1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/iocontext.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/fdtable.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/freezer.h> 36 #include <linux/cgroup.h> 37 #include <linux/syscalls.h> 38 #include <linux/signal.h> 39 #include <linux/posix-timers.h> 40 #include <linux/cn_proc.h> 41 #include <linux/mutex.h> 42 #include <linux/futex.h> 43 #include <linux/compat.h> 44 #include <linux/pipe_fs_i.h> 45 #include <linux/audit.h> /* for audit_free() */ 46 #include <linux/resource.h> 47 #include <linux/blkdev.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/tracehook.h> 50 51 #include <asm/uaccess.h> 52 #include <asm/unistd.h> 53 #include <asm/pgtable.h> 54 #include <asm/mmu_context.h> 55 56 static void exit_mm(struct task_struct * tsk); 57 58 static inline int task_detached(struct task_struct *p) 59 { 60 return p->exit_signal == -1; 61 } 62 63 static void __unhash_process(struct task_struct *p) 64 { 65 nr_threads--; 66 detach_pid(p, PIDTYPE_PID); 67 if (thread_group_leader(p)) { 68 detach_pid(p, PIDTYPE_PGID); 69 detach_pid(p, PIDTYPE_SID); 70 71 list_del_rcu(&p->tasks); 72 __get_cpu_var(process_counts)--; 73 } 74 list_del_rcu(&p->thread_group); 75 list_del_init(&p->sibling); 76 } 77 78 /* 79 * This function expects the tasklist_lock write-locked. 80 */ 81 static void __exit_signal(struct task_struct *tsk) 82 { 83 struct signal_struct *sig = tsk->signal; 84 struct sighand_struct *sighand; 85 86 BUG_ON(!sig); 87 BUG_ON(!atomic_read(&sig->count)); 88 89 sighand = rcu_dereference(tsk->sighand); 90 spin_lock(&sighand->siglock); 91 92 posix_cpu_timers_exit(tsk); 93 if (atomic_dec_and_test(&sig->count)) 94 posix_cpu_timers_exit_group(tsk); 95 else { 96 /* 97 * If there is any task waiting for the group exit 98 * then notify it: 99 */ 100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 101 wake_up_process(sig->group_exit_task); 102 103 if (tsk == sig->curr_target) 104 sig->curr_target = next_thread(tsk); 105 /* 106 * Accumulate here the counters for all threads but the 107 * group leader as they die, so they can be added into 108 * the process-wide totals when those are taken. 109 * The group leader stays around as a zombie as long 110 * as there are other threads. When it gets reaped, 111 * the exit.c code will add its counts into these totals. 112 * We won't ever get here for the group leader, since it 113 * will have been the last reference on the signal_struct. 114 */ 115 sig->utime = cputime_add(sig->utime, task_utime(tsk)); 116 sig->stime = cputime_add(sig->stime, task_stime(tsk)); 117 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 118 sig->min_flt += tsk->min_flt; 119 sig->maj_flt += tsk->maj_flt; 120 sig->nvcsw += tsk->nvcsw; 121 sig->nivcsw += tsk->nivcsw; 122 sig->inblock += task_io_get_inblock(tsk); 123 sig->oublock += task_io_get_oublock(tsk); 124 task_io_accounting_add(&sig->ioac, &tsk->ioac); 125 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 126 sig = NULL; /* Marker for below. */ 127 } 128 129 __unhash_process(tsk); 130 131 /* 132 * Do this under ->siglock, we can race with another thread 133 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 134 */ 135 flush_sigqueue(&tsk->pending); 136 137 tsk->signal = NULL; 138 tsk->sighand = NULL; 139 spin_unlock(&sighand->siglock); 140 141 __cleanup_sighand(sighand); 142 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 143 if (sig) { 144 flush_sigqueue(&sig->shared_pending); 145 taskstats_tgid_free(sig); 146 __cleanup_signal(sig); 147 } 148 } 149 150 static void delayed_put_task_struct(struct rcu_head *rhp) 151 { 152 put_task_struct(container_of(rhp, struct task_struct, rcu)); 153 } 154 155 156 void release_task(struct task_struct * p) 157 { 158 struct task_struct *leader; 159 int zap_leader; 160 repeat: 161 tracehook_prepare_release_task(p); 162 atomic_dec(&p->user->processes); 163 proc_flush_task(p); 164 write_lock_irq(&tasklist_lock); 165 tracehook_finish_release_task(p); 166 __exit_signal(p); 167 168 /* 169 * If we are the last non-leader member of the thread 170 * group, and the leader is zombie, then notify the 171 * group leader's parent process. (if it wants notification.) 172 */ 173 zap_leader = 0; 174 leader = p->group_leader; 175 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 176 BUG_ON(task_detached(leader)); 177 do_notify_parent(leader, leader->exit_signal); 178 /* 179 * If we were the last child thread and the leader has 180 * exited already, and the leader's parent ignores SIGCHLD, 181 * then we are the one who should release the leader. 182 * 183 * do_notify_parent() will have marked it self-reaping in 184 * that case. 185 */ 186 zap_leader = task_detached(leader); 187 188 /* 189 * This maintains the invariant that release_task() 190 * only runs on a task in EXIT_DEAD, just for sanity. 191 */ 192 if (zap_leader) 193 leader->exit_state = EXIT_DEAD; 194 } 195 196 write_unlock_irq(&tasklist_lock); 197 release_thread(p); 198 call_rcu(&p->rcu, delayed_put_task_struct); 199 200 p = leader; 201 if (unlikely(zap_leader)) 202 goto repeat; 203 } 204 205 /* 206 * This checks not only the pgrp, but falls back on the pid if no 207 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 208 * without this... 209 * 210 * The caller must hold rcu lock or the tasklist lock. 211 */ 212 struct pid *session_of_pgrp(struct pid *pgrp) 213 { 214 struct task_struct *p; 215 struct pid *sid = NULL; 216 217 p = pid_task(pgrp, PIDTYPE_PGID); 218 if (p == NULL) 219 p = pid_task(pgrp, PIDTYPE_PID); 220 if (p != NULL) 221 sid = task_session(p); 222 223 return sid; 224 } 225 226 /* 227 * Determine if a process group is "orphaned", according to the POSIX 228 * definition in 2.2.2.52. Orphaned process groups are not to be affected 229 * by terminal-generated stop signals. Newly orphaned process groups are 230 * to receive a SIGHUP and a SIGCONT. 231 * 232 * "I ask you, have you ever known what it is to be an orphan?" 233 */ 234 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 235 { 236 struct task_struct *p; 237 238 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 239 if ((p == ignored_task) || 240 (p->exit_state && thread_group_empty(p)) || 241 is_global_init(p->real_parent)) 242 continue; 243 244 if (task_pgrp(p->real_parent) != pgrp && 245 task_session(p->real_parent) == task_session(p)) 246 return 0; 247 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 248 249 return 1; 250 } 251 252 int is_current_pgrp_orphaned(void) 253 { 254 int retval; 255 256 read_lock(&tasklist_lock); 257 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 258 read_unlock(&tasklist_lock); 259 260 return retval; 261 } 262 263 static int has_stopped_jobs(struct pid *pgrp) 264 { 265 int retval = 0; 266 struct task_struct *p; 267 268 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 269 if (!task_is_stopped(p)) 270 continue; 271 retval = 1; 272 break; 273 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 274 return retval; 275 } 276 277 /* 278 * Check to see if any process groups have become orphaned as 279 * a result of our exiting, and if they have any stopped jobs, 280 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 281 */ 282 static void 283 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 284 { 285 struct pid *pgrp = task_pgrp(tsk); 286 struct task_struct *ignored_task = tsk; 287 288 if (!parent) 289 /* exit: our father is in a different pgrp than 290 * we are and we were the only connection outside. 291 */ 292 parent = tsk->real_parent; 293 else 294 /* reparent: our child is in a different pgrp than 295 * we are, and it was the only connection outside. 296 */ 297 ignored_task = NULL; 298 299 if (task_pgrp(parent) != pgrp && 300 task_session(parent) == task_session(tsk) && 301 will_become_orphaned_pgrp(pgrp, ignored_task) && 302 has_stopped_jobs(pgrp)) { 303 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 304 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 305 } 306 } 307 308 /** 309 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 310 * 311 * If a kernel thread is launched as a result of a system call, or if 312 * it ever exits, it should generally reparent itself to kthreadd so it 313 * isn't in the way of other processes and is correctly cleaned up on exit. 314 * 315 * The various task state such as scheduling policy and priority may have 316 * been inherited from a user process, so we reset them to sane values here. 317 * 318 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 319 */ 320 static void reparent_to_kthreadd(void) 321 { 322 write_lock_irq(&tasklist_lock); 323 324 ptrace_unlink(current); 325 /* Reparent to init */ 326 current->real_parent = current->parent = kthreadd_task; 327 list_move_tail(¤t->sibling, ¤t->real_parent->children); 328 329 /* Set the exit signal to SIGCHLD so we signal init on exit */ 330 current->exit_signal = SIGCHLD; 331 332 if (task_nice(current) < 0) 333 set_user_nice(current, 0); 334 /* cpus_allowed? */ 335 /* rt_priority? */ 336 /* signals? */ 337 security_task_reparent_to_init(current); 338 memcpy(current->signal->rlim, init_task.signal->rlim, 339 sizeof(current->signal->rlim)); 340 atomic_inc(&(INIT_USER->__count)); 341 write_unlock_irq(&tasklist_lock); 342 switch_uid(INIT_USER); 343 } 344 345 void __set_special_pids(struct pid *pid) 346 { 347 struct task_struct *curr = current->group_leader; 348 pid_t nr = pid_nr(pid); 349 350 if (task_session(curr) != pid) { 351 change_pid(curr, PIDTYPE_SID, pid); 352 set_task_session(curr, nr); 353 } 354 if (task_pgrp(curr) != pid) { 355 change_pid(curr, PIDTYPE_PGID, pid); 356 set_task_pgrp(curr, nr); 357 } 358 } 359 360 static void set_special_pids(struct pid *pid) 361 { 362 write_lock_irq(&tasklist_lock); 363 __set_special_pids(pid); 364 write_unlock_irq(&tasklist_lock); 365 } 366 367 /* 368 * Let kernel threads use this to say that they 369 * allow a certain signal (since daemonize() will 370 * have disabled all of them by default). 371 */ 372 int allow_signal(int sig) 373 { 374 if (!valid_signal(sig) || sig < 1) 375 return -EINVAL; 376 377 spin_lock_irq(¤t->sighand->siglock); 378 sigdelset(¤t->blocked, sig); 379 if (!current->mm) { 380 /* Kernel threads handle their own signals. 381 Let the signal code know it'll be handled, so 382 that they don't get converted to SIGKILL or 383 just silently dropped */ 384 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 385 } 386 recalc_sigpending(); 387 spin_unlock_irq(¤t->sighand->siglock); 388 return 0; 389 } 390 391 EXPORT_SYMBOL(allow_signal); 392 393 int disallow_signal(int sig) 394 { 395 if (!valid_signal(sig) || sig < 1) 396 return -EINVAL; 397 398 spin_lock_irq(¤t->sighand->siglock); 399 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 400 recalc_sigpending(); 401 spin_unlock_irq(¤t->sighand->siglock); 402 return 0; 403 } 404 405 EXPORT_SYMBOL(disallow_signal); 406 407 /* 408 * Put all the gunge required to become a kernel thread without 409 * attached user resources in one place where it belongs. 410 */ 411 412 void daemonize(const char *name, ...) 413 { 414 va_list args; 415 struct fs_struct *fs; 416 sigset_t blocked; 417 418 va_start(args, name); 419 vsnprintf(current->comm, sizeof(current->comm), name, args); 420 va_end(args); 421 422 /* 423 * If we were started as result of loading a module, close all of the 424 * user space pages. We don't need them, and if we didn't close them 425 * they would be locked into memory. 426 */ 427 exit_mm(current); 428 /* 429 * We don't want to have TIF_FREEZE set if the system-wide hibernation 430 * or suspend transition begins right now. 431 */ 432 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 433 434 if (current->nsproxy != &init_nsproxy) { 435 get_nsproxy(&init_nsproxy); 436 switch_task_namespaces(current, &init_nsproxy); 437 } 438 set_special_pids(&init_struct_pid); 439 proc_clear_tty(current); 440 441 /* Block and flush all signals */ 442 sigfillset(&blocked); 443 sigprocmask(SIG_BLOCK, &blocked, NULL); 444 flush_signals(current); 445 446 /* Become as one with the init task */ 447 448 exit_fs(current); /* current->fs->count--; */ 449 fs = init_task.fs; 450 current->fs = fs; 451 atomic_inc(&fs->count); 452 453 exit_files(current); 454 current->files = init_task.files; 455 atomic_inc(¤t->files->count); 456 457 reparent_to_kthreadd(); 458 } 459 460 EXPORT_SYMBOL(daemonize); 461 462 static void close_files(struct files_struct * files) 463 { 464 int i, j; 465 struct fdtable *fdt; 466 467 j = 0; 468 469 /* 470 * It is safe to dereference the fd table without RCU or 471 * ->file_lock because this is the last reference to the 472 * files structure. 473 */ 474 fdt = files_fdtable(files); 475 for (;;) { 476 unsigned long set; 477 i = j * __NFDBITS; 478 if (i >= fdt->max_fds) 479 break; 480 set = fdt->open_fds->fds_bits[j++]; 481 while (set) { 482 if (set & 1) { 483 struct file * file = xchg(&fdt->fd[i], NULL); 484 if (file) { 485 filp_close(file, files); 486 cond_resched(); 487 } 488 } 489 i++; 490 set >>= 1; 491 } 492 } 493 } 494 495 struct files_struct *get_files_struct(struct task_struct *task) 496 { 497 struct files_struct *files; 498 499 task_lock(task); 500 files = task->files; 501 if (files) 502 atomic_inc(&files->count); 503 task_unlock(task); 504 505 return files; 506 } 507 508 void put_files_struct(struct files_struct *files) 509 { 510 struct fdtable *fdt; 511 512 if (atomic_dec_and_test(&files->count)) { 513 close_files(files); 514 /* 515 * Free the fd and fdset arrays if we expanded them. 516 * If the fdtable was embedded, pass files for freeing 517 * at the end of the RCU grace period. Otherwise, 518 * you can free files immediately. 519 */ 520 fdt = files_fdtable(files); 521 if (fdt != &files->fdtab) 522 kmem_cache_free(files_cachep, files); 523 free_fdtable(fdt); 524 } 525 } 526 527 void reset_files_struct(struct files_struct *files) 528 { 529 struct task_struct *tsk = current; 530 struct files_struct *old; 531 532 old = tsk->files; 533 task_lock(tsk); 534 tsk->files = files; 535 task_unlock(tsk); 536 put_files_struct(old); 537 } 538 539 void exit_files(struct task_struct *tsk) 540 { 541 struct files_struct * files = tsk->files; 542 543 if (files) { 544 task_lock(tsk); 545 tsk->files = NULL; 546 task_unlock(tsk); 547 put_files_struct(files); 548 } 549 } 550 551 void put_fs_struct(struct fs_struct *fs) 552 { 553 /* No need to hold fs->lock if we are killing it */ 554 if (atomic_dec_and_test(&fs->count)) { 555 path_put(&fs->root); 556 path_put(&fs->pwd); 557 kmem_cache_free(fs_cachep, fs); 558 } 559 } 560 561 void exit_fs(struct task_struct *tsk) 562 { 563 struct fs_struct * fs = tsk->fs; 564 565 if (fs) { 566 task_lock(tsk); 567 tsk->fs = NULL; 568 task_unlock(tsk); 569 put_fs_struct(fs); 570 } 571 } 572 573 EXPORT_SYMBOL_GPL(exit_fs); 574 575 #ifdef CONFIG_MM_OWNER 576 /* 577 * Task p is exiting and it owned mm, lets find a new owner for it 578 */ 579 static inline int 580 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 581 { 582 /* 583 * If there are other users of the mm and the owner (us) is exiting 584 * we need to find a new owner to take on the responsibility. 585 */ 586 if (atomic_read(&mm->mm_users) <= 1) 587 return 0; 588 if (mm->owner != p) 589 return 0; 590 return 1; 591 } 592 593 void mm_update_next_owner(struct mm_struct *mm) 594 { 595 struct task_struct *c, *g, *p = current; 596 597 retry: 598 if (!mm_need_new_owner(mm, p)) 599 return; 600 601 read_lock(&tasklist_lock); 602 /* 603 * Search in the children 604 */ 605 list_for_each_entry(c, &p->children, sibling) { 606 if (c->mm == mm) 607 goto assign_new_owner; 608 } 609 610 /* 611 * Search in the siblings 612 */ 613 list_for_each_entry(c, &p->parent->children, sibling) { 614 if (c->mm == mm) 615 goto assign_new_owner; 616 } 617 618 /* 619 * Search through everything else. We should not get 620 * here often 621 */ 622 do_each_thread(g, c) { 623 if (c->mm == mm) 624 goto assign_new_owner; 625 } while_each_thread(g, c); 626 627 read_unlock(&tasklist_lock); 628 /* 629 * We found no owner yet mm_users > 1: this implies that we are 630 * most likely racing with swapoff (try_to_unuse()) or /proc or 631 * ptrace or page migration (get_task_mm()). Mark owner as NULL, 632 * so that subsystems can understand the callback and take action. 633 */ 634 down_write(&mm->mmap_sem); 635 cgroup_mm_owner_callbacks(mm->owner, NULL); 636 mm->owner = NULL; 637 up_write(&mm->mmap_sem); 638 return; 639 640 assign_new_owner: 641 BUG_ON(c == p); 642 get_task_struct(c); 643 /* 644 * The task_lock protects c->mm from changing. 645 * We always want mm->owner->mm == mm 646 */ 647 task_lock(c); 648 /* 649 * Delay read_unlock() till we have the task_lock() 650 * to ensure that c does not slip away underneath us 651 */ 652 read_unlock(&tasklist_lock); 653 if (c->mm != mm) { 654 task_unlock(c); 655 put_task_struct(c); 656 goto retry; 657 } 658 cgroup_mm_owner_callbacks(mm->owner, c); 659 mm->owner = c; 660 task_unlock(c); 661 put_task_struct(c); 662 } 663 #endif /* CONFIG_MM_OWNER */ 664 665 /* 666 * Turn us into a lazy TLB process if we 667 * aren't already.. 668 */ 669 static void exit_mm(struct task_struct * tsk) 670 { 671 struct mm_struct *mm = tsk->mm; 672 struct core_state *core_state; 673 674 mm_release(tsk, mm); 675 if (!mm) 676 return; 677 /* 678 * Serialize with any possible pending coredump. 679 * We must hold mmap_sem around checking core_state 680 * and clearing tsk->mm. The core-inducing thread 681 * will increment ->nr_threads for each thread in the 682 * group with ->mm != NULL. 683 */ 684 down_read(&mm->mmap_sem); 685 core_state = mm->core_state; 686 if (core_state) { 687 struct core_thread self; 688 up_read(&mm->mmap_sem); 689 690 self.task = tsk; 691 self.next = xchg(&core_state->dumper.next, &self); 692 /* 693 * Implies mb(), the result of xchg() must be visible 694 * to core_state->dumper. 695 */ 696 if (atomic_dec_and_test(&core_state->nr_threads)) 697 complete(&core_state->startup); 698 699 for (;;) { 700 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 701 if (!self.task) /* see coredump_finish() */ 702 break; 703 schedule(); 704 } 705 __set_task_state(tsk, TASK_RUNNING); 706 down_read(&mm->mmap_sem); 707 } 708 atomic_inc(&mm->mm_count); 709 BUG_ON(mm != tsk->active_mm); 710 /* more a memory barrier than a real lock */ 711 task_lock(tsk); 712 tsk->mm = NULL; 713 up_read(&mm->mmap_sem); 714 enter_lazy_tlb(mm, current); 715 /* We don't want this task to be frozen prematurely */ 716 clear_freeze_flag(tsk); 717 task_unlock(tsk); 718 mm_update_next_owner(mm); 719 mmput(mm); 720 } 721 722 /* 723 * Return nonzero if @parent's children should reap themselves. 724 * 725 * Called with write_lock_irq(&tasklist_lock) held. 726 */ 727 static int ignoring_children(struct task_struct *parent) 728 { 729 int ret; 730 struct sighand_struct *psig = parent->sighand; 731 unsigned long flags; 732 spin_lock_irqsave(&psig->siglock, flags); 733 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 734 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT)); 735 spin_unlock_irqrestore(&psig->siglock, flags); 736 return ret; 737 } 738 739 /* 740 * Detach all tasks we were using ptrace on. 741 * Any that need to be release_task'd are put on the @dead list. 742 * 743 * Called with write_lock(&tasklist_lock) held. 744 */ 745 static void ptrace_exit(struct task_struct *parent, struct list_head *dead) 746 { 747 struct task_struct *p, *n; 748 int ign = -1; 749 750 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) { 751 __ptrace_unlink(p); 752 753 if (p->exit_state != EXIT_ZOMBIE) 754 continue; 755 756 /* 757 * If it's a zombie, our attachedness prevented normal 758 * parent notification or self-reaping. Do notification 759 * now if it would have happened earlier. If it should 760 * reap itself, add it to the @dead list. We can't call 761 * release_task() here because we already hold tasklist_lock. 762 * 763 * If it's our own child, there is no notification to do. 764 * But if our normal children self-reap, then this child 765 * was prevented by ptrace and we must reap it now. 766 */ 767 if (!task_detached(p) && thread_group_empty(p)) { 768 if (!same_thread_group(p->real_parent, parent)) 769 do_notify_parent(p, p->exit_signal); 770 else { 771 if (ign < 0) 772 ign = ignoring_children(parent); 773 if (ign) 774 p->exit_signal = -1; 775 } 776 } 777 778 if (task_detached(p)) { 779 /* 780 * Mark it as in the process of being reaped. 781 */ 782 p->exit_state = EXIT_DEAD; 783 list_add(&p->ptrace_entry, dead); 784 } 785 } 786 } 787 788 /* 789 * Finish up exit-time ptrace cleanup. 790 * 791 * Called without locks. 792 */ 793 static void ptrace_exit_finish(struct task_struct *parent, 794 struct list_head *dead) 795 { 796 struct task_struct *p, *n; 797 798 BUG_ON(!list_empty(&parent->ptraced)); 799 800 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 801 list_del_init(&p->ptrace_entry); 802 release_task(p); 803 } 804 } 805 806 static void reparent_thread(struct task_struct *p, struct task_struct *father) 807 { 808 if (p->pdeath_signal) 809 /* We already hold the tasklist_lock here. */ 810 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 811 812 list_move_tail(&p->sibling, &p->real_parent->children); 813 814 /* If this is a threaded reparent there is no need to 815 * notify anyone anything has happened. 816 */ 817 if (same_thread_group(p->real_parent, father)) 818 return; 819 820 /* We don't want people slaying init. */ 821 if (!task_detached(p)) 822 p->exit_signal = SIGCHLD; 823 824 /* If we'd notified the old parent about this child's death, 825 * also notify the new parent. 826 */ 827 if (!ptrace_reparented(p) && 828 p->exit_state == EXIT_ZOMBIE && 829 !task_detached(p) && thread_group_empty(p)) 830 do_notify_parent(p, p->exit_signal); 831 832 kill_orphaned_pgrp(p, father); 833 } 834 835 /* 836 * When we die, we re-parent all our children. 837 * Try to give them to another thread in our thread 838 * group, and if no such member exists, give it to 839 * the child reaper process (ie "init") in our pid 840 * space. 841 */ 842 static struct task_struct *find_new_reaper(struct task_struct *father) 843 { 844 struct pid_namespace *pid_ns = task_active_pid_ns(father); 845 struct task_struct *thread; 846 847 thread = father; 848 while_each_thread(father, thread) { 849 if (thread->flags & PF_EXITING) 850 continue; 851 if (unlikely(pid_ns->child_reaper == father)) 852 pid_ns->child_reaper = thread; 853 return thread; 854 } 855 856 if (unlikely(pid_ns->child_reaper == father)) { 857 write_unlock_irq(&tasklist_lock); 858 if (unlikely(pid_ns == &init_pid_ns)) 859 panic("Attempted to kill init!"); 860 861 zap_pid_ns_processes(pid_ns); 862 write_lock_irq(&tasklist_lock); 863 /* 864 * We can not clear ->child_reaper or leave it alone. 865 * There may by stealth EXIT_DEAD tasks on ->children, 866 * forget_original_parent() must move them somewhere. 867 */ 868 pid_ns->child_reaper = init_pid_ns.child_reaper; 869 } 870 871 return pid_ns->child_reaper; 872 } 873 874 static void forget_original_parent(struct task_struct *father) 875 { 876 struct task_struct *p, *n, *reaper; 877 LIST_HEAD(ptrace_dead); 878 879 write_lock_irq(&tasklist_lock); 880 reaper = find_new_reaper(father); 881 /* 882 * First clean up ptrace if we were using it. 883 */ 884 ptrace_exit(father, &ptrace_dead); 885 886 list_for_each_entry_safe(p, n, &father->children, sibling) { 887 p->real_parent = reaper; 888 if (p->parent == father) { 889 BUG_ON(p->ptrace); 890 p->parent = p->real_parent; 891 } 892 reparent_thread(p, father); 893 } 894 895 write_unlock_irq(&tasklist_lock); 896 BUG_ON(!list_empty(&father->children)); 897 898 ptrace_exit_finish(father, &ptrace_dead); 899 } 900 901 /* 902 * Send signals to all our closest relatives so that they know 903 * to properly mourn us.. 904 */ 905 static void exit_notify(struct task_struct *tsk, int group_dead) 906 { 907 int signal; 908 void *cookie; 909 910 /* 911 * This does two things: 912 * 913 * A. Make init inherit all the child processes 914 * B. Check to see if any process groups have become orphaned 915 * as a result of our exiting, and if they have any stopped 916 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 917 */ 918 forget_original_parent(tsk); 919 exit_task_namespaces(tsk); 920 921 write_lock_irq(&tasklist_lock); 922 if (group_dead) 923 kill_orphaned_pgrp(tsk->group_leader, NULL); 924 925 /* Let father know we died 926 * 927 * Thread signals are configurable, but you aren't going to use 928 * that to send signals to arbitary processes. 929 * That stops right now. 930 * 931 * If the parent exec id doesn't match the exec id we saved 932 * when we started then we know the parent has changed security 933 * domain. 934 * 935 * If our self_exec id doesn't match our parent_exec_id then 936 * we have changed execution domain as these two values started 937 * the same after a fork. 938 */ 939 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 940 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 941 tsk->self_exec_id != tsk->parent_exec_id) && 942 !capable(CAP_KILL)) 943 tsk->exit_signal = SIGCHLD; 944 945 signal = tracehook_notify_death(tsk, &cookie, group_dead); 946 if (signal >= 0) 947 signal = do_notify_parent(tsk, signal); 948 949 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 950 951 /* mt-exec, de_thread() is waiting for us */ 952 if (thread_group_leader(tsk) && 953 tsk->signal->group_exit_task && 954 tsk->signal->notify_count < 0) 955 wake_up_process(tsk->signal->group_exit_task); 956 957 write_unlock_irq(&tasklist_lock); 958 959 tracehook_report_death(tsk, signal, cookie, group_dead); 960 961 /* If the process is dead, release it - nobody will wait for it */ 962 if (signal == DEATH_REAP) 963 release_task(tsk); 964 } 965 966 #ifdef CONFIG_DEBUG_STACK_USAGE 967 static void check_stack_usage(void) 968 { 969 static DEFINE_SPINLOCK(low_water_lock); 970 static int lowest_to_date = THREAD_SIZE; 971 unsigned long *n = end_of_stack(current); 972 unsigned long free; 973 974 while (*n == 0) 975 n++; 976 free = (unsigned long)n - (unsigned long)end_of_stack(current); 977 978 if (free >= lowest_to_date) 979 return; 980 981 spin_lock(&low_water_lock); 982 if (free < lowest_to_date) { 983 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 984 "left\n", 985 current->comm, free); 986 lowest_to_date = free; 987 } 988 spin_unlock(&low_water_lock); 989 } 990 #else 991 static inline void check_stack_usage(void) {} 992 #endif 993 994 NORET_TYPE void do_exit(long code) 995 { 996 struct task_struct *tsk = current; 997 int group_dead; 998 999 profile_task_exit(tsk); 1000 1001 WARN_ON(atomic_read(&tsk->fs_excl)); 1002 1003 if (unlikely(in_interrupt())) 1004 panic("Aiee, killing interrupt handler!"); 1005 if (unlikely(!tsk->pid)) 1006 panic("Attempted to kill the idle task!"); 1007 1008 tracehook_report_exit(&code); 1009 1010 /* 1011 * We're taking recursive faults here in do_exit. Safest is to just 1012 * leave this task alone and wait for reboot. 1013 */ 1014 if (unlikely(tsk->flags & PF_EXITING)) { 1015 printk(KERN_ALERT 1016 "Fixing recursive fault but reboot is needed!\n"); 1017 /* 1018 * We can do this unlocked here. The futex code uses 1019 * this flag just to verify whether the pi state 1020 * cleanup has been done or not. In the worst case it 1021 * loops once more. We pretend that the cleanup was 1022 * done as there is no way to return. Either the 1023 * OWNER_DIED bit is set by now or we push the blocked 1024 * task into the wait for ever nirwana as well. 1025 */ 1026 tsk->flags |= PF_EXITPIDONE; 1027 if (tsk->io_context) 1028 exit_io_context(); 1029 set_current_state(TASK_UNINTERRUPTIBLE); 1030 schedule(); 1031 } 1032 1033 exit_signals(tsk); /* sets PF_EXITING */ 1034 /* 1035 * tsk->flags are checked in the futex code to protect against 1036 * an exiting task cleaning up the robust pi futexes. 1037 */ 1038 smp_mb(); 1039 spin_unlock_wait(&tsk->pi_lock); 1040 1041 if (unlikely(in_atomic())) 1042 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 1043 current->comm, task_pid_nr(current), 1044 preempt_count()); 1045 1046 acct_update_integrals(tsk); 1047 if (tsk->mm) { 1048 update_hiwater_rss(tsk->mm); 1049 update_hiwater_vm(tsk->mm); 1050 } 1051 group_dead = atomic_dec_and_test(&tsk->signal->live); 1052 if (group_dead) { 1053 hrtimer_cancel(&tsk->signal->real_timer); 1054 exit_itimers(tsk->signal); 1055 } 1056 acct_collect(code, group_dead); 1057 #ifdef CONFIG_FUTEX 1058 if (unlikely(tsk->robust_list)) 1059 exit_robust_list(tsk); 1060 #ifdef CONFIG_COMPAT 1061 if (unlikely(tsk->compat_robust_list)) 1062 compat_exit_robust_list(tsk); 1063 #endif 1064 #endif 1065 if (group_dead) 1066 tty_audit_exit(); 1067 if (unlikely(tsk->audit_context)) 1068 audit_free(tsk); 1069 1070 tsk->exit_code = code; 1071 taskstats_exit(tsk, group_dead); 1072 1073 exit_mm(tsk); 1074 1075 if (group_dead) 1076 acct_process(); 1077 exit_sem(tsk); 1078 exit_files(tsk); 1079 exit_fs(tsk); 1080 check_stack_usage(); 1081 exit_thread(); 1082 cgroup_exit(tsk, 1); 1083 exit_keys(tsk); 1084 1085 if (group_dead && tsk->signal->leader) 1086 disassociate_ctty(1); 1087 1088 module_put(task_thread_info(tsk)->exec_domain->module); 1089 if (tsk->binfmt) 1090 module_put(tsk->binfmt->module); 1091 1092 proc_exit_connector(tsk); 1093 exit_notify(tsk, group_dead); 1094 #ifdef CONFIG_NUMA 1095 mpol_put(tsk->mempolicy); 1096 tsk->mempolicy = NULL; 1097 #endif 1098 #ifdef CONFIG_FUTEX 1099 /* 1100 * This must happen late, after the PID is not 1101 * hashed anymore: 1102 */ 1103 if (unlikely(!list_empty(&tsk->pi_state_list))) 1104 exit_pi_state_list(tsk); 1105 if (unlikely(current->pi_state_cache)) 1106 kfree(current->pi_state_cache); 1107 #endif 1108 /* 1109 * Make sure we are holding no locks: 1110 */ 1111 debug_check_no_locks_held(tsk); 1112 /* 1113 * We can do this unlocked here. The futex code uses this flag 1114 * just to verify whether the pi state cleanup has been done 1115 * or not. In the worst case it loops once more. 1116 */ 1117 tsk->flags |= PF_EXITPIDONE; 1118 1119 if (tsk->io_context) 1120 exit_io_context(); 1121 1122 if (tsk->splice_pipe) 1123 __free_pipe_info(tsk->splice_pipe); 1124 1125 preempt_disable(); 1126 /* causes final put_task_struct in finish_task_switch(). */ 1127 tsk->state = TASK_DEAD; 1128 1129 schedule(); 1130 BUG(); 1131 /* Avoid "noreturn function does return". */ 1132 for (;;) 1133 cpu_relax(); /* For when BUG is null */ 1134 } 1135 1136 EXPORT_SYMBOL_GPL(do_exit); 1137 1138 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1139 { 1140 if (comp) 1141 complete(comp); 1142 1143 do_exit(code); 1144 } 1145 1146 EXPORT_SYMBOL(complete_and_exit); 1147 1148 asmlinkage long sys_exit(int error_code) 1149 { 1150 do_exit((error_code&0xff)<<8); 1151 } 1152 1153 /* 1154 * Take down every thread in the group. This is called by fatal signals 1155 * as well as by sys_exit_group (below). 1156 */ 1157 NORET_TYPE void 1158 do_group_exit(int exit_code) 1159 { 1160 struct signal_struct *sig = current->signal; 1161 1162 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1163 1164 if (signal_group_exit(sig)) 1165 exit_code = sig->group_exit_code; 1166 else if (!thread_group_empty(current)) { 1167 struct sighand_struct *const sighand = current->sighand; 1168 spin_lock_irq(&sighand->siglock); 1169 if (signal_group_exit(sig)) 1170 /* Another thread got here before we took the lock. */ 1171 exit_code = sig->group_exit_code; 1172 else { 1173 sig->group_exit_code = exit_code; 1174 sig->flags = SIGNAL_GROUP_EXIT; 1175 zap_other_threads(current); 1176 } 1177 spin_unlock_irq(&sighand->siglock); 1178 } 1179 1180 do_exit(exit_code); 1181 /* NOTREACHED */ 1182 } 1183 1184 /* 1185 * this kills every thread in the thread group. Note that any externally 1186 * wait4()-ing process will get the correct exit code - even if this 1187 * thread is not the thread group leader. 1188 */ 1189 asmlinkage void sys_exit_group(int error_code) 1190 { 1191 do_group_exit((error_code & 0xff) << 8); 1192 } 1193 1194 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1195 { 1196 struct pid *pid = NULL; 1197 if (type == PIDTYPE_PID) 1198 pid = task->pids[type].pid; 1199 else if (type < PIDTYPE_MAX) 1200 pid = task->group_leader->pids[type].pid; 1201 return pid; 1202 } 1203 1204 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1205 struct task_struct *p) 1206 { 1207 int err; 1208 1209 if (type < PIDTYPE_MAX) { 1210 if (task_pid_type(p, type) != pid) 1211 return 0; 1212 } 1213 1214 /* Wait for all children (clone and not) if __WALL is set; 1215 * otherwise, wait for clone children *only* if __WCLONE is 1216 * set; otherwise, wait for non-clone children *only*. (Note: 1217 * A "clone" child here is one that reports to its parent 1218 * using a signal other than SIGCHLD.) */ 1219 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1220 && !(options & __WALL)) 1221 return 0; 1222 1223 err = security_task_wait(p); 1224 if (err) 1225 return err; 1226 1227 return 1; 1228 } 1229 1230 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1231 int why, int status, 1232 struct siginfo __user *infop, 1233 struct rusage __user *rusagep) 1234 { 1235 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1236 1237 put_task_struct(p); 1238 if (!retval) 1239 retval = put_user(SIGCHLD, &infop->si_signo); 1240 if (!retval) 1241 retval = put_user(0, &infop->si_errno); 1242 if (!retval) 1243 retval = put_user((short)why, &infop->si_code); 1244 if (!retval) 1245 retval = put_user(pid, &infop->si_pid); 1246 if (!retval) 1247 retval = put_user(uid, &infop->si_uid); 1248 if (!retval) 1249 retval = put_user(status, &infop->si_status); 1250 if (!retval) 1251 retval = pid; 1252 return retval; 1253 } 1254 1255 /* 1256 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1257 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1258 * the lock and this task is uninteresting. If we return nonzero, we have 1259 * released the lock and the system call should return. 1260 */ 1261 static int wait_task_zombie(struct task_struct *p, int options, 1262 struct siginfo __user *infop, 1263 int __user *stat_addr, struct rusage __user *ru) 1264 { 1265 unsigned long state; 1266 int retval, status, traced; 1267 pid_t pid = task_pid_vnr(p); 1268 1269 if (!likely(options & WEXITED)) 1270 return 0; 1271 1272 if (unlikely(options & WNOWAIT)) { 1273 uid_t uid = p->uid; 1274 int exit_code = p->exit_code; 1275 int why, status; 1276 1277 get_task_struct(p); 1278 read_unlock(&tasklist_lock); 1279 if ((exit_code & 0x7f) == 0) { 1280 why = CLD_EXITED; 1281 status = exit_code >> 8; 1282 } else { 1283 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1284 status = exit_code & 0x7f; 1285 } 1286 return wait_noreap_copyout(p, pid, uid, why, 1287 status, infop, ru); 1288 } 1289 1290 /* 1291 * Try to move the task's state to DEAD 1292 * only one thread is allowed to do this: 1293 */ 1294 state = xchg(&p->exit_state, EXIT_DEAD); 1295 if (state != EXIT_ZOMBIE) { 1296 BUG_ON(state != EXIT_DEAD); 1297 return 0; 1298 } 1299 1300 traced = ptrace_reparented(p); 1301 1302 if (likely(!traced)) { 1303 struct signal_struct *psig; 1304 struct signal_struct *sig; 1305 1306 /* 1307 * The resource counters for the group leader are in its 1308 * own task_struct. Those for dead threads in the group 1309 * are in its signal_struct, as are those for the child 1310 * processes it has previously reaped. All these 1311 * accumulate in the parent's signal_struct c* fields. 1312 * 1313 * We don't bother to take a lock here to protect these 1314 * p->signal fields, because they are only touched by 1315 * __exit_signal, which runs with tasklist_lock 1316 * write-locked anyway, and so is excluded here. We do 1317 * need to protect the access to p->parent->signal fields, 1318 * as other threads in the parent group can be right 1319 * here reaping other children at the same time. 1320 */ 1321 spin_lock_irq(&p->parent->sighand->siglock); 1322 psig = p->parent->signal; 1323 sig = p->signal; 1324 psig->cutime = 1325 cputime_add(psig->cutime, 1326 cputime_add(p->utime, 1327 cputime_add(sig->utime, 1328 sig->cutime))); 1329 psig->cstime = 1330 cputime_add(psig->cstime, 1331 cputime_add(p->stime, 1332 cputime_add(sig->stime, 1333 sig->cstime))); 1334 psig->cgtime = 1335 cputime_add(psig->cgtime, 1336 cputime_add(p->gtime, 1337 cputime_add(sig->gtime, 1338 sig->cgtime))); 1339 psig->cmin_flt += 1340 p->min_flt + sig->min_flt + sig->cmin_flt; 1341 psig->cmaj_flt += 1342 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1343 psig->cnvcsw += 1344 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1345 psig->cnivcsw += 1346 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1347 psig->cinblock += 1348 task_io_get_inblock(p) + 1349 sig->inblock + sig->cinblock; 1350 psig->coublock += 1351 task_io_get_oublock(p) + 1352 sig->oublock + sig->coublock; 1353 task_io_accounting_add(&psig->ioac, &p->ioac); 1354 task_io_accounting_add(&psig->ioac, &sig->ioac); 1355 spin_unlock_irq(&p->parent->sighand->siglock); 1356 } 1357 1358 /* 1359 * Now we are sure this task is interesting, and no other 1360 * thread can reap it because we set its state to EXIT_DEAD. 1361 */ 1362 read_unlock(&tasklist_lock); 1363 1364 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1365 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1366 ? p->signal->group_exit_code : p->exit_code; 1367 if (!retval && stat_addr) 1368 retval = put_user(status, stat_addr); 1369 if (!retval && infop) 1370 retval = put_user(SIGCHLD, &infop->si_signo); 1371 if (!retval && infop) 1372 retval = put_user(0, &infop->si_errno); 1373 if (!retval && infop) { 1374 int why; 1375 1376 if ((status & 0x7f) == 0) { 1377 why = CLD_EXITED; 1378 status >>= 8; 1379 } else { 1380 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1381 status &= 0x7f; 1382 } 1383 retval = put_user((short)why, &infop->si_code); 1384 if (!retval) 1385 retval = put_user(status, &infop->si_status); 1386 } 1387 if (!retval && infop) 1388 retval = put_user(pid, &infop->si_pid); 1389 if (!retval && infop) 1390 retval = put_user(p->uid, &infop->si_uid); 1391 if (!retval) 1392 retval = pid; 1393 1394 if (traced) { 1395 write_lock_irq(&tasklist_lock); 1396 /* We dropped tasklist, ptracer could die and untrace */ 1397 ptrace_unlink(p); 1398 /* 1399 * If this is not a detached task, notify the parent. 1400 * If it's still not detached after that, don't release 1401 * it now. 1402 */ 1403 if (!task_detached(p)) { 1404 do_notify_parent(p, p->exit_signal); 1405 if (!task_detached(p)) { 1406 p->exit_state = EXIT_ZOMBIE; 1407 p = NULL; 1408 } 1409 } 1410 write_unlock_irq(&tasklist_lock); 1411 } 1412 if (p != NULL) 1413 release_task(p); 1414 1415 return retval; 1416 } 1417 1418 /* 1419 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1420 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1421 * the lock and this task is uninteresting. If we return nonzero, we have 1422 * released the lock and the system call should return. 1423 */ 1424 static int wait_task_stopped(int ptrace, struct task_struct *p, 1425 int options, struct siginfo __user *infop, 1426 int __user *stat_addr, struct rusage __user *ru) 1427 { 1428 int retval, exit_code, why; 1429 uid_t uid = 0; /* unneeded, required by compiler */ 1430 pid_t pid; 1431 1432 if (!(options & WUNTRACED)) 1433 return 0; 1434 1435 exit_code = 0; 1436 spin_lock_irq(&p->sighand->siglock); 1437 1438 if (unlikely(!task_is_stopped_or_traced(p))) 1439 goto unlock_sig; 1440 1441 if (!ptrace && p->signal->group_stop_count > 0) 1442 /* 1443 * A group stop is in progress and this is the group leader. 1444 * We won't report until all threads have stopped. 1445 */ 1446 goto unlock_sig; 1447 1448 exit_code = p->exit_code; 1449 if (!exit_code) 1450 goto unlock_sig; 1451 1452 if (!unlikely(options & WNOWAIT)) 1453 p->exit_code = 0; 1454 1455 uid = p->uid; 1456 unlock_sig: 1457 spin_unlock_irq(&p->sighand->siglock); 1458 if (!exit_code) 1459 return 0; 1460 1461 /* 1462 * Now we are pretty sure this task is interesting. 1463 * Make sure it doesn't get reaped out from under us while we 1464 * give up the lock and then examine it below. We don't want to 1465 * keep holding onto the tasklist_lock while we call getrusage and 1466 * possibly take page faults for user memory. 1467 */ 1468 get_task_struct(p); 1469 pid = task_pid_vnr(p); 1470 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1471 read_unlock(&tasklist_lock); 1472 1473 if (unlikely(options & WNOWAIT)) 1474 return wait_noreap_copyout(p, pid, uid, 1475 why, exit_code, 1476 infop, ru); 1477 1478 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1479 if (!retval && stat_addr) 1480 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1481 if (!retval && infop) 1482 retval = put_user(SIGCHLD, &infop->si_signo); 1483 if (!retval && infop) 1484 retval = put_user(0, &infop->si_errno); 1485 if (!retval && infop) 1486 retval = put_user((short)why, &infop->si_code); 1487 if (!retval && infop) 1488 retval = put_user(exit_code, &infop->si_status); 1489 if (!retval && infop) 1490 retval = put_user(pid, &infop->si_pid); 1491 if (!retval && infop) 1492 retval = put_user(uid, &infop->si_uid); 1493 if (!retval) 1494 retval = pid; 1495 put_task_struct(p); 1496 1497 BUG_ON(!retval); 1498 return retval; 1499 } 1500 1501 /* 1502 * Handle do_wait work for one task in a live, non-stopped state. 1503 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1504 * the lock and this task is uninteresting. If we return nonzero, we have 1505 * released the lock and the system call should return. 1506 */ 1507 static int wait_task_continued(struct task_struct *p, int options, 1508 struct siginfo __user *infop, 1509 int __user *stat_addr, struct rusage __user *ru) 1510 { 1511 int retval; 1512 pid_t pid; 1513 uid_t uid; 1514 1515 if (!unlikely(options & WCONTINUED)) 1516 return 0; 1517 1518 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1519 return 0; 1520 1521 spin_lock_irq(&p->sighand->siglock); 1522 /* Re-check with the lock held. */ 1523 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1524 spin_unlock_irq(&p->sighand->siglock); 1525 return 0; 1526 } 1527 if (!unlikely(options & WNOWAIT)) 1528 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1529 spin_unlock_irq(&p->sighand->siglock); 1530 1531 pid = task_pid_vnr(p); 1532 uid = p->uid; 1533 get_task_struct(p); 1534 read_unlock(&tasklist_lock); 1535 1536 if (!infop) { 1537 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1538 put_task_struct(p); 1539 if (!retval && stat_addr) 1540 retval = put_user(0xffff, stat_addr); 1541 if (!retval) 1542 retval = pid; 1543 } else { 1544 retval = wait_noreap_copyout(p, pid, uid, 1545 CLD_CONTINUED, SIGCONT, 1546 infop, ru); 1547 BUG_ON(retval == 0); 1548 } 1549 1550 return retval; 1551 } 1552 1553 /* 1554 * Consider @p for a wait by @parent. 1555 * 1556 * -ECHILD should be in *@notask_error before the first call. 1557 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1558 * Returns zero if the search for a child should continue; 1559 * then *@notask_error is 0 if @p is an eligible child, 1560 * or another error from security_task_wait(), or still -ECHILD. 1561 */ 1562 static int wait_consider_task(struct task_struct *parent, int ptrace, 1563 struct task_struct *p, int *notask_error, 1564 enum pid_type type, struct pid *pid, int options, 1565 struct siginfo __user *infop, 1566 int __user *stat_addr, struct rusage __user *ru) 1567 { 1568 int ret = eligible_child(type, pid, options, p); 1569 if (!ret) 1570 return ret; 1571 1572 if (unlikely(ret < 0)) { 1573 /* 1574 * If we have not yet seen any eligible child, 1575 * then let this error code replace -ECHILD. 1576 * A permission error will give the user a clue 1577 * to look for security policy problems, rather 1578 * than for mysterious wait bugs. 1579 */ 1580 if (*notask_error) 1581 *notask_error = ret; 1582 } 1583 1584 if (likely(!ptrace) && unlikely(p->ptrace)) { 1585 /* 1586 * This child is hidden by ptrace. 1587 * We aren't allowed to see it now, but eventually we will. 1588 */ 1589 *notask_error = 0; 1590 return 0; 1591 } 1592 1593 if (p->exit_state == EXIT_DEAD) 1594 return 0; 1595 1596 /* 1597 * We don't reap group leaders with subthreads. 1598 */ 1599 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1600 return wait_task_zombie(p, options, infop, stat_addr, ru); 1601 1602 /* 1603 * It's stopped or running now, so it might 1604 * later continue, exit, or stop again. 1605 */ 1606 *notask_error = 0; 1607 1608 if (task_is_stopped_or_traced(p)) 1609 return wait_task_stopped(ptrace, p, options, 1610 infop, stat_addr, ru); 1611 1612 return wait_task_continued(p, options, infop, stat_addr, ru); 1613 } 1614 1615 /* 1616 * Do the work of do_wait() for one thread in the group, @tsk. 1617 * 1618 * -ECHILD should be in *@notask_error before the first call. 1619 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1620 * Returns zero if the search for a child should continue; then 1621 * *@notask_error is 0 if there were any eligible children, 1622 * or another error from security_task_wait(), or still -ECHILD. 1623 */ 1624 static int do_wait_thread(struct task_struct *tsk, int *notask_error, 1625 enum pid_type type, struct pid *pid, int options, 1626 struct siginfo __user *infop, int __user *stat_addr, 1627 struct rusage __user *ru) 1628 { 1629 struct task_struct *p; 1630 1631 list_for_each_entry(p, &tsk->children, sibling) { 1632 /* 1633 * Do not consider detached threads. 1634 */ 1635 if (!task_detached(p)) { 1636 int ret = wait_consider_task(tsk, 0, p, notask_error, 1637 type, pid, options, 1638 infop, stat_addr, ru); 1639 if (ret) 1640 return ret; 1641 } 1642 } 1643 1644 return 0; 1645 } 1646 1647 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, 1648 enum pid_type type, struct pid *pid, int options, 1649 struct siginfo __user *infop, int __user *stat_addr, 1650 struct rusage __user *ru) 1651 { 1652 struct task_struct *p; 1653 1654 /* 1655 * Traditionally we see ptrace'd stopped tasks regardless of options. 1656 */ 1657 options |= WUNTRACED; 1658 1659 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1660 int ret = wait_consider_task(tsk, 1, p, notask_error, 1661 type, pid, options, 1662 infop, stat_addr, ru); 1663 if (ret) 1664 return ret; 1665 } 1666 1667 return 0; 1668 } 1669 1670 static long do_wait(enum pid_type type, struct pid *pid, int options, 1671 struct siginfo __user *infop, int __user *stat_addr, 1672 struct rusage __user *ru) 1673 { 1674 DECLARE_WAITQUEUE(wait, current); 1675 struct task_struct *tsk; 1676 int retval; 1677 1678 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1679 repeat: 1680 /* 1681 * If there is nothing that can match our critiera just get out. 1682 * We will clear @retval to zero if we see any child that might later 1683 * match our criteria, even if we are not able to reap it yet. 1684 */ 1685 retval = -ECHILD; 1686 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1687 goto end; 1688 1689 current->state = TASK_INTERRUPTIBLE; 1690 read_lock(&tasklist_lock); 1691 tsk = current; 1692 do { 1693 int tsk_result = do_wait_thread(tsk, &retval, 1694 type, pid, options, 1695 infop, stat_addr, ru); 1696 if (!tsk_result) 1697 tsk_result = ptrace_do_wait(tsk, &retval, 1698 type, pid, options, 1699 infop, stat_addr, ru); 1700 if (tsk_result) { 1701 /* 1702 * tasklist_lock is unlocked and we have a final result. 1703 */ 1704 retval = tsk_result; 1705 goto end; 1706 } 1707 1708 if (options & __WNOTHREAD) 1709 break; 1710 tsk = next_thread(tsk); 1711 BUG_ON(tsk->signal != current->signal); 1712 } while (tsk != current); 1713 read_unlock(&tasklist_lock); 1714 1715 if (!retval && !(options & WNOHANG)) { 1716 retval = -ERESTARTSYS; 1717 if (!signal_pending(current)) { 1718 schedule(); 1719 goto repeat; 1720 } 1721 } 1722 1723 end: 1724 current->state = TASK_RUNNING; 1725 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1726 if (infop) { 1727 if (retval > 0) 1728 retval = 0; 1729 else { 1730 /* 1731 * For a WNOHANG return, clear out all the fields 1732 * we would set so the user can easily tell the 1733 * difference. 1734 */ 1735 if (!retval) 1736 retval = put_user(0, &infop->si_signo); 1737 if (!retval) 1738 retval = put_user(0, &infop->si_errno); 1739 if (!retval) 1740 retval = put_user(0, &infop->si_code); 1741 if (!retval) 1742 retval = put_user(0, &infop->si_pid); 1743 if (!retval) 1744 retval = put_user(0, &infop->si_uid); 1745 if (!retval) 1746 retval = put_user(0, &infop->si_status); 1747 } 1748 } 1749 return retval; 1750 } 1751 1752 asmlinkage long sys_waitid(int which, pid_t upid, 1753 struct siginfo __user *infop, int options, 1754 struct rusage __user *ru) 1755 { 1756 struct pid *pid = NULL; 1757 enum pid_type type; 1758 long ret; 1759 1760 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1761 return -EINVAL; 1762 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1763 return -EINVAL; 1764 1765 switch (which) { 1766 case P_ALL: 1767 type = PIDTYPE_MAX; 1768 break; 1769 case P_PID: 1770 type = PIDTYPE_PID; 1771 if (upid <= 0) 1772 return -EINVAL; 1773 break; 1774 case P_PGID: 1775 type = PIDTYPE_PGID; 1776 if (upid <= 0) 1777 return -EINVAL; 1778 break; 1779 default: 1780 return -EINVAL; 1781 } 1782 1783 if (type < PIDTYPE_MAX) 1784 pid = find_get_pid(upid); 1785 ret = do_wait(type, pid, options, infop, NULL, ru); 1786 put_pid(pid); 1787 1788 /* avoid REGPARM breakage on x86: */ 1789 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1790 return ret; 1791 } 1792 1793 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, 1794 int options, struct rusage __user *ru) 1795 { 1796 struct pid *pid = NULL; 1797 enum pid_type type; 1798 long ret; 1799 1800 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1801 __WNOTHREAD|__WCLONE|__WALL)) 1802 return -EINVAL; 1803 1804 if (upid == -1) 1805 type = PIDTYPE_MAX; 1806 else if (upid < 0) { 1807 type = PIDTYPE_PGID; 1808 pid = find_get_pid(-upid); 1809 } else if (upid == 0) { 1810 type = PIDTYPE_PGID; 1811 pid = get_pid(task_pgrp(current)); 1812 } else /* upid > 0 */ { 1813 type = PIDTYPE_PID; 1814 pid = find_get_pid(upid); 1815 } 1816 1817 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1818 put_pid(pid); 1819 1820 /* avoid REGPARM breakage on x86: */ 1821 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1822 return ret; 1823 } 1824 1825 #ifdef __ARCH_WANT_SYS_WAITPID 1826 1827 /* 1828 * sys_waitpid() remains for compatibility. waitpid() should be 1829 * implemented by calling sys_wait4() from libc.a. 1830 */ 1831 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1832 { 1833 return sys_wait4(pid, stat_addr, options, NULL); 1834 } 1835 1836 #endif 1837