xref: /openbmc/linux/kernel/exit.c (revision 3932b9ca)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct *tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 	list_del_rcu(&p->thread_node);
78 }
79 
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 	struct signal_struct *sig = tsk->signal;
86 	bool group_dead = thread_group_leader(tsk);
87 	struct sighand_struct *sighand;
88 	struct tty_struct *uninitialized_var(tty);
89 	cputime_t utime, stime;
90 
91 	sighand = rcu_dereference_check(tsk->sighand,
92 					lockdep_tasklist_lock_is_held());
93 	spin_lock(&sighand->siglock);
94 
95 	posix_cpu_timers_exit(tsk);
96 	if (group_dead) {
97 		posix_cpu_timers_exit_group(tsk);
98 		tty = sig->tty;
99 		sig->tty = NULL;
100 	} else {
101 		/*
102 		 * This can only happen if the caller is de_thread().
103 		 * FIXME: this is the temporary hack, we should teach
104 		 * posix-cpu-timers to handle this case correctly.
105 		 */
106 		if (unlikely(has_group_leader_pid(tsk)))
107 			posix_cpu_timers_exit_group(tsk);
108 
109 		/*
110 		 * If there is any task waiting for the group exit
111 		 * then notify it:
112 		 */
113 		if (sig->notify_count > 0 && !--sig->notify_count)
114 			wake_up_process(sig->group_exit_task);
115 
116 		if (tsk == sig->curr_target)
117 			sig->curr_target = next_thread(tsk);
118 		/*
119 		 * Accumulate here the counters for all threads but the
120 		 * group leader as they die, so they can be added into
121 		 * the process-wide totals when those are taken.
122 		 * The group leader stays around as a zombie as long
123 		 * as there are other threads.  When it gets reaped,
124 		 * the exit.c code will add its counts into these totals.
125 		 * We won't ever get here for the group leader, since it
126 		 * will have been the last reference on the signal_struct.
127 		 */
128 		task_cputime(tsk, &utime, &stime);
129 		sig->utime += utime;
130 		sig->stime += stime;
131 		sig->gtime += task_gtime(tsk);
132 		sig->min_flt += tsk->min_flt;
133 		sig->maj_flt += tsk->maj_flt;
134 		sig->nvcsw += tsk->nvcsw;
135 		sig->nivcsw += tsk->nivcsw;
136 		sig->inblock += task_io_get_inblock(tsk);
137 		sig->oublock += task_io_get_oublock(tsk);
138 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 	}
141 
142 	sig->nr_threads--;
143 	__unhash_process(tsk, group_dead);
144 
145 	/*
146 	 * Do this under ->siglock, we can race with another thread
147 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 	 */
149 	flush_sigqueue(&tsk->pending);
150 	tsk->sighand = NULL;
151 	spin_unlock(&sighand->siglock);
152 
153 	__cleanup_sighand(sighand);
154 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
155 	if (group_dead) {
156 		flush_sigqueue(&sig->shared_pending);
157 		tty_kref_put(tty);
158 	}
159 }
160 
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164 
165 	perf_event_delayed_put(tsk);
166 	trace_sched_process_free(tsk);
167 	put_task_struct(tsk);
168 }
169 
170 
171 void release_task(struct task_struct *p)
172 {
173 	struct task_struct *leader;
174 	int zap_leader;
175 repeat:
176 	/* don't need to get the RCU readlock here - the process is dead and
177 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 	rcu_read_lock();
179 	atomic_dec(&__task_cred(p)->user->processes);
180 	rcu_read_unlock();
181 
182 	proc_flush_task(p);
183 
184 	write_lock_irq(&tasklist_lock);
185 	ptrace_release_task(p);
186 	__exit_signal(p);
187 
188 	/*
189 	 * If we are the last non-leader member of the thread
190 	 * group, and the leader is zombie, then notify the
191 	 * group leader's parent process. (if it wants notification.)
192 	 */
193 	zap_leader = 0;
194 	leader = p->group_leader;
195 	if (leader != p && thread_group_empty(leader)
196 			&& leader->exit_state == EXIT_ZOMBIE) {
197 		/*
198 		 * If we were the last child thread and the leader has
199 		 * exited already, and the leader's parent ignores SIGCHLD,
200 		 * then we are the one who should release the leader.
201 		 */
202 		zap_leader = do_notify_parent(leader, leader->exit_signal);
203 		if (zap_leader)
204 			leader->exit_state = EXIT_DEAD;
205 	}
206 
207 	write_unlock_irq(&tasklist_lock);
208 	release_thread(p);
209 	call_rcu(&p->rcu, delayed_put_task_struct);
210 
211 	p = leader;
212 	if (unlikely(zap_leader))
213 		goto repeat;
214 }
215 
216 /*
217  * This checks not only the pgrp, but falls back on the pid if no
218  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
219  * without this...
220  *
221  * The caller must hold rcu lock or the tasklist lock.
222  */
223 struct pid *session_of_pgrp(struct pid *pgrp)
224 {
225 	struct task_struct *p;
226 	struct pid *sid = NULL;
227 
228 	p = pid_task(pgrp, PIDTYPE_PGID);
229 	if (p == NULL)
230 		p = pid_task(pgrp, PIDTYPE_PID);
231 	if (p != NULL)
232 		sid = task_session(p);
233 
234 	return sid;
235 }
236 
237 /*
238  * Determine if a process group is "orphaned", according to the POSIX
239  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
240  * by terminal-generated stop signals.  Newly orphaned process groups are
241  * to receive a SIGHUP and a SIGCONT.
242  *
243  * "I ask you, have you ever known what it is to be an orphan?"
244  */
245 static int will_become_orphaned_pgrp(struct pid *pgrp,
246 					struct task_struct *ignored_task)
247 {
248 	struct task_struct *p;
249 
250 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
251 		if ((p == ignored_task) ||
252 		    (p->exit_state && thread_group_empty(p)) ||
253 		    is_global_init(p->real_parent))
254 			continue;
255 
256 		if (task_pgrp(p->real_parent) != pgrp &&
257 		    task_session(p->real_parent) == task_session(p))
258 			return 0;
259 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
260 
261 	return 1;
262 }
263 
264 int is_current_pgrp_orphaned(void)
265 {
266 	int retval;
267 
268 	read_lock(&tasklist_lock);
269 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
270 	read_unlock(&tasklist_lock);
271 
272 	return retval;
273 }
274 
275 static bool has_stopped_jobs(struct pid *pgrp)
276 {
277 	struct task_struct *p;
278 
279 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
280 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
281 			return true;
282 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
283 
284 	return false;
285 }
286 
287 /*
288  * Check to see if any process groups have become orphaned as
289  * a result of our exiting, and if they have any stopped jobs,
290  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
291  */
292 static void
293 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
294 {
295 	struct pid *pgrp = task_pgrp(tsk);
296 	struct task_struct *ignored_task = tsk;
297 
298 	if (!parent)
299 		/* exit: our father is in a different pgrp than
300 		 * we are and we were the only connection outside.
301 		 */
302 		parent = tsk->real_parent;
303 	else
304 		/* reparent: our child is in a different pgrp than
305 		 * we are, and it was the only connection outside.
306 		 */
307 		ignored_task = NULL;
308 
309 	if (task_pgrp(parent) != pgrp &&
310 	    task_session(parent) == task_session(tsk) &&
311 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
312 	    has_stopped_jobs(pgrp)) {
313 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
314 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
315 	}
316 }
317 
318 #ifdef CONFIG_MEMCG
319 /*
320  * A task is exiting.   If it owned this mm, find a new owner for the mm.
321  */
322 void mm_update_next_owner(struct mm_struct *mm)
323 {
324 	struct task_struct *c, *g, *p = current;
325 
326 retry:
327 	/*
328 	 * If the exiting or execing task is not the owner, it's
329 	 * someone else's problem.
330 	 */
331 	if (mm->owner != p)
332 		return;
333 	/*
334 	 * The current owner is exiting/execing and there are no other
335 	 * candidates.  Do not leave the mm pointing to a possibly
336 	 * freed task structure.
337 	 */
338 	if (atomic_read(&mm->mm_users) <= 1) {
339 		mm->owner = NULL;
340 		return;
341 	}
342 
343 	read_lock(&tasklist_lock);
344 	/*
345 	 * Search in the children
346 	 */
347 	list_for_each_entry(c, &p->children, sibling) {
348 		if (c->mm == mm)
349 			goto assign_new_owner;
350 	}
351 
352 	/*
353 	 * Search in the siblings
354 	 */
355 	list_for_each_entry(c, &p->real_parent->children, sibling) {
356 		if (c->mm == mm)
357 			goto assign_new_owner;
358 	}
359 
360 	/*
361 	 * Search through everything else, we should not get here often.
362 	 */
363 	for_each_process(g) {
364 		if (g->flags & PF_KTHREAD)
365 			continue;
366 		for_each_thread(g, c) {
367 			if (c->mm == mm)
368 				goto assign_new_owner;
369 			if (c->mm)
370 				break;
371 		}
372 	}
373 	read_unlock(&tasklist_lock);
374 	/*
375 	 * We found no owner yet mm_users > 1: this implies that we are
376 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
377 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
378 	 */
379 	mm->owner = NULL;
380 	return;
381 
382 assign_new_owner:
383 	BUG_ON(c == p);
384 	get_task_struct(c);
385 	/*
386 	 * The task_lock protects c->mm from changing.
387 	 * We always want mm->owner->mm == mm
388 	 */
389 	task_lock(c);
390 	/*
391 	 * Delay read_unlock() till we have the task_lock()
392 	 * to ensure that c does not slip away underneath us
393 	 */
394 	read_unlock(&tasklist_lock);
395 	if (c->mm != mm) {
396 		task_unlock(c);
397 		put_task_struct(c);
398 		goto retry;
399 	}
400 	mm->owner = c;
401 	task_unlock(c);
402 	put_task_struct(c);
403 }
404 #endif /* CONFIG_MEMCG */
405 
406 /*
407  * Turn us into a lazy TLB process if we
408  * aren't already..
409  */
410 static void exit_mm(struct task_struct *tsk)
411 {
412 	struct mm_struct *mm = tsk->mm;
413 	struct core_state *core_state;
414 
415 	mm_release(tsk, mm);
416 	if (!mm)
417 		return;
418 	sync_mm_rss(mm);
419 	/*
420 	 * Serialize with any possible pending coredump.
421 	 * We must hold mmap_sem around checking core_state
422 	 * and clearing tsk->mm.  The core-inducing thread
423 	 * will increment ->nr_threads for each thread in the
424 	 * group with ->mm != NULL.
425 	 */
426 	down_read(&mm->mmap_sem);
427 	core_state = mm->core_state;
428 	if (core_state) {
429 		struct core_thread self;
430 
431 		up_read(&mm->mmap_sem);
432 
433 		self.task = tsk;
434 		self.next = xchg(&core_state->dumper.next, &self);
435 		/*
436 		 * Implies mb(), the result of xchg() must be visible
437 		 * to core_state->dumper.
438 		 */
439 		if (atomic_dec_and_test(&core_state->nr_threads))
440 			complete(&core_state->startup);
441 
442 		for (;;) {
443 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
444 			if (!self.task) /* see coredump_finish() */
445 				break;
446 			freezable_schedule();
447 		}
448 		__set_task_state(tsk, TASK_RUNNING);
449 		down_read(&mm->mmap_sem);
450 	}
451 	atomic_inc(&mm->mm_count);
452 	BUG_ON(mm != tsk->active_mm);
453 	/* more a memory barrier than a real lock */
454 	task_lock(tsk);
455 	tsk->mm = NULL;
456 	up_read(&mm->mmap_sem);
457 	enter_lazy_tlb(mm, current);
458 	task_unlock(tsk);
459 	mm_update_next_owner(mm);
460 	mmput(mm);
461 	clear_thread_flag(TIF_MEMDIE);
462 }
463 
464 /*
465  * When we die, we re-parent all our children, and try to:
466  * 1. give them to another thread in our thread group, if such a member exists
467  * 2. give it to the first ancestor process which prctl'd itself as a
468  *    child_subreaper for its children (like a service manager)
469  * 3. give it to the init process (PID 1) in our pid namespace
470  */
471 static struct task_struct *find_new_reaper(struct task_struct *father)
472 	__releases(&tasklist_lock)
473 	__acquires(&tasklist_lock)
474 {
475 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
476 	struct task_struct *thread;
477 
478 	thread = father;
479 	while_each_thread(father, thread) {
480 		if (thread->flags & PF_EXITING)
481 			continue;
482 		if (unlikely(pid_ns->child_reaper == father))
483 			pid_ns->child_reaper = thread;
484 		return thread;
485 	}
486 
487 	if (unlikely(pid_ns->child_reaper == father)) {
488 		write_unlock_irq(&tasklist_lock);
489 		if (unlikely(pid_ns == &init_pid_ns)) {
490 			panic("Attempted to kill init! exitcode=0x%08x\n",
491 				father->signal->group_exit_code ?:
492 					father->exit_code);
493 		}
494 
495 		zap_pid_ns_processes(pid_ns);
496 		write_lock_irq(&tasklist_lock);
497 	} else if (father->signal->has_child_subreaper) {
498 		struct task_struct *reaper;
499 
500 		/*
501 		 * Find the first ancestor marked as child_subreaper.
502 		 * Note that the code below checks same_thread_group(reaper,
503 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
504 		 * PID namespace. However we still need the check above, see
505 		 * http://marc.info/?l=linux-kernel&m=131385460420380
506 		 */
507 		for (reaper = father->real_parent;
508 		     reaper != &init_task;
509 		     reaper = reaper->real_parent) {
510 			if (same_thread_group(reaper, pid_ns->child_reaper))
511 				break;
512 			if (!reaper->signal->is_child_subreaper)
513 				continue;
514 			thread = reaper;
515 			do {
516 				if (!(thread->flags & PF_EXITING))
517 					return reaper;
518 			} while_each_thread(reaper, thread);
519 		}
520 	}
521 
522 	return pid_ns->child_reaper;
523 }
524 
525 /*
526 * Any that need to be release_task'd are put on the @dead list.
527  */
528 static void reparent_leader(struct task_struct *father, struct task_struct *p,
529 				struct list_head *dead)
530 {
531 	list_move_tail(&p->sibling, &p->real_parent->children);
532 
533 	if (p->exit_state == EXIT_DEAD)
534 		return;
535 	/*
536 	 * If this is a threaded reparent there is no need to
537 	 * notify anyone anything has happened.
538 	 */
539 	if (same_thread_group(p->real_parent, father))
540 		return;
541 
542 	/* We don't want people slaying init. */
543 	p->exit_signal = SIGCHLD;
544 
545 	/* If it has exited notify the new parent about this child's death. */
546 	if (!p->ptrace &&
547 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
548 		if (do_notify_parent(p, p->exit_signal)) {
549 			p->exit_state = EXIT_DEAD;
550 			list_move_tail(&p->sibling, dead);
551 		}
552 	}
553 
554 	kill_orphaned_pgrp(p, father);
555 }
556 
557 static void forget_original_parent(struct task_struct *father)
558 {
559 	struct task_struct *p, *n, *reaper;
560 	LIST_HEAD(dead_children);
561 
562 	write_lock_irq(&tasklist_lock);
563 	/*
564 	 * Note that exit_ptrace() and find_new_reaper() might
565 	 * drop tasklist_lock and reacquire it.
566 	 */
567 	exit_ptrace(father);
568 	reaper = find_new_reaper(father);
569 
570 	list_for_each_entry_safe(p, n, &father->children, sibling) {
571 		struct task_struct *t = p;
572 
573 		do {
574 			t->real_parent = reaper;
575 			if (t->parent == father) {
576 				BUG_ON(t->ptrace);
577 				t->parent = t->real_parent;
578 			}
579 			if (t->pdeath_signal)
580 				group_send_sig_info(t->pdeath_signal,
581 						    SEND_SIG_NOINFO, t);
582 		} while_each_thread(p, t);
583 		reparent_leader(father, p, &dead_children);
584 	}
585 	write_unlock_irq(&tasklist_lock);
586 
587 	BUG_ON(!list_empty(&father->children));
588 
589 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
590 		list_del_init(&p->sibling);
591 		release_task(p);
592 	}
593 }
594 
595 /*
596  * Send signals to all our closest relatives so that they know
597  * to properly mourn us..
598  */
599 static void exit_notify(struct task_struct *tsk, int group_dead)
600 {
601 	bool autoreap;
602 
603 	/*
604 	 * This does two things:
605 	 *
606 	 * A.  Make init inherit all the child processes
607 	 * B.  Check to see if any process groups have become orphaned
608 	 *	as a result of our exiting, and if they have any stopped
609 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
610 	 */
611 	forget_original_parent(tsk);
612 
613 	write_lock_irq(&tasklist_lock);
614 	if (group_dead)
615 		kill_orphaned_pgrp(tsk->group_leader, NULL);
616 
617 	if (unlikely(tsk->ptrace)) {
618 		int sig = thread_group_leader(tsk) &&
619 				thread_group_empty(tsk) &&
620 				!ptrace_reparented(tsk) ?
621 			tsk->exit_signal : SIGCHLD;
622 		autoreap = do_notify_parent(tsk, sig);
623 	} else if (thread_group_leader(tsk)) {
624 		autoreap = thread_group_empty(tsk) &&
625 			do_notify_parent(tsk, tsk->exit_signal);
626 	} else {
627 		autoreap = true;
628 	}
629 
630 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
631 
632 	/* mt-exec, de_thread() is waiting for group leader */
633 	if (unlikely(tsk->signal->notify_count < 0))
634 		wake_up_process(tsk->signal->group_exit_task);
635 	write_unlock_irq(&tasklist_lock);
636 
637 	/* If the process is dead, release it - nobody will wait for it */
638 	if (autoreap)
639 		release_task(tsk);
640 }
641 
642 #ifdef CONFIG_DEBUG_STACK_USAGE
643 static void check_stack_usage(void)
644 {
645 	static DEFINE_SPINLOCK(low_water_lock);
646 	static int lowest_to_date = THREAD_SIZE;
647 	unsigned long free;
648 
649 	free = stack_not_used(current);
650 
651 	if (free >= lowest_to_date)
652 		return;
653 
654 	spin_lock(&low_water_lock);
655 	if (free < lowest_to_date) {
656 		pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
657 			current->comm, task_pid_nr(current), free);
658 		lowest_to_date = free;
659 	}
660 	spin_unlock(&low_water_lock);
661 }
662 #else
663 static inline void check_stack_usage(void) {}
664 #endif
665 
666 void do_exit(long code)
667 {
668 	struct task_struct *tsk = current;
669 	int group_dead;
670 
671 	profile_task_exit(tsk);
672 
673 	WARN_ON(blk_needs_flush_plug(tsk));
674 
675 	if (unlikely(in_interrupt()))
676 		panic("Aiee, killing interrupt handler!");
677 	if (unlikely(!tsk->pid))
678 		panic("Attempted to kill the idle task!");
679 
680 	/*
681 	 * If do_exit is called because this processes oopsed, it's possible
682 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
683 	 * continuing. Amongst other possible reasons, this is to prevent
684 	 * mm_release()->clear_child_tid() from writing to a user-controlled
685 	 * kernel address.
686 	 */
687 	set_fs(USER_DS);
688 
689 	ptrace_event(PTRACE_EVENT_EXIT, code);
690 
691 	validate_creds_for_do_exit(tsk);
692 
693 	/*
694 	 * We're taking recursive faults here in do_exit. Safest is to just
695 	 * leave this task alone and wait for reboot.
696 	 */
697 	if (unlikely(tsk->flags & PF_EXITING)) {
698 		pr_alert("Fixing recursive fault but reboot is needed!\n");
699 		/*
700 		 * We can do this unlocked here. The futex code uses
701 		 * this flag just to verify whether the pi state
702 		 * cleanup has been done or not. In the worst case it
703 		 * loops once more. We pretend that the cleanup was
704 		 * done as there is no way to return. Either the
705 		 * OWNER_DIED bit is set by now or we push the blocked
706 		 * task into the wait for ever nirwana as well.
707 		 */
708 		tsk->flags |= PF_EXITPIDONE;
709 		set_current_state(TASK_UNINTERRUPTIBLE);
710 		schedule();
711 	}
712 
713 	exit_signals(tsk);  /* sets PF_EXITING */
714 	/*
715 	 * tsk->flags are checked in the futex code to protect against
716 	 * an exiting task cleaning up the robust pi futexes.
717 	 */
718 	smp_mb();
719 	raw_spin_unlock_wait(&tsk->pi_lock);
720 
721 	if (unlikely(in_atomic()))
722 		pr_info("note: %s[%d] exited with preempt_count %d\n",
723 			current->comm, task_pid_nr(current),
724 			preempt_count());
725 
726 	acct_update_integrals(tsk);
727 	/* sync mm's RSS info before statistics gathering */
728 	if (tsk->mm)
729 		sync_mm_rss(tsk->mm);
730 	group_dead = atomic_dec_and_test(&tsk->signal->live);
731 	if (group_dead) {
732 		hrtimer_cancel(&tsk->signal->real_timer);
733 		exit_itimers(tsk->signal);
734 		if (tsk->mm)
735 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
736 	}
737 	acct_collect(code, group_dead);
738 	if (group_dead)
739 		tty_audit_exit();
740 	audit_free(tsk);
741 
742 	tsk->exit_code = code;
743 	taskstats_exit(tsk, group_dead);
744 
745 	exit_mm(tsk);
746 
747 	if (group_dead)
748 		acct_process();
749 	trace_sched_process_exit(tsk);
750 
751 	exit_sem(tsk);
752 	exit_shm(tsk);
753 	exit_files(tsk);
754 	exit_fs(tsk);
755 	if (group_dead)
756 		disassociate_ctty(1);
757 	exit_task_namespaces(tsk);
758 	exit_task_work(tsk);
759 	exit_thread();
760 
761 	/*
762 	 * Flush inherited counters to the parent - before the parent
763 	 * gets woken up by child-exit notifications.
764 	 *
765 	 * because of cgroup mode, must be called before cgroup_exit()
766 	 */
767 	perf_event_exit_task(tsk);
768 
769 	cgroup_exit(tsk);
770 
771 	module_put(task_thread_info(tsk)->exec_domain->module);
772 
773 	/*
774 	 * FIXME: do that only when needed, using sched_exit tracepoint
775 	 */
776 	flush_ptrace_hw_breakpoint(tsk);
777 
778 	exit_notify(tsk, group_dead);
779 	proc_exit_connector(tsk);
780 #ifdef CONFIG_NUMA
781 	task_lock(tsk);
782 	mpol_put(tsk->mempolicy);
783 	tsk->mempolicy = NULL;
784 	task_unlock(tsk);
785 #endif
786 #ifdef CONFIG_FUTEX
787 	if (unlikely(current->pi_state_cache))
788 		kfree(current->pi_state_cache);
789 #endif
790 	/*
791 	 * Make sure we are holding no locks:
792 	 */
793 	debug_check_no_locks_held();
794 	/*
795 	 * We can do this unlocked here. The futex code uses this flag
796 	 * just to verify whether the pi state cleanup has been done
797 	 * or not. In the worst case it loops once more.
798 	 */
799 	tsk->flags |= PF_EXITPIDONE;
800 
801 	if (tsk->io_context)
802 		exit_io_context(tsk);
803 
804 	if (tsk->splice_pipe)
805 		free_pipe_info(tsk->splice_pipe);
806 
807 	if (tsk->task_frag.page)
808 		put_page(tsk->task_frag.page);
809 
810 	validate_creds_for_do_exit(tsk);
811 
812 	check_stack_usage();
813 	preempt_disable();
814 	if (tsk->nr_dirtied)
815 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
816 	exit_rcu();
817 
818 	/*
819 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
820 	 * when the following two conditions become true.
821 	 *   - There is race condition of mmap_sem (It is acquired by
822 	 *     exit_mm()), and
823 	 *   - SMI occurs before setting TASK_RUNINNG.
824 	 *     (or hypervisor of virtual machine switches to other guest)
825 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
826 	 *
827 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
828 	 * is held by try_to_wake_up()
829 	 */
830 	smp_mb();
831 	raw_spin_unlock_wait(&tsk->pi_lock);
832 
833 	/* causes final put_task_struct in finish_task_switch(). */
834 	tsk->state = TASK_DEAD;
835 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
836 	schedule();
837 	BUG();
838 	/* Avoid "noreturn function does return".  */
839 	for (;;)
840 		cpu_relax();	/* For when BUG is null */
841 }
842 EXPORT_SYMBOL_GPL(do_exit);
843 
844 void complete_and_exit(struct completion *comp, long code)
845 {
846 	if (comp)
847 		complete(comp);
848 
849 	do_exit(code);
850 }
851 EXPORT_SYMBOL(complete_and_exit);
852 
853 SYSCALL_DEFINE1(exit, int, error_code)
854 {
855 	do_exit((error_code&0xff)<<8);
856 }
857 
858 /*
859  * Take down every thread in the group.  This is called by fatal signals
860  * as well as by sys_exit_group (below).
861  */
862 void
863 do_group_exit(int exit_code)
864 {
865 	struct signal_struct *sig = current->signal;
866 
867 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
868 
869 	if (signal_group_exit(sig))
870 		exit_code = sig->group_exit_code;
871 	else if (!thread_group_empty(current)) {
872 		struct sighand_struct *const sighand = current->sighand;
873 
874 		spin_lock_irq(&sighand->siglock);
875 		if (signal_group_exit(sig))
876 			/* Another thread got here before we took the lock.  */
877 			exit_code = sig->group_exit_code;
878 		else {
879 			sig->group_exit_code = exit_code;
880 			sig->flags = SIGNAL_GROUP_EXIT;
881 			zap_other_threads(current);
882 		}
883 		spin_unlock_irq(&sighand->siglock);
884 	}
885 
886 	do_exit(exit_code);
887 	/* NOTREACHED */
888 }
889 
890 /*
891  * this kills every thread in the thread group. Note that any externally
892  * wait4()-ing process will get the correct exit code - even if this
893  * thread is not the thread group leader.
894  */
895 SYSCALL_DEFINE1(exit_group, int, error_code)
896 {
897 	do_group_exit((error_code & 0xff) << 8);
898 	/* NOTREACHED */
899 	return 0;
900 }
901 
902 struct wait_opts {
903 	enum pid_type		wo_type;
904 	int			wo_flags;
905 	struct pid		*wo_pid;
906 
907 	struct siginfo __user	*wo_info;
908 	int __user		*wo_stat;
909 	struct rusage __user	*wo_rusage;
910 
911 	wait_queue_t		child_wait;
912 	int			notask_error;
913 };
914 
915 static inline
916 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
917 {
918 	if (type != PIDTYPE_PID)
919 		task = task->group_leader;
920 	return task->pids[type].pid;
921 }
922 
923 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
924 {
925 	return	wo->wo_type == PIDTYPE_MAX ||
926 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
927 }
928 
929 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
930 {
931 	if (!eligible_pid(wo, p))
932 		return 0;
933 	/* Wait for all children (clone and not) if __WALL is set;
934 	 * otherwise, wait for clone children *only* if __WCLONE is
935 	 * set; otherwise, wait for non-clone children *only*.  (Note:
936 	 * A "clone" child here is one that reports to its parent
937 	 * using a signal other than SIGCHLD.) */
938 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
939 	    && !(wo->wo_flags & __WALL))
940 		return 0;
941 
942 	return 1;
943 }
944 
945 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
946 				pid_t pid, uid_t uid, int why, int status)
947 {
948 	struct siginfo __user *infop;
949 	int retval = wo->wo_rusage
950 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
951 
952 	put_task_struct(p);
953 	infop = wo->wo_info;
954 	if (infop) {
955 		if (!retval)
956 			retval = put_user(SIGCHLD, &infop->si_signo);
957 		if (!retval)
958 			retval = put_user(0, &infop->si_errno);
959 		if (!retval)
960 			retval = put_user((short)why, &infop->si_code);
961 		if (!retval)
962 			retval = put_user(pid, &infop->si_pid);
963 		if (!retval)
964 			retval = put_user(uid, &infop->si_uid);
965 		if (!retval)
966 			retval = put_user(status, &infop->si_status);
967 	}
968 	if (!retval)
969 		retval = pid;
970 	return retval;
971 }
972 
973 /*
974  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
975  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
976  * the lock and this task is uninteresting.  If we return nonzero, we have
977  * released the lock and the system call should return.
978  */
979 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
980 {
981 	unsigned long state;
982 	int retval, status, traced;
983 	pid_t pid = task_pid_vnr(p);
984 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
985 	struct siginfo __user *infop;
986 
987 	if (!likely(wo->wo_flags & WEXITED))
988 		return 0;
989 
990 	if (unlikely(wo->wo_flags & WNOWAIT)) {
991 		int exit_code = p->exit_code;
992 		int why;
993 
994 		get_task_struct(p);
995 		read_unlock(&tasklist_lock);
996 		if ((exit_code & 0x7f) == 0) {
997 			why = CLD_EXITED;
998 			status = exit_code >> 8;
999 		} else {
1000 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1001 			status = exit_code & 0x7f;
1002 		}
1003 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1004 	}
1005 
1006 	traced = ptrace_reparented(p);
1007 	/*
1008 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1009 	 */
1010 	state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1011 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1012 		return 0;
1013 	/*
1014 	 * It can be ptraced but not reparented, check
1015 	 * thread_group_leader() to filter out sub-threads.
1016 	 */
1017 	if (likely(!traced) && thread_group_leader(p)) {
1018 		struct signal_struct *psig;
1019 		struct signal_struct *sig;
1020 		unsigned long maxrss;
1021 		cputime_t tgutime, tgstime;
1022 
1023 		/*
1024 		 * The resource counters for the group leader are in its
1025 		 * own task_struct.  Those for dead threads in the group
1026 		 * are in its signal_struct, as are those for the child
1027 		 * processes it has previously reaped.  All these
1028 		 * accumulate in the parent's signal_struct c* fields.
1029 		 *
1030 		 * We don't bother to take a lock here to protect these
1031 		 * p->signal fields, because they are only touched by
1032 		 * __exit_signal, which runs with tasklist_lock
1033 		 * write-locked anyway, and so is excluded here.  We do
1034 		 * need to protect the access to parent->signal fields,
1035 		 * as other threads in the parent group can be right
1036 		 * here reaping other children at the same time.
1037 		 *
1038 		 * We use thread_group_cputime_adjusted() to get times for
1039 		 * the thread group, which consolidates times for all threads
1040 		 * in the group including the group leader.
1041 		 */
1042 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1043 		spin_lock_irq(&p->real_parent->sighand->siglock);
1044 		psig = p->real_parent->signal;
1045 		sig = p->signal;
1046 		psig->cutime += tgutime + sig->cutime;
1047 		psig->cstime += tgstime + sig->cstime;
1048 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1049 		psig->cmin_flt +=
1050 			p->min_flt + sig->min_flt + sig->cmin_flt;
1051 		psig->cmaj_flt +=
1052 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1053 		psig->cnvcsw +=
1054 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1055 		psig->cnivcsw +=
1056 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1057 		psig->cinblock +=
1058 			task_io_get_inblock(p) +
1059 			sig->inblock + sig->cinblock;
1060 		psig->coublock +=
1061 			task_io_get_oublock(p) +
1062 			sig->oublock + sig->coublock;
1063 		maxrss = max(sig->maxrss, sig->cmaxrss);
1064 		if (psig->cmaxrss < maxrss)
1065 			psig->cmaxrss = maxrss;
1066 		task_io_accounting_add(&psig->ioac, &p->ioac);
1067 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1068 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1069 	}
1070 
1071 	/*
1072 	 * Now we are sure this task is interesting, and no other
1073 	 * thread can reap it because we its state == DEAD/TRACE.
1074 	 */
1075 	read_unlock(&tasklist_lock);
1076 
1077 	retval = wo->wo_rusage
1078 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1079 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1080 		? p->signal->group_exit_code : p->exit_code;
1081 	if (!retval && wo->wo_stat)
1082 		retval = put_user(status, wo->wo_stat);
1083 
1084 	infop = wo->wo_info;
1085 	if (!retval && infop)
1086 		retval = put_user(SIGCHLD, &infop->si_signo);
1087 	if (!retval && infop)
1088 		retval = put_user(0, &infop->si_errno);
1089 	if (!retval && infop) {
1090 		int why;
1091 
1092 		if ((status & 0x7f) == 0) {
1093 			why = CLD_EXITED;
1094 			status >>= 8;
1095 		} else {
1096 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1097 			status &= 0x7f;
1098 		}
1099 		retval = put_user((short)why, &infop->si_code);
1100 		if (!retval)
1101 			retval = put_user(status, &infop->si_status);
1102 	}
1103 	if (!retval && infop)
1104 		retval = put_user(pid, &infop->si_pid);
1105 	if (!retval && infop)
1106 		retval = put_user(uid, &infop->si_uid);
1107 	if (!retval)
1108 		retval = pid;
1109 
1110 	if (state == EXIT_TRACE) {
1111 		write_lock_irq(&tasklist_lock);
1112 		/* We dropped tasklist, ptracer could die and untrace */
1113 		ptrace_unlink(p);
1114 
1115 		/* If parent wants a zombie, don't release it now */
1116 		state = EXIT_ZOMBIE;
1117 		if (do_notify_parent(p, p->exit_signal))
1118 			state = EXIT_DEAD;
1119 		p->exit_state = state;
1120 		write_unlock_irq(&tasklist_lock);
1121 	}
1122 	if (state == EXIT_DEAD)
1123 		release_task(p);
1124 
1125 	return retval;
1126 }
1127 
1128 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1129 {
1130 	if (ptrace) {
1131 		if (task_is_stopped_or_traced(p) &&
1132 		    !(p->jobctl & JOBCTL_LISTENING))
1133 			return &p->exit_code;
1134 	} else {
1135 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1136 			return &p->signal->group_exit_code;
1137 	}
1138 	return NULL;
1139 }
1140 
1141 /**
1142  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1143  * @wo: wait options
1144  * @ptrace: is the wait for ptrace
1145  * @p: task to wait for
1146  *
1147  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1148  *
1149  * CONTEXT:
1150  * read_lock(&tasklist_lock), which is released if return value is
1151  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1152  *
1153  * RETURNS:
1154  * 0 if wait condition didn't exist and search for other wait conditions
1155  * should continue.  Non-zero return, -errno on failure and @p's pid on
1156  * success, implies that tasklist_lock is released and wait condition
1157  * search should terminate.
1158  */
1159 static int wait_task_stopped(struct wait_opts *wo,
1160 				int ptrace, struct task_struct *p)
1161 {
1162 	struct siginfo __user *infop;
1163 	int retval, exit_code, *p_code, why;
1164 	uid_t uid = 0; /* unneeded, required by compiler */
1165 	pid_t pid;
1166 
1167 	/*
1168 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1169 	 */
1170 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1171 		return 0;
1172 
1173 	if (!task_stopped_code(p, ptrace))
1174 		return 0;
1175 
1176 	exit_code = 0;
1177 	spin_lock_irq(&p->sighand->siglock);
1178 
1179 	p_code = task_stopped_code(p, ptrace);
1180 	if (unlikely(!p_code))
1181 		goto unlock_sig;
1182 
1183 	exit_code = *p_code;
1184 	if (!exit_code)
1185 		goto unlock_sig;
1186 
1187 	if (!unlikely(wo->wo_flags & WNOWAIT))
1188 		*p_code = 0;
1189 
1190 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1191 unlock_sig:
1192 	spin_unlock_irq(&p->sighand->siglock);
1193 	if (!exit_code)
1194 		return 0;
1195 
1196 	/*
1197 	 * Now we are pretty sure this task is interesting.
1198 	 * Make sure it doesn't get reaped out from under us while we
1199 	 * give up the lock and then examine it below.  We don't want to
1200 	 * keep holding onto the tasklist_lock while we call getrusage and
1201 	 * possibly take page faults for user memory.
1202 	 */
1203 	get_task_struct(p);
1204 	pid = task_pid_vnr(p);
1205 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1206 	read_unlock(&tasklist_lock);
1207 
1208 	if (unlikely(wo->wo_flags & WNOWAIT))
1209 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1210 
1211 	retval = wo->wo_rusage
1212 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1213 	if (!retval && wo->wo_stat)
1214 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1215 
1216 	infop = wo->wo_info;
1217 	if (!retval && infop)
1218 		retval = put_user(SIGCHLD, &infop->si_signo);
1219 	if (!retval && infop)
1220 		retval = put_user(0, &infop->si_errno);
1221 	if (!retval && infop)
1222 		retval = put_user((short)why, &infop->si_code);
1223 	if (!retval && infop)
1224 		retval = put_user(exit_code, &infop->si_status);
1225 	if (!retval && infop)
1226 		retval = put_user(pid, &infop->si_pid);
1227 	if (!retval && infop)
1228 		retval = put_user(uid, &infop->si_uid);
1229 	if (!retval)
1230 		retval = pid;
1231 	put_task_struct(p);
1232 
1233 	BUG_ON(!retval);
1234 	return retval;
1235 }
1236 
1237 /*
1238  * Handle do_wait work for one task in a live, non-stopped state.
1239  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1240  * the lock and this task is uninteresting.  If we return nonzero, we have
1241  * released the lock and the system call should return.
1242  */
1243 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1244 {
1245 	int retval;
1246 	pid_t pid;
1247 	uid_t uid;
1248 
1249 	if (!unlikely(wo->wo_flags & WCONTINUED))
1250 		return 0;
1251 
1252 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1253 		return 0;
1254 
1255 	spin_lock_irq(&p->sighand->siglock);
1256 	/* Re-check with the lock held.  */
1257 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1258 		spin_unlock_irq(&p->sighand->siglock);
1259 		return 0;
1260 	}
1261 	if (!unlikely(wo->wo_flags & WNOWAIT))
1262 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1263 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1264 	spin_unlock_irq(&p->sighand->siglock);
1265 
1266 	pid = task_pid_vnr(p);
1267 	get_task_struct(p);
1268 	read_unlock(&tasklist_lock);
1269 
1270 	if (!wo->wo_info) {
1271 		retval = wo->wo_rusage
1272 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1273 		put_task_struct(p);
1274 		if (!retval && wo->wo_stat)
1275 			retval = put_user(0xffff, wo->wo_stat);
1276 		if (!retval)
1277 			retval = pid;
1278 	} else {
1279 		retval = wait_noreap_copyout(wo, p, pid, uid,
1280 					     CLD_CONTINUED, SIGCONT);
1281 		BUG_ON(retval == 0);
1282 	}
1283 
1284 	return retval;
1285 }
1286 
1287 /*
1288  * Consider @p for a wait by @parent.
1289  *
1290  * -ECHILD should be in ->notask_error before the first call.
1291  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1292  * Returns zero if the search for a child should continue;
1293  * then ->notask_error is 0 if @p is an eligible child,
1294  * or another error from security_task_wait(), or still -ECHILD.
1295  */
1296 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1297 				struct task_struct *p)
1298 {
1299 	int ret;
1300 
1301 	if (unlikely(p->exit_state == EXIT_DEAD))
1302 		return 0;
1303 
1304 	ret = eligible_child(wo, p);
1305 	if (!ret)
1306 		return ret;
1307 
1308 	ret = security_task_wait(p);
1309 	if (unlikely(ret < 0)) {
1310 		/*
1311 		 * If we have not yet seen any eligible child,
1312 		 * then let this error code replace -ECHILD.
1313 		 * A permission error will give the user a clue
1314 		 * to look for security policy problems, rather
1315 		 * than for mysterious wait bugs.
1316 		 */
1317 		if (wo->notask_error)
1318 			wo->notask_error = ret;
1319 		return 0;
1320 	}
1321 
1322 	if (unlikely(p->exit_state == EXIT_TRACE)) {
1323 		/*
1324 		 * ptrace == 0 means we are the natural parent. In this case
1325 		 * we should clear notask_error, debugger will notify us.
1326 		 */
1327 		if (likely(!ptrace))
1328 			wo->notask_error = 0;
1329 		return 0;
1330 	}
1331 
1332 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1333 		/*
1334 		 * If it is traced by its real parent's group, just pretend
1335 		 * the caller is ptrace_do_wait() and reap this child if it
1336 		 * is zombie.
1337 		 *
1338 		 * This also hides group stop state from real parent; otherwise
1339 		 * a single stop can be reported twice as group and ptrace stop.
1340 		 * If a ptracer wants to distinguish these two events for its
1341 		 * own children it should create a separate process which takes
1342 		 * the role of real parent.
1343 		 */
1344 		if (!ptrace_reparented(p))
1345 			ptrace = 1;
1346 	}
1347 
1348 	/* slay zombie? */
1349 	if (p->exit_state == EXIT_ZOMBIE) {
1350 		/* we don't reap group leaders with subthreads */
1351 		if (!delay_group_leader(p)) {
1352 			/*
1353 			 * A zombie ptracee is only visible to its ptracer.
1354 			 * Notification and reaping will be cascaded to the
1355 			 * real parent when the ptracer detaches.
1356 			 */
1357 			if (unlikely(ptrace) || likely(!p->ptrace))
1358 				return wait_task_zombie(wo, p);
1359 		}
1360 
1361 		/*
1362 		 * Allow access to stopped/continued state via zombie by
1363 		 * falling through.  Clearing of notask_error is complex.
1364 		 *
1365 		 * When !@ptrace:
1366 		 *
1367 		 * If WEXITED is set, notask_error should naturally be
1368 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1369 		 * so, if there are live subthreads, there are events to
1370 		 * wait for.  If all subthreads are dead, it's still safe
1371 		 * to clear - this function will be called again in finite
1372 		 * amount time once all the subthreads are released and
1373 		 * will then return without clearing.
1374 		 *
1375 		 * When @ptrace:
1376 		 *
1377 		 * Stopped state is per-task and thus can't change once the
1378 		 * target task dies.  Only continued and exited can happen.
1379 		 * Clear notask_error if WCONTINUED | WEXITED.
1380 		 */
1381 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1382 			wo->notask_error = 0;
1383 	} else {
1384 		/*
1385 		 * @p is alive and it's gonna stop, continue or exit, so
1386 		 * there always is something to wait for.
1387 		 */
1388 		wo->notask_error = 0;
1389 	}
1390 
1391 	/*
1392 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1393 	 * is used and the two don't interact with each other.
1394 	 */
1395 	ret = wait_task_stopped(wo, ptrace, p);
1396 	if (ret)
1397 		return ret;
1398 
1399 	/*
1400 	 * Wait for continued.  There's only one continued state and the
1401 	 * ptracer can consume it which can confuse the real parent.  Don't
1402 	 * use WCONTINUED from ptracer.  You don't need or want it.
1403 	 */
1404 	return wait_task_continued(wo, p);
1405 }
1406 
1407 /*
1408  * Do the work of do_wait() for one thread in the group, @tsk.
1409  *
1410  * -ECHILD should be in ->notask_error before the first call.
1411  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1412  * Returns zero if the search for a child should continue; then
1413  * ->notask_error is 0 if there were any eligible children,
1414  * or another error from security_task_wait(), or still -ECHILD.
1415  */
1416 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1417 {
1418 	struct task_struct *p;
1419 
1420 	list_for_each_entry(p, &tsk->children, sibling) {
1421 		int ret = wait_consider_task(wo, 0, p);
1422 
1423 		if (ret)
1424 			return ret;
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1431 {
1432 	struct task_struct *p;
1433 
1434 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1435 		int ret = wait_consider_task(wo, 1, p);
1436 
1437 		if (ret)
1438 			return ret;
1439 	}
1440 
1441 	return 0;
1442 }
1443 
1444 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1445 				int sync, void *key)
1446 {
1447 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1448 						child_wait);
1449 	struct task_struct *p = key;
1450 
1451 	if (!eligible_pid(wo, p))
1452 		return 0;
1453 
1454 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1455 		return 0;
1456 
1457 	return default_wake_function(wait, mode, sync, key);
1458 }
1459 
1460 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1461 {
1462 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1463 				TASK_INTERRUPTIBLE, 1, p);
1464 }
1465 
1466 static long do_wait(struct wait_opts *wo)
1467 {
1468 	struct task_struct *tsk;
1469 	int retval;
1470 
1471 	trace_sched_process_wait(wo->wo_pid);
1472 
1473 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1474 	wo->child_wait.private = current;
1475 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1476 repeat:
1477 	/*
1478 	 * If there is nothing that can match our critiera just get out.
1479 	 * We will clear ->notask_error to zero if we see any child that
1480 	 * might later match our criteria, even if we are not able to reap
1481 	 * it yet.
1482 	 */
1483 	wo->notask_error = -ECHILD;
1484 	if ((wo->wo_type < PIDTYPE_MAX) &&
1485 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1486 		goto notask;
1487 
1488 	set_current_state(TASK_INTERRUPTIBLE);
1489 	read_lock(&tasklist_lock);
1490 	tsk = current;
1491 	do {
1492 		retval = do_wait_thread(wo, tsk);
1493 		if (retval)
1494 			goto end;
1495 
1496 		retval = ptrace_do_wait(wo, tsk);
1497 		if (retval)
1498 			goto end;
1499 
1500 		if (wo->wo_flags & __WNOTHREAD)
1501 			break;
1502 	} while_each_thread(current, tsk);
1503 	read_unlock(&tasklist_lock);
1504 
1505 notask:
1506 	retval = wo->notask_error;
1507 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1508 		retval = -ERESTARTSYS;
1509 		if (!signal_pending(current)) {
1510 			schedule();
1511 			goto repeat;
1512 		}
1513 	}
1514 end:
1515 	__set_current_state(TASK_RUNNING);
1516 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1517 	return retval;
1518 }
1519 
1520 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1521 		infop, int, options, struct rusage __user *, ru)
1522 {
1523 	struct wait_opts wo;
1524 	struct pid *pid = NULL;
1525 	enum pid_type type;
1526 	long ret;
1527 
1528 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1529 		return -EINVAL;
1530 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1531 		return -EINVAL;
1532 
1533 	switch (which) {
1534 	case P_ALL:
1535 		type = PIDTYPE_MAX;
1536 		break;
1537 	case P_PID:
1538 		type = PIDTYPE_PID;
1539 		if (upid <= 0)
1540 			return -EINVAL;
1541 		break;
1542 	case P_PGID:
1543 		type = PIDTYPE_PGID;
1544 		if (upid <= 0)
1545 			return -EINVAL;
1546 		break;
1547 	default:
1548 		return -EINVAL;
1549 	}
1550 
1551 	if (type < PIDTYPE_MAX)
1552 		pid = find_get_pid(upid);
1553 
1554 	wo.wo_type	= type;
1555 	wo.wo_pid	= pid;
1556 	wo.wo_flags	= options;
1557 	wo.wo_info	= infop;
1558 	wo.wo_stat	= NULL;
1559 	wo.wo_rusage	= ru;
1560 	ret = do_wait(&wo);
1561 
1562 	if (ret > 0) {
1563 		ret = 0;
1564 	} else if (infop) {
1565 		/*
1566 		 * For a WNOHANG return, clear out all the fields
1567 		 * we would set so the user can easily tell the
1568 		 * difference.
1569 		 */
1570 		if (!ret)
1571 			ret = put_user(0, &infop->si_signo);
1572 		if (!ret)
1573 			ret = put_user(0, &infop->si_errno);
1574 		if (!ret)
1575 			ret = put_user(0, &infop->si_code);
1576 		if (!ret)
1577 			ret = put_user(0, &infop->si_pid);
1578 		if (!ret)
1579 			ret = put_user(0, &infop->si_uid);
1580 		if (!ret)
1581 			ret = put_user(0, &infop->si_status);
1582 	}
1583 
1584 	put_pid(pid);
1585 	return ret;
1586 }
1587 
1588 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1589 		int, options, struct rusage __user *, ru)
1590 {
1591 	struct wait_opts wo;
1592 	struct pid *pid = NULL;
1593 	enum pid_type type;
1594 	long ret;
1595 
1596 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1597 			__WNOTHREAD|__WCLONE|__WALL))
1598 		return -EINVAL;
1599 
1600 	if (upid == -1)
1601 		type = PIDTYPE_MAX;
1602 	else if (upid < 0) {
1603 		type = PIDTYPE_PGID;
1604 		pid = find_get_pid(-upid);
1605 	} else if (upid == 0) {
1606 		type = PIDTYPE_PGID;
1607 		pid = get_task_pid(current, PIDTYPE_PGID);
1608 	} else /* upid > 0 */ {
1609 		type = PIDTYPE_PID;
1610 		pid = find_get_pid(upid);
1611 	}
1612 
1613 	wo.wo_type	= type;
1614 	wo.wo_pid	= pid;
1615 	wo.wo_flags	= options | WEXITED;
1616 	wo.wo_info	= NULL;
1617 	wo.wo_stat	= stat_addr;
1618 	wo.wo_rusage	= ru;
1619 	ret = do_wait(&wo);
1620 	put_pid(pid);
1621 
1622 	return ret;
1623 }
1624 
1625 #ifdef __ARCH_WANT_SYS_WAITPID
1626 
1627 /*
1628  * sys_waitpid() remains for compatibility. waitpid() should be
1629  * implemented by calling sys_wait4() from libc.a.
1630  */
1631 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1632 {
1633 	return sys_wait4(pid, stat_addr, options, NULL);
1634 }
1635 
1636 #endif
1637