU-lockdep up.
481 	 */
482 	rcu_read_lock();
483 	fdt = files_fdtable(files);
484 	rcu_read_unlock();
485 	for (;;) {
486 		unsigned long set;
487 		i = j * __NFDBITS;
488 		if (i >= fdt->max_fds)
489 			break;
490 		set = fdt->open_fds->fds_bits[j++];
491 		while (set) {
492 			if (set & 1) {
493 				struct file * file = xchg(&fdt->fd[i], NULL);
494 				if (file) {
495 					filp_close(file, files);
496 					cond_resched();
497 				}
498 			}
499 			i++;
500 			set >>= 1;
501 		}
502 	}
503 }
504 
505 struct files_struct *get_files_struct(struct task_struct *task)
506 {
507 	struct files_struct *files;
508 
509 	task_lock(task);
510 	files = task->files;
511 	if (files)
512 		atomic_inc(&files->count);
513 	task_unlock(task);
514 
515 	return files;
516 }
517 
518 void put_files_struct(struct files_struct *files)
519 {
520 	struct fdtable *fdt;
521 
522 	if (atomic_dec_and_test(&files->count)) {
523 		close_files(files);
524 		/*
525 		 * Free the fd and fdset arrays if we expanded them.
526 		 * If the fdtable was embedded, pass files for freeing
527 		 * at the end of the RCU grace period. Otherwise,
528 		 * you can free files immediately.
529 		 */
530 		rcu_read_lock();
531 		fdt = files_fdtable(files);
532 		if (fdt != &files->fdtab)
533 			kmem_cache_free(files_cachep, files);
534 		free_fdtable(fdt);
535 		rcu_read_unlock();
536 	}
537 }
538 
539 void reset_files_struct(struct files_struct *files)
540 {
541 	struct task_struct *tsk = current;
542 	struct files_struct *old;
543 
544 	old = tsk->files;
545 	task_lock(tsk);
546 	tsk->files = files;
547 	task_unlock(tsk);
548 	put_files_struct(old);
549 }
550 
551 void exit_files(struct task_struct *tsk)
552 {
553 	struct files_struct * files = tsk->files;
554 
555 	if (files) {
556 		task_lock(tsk);
557 		tsk->files = NULL;
558 		task_unlock(tsk);
559 		put_files_struct(files);
560 	}
561 }
562 
563 #ifdef CONFIG_MM_OWNER
564 /*
565  * Task p is exiting and it owned mm, lets find a new owner for it
566  */
567 static inline int
568 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
569 {
570 	/*
571 	 * If there are other users of the mm and the owner (us) is exiting
572 	 * we need to find a new owner to take on the responsibility.
573 	 */
574 	if (atomic_read(&mm->mm_users) <= 1)
575 		return 0;
576 	if (mm->owner != p)
577 		return 0;
578 	return 1;
579 }
580 
581 void mm_update_next_owner(struct mm_struct *mm)
582 {
583 	struct task_struct *c, *g, *p = current;
584 
585 retry:
586 	if (!mm_need_new_owner(mm, p))
587 		return;
588 
589 	read_lock(&tasklist_lock);
590 	/*
591 	 * Search in the children
592 	 */
593 	list_for_each_entry(c, &p->children, sibling) {
594 		if (c->mm == mm)
595 			goto assign_new_owner;
596 	}
597 
598 	/*
599 	 * Search in the siblings
600 	 */
601 	list_for_each_entry(c, &p->real_parent->children, sibling) {
602 		if (c->mm == mm)
603 			goto assign_new_owner;
604 	}
605 
606 	/*
607 	 * Search through everything else. We should not get
608 	 * here often
609 	 */
610 	do_each_thread(g, c) {
611 		if (c->mm == mm)
612 			goto assign_new_owner;
613 	} while_each_thread(g, c);
614 
615 	read_unlock(&tasklist_lock);
616 	/*
617 	 * We found no owner yet mm_users > 1: this implies that we are
618 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
619 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
620 	 */
621 	mm->owner = NULL;
622 	return;
623 
624 assign_new_owner:
625 	BUG_ON(c == p);
626 	get_task_struct(c);
627 	/*
628 	 * The task_lock protects c->mm from changing.
629 	 * We always want mm->owner->mm == mm
630 	 */
631 	task_lock(c);
632 	/*
633 	 * Delay read_unlock() till we have the task_lock()
634 	 * to ensure that c does not slip away underneath us
635 	 */
636 	read_unlock(&tasklist_lock);
637 	if (c->mm != mm) {
638 		task_unlock(c);
639 		put_task_struct(c);
640 		goto retry;
641 	}
642 	mm->owner = c;
643 	task_unlock(c);
644 	put_task_struct(c);
645 }
646 #endif /* CONFIG_MM_OWNER */
647 
648 /*
649  * Turn us into a lazy TLB process if we
650  * aren't already..
651  */
652 static void exit_mm(struct task_struct * tsk)
653 {
654 	struct mm_struct *mm = tsk->mm;
655 	struct core_state *core_state;
656 
657 	mm_release(tsk, mm);
658 	if (!mm)
659 		return;
660 	/*
661 	 * Serialize with any possible pending coredump.
662 	 * We must hold mmap_sem around checking core_state
663 	 * and clearing tsk->mm.  The core-inducing thread
664 	 * will increment ->nr_threads for each thread in the
665 	 * group with ->mm != NULL.
666 	 */
667 	down_read(&mm->mmap_sem);
668 	core_state = mm->core_state;
669 	if (core_state) {
670 		struct core_thread self;
671 		up_read(&mm->mmap_sem);
672 
673 		self.task = tsk;
674 		self.next = xchg(&core_state->dumper.next, &self);
675 		/*
676 		 * Implies mb(), the result of xchg() must be visible
677 		 * to core_state->dumper.
678 		 */
679 		if (atomic_dec_and_test(&core_state->nr_threads))
680 			complete(&core_state->startup);
681 
682 		for (;;) {
683 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
684 			if (!self.task) /* see coredump_finish() */
685 				break;
686 			schedule();
687 		}
688 		__set_task_state(tsk, TASK_RUNNING);
689 		down_read(&mm->mmap_sem);
690 	}
691 	atomic_inc(&mm->mm_count);
692 	BUG_ON(mm != tsk->active_mm);
693 	/* more a memory barrier than a real lock */
694 	task_lock(tsk);
695 	tsk->mm = NULL;
696 	up_read(&mm->mmap_sem);
697 	enter_lazy_tlb(mm, current);
698 	/* We don't want this task to be frozen prematurely */
699 	clear_freeze_flag(tsk);
700 	task_unlock(tsk);
701 	mm_update_next_owner(mm);
702 	mmput(mm);
703 }
704 
705 /*
706  * When we die, we re-parent all our children.
707  * Try to give them to another thread in our thread
708  * group, and if no such member exists, give it to
709  * the child reaper process (ie "init") in our pid
710  * space.
711  */
712 static struct task_struct *find_new_reaper(struct task_struct *father)
713 {
714 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
715 	struct task_struct *thread;
716 
717 	thread = father;
718 	while_each_thread(father, thread) {
719 		if (thread->flags & PF_EXITING)
720 			continue;
721 		if (unlikely(pid_ns->child_reaper == father))
722 			pid_ns->child_reaper = thread;
723 		return thread;
724 	}
725 
726 	if (unlikely(pid_ns->child_reaper == father)) {
727 		write_unlock_irq(&tasklist_lock);
728 		if (unlikely(pid_ns == &init_pid_ns))
729 			panic("Attempted to kill init!");
730 
731 		zap_pid_ns_processes(pid_ns);
732 		write_lock_irq(&tasklist_lock);
733 		/*
734 		 * We can not clear ->child_reaper or leave it alone.
735 		 * There may by stealth EXIT_DEAD tasks on ->children,
736 		 * forget_original_parent() must move them somewhere.
737 		 */
738 		pid_ns->child_reaper = init_pid_ns.child_reaper;
739 	}
740 
741 	return pid_ns->child_reaper;
742 }
743 
744 /*
745 * Any that need to be release_task'd are put on the @dead list.
746  */
747 static void reparent_leader(struct task_struct *father, struct task_struct *p,
748 				struct list_head *dead)
749 {
750 	list_move_tail(&p->sibling, &p->real_parent->children);
751 
752 	if (task_detached(p))
753 		return;
754 	/*
755 	 * If this is a threaded reparent there is no need to
756 	 * notify anyone anything has happened.
757 	 */
758 	if (same_thread_group(p->real_parent, father))
759 		return;
760 
761 	/* We don't want people slaying init.  */
762 	p->exit_signal = SIGCHLD;
763 
764 	/* If it has exited notify the new parent about this child's death. */
765 	if (!task_ptrace(p) &&
766 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
767 		do_notify_parent(p, p->exit_signal);
768 		if (task_detached(p)) {
769 			p->exit_state = EXIT_DEAD;
770 			list_move_tail(&p->sibling, dead);
771 		}
772 	}
773 
774 	kill_orphaned_pgrp(p, father);
775 }
776 
777 static void forget_original_parent(struct task_struct *father)
778 {
779 	struct task_struct *p, *n, *reaper;
780 	LIST_HEAD(dead_children);
781 
782 	exit_ptrace(father);
783 
784 	write_lock_irq(&tasklist_lock);
785 	reaper = find_new_reaper(father);
786 
787 	list_for_each_entry_safe(p, n, &father->children, sibling) {
788 		struct task_struct *t = p;
789 		do {
790 			t->real_parent = reaper;
791 			if (t->parent == father) {
792 				BUG_ON(task_ptrace(t));
793 				t->parent = t->real_parent;
794 			}
795 			if (t->pdeath_signal)
796 				group_send_sig_info(t->pdeath_signal,
797 						    SEND_SIG_NOINFO, t);
798 		} while_each_thread(p, t);
799 		reparent_leader(father, p, &dead_children);
800 	}
801 	write_unlock_irq(&tasklist_lock);
802 
803 	BUG_ON(!list_empty(&father->children));
804 
805 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
806 		list_del_init(&p->sibling);
807 		release_task(p);
808 	}
809 }
810 
811 /*
812  * Send signals to all our closest relatives so that they know
813  * to properly mourn us..
814  */
815 static void exit_notify(struct task_struct *tsk, int group_dead)
816 {
817 	int signal;
818 	void *cookie;
819 
820 	/*
821 	 * This does two things:
822 	 *
823   	 * A.  Make init inherit all the child processes
824 	 * B.  Check to see if any process groups have become orphaned
825 	 *	as a result of our exiting, and if they have any stopped
826 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
827 	 */
828 	forget_original_parent(tsk);
829 	exit_task_namespaces(tsk);
830 
831 	write_lock_irq(&tasklist_lock);
832 	if (group_dead)
833 		kill_orphaned_pgrp(tsk->group_leader, NULL);
834 
835 	/* Let father know we died
836 	 *
837 	 * Thread signals are configurable, but you aren't going to use
838 	 * that to send signals to arbitary processes.
839 	 * That stops right now.
840 	 *
841 	 * If the parent exec id doesn't match the exec id we saved
842 	 * when we started then we know the parent has changed security
843 	 * domain.
844 	 *
845 	 * If our self_exec id doesn't match our parent_exec_id then
846 	 * we have changed execution domain as these two values started
847 	 * the same after a fork.
848 	 */
849 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
850 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
851 	     tsk->self_exec_id != tsk->parent_exec_id))
852 		tsk->exit_signal = SIGCHLD;
853 
854 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
855 	if (signal >= 0)
856 		signal = do_notify_parent(tsk, signal);
857 
858 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
859 
860 	/* mt-exec, de_thread() is waiting for us */
861 	if (thread_group_leader(tsk) &&
862 	    tsk->signal->group_exit_task &&
863 	    tsk->signal->notify_count < 0)
864 		wake_up_process(tsk->signal->group_exit_task);
865 
866 	write_unlock_irq(&tasklist_lock);
867 
868 	tracehook_report_death(tsk, signal, cookie, group_dead);
869 
870 	/* If the process is dead, release it - nobody will wait for it */
871 	if (signal == DEATH_REAP)
872 		release_task(tsk);
873 }
874 
875 #ifdef CONFIG_DEBUG_STACK_USAGE
876 static void check_stack_usage(void)
877 {
878 	static DEFINE_SPINLOCK(low_water_lock);
879 	static int lowest_to_date = THREAD_SIZE;
880 	unsigned long free;
881 
882 	free = stack_not_used(current);
883 
884 	if (free >= lowest_to_date)
885 		return;
886 
887 	spin_lock(&low_water_lock);
888 	if (free < lowest_to_date) {
889 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
890 				"left\n",
891 				current->comm, free);
892 		lowest_to_date = free;
893 	}
894 	spin_unlock(&low_water_lock);
895 }
896 #else
897 static inline void check_stack_usage(void) {}
898 #endif
899 
900 NORET_TYPE void do_exit(long code)
901 {
902 	struct task_struct *tsk = current;
903 	int group_dead;
904 
905 	profile_task_exit(tsk);
906 
907 	WARN_ON(atomic_read(&tsk->fs_excl));
908 
909 	if (unlikely(in_interrupt()))
910 		panic("Aiee, killing interrupt handler!");
911 	if (unlikely(!tsk->pid))
912 		panic("Attempted to kill the idle task!");
913 
914 	tracehook_report_exit(&code);
915 
916 	validate_creds_for_do_exit(tsk);
917 
918 	/*
919 	 * We're taking recursive faults here in do_exit. Safest is to just
920 	 * leave this task alone and wait for reboot.
921 	 */
922 	if (unlikely(tsk->flags & PF_EXITING)) {
923 		printk(KERN_ALERT
924 			"Fixing recursive fault but reboot is needed!\n");
925 		/*
926 		 * We can do this unlocked here. The futex code uses
927 		 * this flag just to verify whether the pi state
928 		 * cleanup has been done or not. In the worst case it
929 		 * loops once more. We pretend that the cleanup was
930 		 * done as there is no way to return. Either the
931 		 * OWNER_DIED bit is set by now or we push the blocked
932 		 * task into the wait for ever nirwana as well.
933 		 */
934 		tsk->flags |= PF_EXITPIDONE;
935 		set_current_state(TASK_UNINTERRUPTIBLE);
936 		schedule();
937 	}
938 
939 	exit_irq_thread();
940 
941 	exit_signals(tsk);  /* sets PF_EXITING */
942 	/*
943 	 * tsk->flags are checked in the futex code to protect against
944 	 * an exiting task cleaning up the robust pi futexes.
945 	 */
946 	smp_mb();
947 	raw_spin_unlock_wait(&tsk->pi_lock);
948 
949 	if (unlikely(in_atomic()))
950 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
951 				current->comm, task_pid_nr(current),
952 				preempt_count());
953 
954 	acct_update_integrals(tsk);
955 	/* sync mm's RSS info before statistics gathering */
956 	if (tsk->mm)
957 		sync_mm_rss(tsk, tsk->mm);
958 	group_dead = atomic_dec_and_test(&tsk->signal->live);
959 	if (group_dead) {
960 		hrtimer_cancel(&tsk->signal->real_timer);
961 		exit_itimers(tsk->signal);
962 		if (tsk->mm)
963 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
964 	}
965 	acct_collect(code, group_dead);
966 	if (group_dead)
967 		tty_audit_exit();
968 	if (unlikely(tsk->audit_context))
969 		audit_free(tsk);
970 
971 	tsk->exit_code = code;
972 	taskstats_exit(tsk, group_dead);
973 
974 	exit_mm(tsk);
975 
976 	if (group_dead)
977 		acct_process();
978 	trace_sched_process_exit(tsk);
979 
980 	exit_sem(tsk);
981 	exit_files(tsk);
982 	exit_fs(tsk);
983 	check_stack_usage();
984 	exit_thread();
985 	cgroup_exit(tsk, 1);
986 
987 	if (group_dead)
988 		disassociate_ctty(1);
989 
990 	module_put(task_thread_info(tsk)->exec_domain->module);
991 
992 	proc_exit_connector(tsk);
993 
994 	/*
995 	 * FIXME: do that only when needed, using sched_exit tracepoint
996 	 */
997 	flush_ptrace_hw_breakpoint(tsk);
998 	/*
999 	 * Flush inherited counters to the parent - before the parent
1000 	 * gets woken up by child-exit notifications.
1001 	 */
1002 	perf_event_exit_task(tsk);
1003 
1004 	exit_notify(tsk, group_dead);
1005 #ifdef CONFIG_NUMA
1006 	mpol_put(tsk->mempolicy);
1007 	tsk->mempolicy = NULL;
1008 #endif
1009 #ifdef CONFIG_FUTEX
1010 	if (unlikely(current->pi_state_cache))
1011 		kfree(current->pi_state_cache);
1012 #endif
1013 	/*
1014 	 * Make sure we are holding no locks:
1015 	 */
1016 	debug_check_no_locks_held(tsk);
1017 	/*
1018 	 * We can do this unlocked here. The futex code uses this flag
1019 	 * just to verify whether the pi state cleanup has been done
1020 	 * or not. In the worst case it loops once more.
1021 	 */
1022 	tsk->flags |= PF_EXITPIDONE;
1023 
1024 	if (tsk->io_context)
1025 		exit_io_context(tsk);
1026 
1027 	if (tsk->splice_pipe)
1028 		__free_pipe_info(tsk->splice_pipe);
1029 
1030 	validate_creds_for_do_exit(tsk);
1031 
1032 	preempt_disable();
1033 	exit_rcu();
1034 	/* causes final put_task_struct in finish_task_switch(). */
1035 	tsk->state = TASK_DEAD;
1036 	schedule();
1037 	BUG();
1038 	/* Avoid "noreturn function does return".  */
1039 	for (;;)
1040 		cpu_relax();	/* For when BUG is null */
1041 }
1042 
1043 EXPORT_SYMBOL_GPL(do_exit);
1044 
1045 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1046 {
1047 	if (comp)
1048 		complete(comp);
1049 
1050 	do_exit(code);
1051 }
1052 
1053 EXPORT_SYMBOL(complete_and_exit);
1054 
1055 SYSCALL_DEFINE1(exit, int, error_code)
1056 {
1057 	do_exit((error_code&0xff)<<8);
1058 }
1059 
1060 /*
1061  * Take down every thread in the group.  This is called by fatal signals
1062  * as well as by sys_exit_group (below).
1063  */
1064 NORET_TYPE void
1065 do_group_exit(int exit_code)
1066 {
1067 	struct signal_struct *sig = current->signal;
1068 
1069 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1070 
1071 	if (signal_group_exit(sig))
1072 		exit_code = sig->group_exit_code;
1073 	else if (!thread_group_empty(current)) {
1074 		struct sighand_struct *const sighand = current->sighand;
1075 		spin_lock_irq(&sighand->siglock);
1076 		if (signal_group_exit(sig))
1077 			/* Another thread got here before we took the lock.  */
1078 			exit_code = sig->group_exit_code;
1079 		else {
1080 			sig->group_exit_code = exit_code;
1081 			sig->flags = SIGNAL_GROUP_EXIT;
1082 			zap_other_threads(current);
1083 		}
1084 		spin_unlock_irq(&sighand->siglock);
1085 	}
1086 
1087 	do_exit(exit_code);
1088 	/* NOTREACHED */
1089 }
1090 
1091 /*
1092  * this kills every thread in the thread group. Note that any externally
1093  * wait4()-ing process will get the correct exit code - even if this
1094  * thread is not the thread group leader.
1095  */
1096 SYSCALL_DEFINE1(exit_group, int, error_code)
1097 {
1098 	do_group_exit((error_code & 0xff) << 8);
1099 	/* NOTREACHED */
1100 	return 0;
1101 }
1102 
1103 struct wait_opts {
1104 	enum pid_type		wo_type;
1105 	int			wo_flags;
1106 	struct pid		*wo_pid;
1107 
1108 	struct siginfo __user	*wo_info;
1109 	int __user		*wo_stat;
1110 	struct rusage __user	*wo_rusage;
1111 
1112 	wait_queue_t		child_wait;
1113 	int			notask_error;
1114 };
1115 
1116 static inline
1117 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1118 {
1119 	if (type != PIDTYPE_PID)
1120 		task = task->group_leader;
1121 	return task->pids[type].pid;
1122 }
1123 
1124 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1125 {
1126 	return	wo->wo_type == PIDTYPE_MAX ||
1127 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1128 }
1129 
1130 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1131 {
1132 	if (!eligible_pid(wo, p))
1133 		return 0;
1134 	/* Wait for all children (clone and not) if __WALL is set;
1135 	 * otherwise, wait for clone children *only* if __WCLONE is
1136 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1137 	 * A "clone" child here is one that reports to its parent
1138 	 * using a signal other than SIGCHLD.) */
1139 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1140 	    && !(wo->wo_flags & __WALL))
1141 		return 0;
1142 
1143 	return 1;
1144 }
1145 
1146 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1147 				pid_t pid, uid_t uid, int why, int status)
1148 {
1149 	struct siginfo __user *infop;
1150 	int retval = wo->wo_rusage
1151 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1152 
1153 	put_task_struct(p);
1154 	infop = wo->wo_info;
1155 	if (infop) {
1156 		if (!retval)
1157 			retval = put_user(SIGCHLD, &infop->si_signo);
1158 		if (!retval)
1159 			retval = put_user(0, &infop->si_errno);
1160 		if (!retval)
1161 			retval = put_user((short)why, &infop->si_code);
1162 		if (!retval)
1163 			retval = put_user(pid, &infop->si_pid);
1164 		if (!retval)
1165 			retval = put_user(uid, &infop->si_uid);
1166 		if (!retval)
1167 			retval = put_user(status, &infop->si_status);
1168 	}
1169 	if (!retval)
1170 		retval = pid;
1171 	return retval;
1172 }
1173 
1174 /*
1175  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1176  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1177  * the lock and this task is uninteresting.  If we return nonzero, we have
1178  * released the lock and the system call should return.
1179  */
1180 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1181 {
1182 	unsigned long state;
1183 	int retval, status, traced;
1184 	pid_t pid = task_pid_vnr(p);
1185 	uid_t uid = __task_cred(p)->uid;
1186 	struct siginfo __user *infop;
1187 
1188 	if (!likely(wo->wo_flags & WEXITED))
1189 		return 0;
1190 
1191 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1192 		int exit_code = p->exit_code;
1193 		int why;
1194 
1195 		get_task_struct(p);
1196 		read_unlock(&tasklist_lock);
1197 		if ((exit_code & 0x7f) == 0) {
1198 			why = CLD_EXITED;
1199 			status = exit_code >> 8;
1200 		} else {
1201 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1202 			status = exit_code & 0x7f;
1203 		}
1204 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1205 	}
1206 
1207 	/*
1208 	 * Try to move the task's state to DEAD
1209 	 * only one thread is allowed to do this:
1210 	 */
1211 	state = xchg(&p->exit_state, EXIT_DEAD);
1212 	if (state != EXIT_ZOMBIE) {
1213 		BUG_ON(state != EXIT_DEAD);
1214 		return 0;
1215 	}
1216 
1217 	traced = ptrace_reparented(p);
1218 	/*
1219 	 * It can be ptraced but not reparented, check
1220 	 * !task_detached() to filter out sub-threads.
1221 	 */
1222 	if (likely(!traced) && likely(!task_detached(p))) {
1223 		struct signal_struct *psig;
1224 		struct signal_struct *sig;
1225 		unsigned long maxrss;
1226 		cputime_t tgutime, tgstime;
1227 
1228 		/*
1229 		 * The resource counters for the group leader are in its
1230 		 * own task_struct.  Those for dead threads in the group
1231 		 * are in its signal_struct, as are those for the child
1232 		 * processes it has previously reaped.  All these
1233 		 * accumulate in the parent's signal_struct c* fields.
1234 		 *
1235 		 * We don't bother to take a lock here to protect these
1236 		 * p->signal fields, because they are only touched by
1237 		 * __exit_signal, which runs with tasklist_lock
1238 		 * write-locked anyway, and so is excluded here.  We do
1239 		 * need to protect the access to parent->signal fields,
1240 		 * as other threads in the parent group can be right
1241 		 * here reaping other children at the same time.
1242 		 *
1243 		 * We use thread_group_times() to get times for the thread
1244 		 * group, which consolidates times for all threads in the
1245 		 * group including the group leader.
1246 		 */
1247 		thread_group_times(p, &tgutime, &tgstime);
1248 		spin_lock_irq(&p->real_parent->sighand->siglock);
1249 		psig = p->real_parent->signal;
1250 		sig = p->signal;
1251 		psig->cutime =
1252 			cputime_add(psig->cutime,
1253 			cputime_add(tgutime,
1254 				    sig->cutime));
1255 		psig->cstime =
1256 			cputime_add(psig->cstime,
1257 			cputime_add(tgstime,
1258 				    sig->cstime));
1259 		psig->cgtime =
1260 			cputime_add(psig->cgtime,
1261 			cputime_add(p->gtime,
1262 			cputime_add(sig->gtime,
1263 				    sig->cgtime)));
1264 		psig->cmin_flt +=
1265 			p->min_flt + sig->min_flt + sig->cmin_flt;
1266 		psig->cmaj_flt +=
1267 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1268 		psig->cnvcsw +=
1269 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1270 		psig->cnivcsw +=
1271 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1272 		psig->cinblock +=
1273 			task_io_get_inblock(p) +
1274 			sig->inblock + sig->cinblock;
1275 		psig->coublock +=
1276 			task_io_get_oublock(p) +
1277 			sig->oublock + sig->coublock;
1278 		maxrss = max(sig->maxrss, sig->cmaxrss);
1279 		if (psig->cmaxrss < maxrss)
1280 			psig->cmaxrss = maxrss;
1281 		task_io_accounting_add(&psig->ioac, &p->ioac);
1282 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1283 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1284 	}
1285 
1286 	/*
1287 	 * Now we are sure this task is interesting, and no other
1288 	 * thread can reap it because we set its state to EXIT_DEAD.
1289 	 */
1290 	read_unlock(&tasklist_lock);
1291 
1292 	retval = wo->wo_rusage
1293 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1294 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1295 		? p->signal->group_exit_code : p->exit_code;
1296 	if (!retval && wo->wo_stat)
1297 		retval = put_user(status, wo->wo_stat);
1298 
1299 	infop = wo->wo_info;
1300 	if (!retval && infop)
1301 		retval = put_user(SIGCHLD, &infop->si_signo);
1302 	if (!retval && infop)
1303 		retval = put_user(0, &infop->si_errno);
1304 	if (!retval && infop) {
1305 		int why;
1306 
1307 		if ((status & 0x7f) == 0) {
1308 			why = CLD_EXITED;
1309 			status >>= 8;
1310 		} else {
1311 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1312 			status &= 0x7f;
1313 		}
1314 		retval = put_user((short)why, &infop->si_code);
1315 		if (!retval)
1316 			retval = put_user(status, &infop->si_status);
1317 	}
1318 	if (!retval && infop)
1319 		retval = put_user(pid, &infop->si_pid);
1320 	if (!retval && infop)
1321 		retval = put_user(uid, &infop->si_uid);
1322 	if (!retval)
1323 		retval = pid;
1324 
1325 	if (traced) {
1326 		write_lock_irq(&tasklist_lock);
1327 		/* We dropped tasklist, ptracer could die and untrace */
1328 		ptrace_unlink(p);
1329 		/*
1330 		 * If this is not a detached task, notify the parent.
1331 		 * If it's still not detached after that, don't release
1332 		 * it now.
1333 		 */
1334 		if (!task_detached(p)) {
1335 			do_notify_parent(p, p->exit_signal);
1336 			if (!task_detached(p)) {
1337 				p->exit_state = EXIT_ZOMBIE;
1338 				p = NULL;
1339 			}
1340 		}
1341 		write_unlock_irq(&tasklist_lock);
1342 	}
1343 	if (p != NULL)
1344 		release_task(p);
1345 
1346 	return retval;
1347 }
1348 
1349 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1350 {
1351 	if (ptrace) {
1352 		if (task_is_stopped_or_traced(p))
1353 			return &p->exit_code;
1354 	} else {
1355 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1356 			return &p->signal->group_exit_code;
1357 	}
1358 	return NULL;
1359 }
1360 
1361 /*
1362  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1363  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1364  * the lock and this task is uninteresting.  If we return nonzero, we have
1365  * released the lock and the system call should return.
1366  */
1367 static int wait_task_stopped(struct wait_opts *wo,
1368 				int ptrace, struct task_struct *p)
1369 {
1370 	struct siginfo __user *infop;
1371 	int retval, exit_code, *p_code, why;
1372 	uid_t uid = 0; /* unneeded, required by compiler */
1373 	pid_t pid;
1374 
1375 	/*
1376 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1377 	 */
1378 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1379 		return 0;
1380 
1381 	exit_code = 0;
1382 	spin_lock_irq(&p->sighand->siglock);
1383 
1384 	p_code = task_stopped_code(p, ptrace);
1385 	if (unlikely(!p_code))
1386 		goto unlock_sig;
1387 
1388 	exit_code = *p_code;
1389 	if (!exit_code)
1390 		goto unlock_sig;
1391 
1392 	if (!unlikely(wo->wo_flags & WNOWAIT))
1393 		*p_code = 0;
1394 
1395 	/* don't need the RCU readlock here as we're holding a spinlock */
1396 	uid = __task_cred(p)->uid;
1397 unlock_sig:
1398 	spin_unlock_irq(&p->sighand->siglock);
1399 	if (!exit_code)
1400 		return 0;
1401 
1402 	/*
1403 	 * Now we are pretty sure this task is interesting.
1404 	 * Make sure it doesn't get reaped out from under us while we
1405 	 * give up the lock and then examine it below.  We don't want to
1406 	 * keep holding onto the tasklist_lock while we call getrusage and
1407 	 * possibly take page faults for user memory.
1408 	 */
1409 	get_task_struct(p);
1410 	pid = task_pid_vnr(p);
1411 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1412 	read_unlock(&tasklist_lock);
1413 
1414 	if (unlikely(wo->wo_flags & WNOWAIT))
1415 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1416 
1417 	retval = wo->wo_rusage
1418 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1419 	if (!retval && wo->wo_stat)
1420 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1421 
1422 	infop = wo->wo_info;
1423 	if (!retval && infop)
1424 		retval = put_user(SIGCHLD, &infop->si_signo);
1425 	if (!retval && infop)
1426 		retval = put_user(0, &infop->si_errno);
1427 	if (!retval && infop)
1428 		retval = put_user((short)why, &infop->si_code);
1429 	if (!retval && infop)
1430 		retval = put_user(exit_code, &infop->si_status);
1431 	if (!retval && infop)
1432 		retval = put_user(pid, &infop->si_pid);
1433 	if (!retval && infop)
1434 		retval = put_user(uid, &infop->si_uid);
1435 	if (!retval)
1436 		retval = pid;
1437 	put_task_struct(p);
1438 
1439 	BUG_ON(!retval);
1440 	return retval;
1441 }
1442 
1443 /*
1444  * Handle do_wait work for one task in a live, non-stopped state.
1445  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1446  * the lock and this task is uninteresting.  If we return nonzero, we have
1447  * released the lock and the system call should return.
1448  */
1449 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1450 {
1451 	int retval;
1452 	pid_t pid;
1453 	uid_t uid;
1454 
1455 	if (!unlikely(wo->wo_flags & WCONTINUED))
1456 		return 0;
1457 
1458 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1459 		return 0;
1460 
1461 	spin_lock_irq(&p->sighand->siglock);
1462 	/* Re-check with the lock held.  */
1463 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1464 		spin_unlock_irq(&p->sighand->siglock);
1465 		return 0;
1466 	}
1467 	if (!unlikely(wo->wo_flags & WNOWAIT))
1468 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1469 	uid = __task_cred(p)->uid;
1470 	spin_unlock_irq(&p->sighand->siglock);
1471 
1472 	pid = task_pid_vnr(p);
1473 	get_task_struct(p);
1474 	read_unlock(&tasklist_lock);
1475 
1476 	if (!wo->wo_info) {
1477 		retval = wo->wo_rusage
1478 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1479 		put_task_struct(p);
1480 		if (!retval && wo->wo_stat)
1481 			retval = put_user(0xffff, wo->wo_stat);
1482 		if (!retval)
1483 			retval = pid;
1484 	} else {
1485 		retval = wait_noreap_copyout(wo, p, pid, uid,
1486 					     CLD_CONTINUED, SIGCONT);
1487 		BUG_ON(retval == 0);
1488 	}
1489 
1490 	return retval;
1491 }
1492 
1493 /*
1494  * Consider @p for a wait by @parent.
1495  *
1496  * -ECHILD should be in ->notask_error before the first call.
1497  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1498  * Returns zero if the search for a child should continue;
1499  * then ->notask_error is 0 if @p is an eligible child,
1500  * or another error from security_task_wait(), or still -ECHILD.
1501  */
1502 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1503 				struct task_struct *p)
1504 {
1505 	int ret = eligible_child(wo, p);
1506 	if (!ret)
1507 		return ret;
1508 
1509 	ret = security_task_wait(p);
1510 	if (unlikely(ret < 0)) {
1511 		/*
1512 		 * If we have not yet seen any eligible child,
1513 		 * then let this error code replace -ECHILD.
1514 		 * A permission error will give the user a clue
1515 		 * to look for security policy problems, rather
1516 		 * than for mysterious wait bugs.
1517 		 */
1518 		if (wo->notask_error)
1519 			wo->notask_error = ret;
1520 		return 0;
1521 	}
1522 
1523 	if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1524 		/*
1525 		 * This child is hidden by ptrace.
1526 		 * We aren't allowed to see it now, but eventually we will.
1527 		 */
1528 		wo->notask_error = 0;
1529 		return 0;
1530 	}
1531 
1532 	if (p->exit_state == EXIT_DEAD)
1533 		return 0;
1534 
1535 	/*
1536 	 * We don't reap group leaders with subthreads.
1537 	 */
1538 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1539 		return wait_task_zombie(wo, p);
1540 
1541 	/*
1542 	 * It's stopped or running now, so it might
1543 	 * later continue, exit, or stop again.
1544 	 */
1545 	wo->notask_error = 0;
1546 
1547 	if (task_stopped_code(p, ptrace))
1548 		return wait_task_stopped(wo, ptrace, p);
1549 
1550 	return wait_task_continued(wo, p);
1551 }
1552 
1553 /*
1554  * Do the work of do_wait() for one thread in the group, @tsk.
1555  *
1556  * -ECHILD should be in ->notask_error before the first call.
1557  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1558  * Returns zero if the search for a child should continue; then
1559  * ->notask_error is 0 if there were any eligible children,
1560  * or another error from security_task_wait(), or still -ECHILD.
1561  */
1562 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1563 {
1564 	struct task_struct *p;
1565 
1566 	list_for_each_entry(p, &tsk->children, sibling) {
1567 		int ret = wait_consider_task(wo, 0, p);
1568 		if (ret)
1569 			return ret;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1576 {
1577 	struct task_struct *p;
1578 
1579 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1580 		int ret = wait_consider_task(wo, 1, p);
1581 		if (ret)
1582 			return ret;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1589 				int sync, void *key)
1590 {
1591 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1592 						child_wait);
1593 	struct task_struct *p = key;
1594 
1595 	if (!eligible_pid(wo, p))
1596 		return 0;
1597 
1598 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1599 		return 0;
1600 
1601 	return default_wake_function(wait, mode, sync, key);
1602 }
1603 
1604 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1605 {
1606 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1607 				TASK_INTERRUPTIBLE, 1, p);
1608 }
1609 
1610 static long do_wait(struct wait_opts *wo)
1611 {
1612 	struct task_struct *tsk;
1613 	int retval;
1614 
1615 	trace_sched_process_wait(wo->wo_pid);
1616 
1617 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1618 	wo->child_wait.private = current;
1619 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1620 repeat:
1621 	/*
1622 	 * If there is nothing that can match our critiera just get out.
1623 	 * We will clear ->notask_error to zero if we see any child that
1624 	 * might later match our criteria, even if we are not able to reap
1625 	 * it yet.
1626 	 */
1627 	wo->notask_error = -ECHILD;
1628 	if ((wo->wo_type < PIDTYPE_MAX) &&
1629 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1630 		goto notask;
1631 
1632 	set_current_state(TASK_INTERRUPTIBLE);
1633 	read_lock(&tasklist_lock);
1634 	tsk = current;
1635 	do {
1636 		retval = do_wait_thread(wo, tsk);
1637 		if (retval)
1638 			goto end;
1639 
1640 		retval = ptrace_do_wait(wo, tsk);
1641 		if (retval)
1642 			goto end;
1643 
1644 		if (wo->wo_flags & __WNOTHREAD)
1645 			break;
1646 	} while_each_thread(current, tsk);
1647 	read_unlock(&tasklist_lock);
1648 
1649 notask:
1650 	retval = wo->notask_error;
1651 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1652 		retval = -ERESTARTSYS;
1653 		if (!signal_pending(current)) {
1654 			schedule();
1655 			goto repeat;
1656 		}
1657 	}
1658 end:
1659 	__set_current_state(TASK_RUNNING);
1660 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1661 	return retval;
1662 }
1663 
1664 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1665 		infop, int, options, struct rusage __user *, ru)
1666 {
1667 	struct wait_opts wo;
1668 	struct pid *pid = NULL;
1669 	enum pid_type type;
1670 	long ret;
1671 
1672 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1673 		return -EINVAL;
1674 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1675 		return -EINVAL;
1676 
1677 	switch (which) {
1678 	case P_ALL:
1679 		type = PIDTYPE_MAX;
1680 		break;
1681 	case P_PID:
1682 		type = PIDTYPE_PID;
1683 		if (upid <= 0)
1684 			return -EINVAL;
1685 		break;
1686 	case P_PGID:
1687 		type = PIDTYPE_PGID;
1688 		if (upid <= 0)
1689 			return -EINVAL;
1690 		break;
1691 	default:
1692 		return -EINVAL;
1693 	}
1694 
1695 	if (type < PIDTYPE_MAX)
1696 		pid = find_get_pid(upid);
1697 
1698 	wo.wo_type	= type;
1699 	wo.wo_pid	= pid;
1700 	wo.wo_flags	= options;
1701 	wo.wo_info	= infop;
1702 	wo.wo_stat	= NULL;
1703 	wo.wo_rusage	= ru;
1704 	ret = do_wait(&wo);
1705 
1706 	if (ret > 0) {
1707 		ret = 0;
1708 	} else if (infop) {
1709 		/*
1710 		 * For a WNOHANG return, clear out all the fields
1711 		 * we would set so the user can easily tell the
1712 		 * difference.
1713 		 */
1714 		if (!ret)
1715 			ret = put_user(0, &infop->si_signo);
1716 		if (!ret)
1717 			ret = put_user(0, &infop->si_errno);
1718 		if (!ret)
1719 			ret = put_user(0, &infop->si_code);
1720 		if (!ret)
1721 			ret = put_user(0, &infop->si_pid);
1722 		if (!ret)
1723 			ret = put_user(0, &infop->si_uid);
1724 		if (!ret)
1725 			ret = put_user(0, &infop->si_status);
1726 	}
1727 
1728 	put_pid(pid);
1729 
1730 	/* avoid REGPARM breakage on x86: */
1731 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1732 	return ret;
1733 }
1734 
1735 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1736 		int, options, struct rusage __user *, ru)
1737 {
1738 	struct wait_opts wo;
1739 	struct pid *pid = NULL;
1740 	enum pid_type type;
1741 	long ret;
1742 
1743 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1744 			__WNOTHREAD|__WCLONE|__WALL))
1745 		return -EINVAL;
1746 
1747 	if (upid == -1)
1748 		type = PIDTYPE_MAX;
1749 	else if (upid < 0) {
1750 		type = PIDTYPE_PGID;
1751 		pid = find_get_pid(-upid);
1752 	} else if (upid == 0) {
1753 		type = PIDTYPE_PGID;
1754 		pid = get_task_pid(current, PIDTYPE_PGID);
1755 	} else /* upid > 0 */ {
1756 		type = PIDTYPE_PID;
1757 		pid = find_get_pid(upid);
1758 	}
1759 
1760 	wo.wo_type	= type;
1761 	wo.wo_pid	= pid;
1762 	wo.wo_flags	= options | WEXITED;
1763 	wo.wo_info	= NULL;
1764 	wo.wo_stat	= stat_addr;
1765 	wo.wo_rusage	= ru;
1766 	ret = do_wait(&wo);
1767 	put_pid(pid);
1768 
1769 	/* avoid REGPARM breakage on x86: */
1770 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1771 	return ret;
1772 }
1773 
1774 #ifdef __ARCH_WANT_SYS_WAITPID
1775 
1776 /*
1777  * sys_waitpid() remains for compatibility. waitpid() should be
1778  * implemented by calling sys_wait4() from libc.a.
1779  */
1780 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1781 {
1782 	return sys_wait4(pid, stat_addr, options, NULL);
1783 }
1784 
1785 #endif
1786