xref: /openbmc/linux/kernel/exit.c (revision 3b64b188)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct * tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 		/*
76 		 * If we are the last child process in a pid namespace to be
77 		 * reaped, notify the reaper sleeping zap_pid_ns_processes().
78 		 */
79 		if (IS_ENABLED(CONFIG_PID_NS)) {
80 			struct task_struct *parent = p->real_parent;
81 
82 			if ((task_active_pid_ns(parent)->child_reaper == parent) &&
83 			    list_empty(&parent->children) &&
84 			    (parent->flags & PF_EXITING))
85 				wake_up_process(parent);
86 		}
87 	}
88 	list_del_rcu(&p->thread_group);
89 }
90 
91 /*
92  * This function expects the tasklist_lock write-locked.
93  */
94 static void __exit_signal(struct task_struct *tsk)
95 {
96 	struct signal_struct *sig = tsk->signal;
97 	bool group_dead = thread_group_leader(tsk);
98 	struct sighand_struct *sighand;
99 	struct tty_struct *uninitialized_var(tty);
100 
101 	sighand = rcu_dereference_check(tsk->sighand,
102 					lockdep_tasklist_lock_is_held());
103 	spin_lock(&sighand->siglock);
104 
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead) {
107 		posix_cpu_timers_exit_group(tsk);
108 		tty = sig->tty;
109 		sig->tty = NULL;
110 	} else {
111 		/*
112 		 * This can only happen if the caller is de_thread().
113 		 * FIXME: this is the temporary hack, we should teach
114 		 * posix-cpu-timers to handle this case correctly.
115 		 */
116 		if (unlikely(has_group_leader_pid(tsk)))
117 			posix_cpu_timers_exit_group(tsk);
118 
119 		/*
120 		 * If there is any task waiting for the group exit
121 		 * then notify it:
122 		 */
123 		if (sig->notify_count > 0 && !--sig->notify_count)
124 			wake_up_process(sig->group_exit_task);
125 
126 		if (tsk == sig->curr_target)
127 			sig->curr_target = next_thread(tsk);
128 		/*
129 		 * Accumulate here the counters for all threads but the
130 		 * group leader as they die, so they can be added into
131 		 * the process-wide totals when those are taken.
132 		 * The group leader stays around as a zombie as long
133 		 * as there are other threads.  When it gets reaped,
134 		 * the exit.c code will add its counts into these totals.
135 		 * We won't ever get here for the group leader, since it
136 		 * will have been the last reference on the signal_struct.
137 		 */
138 		sig->utime += tsk->utime;
139 		sig->stime += tsk->stime;
140 		sig->gtime += tsk->gtime;
141 		sig->min_flt += tsk->min_flt;
142 		sig->maj_flt += tsk->maj_flt;
143 		sig->nvcsw += tsk->nvcsw;
144 		sig->nivcsw += tsk->nivcsw;
145 		sig->inblock += task_io_get_inblock(tsk);
146 		sig->oublock += task_io_get_oublock(tsk);
147 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
148 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
149 	}
150 
151 	sig->nr_threads--;
152 	__unhash_process(tsk, group_dead);
153 
154 	/*
155 	 * Do this under ->siglock, we can race with another thread
156 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
157 	 */
158 	flush_sigqueue(&tsk->pending);
159 	tsk->sighand = NULL;
160 	spin_unlock(&sighand->siglock);
161 
162 	__cleanup_sighand(sighand);
163 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
164 	if (group_dead) {
165 		flush_sigqueue(&sig->shared_pending);
166 		tty_kref_put(tty);
167 	}
168 }
169 
170 static void delayed_put_task_struct(struct rcu_head *rhp)
171 {
172 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
173 
174 	perf_event_delayed_put(tsk);
175 	trace_sched_process_free(tsk);
176 	put_task_struct(tsk);
177 }
178 
179 
180 void release_task(struct task_struct * p)
181 {
182 	struct task_struct *leader;
183 	int zap_leader;
184 repeat:
185 	/* don't need to get the RCU readlock here - the process is dead and
186 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
187 	rcu_read_lock();
188 	atomic_dec(&__task_cred(p)->user->processes);
189 	rcu_read_unlock();
190 
191 	proc_flush_task(p);
192 
193 	write_lock_irq(&tasklist_lock);
194 	ptrace_release_task(p);
195 	__exit_signal(p);
196 
197 	/*
198 	 * If we are the last non-leader member of the thread
199 	 * group, and the leader is zombie, then notify the
200 	 * group leader's parent process. (if it wants notification.)
201 	 */
202 	zap_leader = 0;
203 	leader = p->group_leader;
204 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
205 		/*
206 		 * If we were the last child thread and the leader has
207 		 * exited already, and the leader's parent ignores SIGCHLD,
208 		 * then we are the one who should release the leader.
209 		 */
210 		zap_leader = do_notify_parent(leader, leader->exit_signal);
211 		if (zap_leader)
212 			leader->exit_state = EXIT_DEAD;
213 	}
214 
215 	write_unlock_irq(&tasklist_lock);
216 	release_thread(p);
217 	call_rcu(&p->rcu, delayed_put_task_struct);
218 
219 	p = leader;
220 	if (unlikely(zap_leader))
221 		goto repeat;
222 }
223 
224 /*
225  * This checks not only the pgrp, but falls back on the pid if no
226  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
227  * without this...
228  *
229  * The caller must hold rcu lock or the tasklist lock.
230  */
231 struct pid *session_of_pgrp(struct pid *pgrp)
232 {
233 	struct task_struct *p;
234 	struct pid *sid = NULL;
235 
236 	p = pid_task(pgrp, PIDTYPE_PGID);
237 	if (p == NULL)
238 		p = pid_task(pgrp, PIDTYPE_PID);
239 	if (p != NULL)
240 		sid = task_session(p);
241 
242 	return sid;
243 }
244 
245 /*
246  * Determine if a process group is "orphaned", according to the POSIX
247  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
248  * by terminal-generated stop signals.  Newly orphaned process groups are
249  * to receive a SIGHUP and a SIGCONT.
250  *
251  * "I ask you, have you ever known what it is to be an orphan?"
252  */
253 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
254 {
255 	struct task_struct *p;
256 
257 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
258 		if ((p == ignored_task) ||
259 		    (p->exit_state && thread_group_empty(p)) ||
260 		    is_global_init(p->real_parent))
261 			continue;
262 
263 		if (task_pgrp(p->real_parent) != pgrp &&
264 		    task_session(p->real_parent) == task_session(p))
265 			return 0;
266 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
267 
268 	return 1;
269 }
270 
271 int is_current_pgrp_orphaned(void)
272 {
273 	int retval;
274 
275 	read_lock(&tasklist_lock);
276 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
277 	read_unlock(&tasklist_lock);
278 
279 	return retval;
280 }
281 
282 static bool has_stopped_jobs(struct pid *pgrp)
283 {
284 	struct task_struct *p;
285 
286 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
287 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
288 			return true;
289 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
290 
291 	return false;
292 }
293 
294 /*
295  * Check to see if any process groups have become orphaned as
296  * a result of our exiting, and if they have any stopped jobs,
297  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298  */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302 	struct pid *pgrp = task_pgrp(tsk);
303 	struct task_struct *ignored_task = tsk;
304 
305 	if (!parent)
306 		 /* exit: our father is in a different pgrp than
307 		  * we are and we were the only connection outside.
308 		  */
309 		parent = tsk->real_parent;
310 	else
311 		/* reparent: our child is in a different pgrp than
312 		 * we are, and it was the only connection outside.
313 		 */
314 		ignored_task = NULL;
315 
316 	if (task_pgrp(parent) != pgrp &&
317 	    task_session(parent) == task_session(tsk) &&
318 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 	    has_stopped_jobs(pgrp)) {
320 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322 	}
323 }
324 
325 /**
326  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327  *
328  * If a kernel thread is launched as a result of a system call, or if
329  * it ever exits, it should generally reparent itself to kthreadd so it
330  * isn't in the way of other processes and is correctly cleaned up on exit.
331  *
332  * The various task state such as scheduling policy and priority may have
333  * been inherited from a user process, so we reset them to sane values here.
334  *
335  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336  */
337 static void reparent_to_kthreadd(void)
338 {
339 	write_lock_irq(&tasklist_lock);
340 
341 	ptrace_unlink(current);
342 	/* Reparent to init */
343 	current->real_parent = current->parent = kthreadd_task;
344 	list_move_tail(&current->sibling, &current->real_parent->children);
345 
346 	/* Set the exit signal to SIGCHLD so we signal init on exit */
347 	current->exit_signal = SIGCHLD;
348 
349 	if (task_nice(current) < 0)
350 		set_user_nice(current, 0);
351 	/* cpus_allowed? */
352 	/* rt_priority? */
353 	/* signals? */
354 	memcpy(current->signal->rlim, init_task.signal->rlim,
355 	       sizeof(current->signal->rlim));
356 
357 	atomic_inc(&init_cred.usage);
358 	commit_creds(&init_cred);
359 	write_unlock_irq(&tasklist_lock);
360 }
361 
362 void __set_special_pids(struct pid *pid)
363 {
364 	struct task_struct *curr = current->group_leader;
365 
366 	if (task_session(curr) != pid)
367 		change_pid(curr, PIDTYPE_SID, pid);
368 
369 	if (task_pgrp(curr) != pid)
370 		change_pid(curr, PIDTYPE_PGID, pid);
371 }
372 
373 static void set_special_pids(struct pid *pid)
374 {
375 	write_lock_irq(&tasklist_lock);
376 	__set_special_pids(pid);
377 	write_unlock_irq(&tasklist_lock);
378 }
379 
380 /*
381  * Let kernel threads use this to say that they allow a certain signal.
382  * Must not be used if kthread was cloned with CLONE_SIGHAND.
383  */
384 int allow_signal(int sig)
385 {
386 	if (!valid_signal(sig) || sig < 1)
387 		return -EINVAL;
388 
389 	spin_lock_irq(&current->sighand->siglock);
390 	/* This is only needed for daemonize()'ed kthreads */
391 	sigdelset(&current->blocked, sig);
392 	/*
393 	 * Kernel threads handle their own signals. Let the signal code
394 	 * know it'll be handled, so that they don't get converted to
395 	 * SIGKILL or just silently dropped.
396 	 */
397 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 	recalc_sigpending();
399 	spin_unlock_irq(&current->sighand->siglock);
400 	return 0;
401 }
402 
403 EXPORT_SYMBOL(allow_signal);
404 
405 int disallow_signal(int sig)
406 {
407 	if (!valid_signal(sig) || sig < 1)
408 		return -EINVAL;
409 
410 	spin_lock_irq(&current->sighand->siglock);
411 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 	recalc_sigpending();
413 	spin_unlock_irq(&current->sighand->siglock);
414 	return 0;
415 }
416 
417 EXPORT_SYMBOL(disallow_signal);
418 
419 /*
420  *	Put all the gunge required to become a kernel thread without
421  *	attached user resources in one place where it belongs.
422  */
423 
424 void daemonize(const char *name, ...)
425 {
426 	va_list args;
427 	sigset_t blocked;
428 
429 	va_start(args, name);
430 	vsnprintf(current->comm, sizeof(current->comm), name, args);
431 	va_end(args);
432 
433 	/*
434 	 * If we were started as result of loading a module, close all of the
435 	 * user space pages.  We don't need them, and if we didn't close them
436 	 * they would be locked into memory.
437 	 */
438 	exit_mm(current);
439 	/*
440 	 * We don't want to get frozen, in case system-wide hibernation
441 	 * or suspend transition begins right now.
442 	 */
443 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444 
445 	if (current->nsproxy != &init_nsproxy) {
446 		get_nsproxy(&init_nsproxy);
447 		switch_task_namespaces(current, &init_nsproxy);
448 	}
449 	set_special_pids(&init_struct_pid);
450 	proc_clear_tty(current);
451 
452 	/* Block and flush all signals */
453 	sigfillset(&blocked);
454 	sigprocmask(SIG_BLOCK, &blocked, NULL);
455 	flush_signals(current);
456 
457 	/* Become as one with the init task */
458 
459 	daemonize_fs_struct();
460 	daemonize_descriptors();
461 
462 	reparent_to_kthreadd();
463 }
464 
465 EXPORT_SYMBOL(daemonize);
466 
467 #ifdef CONFIG_MM_OWNER
468 /*
469  * A task is exiting.   If it owned this mm, find a new owner for the mm.
470  */
471 void mm_update_next_owner(struct mm_struct *mm)
472 {
473 	struct task_struct *c, *g, *p = current;
474 
475 retry:
476 	/*
477 	 * If the exiting or execing task is not the owner, it's
478 	 * someone else's problem.
479 	 */
480 	if (mm->owner != p)
481 		return;
482 	/*
483 	 * The current owner is exiting/execing and there are no other
484 	 * candidates.  Do not leave the mm pointing to a possibly
485 	 * freed task structure.
486 	 */
487 	if (atomic_read(&mm->mm_users) <= 1) {
488 		mm->owner = NULL;
489 		return;
490 	}
491 
492 	read_lock(&tasklist_lock);
493 	/*
494 	 * Search in the children
495 	 */
496 	list_for_each_entry(c, &p->children, sibling) {
497 		if (c->mm == mm)
498 			goto assign_new_owner;
499 	}
500 
501 	/*
502 	 * Search in the siblings
503 	 */
504 	list_for_each_entry(c, &p->real_parent->children, sibling) {
505 		if (c->mm == mm)
506 			goto assign_new_owner;
507 	}
508 
509 	/*
510 	 * Search through everything else. We should not get
511 	 * here often
512 	 */
513 	do_each_thread(g, c) {
514 		if (c->mm == mm)
515 			goto assign_new_owner;
516 	} while_each_thread(g, c);
517 
518 	read_unlock(&tasklist_lock);
519 	/*
520 	 * We found no owner yet mm_users > 1: this implies that we are
521 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
522 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
523 	 */
524 	mm->owner = NULL;
525 	return;
526 
527 assign_new_owner:
528 	BUG_ON(c == p);
529 	get_task_struct(c);
530 	/*
531 	 * The task_lock protects c->mm from changing.
532 	 * We always want mm->owner->mm == mm
533 	 */
534 	task_lock(c);
535 	/*
536 	 * Delay read_unlock() till we have the task_lock()
537 	 * to ensure that c does not slip away underneath us
538 	 */
539 	read_unlock(&tasklist_lock);
540 	if (c->mm != mm) {
541 		task_unlock(c);
542 		put_task_struct(c);
543 		goto retry;
544 	}
545 	mm->owner = c;
546 	task_unlock(c);
547 	put_task_struct(c);
548 }
549 #endif /* CONFIG_MM_OWNER */
550 
551 /*
552  * Turn us into a lazy TLB process if we
553  * aren't already..
554  */
555 static void exit_mm(struct task_struct * tsk)
556 {
557 	struct mm_struct *mm = tsk->mm;
558 	struct core_state *core_state;
559 
560 	mm_release(tsk, mm);
561 	if (!mm)
562 		return;
563 	sync_mm_rss(mm);
564 	/*
565 	 * Serialize with any possible pending coredump.
566 	 * We must hold mmap_sem around checking core_state
567 	 * and clearing tsk->mm.  The core-inducing thread
568 	 * will increment ->nr_threads for each thread in the
569 	 * group with ->mm != NULL.
570 	 */
571 	down_read(&mm->mmap_sem);
572 	core_state = mm->core_state;
573 	if (core_state) {
574 		struct core_thread self;
575 		up_read(&mm->mmap_sem);
576 
577 		self.task = tsk;
578 		self.next = xchg(&core_state->dumper.next, &self);
579 		/*
580 		 * Implies mb(), the result of xchg() must be visible
581 		 * to core_state->dumper.
582 		 */
583 		if (atomic_dec_and_test(&core_state->nr_threads))
584 			complete(&core_state->startup);
585 
586 		for (;;) {
587 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
588 			if (!self.task) /* see coredump_finish() */
589 				break;
590 			schedule();
591 		}
592 		__set_task_state(tsk, TASK_RUNNING);
593 		down_read(&mm->mmap_sem);
594 	}
595 	atomic_inc(&mm->mm_count);
596 	BUG_ON(mm != tsk->active_mm);
597 	/* more a memory barrier than a real lock */
598 	task_lock(tsk);
599 	tsk->mm = NULL;
600 	up_read(&mm->mmap_sem);
601 	enter_lazy_tlb(mm, current);
602 	task_unlock(tsk);
603 	mm_update_next_owner(mm);
604 	mmput(mm);
605 }
606 
607 /*
608  * When we die, we re-parent all our children, and try to:
609  * 1. give them to another thread in our thread group, if such a member exists
610  * 2. give it to the first ancestor process which prctl'd itself as a
611  *    child_subreaper for its children (like a service manager)
612  * 3. give it to the init process (PID 1) in our pid namespace
613  */
614 static struct task_struct *find_new_reaper(struct task_struct *father)
615 	__releases(&tasklist_lock)
616 	__acquires(&tasklist_lock)
617 {
618 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
619 	struct task_struct *thread;
620 
621 	thread = father;
622 	while_each_thread(father, thread) {
623 		if (thread->flags & PF_EXITING)
624 			continue;
625 		if (unlikely(pid_ns->child_reaper == father))
626 			pid_ns->child_reaper = thread;
627 		return thread;
628 	}
629 
630 	if (unlikely(pid_ns->child_reaper == father)) {
631 		write_unlock_irq(&tasklist_lock);
632 		if (unlikely(pid_ns == &init_pid_ns)) {
633 			panic("Attempted to kill init! exitcode=0x%08x\n",
634 				father->signal->group_exit_code ?:
635 					father->exit_code);
636 		}
637 
638 		zap_pid_ns_processes(pid_ns);
639 		write_lock_irq(&tasklist_lock);
640 	} else if (father->signal->has_child_subreaper) {
641 		struct task_struct *reaper;
642 
643 		/*
644 		 * Find the first ancestor marked as child_subreaper.
645 		 * Note that the code below checks same_thread_group(reaper,
646 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
647 		 * PID namespace. However we still need the check above, see
648 		 * http://marc.info/?l=linux-kernel&m=131385460420380
649 		 */
650 		for (reaper = father->real_parent;
651 		     reaper != &init_task;
652 		     reaper = reaper->real_parent) {
653 			if (same_thread_group(reaper, pid_ns->child_reaper))
654 				break;
655 			if (!reaper->signal->is_child_subreaper)
656 				continue;
657 			thread = reaper;
658 			do {
659 				if (!(thread->flags & PF_EXITING))
660 					return reaper;
661 			} while_each_thread(reaper, thread);
662 		}
663 	}
664 
665 	return pid_ns->child_reaper;
666 }
667 
668 /*
669 * Any that need to be release_task'd are put on the @dead list.
670  */
671 static void reparent_leader(struct task_struct *father, struct task_struct *p,
672 				struct list_head *dead)
673 {
674 	list_move_tail(&p->sibling, &p->real_parent->children);
675 
676 	if (p->exit_state == EXIT_DEAD)
677 		return;
678 	/*
679 	 * If this is a threaded reparent there is no need to
680 	 * notify anyone anything has happened.
681 	 */
682 	if (same_thread_group(p->real_parent, father))
683 		return;
684 
685 	/* We don't want people slaying init.  */
686 	p->exit_signal = SIGCHLD;
687 
688 	/* If it has exited notify the new parent about this child's death. */
689 	if (!p->ptrace &&
690 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
691 		if (do_notify_parent(p, p->exit_signal)) {
692 			p->exit_state = EXIT_DEAD;
693 			list_move_tail(&p->sibling, dead);
694 		}
695 	}
696 
697 	kill_orphaned_pgrp(p, father);
698 }
699 
700 static void forget_original_parent(struct task_struct *father)
701 {
702 	struct task_struct *p, *n, *reaper;
703 	LIST_HEAD(dead_children);
704 
705 	write_lock_irq(&tasklist_lock);
706 	/*
707 	 * Note that exit_ptrace() and find_new_reaper() might
708 	 * drop tasklist_lock and reacquire it.
709 	 */
710 	exit_ptrace(father);
711 	reaper = find_new_reaper(father);
712 
713 	list_for_each_entry_safe(p, n, &father->children, sibling) {
714 		struct task_struct *t = p;
715 		do {
716 			t->real_parent = reaper;
717 			if (t->parent == father) {
718 				BUG_ON(t->ptrace);
719 				t->parent = t->real_parent;
720 			}
721 			if (t->pdeath_signal)
722 				group_send_sig_info(t->pdeath_signal,
723 						    SEND_SIG_NOINFO, t);
724 		} while_each_thread(p, t);
725 		reparent_leader(father, p, &dead_children);
726 	}
727 	write_unlock_irq(&tasklist_lock);
728 
729 	BUG_ON(!list_empty(&father->children));
730 
731 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
732 		list_del_init(&p->sibling);
733 		release_task(p);
734 	}
735 }
736 
737 /*
738  * Send signals to all our closest relatives so that they know
739  * to properly mourn us..
740  */
741 static void exit_notify(struct task_struct *tsk, int group_dead)
742 {
743 	bool autoreap;
744 
745 	/*
746 	 * This does two things:
747 	 *
748   	 * A.  Make init inherit all the child processes
749 	 * B.  Check to see if any process groups have become orphaned
750 	 *	as a result of our exiting, and if they have any stopped
751 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
752 	 */
753 	forget_original_parent(tsk);
754 	exit_task_namespaces(tsk);
755 
756 	write_lock_irq(&tasklist_lock);
757 	if (group_dead)
758 		kill_orphaned_pgrp(tsk->group_leader, NULL);
759 
760 	if (unlikely(tsk->ptrace)) {
761 		int sig = thread_group_leader(tsk) &&
762 				thread_group_empty(tsk) &&
763 				!ptrace_reparented(tsk) ?
764 			tsk->exit_signal : SIGCHLD;
765 		autoreap = do_notify_parent(tsk, sig);
766 	} else if (thread_group_leader(tsk)) {
767 		autoreap = thread_group_empty(tsk) &&
768 			do_notify_parent(tsk, tsk->exit_signal);
769 	} else {
770 		autoreap = true;
771 	}
772 
773 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
774 
775 	/* mt-exec, de_thread() is waiting for group leader */
776 	if (unlikely(tsk->signal->notify_count < 0))
777 		wake_up_process(tsk->signal->group_exit_task);
778 	write_unlock_irq(&tasklist_lock);
779 
780 	/* If the process is dead, release it - nobody will wait for it */
781 	if (autoreap)
782 		release_task(tsk);
783 }
784 
785 #ifdef CONFIG_DEBUG_STACK_USAGE
786 static void check_stack_usage(void)
787 {
788 	static DEFINE_SPINLOCK(low_water_lock);
789 	static int lowest_to_date = THREAD_SIZE;
790 	unsigned long free;
791 
792 	free = stack_not_used(current);
793 
794 	if (free >= lowest_to_date)
795 		return;
796 
797 	spin_lock(&low_water_lock);
798 	if (free < lowest_to_date) {
799 		printk(KERN_WARNING "%s (%d) used greatest stack depth: "
800 				"%lu bytes left\n",
801 				current->comm, task_pid_nr(current), free);
802 		lowest_to_date = free;
803 	}
804 	spin_unlock(&low_water_lock);
805 }
806 #else
807 static inline void check_stack_usage(void) {}
808 #endif
809 
810 void do_exit(long code)
811 {
812 	struct task_struct *tsk = current;
813 	int group_dead;
814 
815 	profile_task_exit(tsk);
816 
817 	WARN_ON(blk_needs_flush_plug(tsk));
818 
819 	if (unlikely(in_interrupt()))
820 		panic("Aiee, killing interrupt handler!");
821 	if (unlikely(!tsk->pid))
822 		panic("Attempted to kill the idle task!");
823 
824 	/*
825 	 * If do_exit is called because this processes oopsed, it's possible
826 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
827 	 * continuing. Amongst other possible reasons, this is to prevent
828 	 * mm_release()->clear_child_tid() from writing to a user-controlled
829 	 * kernel address.
830 	 */
831 	set_fs(USER_DS);
832 
833 	ptrace_event(PTRACE_EVENT_EXIT, code);
834 
835 	validate_creds_for_do_exit(tsk);
836 
837 	/*
838 	 * We're taking recursive faults here in do_exit. Safest is to just
839 	 * leave this task alone and wait for reboot.
840 	 */
841 	if (unlikely(tsk->flags & PF_EXITING)) {
842 		printk(KERN_ALERT
843 			"Fixing recursive fault but reboot is needed!\n");
844 		/*
845 		 * We can do this unlocked here. The futex code uses
846 		 * this flag just to verify whether the pi state
847 		 * cleanup has been done or not. In the worst case it
848 		 * loops once more. We pretend that the cleanup was
849 		 * done as there is no way to return. Either the
850 		 * OWNER_DIED bit is set by now or we push the blocked
851 		 * task into the wait for ever nirwana as well.
852 		 */
853 		tsk->flags |= PF_EXITPIDONE;
854 		set_current_state(TASK_UNINTERRUPTIBLE);
855 		schedule();
856 	}
857 
858 	exit_signals(tsk);  /* sets PF_EXITING */
859 	/*
860 	 * tsk->flags are checked in the futex code to protect against
861 	 * an exiting task cleaning up the robust pi futexes.
862 	 */
863 	smp_mb();
864 	raw_spin_unlock_wait(&tsk->pi_lock);
865 
866 	if (unlikely(in_atomic()))
867 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
868 				current->comm, task_pid_nr(current),
869 				preempt_count());
870 
871 	acct_update_integrals(tsk);
872 	/* sync mm's RSS info before statistics gathering */
873 	if (tsk->mm)
874 		sync_mm_rss(tsk->mm);
875 	group_dead = atomic_dec_and_test(&tsk->signal->live);
876 	if (group_dead) {
877 		hrtimer_cancel(&tsk->signal->real_timer);
878 		exit_itimers(tsk->signal);
879 		if (tsk->mm)
880 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
881 	}
882 	acct_collect(code, group_dead);
883 	if (group_dead)
884 		tty_audit_exit();
885 	audit_free(tsk);
886 
887 	tsk->exit_code = code;
888 	taskstats_exit(tsk, group_dead);
889 
890 	exit_mm(tsk);
891 
892 	if (group_dead)
893 		acct_process();
894 	trace_sched_process_exit(tsk);
895 
896 	exit_sem(tsk);
897 	exit_shm(tsk);
898 	exit_files(tsk);
899 	exit_fs(tsk);
900 	exit_task_work(tsk);
901 	check_stack_usage();
902 	exit_thread();
903 
904 	/*
905 	 * Flush inherited counters to the parent - before the parent
906 	 * gets woken up by child-exit notifications.
907 	 *
908 	 * because of cgroup mode, must be called before cgroup_exit()
909 	 */
910 	perf_event_exit_task(tsk);
911 
912 	cgroup_exit(tsk, 1);
913 
914 	if (group_dead)
915 		disassociate_ctty(1);
916 
917 	module_put(task_thread_info(tsk)->exec_domain->module);
918 
919 	proc_exit_connector(tsk);
920 
921 	/*
922 	 * FIXME: do that only when needed, using sched_exit tracepoint
923 	 */
924 	ptrace_put_breakpoints(tsk);
925 
926 	exit_notify(tsk, group_dead);
927 #ifdef CONFIG_NUMA
928 	task_lock(tsk);
929 	mpol_put(tsk->mempolicy);
930 	tsk->mempolicy = NULL;
931 	task_unlock(tsk);
932 #endif
933 #ifdef CONFIG_FUTEX
934 	if (unlikely(current->pi_state_cache))
935 		kfree(current->pi_state_cache);
936 #endif
937 	/*
938 	 * Make sure we are holding no locks:
939 	 */
940 	debug_check_no_locks_held(tsk);
941 	/*
942 	 * We can do this unlocked here. The futex code uses this flag
943 	 * just to verify whether the pi state cleanup has been done
944 	 * or not. In the worst case it loops once more.
945 	 */
946 	tsk->flags |= PF_EXITPIDONE;
947 
948 	if (tsk->io_context)
949 		exit_io_context(tsk);
950 
951 	if (tsk->splice_pipe)
952 		__free_pipe_info(tsk->splice_pipe);
953 
954 	if (tsk->task_frag.page)
955 		put_page(tsk->task_frag.page);
956 
957 	validate_creds_for_do_exit(tsk);
958 
959 	preempt_disable();
960 	if (tsk->nr_dirtied)
961 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
962 	exit_rcu();
963 
964 	/*
965 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
966 	 * when the following two conditions become true.
967 	 *   - There is race condition of mmap_sem (It is acquired by
968 	 *     exit_mm()), and
969 	 *   - SMI occurs before setting TASK_RUNINNG.
970 	 *     (or hypervisor of virtual machine switches to other guest)
971 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
972 	 *
973 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
974 	 * is held by try_to_wake_up()
975 	 */
976 	smp_mb();
977 	raw_spin_unlock_wait(&tsk->pi_lock);
978 
979 	/* causes final put_task_struct in finish_task_switch(). */
980 	tsk->state = TASK_DEAD;
981 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
982 	schedule();
983 	BUG();
984 	/* Avoid "noreturn function does return".  */
985 	for (;;)
986 		cpu_relax();	/* For when BUG is null */
987 }
988 
989 EXPORT_SYMBOL_GPL(do_exit);
990 
991 void complete_and_exit(struct completion *comp, long code)
992 {
993 	if (comp)
994 		complete(comp);
995 
996 	do_exit(code);
997 }
998 
999 EXPORT_SYMBOL(complete_and_exit);
1000 
1001 SYSCALL_DEFINE1(exit, int, error_code)
1002 {
1003 	do_exit((error_code&0xff)<<8);
1004 }
1005 
1006 /*
1007  * Take down every thread in the group.  This is called by fatal signals
1008  * as well as by sys_exit_group (below).
1009  */
1010 void
1011 do_group_exit(int exit_code)
1012 {
1013 	struct signal_struct *sig = current->signal;
1014 
1015 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1016 
1017 	if (signal_group_exit(sig))
1018 		exit_code = sig->group_exit_code;
1019 	else if (!thread_group_empty(current)) {
1020 		struct sighand_struct *const sighand = current->sighand;
1021 		spin_lock_irq(&sighand->siglock);
1022 		if (signal_group_exit(sig))
1023 			/* Another thread got here before we took the lock.  */
1024 			exit_code = sig->group_exit_code;
1025 		else {
1026 			sig->group_exit_code = exit_code;
1027 			sig->flags = SIGNAL_GROUP_EXIT;
1028 			zap_other_threads(current);
1029 		}
1030 		spin_unlock_irq(&sighand->siglock);
1031 	}
1032 
1033 	do_exit(exit_code);
1034 	/* NOTREACHED */
1035 }
1036 
1037 /*
1038  * this kills every thread in the thread group. Note that any externally
1039  * wait4()-ing process will get the correct exit code - even if this
1040  * thread is not the thread group leader.
1041  */
1042 SYSCALL_DEFINE1(exit_group, int, error_code)
1043 {
1044 	do_group_exit((error_code & 0xff) << 8);
1045 	/* NOTREACHED */
1046 	return 0;
1047 }
1048 
1049 struct wait_opts {
1050 	enum pid_type		wo_type;
1051 	int			wo_flags;
1052 	struct pid		*wo_pid;
1053 
1054 	struct siginfo __user	*wo_info;
1055 	int __user		*wo_stat;
1056 	struct rusage __user	*wo_rusage;
1057 
1058 	wait_queue_t		child_wait;
1059 	int			notask_error;
1060 };
1061 
1062 static inline
1063 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1064 {
1065 	if (type != PIDTYPE_PID)
1066 		task = task->group_leader;
1067 	return task->pids[type].pid;
1068 }
1069 
1070 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1071 {
1072 	return	wo->wo_type == PIDTYPE_MAX ||
1073 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1074 }
1075 
1076 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1077 {
1078 	if (!eligible_pid(wo, p))
1079 		return 0;
1080 	/* Wait for all children (clone and not) if __WALL is set;
1081 	 * otherwise, wait for clone children *only* if __WCLONE is
1082 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1083 	 * A "clone" child here is one that reports to its parent
1084 	 * using a signal other than SIGCHLD.) */
1085 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1086 	    && !(wo->wo_flags & __WALL))
1087 		return 0;
1088 
1089 	return 1;
1090 }
1091 
1092 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1093 				pid_t pid, uid_t uid, int why, int status)
1094 {
1095 	struct siginfo __user *infop;
1096 	int retval = wo->wo_rusage
1097 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1098 
1099 	put_task_struct(p);
1100 	infop = wo->wo_info;
1101 	if (infop) {
1102 		if (!retval)
1103 			retval = put_user(SIGCHLD, &infop->si_signo);
1104 		if (!retval)
1105 			retval = put_user(0, &infop->si_errno);
1106 		if (!retval)
1107 			retval = put_user((short)why, &infop->si_code);
1108 		if (!retval)
1109 			retval = put_user(pid, &infop->si_pid);
1110 		if (!retval)
1111 			retval = put_user(uid, &infop->si_uid);
1112 		if (!retval)
1113 			retval = put_user(status, &infop->si_status);
1114 	}
1115 	if (!retval)
1116 		retval = pid;
1117 	return retval;
1118 }
1119 
1120 /*
1121  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1122  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1123  * the lock and this task is uninteresting.  If we return nonzero, we have
1124  * released the lock and the system call should return.
1125  */
1126 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1127 {
1128 	unsigned long state;
1129 	int retval, status, traced;
1130 	pid_t pid = task_pid_vnr(p);
1131 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1132 	struct siginfo __user *infop;
1133 
1134 	if (!likely(wo->wo_flags & WEXITED))
1135 		return 0;
1136 
1137 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1138 		int exit_code = p->exit_code;
1139 		int why;
1140 
1141 		get_task_struct(p);
1142 		read_unlock(&tasklist_lock);
1143 		if ((exit_code & 0x7f) == 0) {
1144 			why = CLD_EXITED;
1145 			status = exit_code >> 8;
1146 		} else {
1147 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1148 			status = exit_code & 0x7f;
1149 		}
1150 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1151 	}
1152 
1153 	/*
1154 	 * Try to move the task's state to DEAD
1155 	 * only one thread is allowed to do this:
1156 	 */
1157 	state = xchg(&p->exit_state, EXIT_DEAD);
1158 	if (state != EXIT_ZOMBIE) {
1159 		BUG_ON(state != EXIT_DEAD);
1160 		return 0;
1161 	}
1162 
1163 	traced = ptrace_reparented(p);
1164 	/*
1165 	 * It can be ptraced but not reparented, check
1166 	 * thread_group_leader() to filter out sub-threads.
1167 	 */
1168 	if (likely(!traced) && thread_group_leader(p)) {
1169 		struct signal_struct *psig;
1170 		struct signal_struct *sig;
1171 		unsigned long maxrss;
1172 		cputime_t tgutime, tgstime;
1173 
1174 		/*
1175 		 * The resource counters for the group leader are in its
1176 		 * own task_struct.  Those for dead threads in the group
1177 		 * are in its signal_struct, as are those for the child
1178 		 * processes it has previously reaped.  All these
1179 		 * accumulate in the parent's signal_struct c* fields.
1180 		 *
1181 		 * We don't bother to take a lock here to protect these
1182 		 * p->signal fields, because they are only touched by
1183 		 * __exit_signal, which runs with tasklist_lock
1184 		 * write-locked anyway, and so is excluded here.  We do
1185 		 * need to protect the access to parent->signal fields,
1186 		 * as other threads in the parent group can be right
1187 		 * here reaping other children at the same time.
1188 		 *
1189 		 * We use thread_group_times() to get times for the thread
1190 		 * group, which consolidates times for all threads in the
1191 		 * group including the group leader.
1192 		 */
1193 		thread_group_times(p, &tgutime, &tgstime);
1194 		spin_lock_irq(&p->real_parent->sighand->siglock);
1195 		psig = p->real_parent->signal;
1196 		sig = p->signal;
1197 		psig->cutime += tgutime + sig->cutime;
1198 		psig->cstime += tgstime + sig->cstime;
1199 		psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1200 		psig->cmin_flt +=
1201 			p->min_flt + sig->min_flt + sig->cmin_flt;
1202 		psig->cmaj_flt +=
1203 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1204 		psig->cnvcsw +=
1205 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1206 		psig->cnivcsw +=
1207 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1208 		psig->cinblock +=
1209 			task_io_get_inblock(p) +
1210 			sig->inblock + sig->cinblock;
1211 		psig->coublock +=
1212 			task_io_get_oublock(p) +
1213 			sig->oublock + sig->coublock;
1214 		maxrss = max(sig->maxrss, sig->cmaxrss);
1215 		if (psig->cmaxrss < maxrss)
1216 			psig->cmaxrss = maxrss;
1217 		task_io_accounting_add(&psig->ioac, &p->ioac);
1218 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1219 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1220 	}
1221 
1222 	/*
1223 	 * Now we are sure this task is interesting, and no other
1224 	 * thread can reap it because we set its state to EXIT_DEAD.
1225 	 */
1226 	read_unlock(&tasklist_lock);
1227 
1228 	retval = wo->wo_rusage
1229 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1230 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1231 		? p->signal->group_exit_code : p->exit_code;
1232 	if (!retval && wo->wo_stat)
1233 		retval = put_user(status, wo->wo_stat);
1234 
1235 	infop = wo->wo_info;
1236 	if (!retval && infop)
1237 		retval = put_user(SIGCHLD, &infop->si_signo);
1238 	if (!retval && infop)
1239 		retval = put_user(0, &infop->si_errno);
1240 	if (!retval && infop) {
1241 		int why;
1242 
1243 		if ((status & 0x7f) == 0) {
1244 			why = CLD_EXITED;
1245 			status >>= 8;
1246 		} else {
1247 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1248 			status &= 0x7f;
1249 		}
1250 		retval = put_user((short)why, &infop->si_code);
1251 		if (!retval)
1252 			retval = put_user(status, &infop->si_status);
1253 	}
1254 	if (!retval && infop)
1255 		retval = put_user(pid, &infop->si_pid);
1256 	if (!retval && infop)
1257 		retval = put_user(uid, &infop->si_uid);
1258 	if (!retval)
1259 		retval = pid;
1260 
1261 	if (traced) {
1262 		write_lock_irq(&tasklist_lock);
1263 		/* We dropped tasklist, ptracer could die and untrace */
1264 		ptrace_unlink(p);
1265 		/*
1266 		 * If this is not a sub-thread, notify the parent.
1267 		 * If parent wants a zombie, don't release it now.
1268 		 */
1269 		if (thread_group_leader(p) &&
1270 		    !do_notify_parent(p, p->exit_signal)) {
1271 			p->exit_state = EXIT_ZOMBIE;
1272 			p = NULL;
1273 		}
1274 		write_unlock_irq(&tasklist_lock);
1275 	}
1276 	if (p != NULL)
1277 		release_task(p);
1278 
1279 	return retval;
1280 }
1281 
1282 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1283 {
1284 	if (ptrace) {
1285 		if (task_is_stopped_or_traced(p) &&
1286 		    !(p->jobctl & JOBCTL_LISTENING))
1287 			return &p->exit_code;
1288 	} else {
1289 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1290 			return &p->signal->group_exit_code;
1291 	}
1292 	return NULL;
1293 }
1294 
1295 /**
1296  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1297  * @wo: wait options
1298  * @ptrace: is the wait for ptrace
1299  * @p: task to wait for
1300  *
1301  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1302  *
1303  * CONTEXT:
1304  * read_lock(&tasklist_lock), which is released if return value is
1305  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1306  *
1307  * RETURNS:
1308  * 0 if wait condition didn't exist and search for other wait conditions
1309  * should continue.  Non-zero return, -errno on failure and @p's pid on
1310  * success, implies that tasklist_lock is released and wait condition
1311  * search should terminate.
1312  */
1313 static int wait_task_stopped(struct wait_opts *wo,
1314 				int ptrace, struct task_struct *p)
1315 {
1316 	struct siginfo __user *infop;
1317 	int retval, exit_code, *p_code, why;
1318 	uid_t uid = 0; /* unneeded, required by compiler */
1319 	pid_t pid;
1320 
1321 	/*
1322 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1323 	 */
1324 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1325 		return 0;
1326 
1327 	if (!task_stopped_code(p, ptrace))
1328 		return 0;
1329 
1330 	exit_code = 0;
1331 	spin_lock_irq(&p->sighand->siglock);
1332 
1333 	p_code = task_stopped_code(p, ptrace);
1334 	if (unlikely(!p_code))
1335 		goto unlock_sig;
1336 
1337 	exit_code = *p_code;
1338 	if (!exit_code)
1339 		goto unlock_sig;
1340 
1341 	if (!unlikely(wo->wo_flags & WNOWAIT))
1342 		*p_code = 0;
1343 
1344 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1345 unlock_sig:
1346 	spin_unlock_irq(&p->sighand->siglock);
1347 	if (!exit_code)
1348 		return 0;
1349 
1350 	/*
1351 	 * Now we are pretty sure this task is interesting.
1352 	 * Make sure it doesn't get reaped out from under us while we
1353 	 * give up the lock and then examine it below.  We don't want to
1354 	 * keep holding onto the tasklist_lock while we call getrusage and
1355 	 * possibly take page faults for user memory.
1356 	 */
1357 	get_task_struct(p);
1358 	pid = task_pid_vnr(p);
1359 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1360 	read_unlock(&tasklist_lock);
1361 
1362 	if (unlikely(wo->wo_flags & WNOWAIT))
1363 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1364 
1365 	retval = wo->wo_rusage
1366 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1367 	if (!retval && wo->wo_stat)
1368 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1369 
1370 	infop = wo->wo_info;
1371 	if (!retval && infop)
1372 		retval = put_user(SIGCHLD, &infop->si_signo);
1373 	if (!retval && infop)
1374 		retval = put_user(0, &infop->si_errno);
1375 	if (!retval && infop)
1376 		retval = put_user((short)why, &infop->si_code);
1377 	if (!retval && infop)
1378 		retval = put_user(exit_code, &infop->si_status);
1379 	if (!retval && infop)
1380 		retval = put_user(pid, &infop->si_pid);
1381 	if (!retval && infop)
1382 		retval = put_user(uid, &infop->si_uid);
1383 	if (!retval)
1384 		retval = pid;
1385 	put_task_struct(p);
1386 
1387 	BUG_ON(!retval);
1388 	return retval;
1389 }
1390 
1391 /*
1392  * Handle do_wait work for one task in a live, non-stopped state.
1393  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1394  * the lock and this task is uninteresting.  If we return nonzero, we have
1395  * released the lock and the system call should return.
1396  */
1397 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1398 {
1399 	int retval;
1400 	pid_t pid;
1401 	uid_t uid;
1402 
1403 	if (!unlikely(wo->wo_flags & WCONTINUED))
1404 		return 0;
1405 
1406 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1407 		return 0;
1408 
1409 	spin_lock_irq(&p->sighand->siglock);
1410 	/* Re-check with the lock held.  */
1411 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1412 		spin_unlock_irq(&p->sighand->siglock);
1413 		return 0;
1414 	}
1415 	if (!unlikely(wo->wo_flags & WNOWAIT))
1416 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1417 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1418 	spin_unlock_irq(&p->sighand->siglock);
1419 
1420 	pid = task_pid_vnr(p);
1421 	get_task_struct(p);
1422 	read_unlock(&tasklist_lock);
1423 
1424 	if (!wo->wo_info) {
1425 		retval = wo->wo_rusage
1426 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1427 		put_task_struct(p);
1428 		if (!retval && wo->wo_stat)
1429 			retval = put_user(0xffff, wo->wo_stat);
1430 		if (!retval)
1431 			retval = pid;
1432 	} else {
1433 		retval = wait_noreap_copyout(wo, p, pid, uid,
1434 					     CLD_CONTINUED, SIGCONT);
1435 		BUG_ON(retval == 0);
1436 	}
1437 
1438 	return retval;
1439 }
1440 
1441 /*
1442  * Consider @p for a wait by @parent.
1443  *
1444  * -ECHILD should be in ->notask_error before the first call.
1445  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1446  * Returns zero if the search for a child should continue;
1447  * then ->notask_error is 0 if @p is an eligible child,
1448  * or another error from security_task_wait(), or still -ECHILD.
1449  */
1450 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1451 				struct task_struct *p)
1452 {
1453 	int ret = eligible_child(wo, p);
1454 	if (!ret)
1455 		return ret;
1456 
1457 	ret = security_task_wait(p);
1458 	if (unlikely(ret < 0)) {
1459 		/*
1460 		 * If we have not yet seen any eligible child,
1461 		 * then let this error code replace -ECHILD.
1462 		 * A permission error will give the user a clue
1463 		 * to look for security policy problems, rather
1464 		 * than for mysterious wait bugs.
1465 		 */
1466 		if (wo->notask_error)
1467 			wo->notask_error = ret;
1468 		return 0;
1469 	}
1470 
1471 	/* dead body doesn't have much to contribute */
1472 	if (unlikely(p->exit_state == EXIT_DEAD)) {
1473 		/*
1474 		 * But do not ignore this task until the tracer does
1475 		 * wait_task_zombie()->do_notify_parent().
1476 		 */
1477 		if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1478 			wo->notask_error = 0;
1479 		return 0;
1480 	}
1481 
1482 	/* slay zombie? */
1483 	if (p->exit_state == EXIT_ZOMBIE) {
1484 		/*
1485 		 * A zombie ptracee is only visible to its ptracer.
1486 		 * Notification and reaping will be cascaded to the real
1487 		 * parent when the ptracer detaches.
1488 		 */
1489 		if (likely(!ptrace) && unlikely(p->ptrace)) {
1490 			/* it will become visible, clear notask_error */
1491 			wo->notask_error = 0;
1492 			return 0;
1493 		}
1494 
1495 		/* we don't reap group leaders with subthreads */
1496 		if (!delay_group_leader(p))
1497 			return wait_task_zombie(wo, p);
1498 
1499 		/*
1500 		 * Allow access to stopped/continued state via zombie by
1501 		 * falling through.  Clearing of notask_error is complex.
1502 		 *
1503 		 * When !@ptrace:
1504 		 *
1505 		 * If WEXITED is set, notask_error should naturally be
1506 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1507 		 * so, if there are live subthreads, there are events to
1508 		 * wait for.  If all subthreads are dead, it's still safe
1509 		 * to clear - this function will be called again in finite
1510 		 * amount time once all the subthreads are released and
1511 		 * will then return without clearing.
1512 		 *
1513 		 * When @ptrace:
1514 		 *
1515 		 * Stopped state is per-task and thus can't change once the
1516 		 * target task dies.  Only continued and exited can happen.
1517 		 * Clear notask_error if WCONTINUED | WEXITED.
1518 		 */
1519 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1520 			wo->notask_error = 0;
1521 	} else {
1522 		/*
1523 		 * If @p is ptraced by a task in its real parent's group,
1524 		 * hide group stop/continued state when looking at @p as
1525 		 * the real parent; otherwise, a single stop can be
1526 		 * reported twice as group and ptrace stops.
1527 		 *
1528 		 * If a ptracer wants to distinguish the two events for its
1529 		 * own children, it should create a separate process which
1530 		 * takes the role of real parent.
1531 		 */
1532 		if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1533 			return 0;
1534 
1535 		/*
1536 		 * @p is alive and it's gonna stop, continue or exit, so
1537 		 * there always is something to wait for.
1538 		 */
1539 		wo->notask_error = 0;
1540 	}
1541 
1542 	/*
1543 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1544 	 * is used and the two don't interact with each other.
1545 	 */
1546 	ret = wait_task_stopped(wo, ptrace, p);
1547 	if (ret)
1548 		return ret;
1549 
1550 	/*
1551 	 * Wait for continued.  There's only one continued state and the
1552 	 * ptracer can consume it which can confuse the real parent.  Don't
1553 	 * use WCONTINUED from ptracer.  You don't need or want it.
1554 	 */
1555 	return wait_task_continued(wo, p);
1556 }
1557 
1558 /*
1559  * Do the work of do_wait() for one thread in the group, @tsk.
1560  *
1561  * -ECHILD should be in ->notask_error before the first call.
1562  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1563  * Returns zero if the search for a child should continue; then
1564  * ->notask_error is 0 if there were any eligible children,
1565  * or another error from security_task_wait(), or still -ECHILD.
1566  */
1567 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1568 {
1569 	struct task_struct *p;
1570 
1571 	list_for_each_entry(p, &tsk->children, sibling) {
1572 		int ret = wait_consider_task(wo, 0, p);
1573 		if (ret)
1574 			return ret;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1581 {
1582 	struct task_struct *p;
1583 
1584 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1585 		int ret = wait_consider_task(wo, 1, p);
1586 		if (ret)
1587 			return ret;
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1594 				int sync, void *key)
1595 {
1596 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1597 						child_wait);
1598 	struct task_struct *p = key;
1599 
1600 	if (!eligible_pid(wo, p))
1601 		return 0;
1602 
1603 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1604 		return 0;
1605 
1606 	return default_wake_function(wait, mode, sync, key);
1607 }
1608 
1609 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1610 {
1611 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1612 				TASK_INTERRUPTIBLE, 1, p);
1613 }
1614 
1615 static long do_wait(struct wait_opts *wo)
1616 {
1617 	struct task_struct *tsk;
1618 	int retval;
1619 
1620 	trace_sched_process_wait(wo->wo_pid);
1621 
1622 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1623 	wo->child_wait.private = current;
1624 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1625 repeat:
1626 	/*
1627 	 * If there is nothing that can match our critiera just get out.
1628 	 * We will clear ->notask_error to zero if we see any child that
1629 	 * might later match our criteria, even if we are not able to reap
1630 	 * it yet.
1631 	 */
1632 	wo->notask_error = -ECHILD;
1633 	if ((wo->wo_type < PIDTYPE_MAX) &&
1634 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1635 		goto notask;
1636 
1637 	set_current_state(TASK_INTERRUPTIBLE);
1638 	read_lock(&tasklist_lock);
1639 	tsk = current;
1640 	do {
1641 		retval = do_wait_thread(wo, tsk);
1642 		if (retval)
1643 			goto end;
1644 
1645 		retval = ptrace_do_wait(wo, tsk);
1646 		if (retval)
1647 			goto end;
1648 
1649 		if (wo->wo_flags & __WNOTHREAD)
1650 			break;
1651 	} while_each_thread(current, tsk);
1652 	read_unlock(&tasklist_lock);
1653 
1654 notask:
1655 	retval = wo->notask_error;
1656 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1657 		retval = -ERESTARTSYS;
1658 		if (!signal_pending(current)) {
1659 			schedule();
1660 			goto repeat;
1661 		}
1662 	}
1663 end:
1664 	__set_current_state(TASK_RUNNING);
1665 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1666 	return retval;
1667 }
1668 
1669 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1670 		infop, int, options, struct rusage __user *, ru)
1671 {
1672 	struct wait_opts wo;
1673 	struct pid *pid = NULL;
1674 	enum pid_type type;
1675 	long ret;
1676 
1677 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1678 		return -EINVAL;
1679 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1680 		return -EINVAL;
1681 
1682 	switch (which) {
1683 	case P_ALL:
1684 		type = PIDTYPE_MAX;
1685 		break;
1686 	case P_PID:
1687 		type = PIDTYPE_PID;
1688 		if (upid <= 0)
1689 			return -EINVAL;
1690 		break;
1691 	case P_PGID:
1692 		type = PIDTYPE_PGID;
1693 		if (upid <= 0)
1694 			return -EINVAL;
1695 		break;
1696 	default:
1697 		return -EINVAL;
1698 	}
1699 
1700 	if (type < PIDTYPE_MAX)
1701 		pid = find_get_pid(upid);
1702 
1703 	wo.wo_type	= type;
1704 	wo.wo_pid	= pid;
1705 	wo.wo_flags	= options;
1706 	wo.wo_info	= infop;
1707 	wo.wo_stat	= NULL;
1708 	wo.wo_rusage	= ru;
1709 	ret = do_wait(&wo);
1710 
1711 	if (ret > 0) {
1712 		ret = 0;
1713 	} else if (infop) {
1714 		/*
1715 		 * For a WNOHANG return, clear out all the fields
1716 		 * we would set so the user can easily tell the
1717 		 * difference.
1718 		 */
1719 		if (!ret)
1720 			ret = put_user(0, &infop->si_signo);
1721 		if (!ret)
1722 			ret = put_user(0, &infop->si_errno);
1723 		if (!ret)
1724 			ret = put_user(0, &infop->si_code);
1725 		if (!ret)
1726 			ret = put_user(0, &infop->si_pid);
1727 		if (!ret)
1728 			ret = put_user(0, &infop->si_uid);
1729 		if (!ret)
1730 			ret = put_user(0, &infop->si_status);
1731 	}
1732 
1733 	put_pid(pid);
1734 
1735 	/* avoid REGPARM breakage on x86: */
1736 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1737 	return ret;
1738 }
1739 
1740 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1741 		int, options, struct rusage __user *, ru)
1742 {
1743 	struct wait_opts wo;
1744 	struct pid *pid = NULL;
1745 	enum pid_type type;
1746 	long ret;
1747 
1748 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1749 			__WNOTHREAD|__WCLONE|__WALL))
1750 		return -EINVAL;
1751 
1752 	if (upid == -1)
1753 		type = PIDTYPE_MAX;
1754 	else if (upid < 0) {
1755 		type = PIDTYPE_PGID;
1756 		pid = find_get_pid(-upid);
1757 	} else if (upid == 0) {
1758 		type = PIDTYPE_PGID;
1759 		pid = get_task_pid(current, PIDTYPE_PGID);
1760 	} else /* upid > 0 */ {
1761 		type = PIDTYPE_PID;
1762 		pid = find_get_pid(upid);
1763 	}
1764 
1765 	wo.wo_type	= type;
1766 	wo.wo_pid	= pid;
1767 	wo.wo_flags	= options | WEXITED;
1768 	wo.wo_info	= NULL;
1769 	wo.wo_stat	= stat_addr;
1770 	wo.wo_rusage	= ru;
1771 	ret = do_wait(&wo);
1772 	put_pid(pid);
1773 
1774 	/* avoid REGPARM breakage on x86: */
1775 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1776 	return ret;
1777 }
1778 
1779 #ifdef __ARCH_WANT_SYS_WAITPID
1780 
1781 /*
1782  * sys_waitpid() remains for compatibility. waitpid() should be
1783  * implemented by calling sys_wait4() from libc.a.
1784  */
1785 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1786 {
1787 	return sys_wait4(pid, stat_addr, options, NULL);
1788 }
1789 
1790 #endif
1791