xref: /openbmc/linux/kernel/exit.c (revision 367b8112)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
50 #include <trace/sched.h>
51 
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 
57 static void exit_mm(struct task_struct * tsk);
58 
59 static inline int task_detached(struct task_struct *p)
60 {
61 	return p->exit_signal == -1;
62 }
63 
64 static void __unhash_process(struct task_struct *p)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (thread_group_leader(p)) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		__get_cpu_var(process_counts)--;
74 	}
75 	list_del_rcu(&p->thread_group);
76 	list_del_init(&p->sibling);
77 }
78 
79 /*
80  * This function expects the tasklist_lock write-locked.
81  */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 	struct signal_struct *sig = tsk->signal;
85 	struct sighand_struct *sighand;
86 
87 	BUG_ON(!sig);
88 	BUG_ON(!atomic_read(&sig->count));
89 
90 	sighand = rcu_dereference(tsk->sighand);
91 	spin_lock(&sighand->siglock);
92 
93 	posix_cpu_timers_exit(tsk);
94 	if (atomic_dec_and_test(&sig->count))
95 		posix_cpu_timers_exit_group(tsk);
96 	else {
97 		/*
98 		 * If there is any task waiting for the group exit
99 		 * then notify it:
100 		 */
101 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
102 			wake_up_process(sig->group_exit_task);
103 
104 		if (tsk == sig->curr_target)
105 			sig->curr_target = next_thread(tsk);
106 		/*
107 		 * Accumulate here the counters for all threads but the
108 		 * group leader as they die, so they can be added into
109 		 * the process-wide totals when those are taken.
110 		 * The group leader stays around as a zombie as long
111 		 * as there are other threads.  When it gets reaped,
112 		 * the exit.c code will add its counts into these totals.
113 		 * We won't ever get here for the group leader, since it
114 		 * will have been the last reference on the signal_struct.
115 		 */
116 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
117 		sig->min_flt += tsk->min_flt;
118 		sig->maj_flt += tsk->maj_flt;
119 		sig->nvcsw += tsk->nvcsw;
120 		sig->nivcsw += tsk->nivcsw;
121 		sig->inblock += task_io_get_inblock(tsk);
122 		sig->oublock += task_io_get_oublock(tsk);
123 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
124 		sig = NULL; /* Marker for below. */
125 	}
126 
127 	__unhash_process(tsk);
128 
129 	/*
130 	 * Do this under ->siglock, we can race with another thread
131 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
132 	 */
133 	flush_sigqueue(&tsk->pending);
134 
135 	tsk->signal = NULL;
136 	tsk->sighand = NULL;
137 	spin_unlock(&sighand->siglock);
138 
139 	__cleanup_sighand(sighand);
140 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
141 	if (sig) {
142 		flush_sigqueue(&sig->shared_pending);
143 		taskstats_tgid_free(sig);
144 		__cleanup_signal(sig);
145 	}
146 }
147 
148 static void delayed_put_task_struct(struct rcu_head *rhp)
149 {
150 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
151 
152 	trace_sched_process_free(tsk);
153 	put_task_struct(tsk);
154 }
155 
156 
157 void release_task(struct task_struct * p)
158 {
159 	struct task_struct *leader;
160 	int zap_leader;
161 repeat:
162 	tracehook_prepare_release_task(p);
163 	atomic_dec(&p->user->processes);
164 	proc_flush_task(p);
165 	write_lock_irq(&tasklist_lock);
166 	tracehook_finish_release_task(p);
167 	__exit_signal(p);
168 
169 	/*
170 	 * If we are the last non-leader member of the thread
171 	 * group, and the leader is zombie, then notify the
172 	 * group leader's parent process. (if it wants notification.)
173 	 */
174 	zap_leader = 0;
175 	leader = p->group_leader;
176 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
177 		BUG_ON(task_detached(leader));
178 		do_notify_parent(leader, leader->exit_signal);
179 		/*
180 		 * If we were the last child thread and the leader has
181 		 * exited already, and the leader's parent ignores SIGCHLD,
182 		 * then we are the one who should release the leader.
183 		 *
184 		 * do_notify_parent() will have marked it self-reaping in
185 		 * that case.
186 		 */
187 		zap_leader = task_detached(leader);
188 
189 		/*
190 		 * This maintains the invariant that release_task()
191 		 * only runs on a task in EXIT_DEAD, just for sanity.
192 		 */
193 		if (zap_leader)
194 			leader->exit_state = EXIT_DEAD;
195 	}
196 
197 	write_unlock_irq(&tasklist_lock);
198 	release_thread(p);
199 	call_rcu(&p->rcu, delayed_put_task_struct);
200 
201 	p = leader;
202 	if (unlikely(zap_leader))
203 		goto repeat;
204 }
205 
206 /*
207  * This checks not only the pgrp, but falls back on the pid if no
208  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
209  * without this...
210  *
211  * The caller must hold rcu lock or the tasklist lock.
212  */
213 struct pid *session_of_pgrp(struct pid *pgrp)
214 {
215 	struct task_struct *p;
216 	struct pid *sid = NULL;
217 
218 	p = pid_task(pgrp, PIDTYPE_PGID);
219 	if (p == NULL)
220 		p = pid_task(pgrp, PIDTYPE_PID);
221 	if (p != NULL)
222 		sid = task_session(p);
223 
224 	return sid;
225 }
226 
227 /*
228  * Determine if a process group is "orphaned", according to the POSIX
229  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
230  * by terminal-generated stop signals.  Newly orphaned process groups are
231  * to receive a SIGHUP and a SIGCONT.
232  *
233  * "I ask you, have you ever known what it is to be an orphan?"
234  */
235 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
236 {
237 	struct task_struct *p;
238 
239 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
240 		if ((p == ignored_task) ||
241 		    (p->exit_state && thread_group_empty(p)) ||
242 		    is_global_init(p->real_parent))
243 			continue;
244 
245 		if (task_pgrp(p->real_parent) != pgrp &&
246 		    task_session(p->real_parent) == task_session(p))
247 			return 0;
248 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
249 
250 	return 1;
251 }
252 
253 int is_current_pgrp_orphaned(void)
254 {
255 	int retval;
256 
257 	read_lock(&tasklist_lock);
258 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
259 	read_unlock(&tasklist_lock);
260 
261 	return retval;
262 }
263 
264 static int has_stopped_jobs(struct pid *pgrp)
265 {
266 	int retval = 0;
267 	struct task_struct *p;
268 
269 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
270 		if (!task_is_stopped(p))
271 			continue;
272 		retval = 1;
273 		break;
274 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
275 	return retval;
276 }
277 
278 /*
279  * Check to see if any process groups have become orphaned as
280  * a result of our exiting, and if they have any stopped jobs,
281  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
282  */
283 static void
284 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
285 {
286 	struct pid *pgrp = task_pgrp(tsk);
287 	struct task_struct *ignored_task = tsk;
288 
289 	if (!parent)
290 		 /* exit: our father is in a different pgrp than
291 		  * we are and we were the only connection outside.
292 		  */
293 		parent = tsk->real_parent;
294 	else
295 		/* reparent: our child is in a different pgrp than
296 		 * we are, and it was the only connection outside.
297 		 */
298 		ignored_task = NULL;
299 
300 	if (task_pgrp(parent) != pgrp &&
301 	    task_session(parent) == task_session(tsk) &&
302 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
303 	    has_stopped_jobs(pgrp)) {
304 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
305 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
306 	}
307 }
308 
309 /**
310  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
311  *
312  * If a kernel thread is launched as a result of a system call, or if
313  * it ever exits, it should generally reparent itself to kthreadd so it
314  * isn't in the way of other processes and is correctly cleaned up on exit.
315  *
316  * The various task state such as scheduling policy and priority may have
317  * been inherited from a user process, so we reset them to sane values here.
318  *
319  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
320  */
321 static void reparent_to_kthreadd(void)
322 {
323 	write_lock_irq(&tasklist_lock);
324 
325 	ptrace_unlink(current);
326 	/* Reparent to init */
327 	current->real_parent = current->parent = kthreadd_task;
328 	list_move_tail(&current->sibling, &current->real_parent->children);
329 
330 	/* Set the exit signal to SIGCHLD so we signal init on exit */
331 	current->exit_signal = SIGCHLD;
332 
333 	if (task_nice(current) < 0)
334 		set_user_nice(current, 0);
335 	/* cpus_allowed? */
336 	/* rt_priority? */
337 	/* signals? */
338 	security_task_reparent_to_init(current);
339 	memcpy(current->signal->rlim, init_task.signal->rlim,
340 	       sizeof(current->signal->rlim));
341 	atomic_inc(&(INIT_USER->__count));
342 	write_unlock_irq(&tasklist_lock);
343 	switch_uid(INIT_USER);
344 }
345 
346 void __set_special_pids(struct pid *pid)
347 {
348 	struct task_struct *curr = current->group_leader;
349 	pid_t nr = pid_nr(pid);
350 
351 	if (task_session(curr) != pid) {
352 		change_pid(curr, PIDTYPE_SID, pid);
353 		set_task_session(curr, nr);
354 	}
355 	if (task_pgrp(curr) != pid) {
356 		change_pid(curr, PIDTYPE_PGID, pid);
357 		set_task_pgrp(curr, nr);
358 	}
359 }
360 
361 static void set_special_pids(struct pid *pid)
362 {
363 	write_lock_irq(&tasklist_lock);
364 	__set_special_pids(pid);
365 	write_unlock_irq(&tasklist_lock);
366 }
367 
368 /*
369  * Let kernel threads use this to say that they
370  * allow a certain signal (since daemonize() will
371  * have disabled all of them by default).
372  */
373 int allow_signal(int sig)
374 {
375 	if (!valid_signal(sig) || sig < 1)
376 		return -EINVAL;
377 
378 	spin_lock_irq(&current->sighand->siglock);
379 	sigdelset(&current->blocked, sig);
380 	if (!current->mm) {
381 		/* Kernel threads handle their own signals.
382 		   Let the signal code know it'll be handled, so
383 		   that they don't get converted to SIGKILL or
384 		   just silently dropped */
385 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
386 	}
387 	recalc_sigpending();
388 	spin_unlock_irq(&current->sighand->siglock);
389 	return 0;
390 }
391 
392 EXPORT_SYMBOL(allow_signal);
393 
394 int disallow_signal(int sig)
395 {
396 	if (!valid_signal(sig) || sig < 1)
397 		return -EINVAL;
398 
399 	spin_lock_irq(&current->sighand->siglock);
400 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
401 	recalc_sigpending();
402 	spin_unlock_irq(&current->sighand->siglock);
403 	return 0;
404 }
405 
406 EXPORT_SYMBOL(disallow_signal);
407 
408 /*
409  *	Put all the gunge required to become a kernel thread without
410  *	attached user resources in one place where it belongs.
411  */
412 
413 void daemonize(const char *name, ...)
414 {
415 	va_list args;
416 	struct fs_struct *fs;
417 	sigset_t blocked;
418 
419 	va_start(args, name);
420 	vsnprintf(current->comm, sizeof(current->comm), name, args);
421 	va_end(args);
422 
423 	/*
424 	 * If we were started as result of loading a module, close all of the
425 	 * user space pages.  We don't need them, and if we didn't close them
426 	 * they would be locked into memory.
427 	 */
428 	exit_mm(current);
429 	/*
430 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
431 	 * or suspend transition begins right now.
432 	 */
433 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
434 
435 	if (current->nsproxy != &init_nsproxy) {
436 		get_nsproxy(&init_nsproxy);
437 		switch_task_namespaces(current, &init_nsproxy);
438 	}
439 	set_special_pids(&init_struct_pid);
440 	proc_clear_tty(current);
441 
442 	/* Block and flush all signals */
443 	sigfillset(&blocked);
444 	sigprocmask(SIG_BLOCK, &blocked, NULL);
445 	flush_signals(current);
446 
447 	/* Become as one with the init task */
448 
449 	exit_fs(current);	/* current->fs->count--; */
450 	fs = init_task.fs;
451 	current->fs = fs;
452 	atomic_inc(&fs->count);
453 
454 	exit_files(current);
455 	current->files = init_task.files;
456 	atomic_inc(&current->files->count);
457 
458 	reparent_to_kthreadd();
459 }
460 
461 EXPORT_SYMBOL(daemonize);
462 
463 static void close_files(struct files_struct * files)
464 {
465 	int i, j;
466 	struct fdtable *fdt;
467 
468 	j = 0;
469 
470 	/*
471 	 * It is safe to dereference the fd table without RCU or
472 	 * ->file_lock because this is the last reference to the
473 	 * files structure.
474 	 */
475 	fdt = files_fdtable(files);
476 	for (;;) {
477 		unsigned long set;
478 		i = j * __NFDBITS;
479 		if (i >= fdt->max_fds)
480 			break;
481 		set = fdt->open_fds->fds_bits[j++];
482 		while (set) {
483 			if (set & 1) {
484 				struct file * file = xchg(&fdt->fd[i], NULL);
485 				if (file) {
486 					filp_close(file, files);
487 					cond_resched();
488 				}
489 			}
490 			i++;
491 			set >>= 1;
492 		}
493 	}
494 }
495 
496 struct files_struct *get_files_struct(struct task_struct *task)
497 {
498 	struct files_struct *files;
499 
500 	task_lock(task);
501 	files = task->files;
502 	if (files)
503 		atomic_inc(&files->count);
504 	task_unlock(task);
505 
506 	return files;
507 }
508 
509 void put_files_struct(struct files_struct *files)
510 {
511 	struct fdtable *fdt;
512 
513 	if (atomic_dec_and_test(&files->count)) {
514 		close_files(files);
515 		/*
516 		 * Free the fd and fdset arrays if we expanded them.
517 		 * If the fdtable was embedded, pass files for freeing
518 		 * at the end of the RCU grace period. Otherwise,
519 		 * you can free files immediately.
520 		 */
521 		fdt = files_fdtable(files);
522 		if (fdt != &files->fdtab)
523 			kmem_cache_free(files_cachep, files);
524 		free_fdtable(fdt);
525 	}
526 }
527 
528 void reset_files_struct(struct files_struct *files)
529 {
530 	struct task_struct *tsk = current;
531 	struct files_struct *old;
532 
533 	old = tsk->files;
534 	task_lock(tsk);
535 	tsk->files = files;
536 	task_unlock(tsk);
537 	put_files_struct(old);
538 }
539 
540 void exit_files(struct task_struct *tsk)
541 {
542 	struct files_struct * files = tsk->files;
543 
544 	if (files) {
545 		task_lock(tsk);
546 		tsk->files = NULL;
547 		task_unlock(tsk);
548 		put_files_struct(files);
549 	}
550 }
551 
552 void put_fs_struct(struct fs_struct *fs)
553 {
554 	/* No need to hold fs->lock if we are killing it */
555 	if (atomic_dec_and_test(&fs->count)) {
556 		path_put(&fs->root);
557 		path_put(&fs->pwd);
558 		kmem_cache_free(fs_cachep, fs);
559 	}
560 }
561 
562 void exit_fs(struct task_struct *tsk)
563 {
564 	struct fs_struct * fs = tsk->fs;
565 
566 	if (fs) {
567 		task_lock(tsk);
568 		tsk->fs = NULL;
569 		task_unlock(tsk);
570 		put_fs_struct(fs);
571 	}
572 }
573 
574 EXPORT_SYMBOL_GPL(exit_fs);
575 
576 #ifdef CONFIG_MM_OWNER
577 /*
578  * Task p is exiting and it owned mm, lets find a new owner for it
579  */
580 static inline int
581 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
582 {
583 	/*
584 	 * If there are other users of the mm and the owner (us) is exiting
585 	 * we need to find a new owner to take on the responsibility.
586 	 */
587 	if (atomic_read(&mm->mm_users) <= 1)
588 		return 0;
589 	if (mm->owner != p)
590 		return 0;
591 	return 1;
592 }
593 
594 void mm_update_next_owner(struct mm_struct *mm)
595 {
596 	struct task_struct *c, *g, *p = current;
597 
598 retry:
599 	if (!mm_need_new_owner(mm, p))
600 		return;
601 
602 	read_lock(&tasklist_lock);
603 	/*
604 	 * Search in the children
605 	 */
606 	list_for_each_entry(c, &p->children, sibling) {
607 		if (c->mm == mm)
608 			goto assign_new_owner;
609 	}
610 
611 	/*
612 	 * Search in the siblings
613 	 */
614 	list_for_each_entry(c, &p->parent->children, sibling) {
615 		if (c->mm == mm)
616 			goto assign_new_owner;
617 	}
618 
619 	/*
620 	 * Search through everything else. We should not get
621 	 * here often
622 	 */
623 	do_each_thread(g, c) {
624 		if (c->mm == mm)
625 			goto assign_new_owner;
626 	} while_each_thread(g, c);
627 
628 	read_unlock(&tasklist_lock);
629 	/*
630 	 * We found no owner yet mm_users > 1: this implies that we are
631 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
632 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL,
633 	 * so that subsystems can understand the callback and take action.
634 	 */
635 	down_write(&mm->mmap_sem);
636 	cgroup_mm_owner_callbacks(mm->owner, NULL);
637 	mm->owner = NULL;
638 	up_write(&mm->mmap_sem);
639 	return;
640 
641 assign_new_owner:
642 	BUG_ON(c == p);
643 	get_task_struct(c);
644 	read_unlock(&tasklist_lock);
645 	down_write(&mm->mmap_sem);
646 	/*
647 	 * The task_lock protects c->mm from changing.
648 	 * We always want mm->owner->mm == mm
649 	 */
650 	task_lock(c);
651 	if (c->mm != mm) {
652 		task_unlock(c);
653 		up_write(&mm->mmap_sem);
654 		put_task_struct(c);
655 		goto retry;
656 	}
657 	cgroup_mm_owner_callbacks(mm->owner, c);
658 	mm->owner = c;
659 	task_unlock(c);
660 	up_write(&mm->mmap_sem);
661 	put_task_struct(c);
662 }
663 #endif /* CONFIG_MM_OWNER */
664 
665 /*
666  * Turn us into a lazy TLB process if we
667  * aren't already..
668  */
669 static void exit_mm(struct task_struct * tsk)
670 {
671 	struct mm_struct *mm = tsk->mm;
672 	struct core_state *core_state;
673 
674 	mm_release(tsk, mm);
675 	if (!mm)
676 		return;
677 	/*
678 	 * Serialize with any possible pending coredump.
679 	 * We must hold mmap_sem around checking core_state
680 	 * and clearing tsk->mm.  The core-inducing thread
681 	 * will increment ->nr_threads for each thread in the
682 	 * group with ->mm != NULL.
683 	 */
684 	down_read(&mm->mmap_sem);
685 	core_state = mm->core_state;
686 	if (core_state) {
687 		struct core_thread self;
688 		up_read(&mm->mmap_sem);
689 
690 		self.task = tsk;
691 		self.next = xchg(&core_state->dumper.next, &self);
692 		/*
693 		 * Implies mb(), the result of xchg() must be visible
694 		 * to core_state->dumper.
695 		 */
696 		if (atomic_dec_and_test(&core_state->nr_threads))
697 			complete(&core_state->startup);
698 
699 		for (;;) {
700 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
701 			if (!self.task) /* see coredump_finish() */
702 				break;
703 			schedule();
704 		}
705 		__set_task_state(tsk, TASK_RUNNING);
706 		down_read(&mm->mmap_sem);
707 	}
708 	atomic_inc(&mm->mm_count);
709 	BUG_ON(mm != tsk->active_mm);
710 	/* more a memory barrier than a real lock */
711 	task_lock(tsk);
712 	tsk->mm = NULL;
713 	up_read(&mm->mmap_sem);
714 	enter_lazy_tlb(mm, current);
715 	/* We don't want this task to be frozen prematurely */
716 	clear_freeze_flag(tsk);
717 	task_unlock(tsk);
718 	mm_update_next_owner(mm);
719 	mmput(mm);
720 }
721 
722 /*
723  * Return nonzero if @parent's children should reap themselves.
724  *
725  * Called with write_lock_irq(&tasklist_lock) held.
726  */
727 static int ignoring_children(struct task_struct *parent)
728 {
729 	int ret;
730 	struct sighand_struct *psig = parent->sighand;
731 	unsigned long flags;
732 	spin_lock_irqsave(&psig->siglock, flags);
733 	ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
734 	       (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
735 	spin_unlock_irqrestore(&psig->siglock, flags);
736 	return ret;
737 }
738 
739 /*
740  * Detach all tasks we were using ptrace on.
741  * Any that need to be release_task'd are put on the @dead list.
742  *
743  * Called with write_lock(&tasklist_lock) held.
744  */
745 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
746 {
747 	struct task_struct *p, *n;
748 	int ign = -1;
749 
750 	list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
751 		__ptrace_unlink(p);
752 
753 		if (p->exit_state != EXIT_ZOMBIE)
754 			continue;
755 
756 		/*
757 		 * If it's a zombie, our attachedness prevented normal
758 		 * parent notification or self-reaping.  Do notification
759 		 * now if it would have happened earlier.  If it should
760 		 * reap itself, add it to the @dead list.  We can't call
761 		 * release_task() here because we already hold tasklist_lock.
762 		 *
763 		 * If it's our own child, there is no notification to do.
764 		 * But if our normal children self-reap, then this child
765 		 * was prevented by ptrace and we must reap it now.
766 		 */
767 		if (!task_detached(p) && thread_group_empty(p)) {
768 			if (!same_thread_group(p->real_parent, parent))
769 				do_notify_parent(p, p->exit_signal);
770 			else {
771 				if (ign < 0)
772 					ign = ignoring_children(parent);
773 				if (ign)
774 					p->exit_signal = -1;
775 			}
776 		}
777 
778 		if (task_detached(p)) {
779 			/*
780 			 * Mark it as in the process of being reaped.
781 			 */
782 			p->exit_state = EXIT_DEAD;
783 			list_add(&p->ptrace_entry, dead);
784 		}
785 	}
786 }
787 
788 /*
789  * Finish up exit-time ptrace cleanup.
790  *
791  * Called without locks.
792  */
793 static void ptrace_exit_finish(struct task_struct *parent,
794 			       struct list_head *dead)
795 {
796 	struct task_struct *p, *n;
797 
798 	BUG_ON(!list_empty(&parent->ptraced));
799 
800 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
801 		list_del_init(&p->ptrace_entry);
802 		release_task(p);
803 	}
804 }
805 
806 static void reparent_thread(struct task_struct *p, struct task_struct *father)
807 {
808 	if (p->pdeath_signal)
809 		/* We already hold the tasklist_lock here.  */
810 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
811 
812 	list_move_tail(&p->sibling, &p->real_parent->children);
813 
814 	/* If this is a threaded reparent there is no need to
815 	 * notify anyone anything has happened.
816 	 */
817 	if (same_thread_group(p->real_parent, father))
818 		return;
819 
820 	/* We don't want people slaying init.  */
821 	if (!task_detached(p))
822 		p->exit_signal = SIGCHLD;
823 
824 	/* If we'd notified the old parent about this child's death,
825 	 * also notify the new parent.
826 	 */
827 	if (!ptrace_reparented(p) &&
828 	    p->exit_state == EXIT_ZOMBIE &&
829 	    !task_detached(p) && thread_group_empty(p))
830 		do_notify_parent(p, p->exit_signal);
831 
832 	kill_orphaned_pgrp(p, father);
833 }
834 
835 /*
836  * When we die, we re-parent all our children.
837  * Try to give them to another thread in our thread
838  * group, and if no such member exists, give it to
839  * the child reaper process (ie "init") in our pid
840  * space.
841  */
842 static struct task_struct *find_new_reaper(struct task_struct *father)
843 {
844 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
845 	struct task_struct *thread;
846 
847 	thread = father;
848 	while_each_thread(father, thread) {
849 		if (thread->flags & PF_EXITING)
850 			continue;
851 		if (unlikely(pid_ns->child_reaper == father))
852 			pid_ns->child_reaper = thread;
853 		return thread;
854 	}
855 
856 	if (unlikely(pid_ns->child_reaper == father)) {
857 		write_unlock_irq(&tasklist_lock);
858 		if (unlikely(pid_ns == &init_pid_ns))
859 			panic("Attempted to kill init!");
860 
861 		zap_pid_ns_processes(pid_ns);
862 		write_lock_irq(&tasklist_lock);
863 		/*
864 		 * We can not clear ->child_reaper or leave it alone.
865 		 * There may by stealth EXIT_DEAD tasks on ->children,
866 		 * forget_original_parent() must move them somewhere.
867 		 */
868 		pid_ns->child_reaper = init_pid_ns.child_reaper;
869 	}
870 
871 	return pid_ns->child_reaper;
872 }
873 
874 static void forget_original_parent(struct task_struct *father)
875 {
876 	struct task_struct *p, *n, *reaper;
877 	LIST_HEAD(ptrace_dead);
878 
879 	write_lock_irq(&tasklist_lock);
880 	reaper = find_new_reaper(father);
881 	/*
882 	 * First clean up ptrace if we were using it.
883 	 */
884 	ptrace_exit(father, &ptrace_dead);
885 
886 	list_for_each_entry_safe(p, n, &father->children, sibling) {
887 		p->real_parent = reaper;
888 		if (p->parent == father) {
889 			BUG_ON(p->ptrace);
890 			p->parent = p->real_parent;
891 		}
892 		reparent_thread(p, father);
893 	}
894 
895 	write_unlock_irq(&tasklist_lock);
896 	BUG_ON(!list_empty(&father->children));
897 
898 	ptrace_exit_finish(father, &ptrace_dead);
899 }
900 
901 /*
902  * Send signals to all our closest relatives so that they know
903  * to properly mourn us..
904  */
905 static void exit_notify(struct task_struct *tsk, int group_dead)
906 {
907 	int signal;
908 	void *cookie;
909 
910 	/*
911 	 * This does two things:
912 	 *
913   	 * A.  Make init inherit all the child processes
914 	 * B.  Check to see if any process groups have become orphaned
915 	 *	as a result of our exiting, and if they have any stopped
916 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
917 	 */
918 	forget_original_parent(tsk);
919 	exit_task_namespaces(tsk);
920 
921 	write_lock_irq(&tasklist_lock);
922 	if (group_dead)
923 		kill_orphaned_pgrp(tsk->group_leader, NULL);
924 
925 	/* Let father know we died
926 	 *
927 	 * Thread signals are configurable, but you aren't going to use
928 	 * that to send signals to arbitary processes.
929 	 * That stops right now.
930 	 *
931 	 * If the parent exec id doesn't match the exec id we saved
932 	 * when we started then we know the parent has changed security
933 	 * domain.
934 	 *
935 	 * If our self_exec id doesn't match our parent_exec_id then
936 	 * we have changed execution domain as these two values started
937 	 * the same after a fork.
938 	 */
939 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
940 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
941 	     tsk->self_exec_id != tsk->parent_exec_id) &&
942 	    !capable(CAP_KILL))
943 		tsk->exit_signal = SIGCHLD;
944 
945 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
946 	if (signal >= 0)
947 		signal = do_notify_parent(tsk, signal);
948 
949 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
950 
951 	/* mt-exec, de_thread() is waiting for us */
952 	if (thread_group_leader(tsk) &&
953 	    tsk->signal->group_exit_task &&
954 	    tsk->signal->notify_count < 0)
955 		wake_up_process(tsk->signal->group_exit_task);
956 
957 	write_unlock_irq(&tasklist_lock);
958 
959 	tracehook_report_death(tsk, signal, cookie, group_dead);
960 
961 	/* If the process is dead, release it - nobody will wait for it */
962 	if (signal == DEATH_REAP)
963 		release_task(tsk);
964 }
965 
966 #ifdef CONFIG_DEBUG_STACK_USAGE
967 static void check_stack_usage(void)
968 {
969 	static DEFINE_SPINLOCK(low_water_lock);
970 	static int lowest_to_date = THREAD_SIZE;
971 	unsigned long *n = end_of_stack(current);
972 	unsigned long free;
973 
974 	while (*n == 0)
975 		n++;
976 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
977 
978 	if (free >= lowest_to_date)
979 		return;
980 
981 	spin_lock(&low_water_lock);
982 	if (free < lowest_to_date) {
983 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
984 				"left\n",
985 				current->comm, free);
986 		lowest_to_date = free;
987 	}
988 	spin_unlock(&low_water_lock);
989 }
990 #else
991 static inline void check_stack_usage(void) {}
992 #endif
993 
994 NORET_TYPE void do_exit(long code)
995 {
996 	struct task_struct *tsk = current;
997 	int group_dead;
998 
999 	profile_task_exit(tsk);
1000 
1001 	WARN_ON(atomic_read(&tsk->fs_excl));
1002 
1003 	if (unlikely(in_interrupt()))
1004 		panic("Aiee, killing interrupt handler!");
1005 	if (unlikely(!tsk->pid))
1006 		panic("Attempted to kill the idle task!");
1007 
1008 	tracehook_report_exit(&code);
1009 
1010 	/*
1011 	 * We're taking recursive faults here in do_exit. Safest is to just
1012 	 * leave this task alone and wait for reboot.
1013 	 */
1014 	if (unlikely(tsk->flags & PF_EXITING)) {
1015 		printk(KERN_ALERT
1016 			"Fixing recursive fault but reboot is needed!\n");
1017 		/*
1018 		 * We can do this unlocked here. The futex code uses
1019 		 * this flag just to verify whether the pi state
1020 		 * cleanup has been done or not. In the worst case it
1021 		 * loops once more. We pretend that the cleanup was
1022 		 * done as there is no way to return. Either the
1023 		 * OWNER_DIED bit is set by now or we push the blocked
1024 		 * task into the wait for ever nirwana as well.
1025 		 */
1026 		tsk->flags |= PF_EXITPIDONE;
1027 		if (tsk->io_context)
1028 			exit_io_context();
1029 		set_current_state(TASK_UNINTERRUPTIBLE);
1030 		schedule();
1031 	}
1032 
1033 	exit_signals(tsk);  /* sets PF_EXITING */
1034 	/*
1035 	 * tsk->flags are checked in the futex code to protect against
1036 	 * an exiting task cleaning up the robust pi futexes.
1037 	 */
1038 	smp_mb();
1039 	spin_unlock_wait(&tsk->pi_lock);
1040 
1041 	if (unlikely(in_atomic()))
1042 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1043 				current->comm, task_pid_nr(current),
1044 				preempt_count());
1045 
1046 	acct_update_integrals(tsk);
1047 	if (tsk->mm) {
1048 		update_hiwater_rss(tsk->mm);
1049 		update_hiwater_vm(tsk->mm);
1050 	}
1051 	group_dead = atomic_dec_and_test(&tsk->signal->live);
1052 	if (group_dead) {
1053 		hrtimer_cancel(&tsk->signal->real_timer);
1054 		exit_itimers(tsk->signal);
1055 	}
1056 	acct_collect(code, group_dead);
1057 #ifdef CONFIG_FUTEX
1058 	if (unlikely(tsk->robust_list))
1059 		exit_robust_list(tsk);
1060 #ifdef CONFIG_COMPAT
1061 	if (unlikely(tsk->compat_robust_list))
1062 		compat_exit_robust_list(tsk);
1063 #endif
1064 #endif
1065 	if (group_dead)
1066 		tty_audit_exit();
1067 	if (unlikely(tsk->audit_context))
1068 		audit_free(tsk);
1069 
1070 	tsk->exit_code = code;
1071 	taskstats_exit(tsk, group_dead);
1072 
1073 	exit_mm(tsk);
1074 
1075 	if (group_dead)
1076 		acct_process();
1077 	trace_sched_process_exit(tsk);
1078 
1079 	exit_sem(tsk);
1080 	exit_files(tsk);
1081 	exit_fs(tsk);
1082 	check_stack_usage();
1083 	exit_thread();
1084 	cgroup_exit(tsk, 1);
1085 	exit_keys(tsk);
1086 
1087 	if (group_dead && tsk->signal->leader)
1088 		disassociate_ctty(1);
1089 
1090 	module_put(task_thread_info(tsk)->exec_domain->module);
1091 	if (tsk->binfmt)
1092 		module_put(tsk->binfmt->module);
1093 
1094 	proc_exit_connector(tsk);
1095 	exit_notify(tsk, group_dead);
1096 #ifdef CONFIG_NUMA
1097 	mpol_put(tsk->mempolicy);
1098 	tsk->mempolicy = NULL;
1099 #endif
1100 #ifdef CONFIG_FUTEX
1101 	/*
1102 	 * This must happen late, after the PID is not
1103 	 * hashed anymore:
1104 	 */
1105 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1106 		exit_pi_state_list(tsk);
1107 	if (unlikely(current->pi_state_cache))
1108 		kfree(current->pi_state_cache);
1109 #endif
1110 	/*
1111 	 * Make sure we are holding no locks:
1112 	 */
1113 	debug_check_no_locks_held(tsk);
1114 	/*
1115 	 * We can do this unlocked here. The futex code uses this flag
1116 	 * just to verify whether the pi state cleanup has been done
1117 	 * or not. In the worst case it loops once more.
1118 	 */
1119 	tsk->flags |= PF_EXITPIDONE;
1120 
1121 	if (tsk->io_context)
1122 		exit_io_context();
1123 
1124 	if (tsk->splice_pipe)
1125 		__free_pipe_info(tsk->splice_pipe);
1126 
1127 	preempt_disable();
1128 	/* causes final put_task_struct in finish_task_switch(). */
1129 	tsk->state = TASK_DEAD;
1130 
1131 	schedule();
1132 	BUG();
1133 	/* Avoid "noreturn function does return".  */
1134 	for (;;)
1135 		cpu_relax();	/* For when BUG is null */
1136 }
1137 
1138 EXPORT_SYMBOL_GPL(do_exit);
1139 
1140 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1141 {
1142 	if (comp)
1143 		complete(comp);
1144 
1145 	do_exit(code);
1146 }
1147 
1148 EXPORT_SYMBOL(complete_and_exit);
1149 
1150 asmlinkage long sys_exit(int error_code)
1151 {
1152 	do_exit((error_code&0xff)<<8);
1153 }
1154 
1155 /*
1156  * Take down every thread in the group.  This is called by fatal signals
1157  * as well as by sys_exit_group (below).
1158  */
1159 NORET_TYPE void
1160 do_group_exit(int exit_code)
1161 {
1162 	struct signal_struct *sig = current->signal;
1163 
1164 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1165 
1166 	if (signal_group_exit(sig))
1167 		exit_code = sig->group_exit_code;
1168 	else if (!thread_group_empty(current)) {
1169 		struct sighand_struct *const sighand = current->sighand;
1170 		spin_lock_irq(&sighand->siglock);
1171 		if (signal_group_exit(sig))
1172 			/* Another thread got here before we took the lock.  */
1173 			exit_code = sig->group_exit_code;
1174 		else {
1175 			sig->group_exit_code = exit_code;
1176 			sig->flags = SIGNAL_GROUP_EXIT;
1177 			zap_other_threads(current);
1178 		}
1179 		spin_unlock_irq(&sighand->siglock);
1180 	}
1181 
1182 	do_exit(exit_code);
1183 	/* NOTREACHED */
1184 }
1185 
1186 /*
1187  * this kills every thread in the thread group. Note that any externally
1188  * wait4()-ing process will get the correct exit code - even if this
1189  * thread is not the thread group leader.
1190  */
1191 asmlinkage void sys_exit_group(int error_code)
1192 {
1193 	do_group_exit((error_code & 0xff) << 8);
1194 }
1195 
1196 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1197 {
1198 	struct pid *pid = NULL;
1199 	if (type == PIDTYPE_PID)
1200 		pid = task->pids[type].pid;
1201 	else if (type < PIDTYPE_MAX)
1202 		pid = task->group_leader->pids[type].pid;
1203 	return pid;
1204 }
1205 
1206 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1207 			  struct task_struct *p)
1208 {
1209 	int err;
1210 
1211 	if (type < PIDTYPE_MAX) {
1212 		if (task_pid_type(p, type) != pid)
1213 			return 0;
1214 	}
1215 
1216 	/* Wait for all children (clone and not) if __WALL is set;
1217 	 * otherwise, wait for clone children *only* if __WCLONE is
1218 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1219 	 * A "clone" child here is one that reports to its parent
1220 	 * using a signal other than SIGCHLD.) */
1221 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1222 	    && !(options & __WALL))
1223 		return 0;
1224 
1225 	err = security_task_wait(p);
1226 	if (err)
1227 		return err;
1228 
1229 	return 1;
1230 }
1231 
1232 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1233 			       int why, int status,
1234 			       struct siginfo __user *infop,
1235 			       struct rusage __user *rusagep)
1236 {
1237 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1238 
1239 	put_task_struct(p);
1240 	if (!retval)
1241 		retval = put_user(SIGCHLD, &infop->si_signo);
1242 	if (!retval)
1243 		retval = put_user(0, &infop->si_errno);
1244 	if (!retval)
1245 		retval = put_user((short)why, &infop->si_code);
1246 	if (!retval)
1247 		retval = put_user(pid, &infop->si_pid);
1248 	if (!retval)
1249 		retval = put_user(uid, &infop->si_uid);
1250 	if (!retval)
1251 		retval = put_user(status, &infop->si_status);
1252 	if (!retval)
1253 		retval = pid;
1254 	return retval;
1255 }
1256 
1257 /*
1258  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1259  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1260  * the lock and this task is uninteresting.  If we return nonzero, we have
1261  * released the lock and the system call should return.
1262  */
1263 static int wait_task_zombie(struct task_struct *p, int options,
1264 			    struct siginfo __user *infop,
1265 			    int __user *stat_addr, struct rusage __user *ru)
1266 {
1267 	unsigned long state;
1268 	int retval, status, traced;
1269 	pid_t pid = task_pid_vnr(p);
1270 
1271 	if (!likely(options & WEXITED))
1272 		return 0;
1273 
1274 	if (unlikely(options & WNOWAIT)) {
1275 		uid_t uid = p->uid;
1276 		int exit_code = p->exit_code;
1277 		int why, status;
1278 
1279 		get_task_struct(p);
1280 		read_unlock(&tasklist_lock);
1281 		if ((exit_code & 0x7f) == 0) {
1282 			why = CLD_EXITED;
1283 			status = exit_code >> 8;
1284 		} else {
1285 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1286 			status = exit_code & 0x7f;
1287 		}
1288 		return wait_noreap_copyout(p, pid, uid, why,
1289 					   status, infop, ru);
1290 	}
1291 
1292 	/*
1293 	 * Try to move the task's state to DEAD
1294 	 * only one thread is allowed to do this:
1295 	 */
1296 	state = xchg(&p->exit_state, EXIT_DEAD);
1297 	if (state != EXIT_ZOMBIE) {
1298 		BUG_ON(state != EXIT_DEAD);
1299 		return 0;
1300 	}
1301 
1302 	traced = ptrace_reparented(p);
1303 
1304 	if (likely(!traced)) {
1305 		struct signal_struct *psig;
1306 		struct signal_struct *sig;
1307 		struct task_cputime cputime;
1308 
1309 		/*
1310 		 * The resource counters for the group leader are in its
1311 		 * own task_struct.  Those for dead threads in the group
1312 		 * are in its signal_struct, as are those for the child
1313 		 * processes it has previously reaped.  All these
1314 		 * accumulate in the parent's signal_struct c* fields.
1315 		 *
1316 		 * We don't bother to take a lock here to protect these
1317 		 * p->signal fields, because they are only touched by
1318 		 * __exit_signal, which runs with tasklist_lock
1319 		 * write-locked anyway, and so is excluded here.  We do
1320 		 * need to protect the access to p->parent->signal fields,
1321 		 * as other threads in the parent group can be right
1322 		 * here reaping other children at the same time.
1323 		 *
1324 		 * We use thread_group_cputime() to get times for the thread
1325 		 * group, which consolidates times for all threads in the
1326 		 * group including the group leader.
1327 		 */
1328 		spin_lock_irq(&p->parent->sighand->siglock);
1329 		psig = p->parent->signal;
1330 		sig = p->signal;
1331 		thread_group_cputime(p, &cputime);
1332 		psig->cutime =
1333 			cputime_add(psig->cutime,
1334 			cputime_add(cputime.utime,
1335 				    sig->cutime));
1336 		psig->cstime =
1337 			cputime_add(psig->cstime,
1338 			cputime_add(cputime.stime,
1339 				    sig->cstime));
1340 		psig->cgtime =
1341 			cputime_add(psig->cgtime,
1342 			cputime_add(p->gtime,
1343 			cputime_add(sig->gtime,
1344 				    sig->cgtime)));
1345 		psig->cmin_flt +=
1346 			p->min_flt + sig->min_flt + sig->cmin_flt;
1347 		psig->cmaj_flt +=
1348 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1349 		psig->cnvcsw +=
1350 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1351 		psig->cnivcsw +=
1352 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1353 		psig->cinblock +=
1354 			task_io_get_inblock(p) +
1355 			sig->inblock + sig->cinblock;
1356 		psig->coublock +=
1357 			task_io_get_oublock(p) +
1358 			sig->oublock + sig->coublock;
1359 		task_io_accounting_add(&psig->ioac, &p->ioac);
1360 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1361 		spin_unlock_irq(&p->parent->sighand->siglock);
1362 	}
1363 
1364 	/*
1365 	 * Now we are sure this task is interesting, and no other
1366 	 * thread can reap it because we set its state to EXIT_DEAD.
1367 	 */
1368 	read_unlock(&tasklist_lock);
1369 
1370 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1371 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1372 		? p->signal->group_exit_code : p->exit_code;
1373 	if (!retval && stat_addr)
1374 		retval = put_user(status, stat_addr);
1375 	if (!retval && infop)
1376 		retval = put_user(SIGCHLD, &infop->si_signo);
1377 	if (!retval && infop)
1378 		retval = put_user(0, &infop->si_errno);
1379 	if (!retval && infop) {
1380 		int why;
1381 
1382 		if ((status & 0x7f) == 0) {
1383 			why = CLD_EXITED;
1384 			status >>= 8;
1385 		} else {
1386 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1387 			status &= 0x7f;
1388 		}
1389 		retval = put_user((short)why, &infop->si_code);
1390 		if (!retval)
1391 			retval = put_user(status, &infop->si_status);
1392 	}
1393 	if (!retval && infop)
1394 		retval = put_user(pid, &infop->si_pid);
1395 	if (!retval && infop)
1396 		retval = put_user(p->uid, &infop->si_uid);
1397 	if (!retval)
1398 		retval = pid;
1399 
1400 	if (traced) {
1401 		write_lock_irq(&tasklist_lock);
1402 		/* We dropped tasklist, ptracer could die and untrace */
1403 		ptrace_unlink(p);
1404 		/*
1405 		 * If this is not a detached task, notify the parent.
1406 		 * If it's still not detached after that, don't release
1407 		 * it now.
1408 		 */
1409 		if (!task_detached(p)) {
1410 			do_notify_parent(p, p->exit_signal);
1411 			if (!task_detached(p)) {
1412 				p->exit_state = EXIT_ZOMBIE;
1413 				p = NULL;
1414 			}
1415 		}
1416 		write_unlock_irq(&tasklist_lock);
1417 	}
1418 	if (p != NULL)
1419 		release_task(p);
1420 
1421 	return retval;
1422 }
1423 
1424 /*
1425  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1426  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1427  * the lock and this task is uninteresting.  If we return nonzero, we have
1428  * released the lock and the system call should return.
1429  */
1430 static int wait_task_stopped(int ptrace, struct task_struct *p,
1431 			     int options, struct siginfo __user *infop,
1432 			     int __user *stat_addr, struct rusage __user *ru)
1433 {
1434 	int retval, exit_code, why;
1435 	uid_t uid = 0; /* unneeded, required by compiler */
1436 	pid_t pid;
1437 
1438 	if (!(options & WUNTRACED))
1439 		return 0;
1440 
1441 	exit_code = 0;
1442 	spin_lock_irq(&p->sighand->siglock);
1443 
1444 	if (unlikely(!task_is_stopped_or_traced(p)))
1445 		goto unlock_sig;
1446 
1447 	if (!ptrace && p->signal->group_stop_count > 0)
1448 		/*
1449 		 * A group stop is in progress and this is the group leader.
1450 		 * We won't report until all threads have stopped.
1451 		 */
1452 		goto unlock_sig;
1453 
1454 	exit_code = p->exit_code;
1455 	if (!exit_code)
1456 		goto unlock_sig;
1457 
1458 	if (!unlikely(options & WNOWAIT))
1459 		p->exit_code = 0;
1460 
1461 	uid = p->uid;
1462 unlock_sig:
1463 	spin_unlock_irq(&p->sighand->siglock);
1464 	if (!exit_code)
1465 		return 0;
1466 
1467 	/*
1468 	 * Now we are pretty sure this task is interesting.
1469 	 * Make sure it doesn't get reaped out from under us while we
1470 	 * give up the lock and then examine it below.  We don't want to
1471 	 * keep holding onto the tasklist_lock while we call getrusage and
1472 	 * possibly take page faults for user memory.
1473 	 */
1474 	get_task_struct(p);
1475 	pid = task_pid_vnr(p);
1476 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1477 	read_unlock(&tasklist_lock);
1478 
1479 	if (unlikely(options & WNOWAIT))
1480 		return wait_noreap_copyout(p, pid, uid,
1481 					   why, exit_code,
1482 					   infop, ru);
1483 
1484 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1485 	if (!retval && stat_addr)
1486 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1487 	if (!retval && infop)
1488 		retval = put_user(SIGCHLD, &infop->si_signo);
1489 	if (!retval && infop)
1490 		retval = put_user(0, &infop->si_errno);
1491 	if (!retval && infop)
1492 		retval = put_user((short)why, &infop->si_code);
1493 	if (!retval && infop)
1494 		retval = put_user(exit_code, &infop->si_status);
1495 	if (!retval && infop)
1496 		retval = put_user(pid, &infop->si_pid);
1497 	if (!retval && infop)
1498 		retval = put_user(uid, &infop->si_uid);
1499 	if (!retval)
1500 		retval = pid;
1501 	put_task_struct(p);
1502 
1503 	BUG_ON(!retval);
1504 	return retval;
1505 }
1506 
1507 /*
1508  * Handle do_wait work for one task in a live, non-stopped state.
1509  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1510  * the lock and this task is uninteresting.  If we return nonzero, we have
1511  * released the lock and the system call should return.
1512  */
1513 static int wait_task_continued(struct task_struct *p, int options,
1514 			       struct siginfo __user *infop,
1515 			       int __user *stat_addr, struct rusage __user *ru)
1516 {
1517 	int retval;
1518 	pid_t pid;
1519 	uid_t uid;
1520 
1521 	if (!unlikely(options & WCONTINUED))
1522 		return 0;
1523 
1524 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1525 		return 0;
1526 
1527 	spin_lock_irq(&p->sighand->siglock);
1528 	/* Re-check with the lock held.  */
1529 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1530 		spin_unlock_irq(&p->sighand->siglock);
1531 		return 0;
1532 	}
1533 	if (!unlikely(options & WNOWAIT))
1534 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1535 	spin_unlock_irq(&p->sighand->siglock);
1536 
1537 	pid = task_pid_vnr(p);
1538 	uid = p->uid;
1539 	get_task_struct(p);
1540 	read_unlock(&tasklist_lock);
1541 
1542 	if (!infop) {
1543 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1544 		put_task_struct(p);
1545 		if (!retval && stat_addr)
1546 			retval = put_user(0xffff, stat_addr);
1547 		if (!retval)
1548 			retval = pid;
1549 	} else {
1550 		retval = wait_noreap_copyout(p, pid, uid,
1551 					     CLD_CONTINUED, SIGCONT,
1552 					     infop, ru);
1553 		BUG_ON(retval == 0);
1554 	}
1555 
1556 	return retval;
1557 }
1558 
1559 /*
1560  * Consider @p for a wait by @parent.
1561  *
1562  * -ECHILD should be in *@notask_error before the first call.
1563  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1564  * Returns zero if the search for a child should continue;
1565  * then *@notask_error is 0 if @p is an eligible child,
1566  * or another error from security_task_wait(), or still -ECHILD.
1567  */
1568 static int wait_consider_task(struct task_struct *parent, int ptrace,
1569 			      struct task_struct *p, int *notask_error,
1570 			      enum pid_type type, struct pid *pid, int options,
1571 			      struct siginfo __user *infop,
1572 			      int __user *stat_addr, struct rusage __user *ru)
1573 {
1574 	int ret = eligible_child(type, pid, options, p);
1575 	if (!ret)
1576 		return ret;
1577 
1578 	if (unlikely(ret < 0)) {
1579 		/*
1580 		 * If we have not yet seen any eligible child,
1581 		 * then let this error code replace -ECHILD.
1582 		 * A permission error will give the user a clue
1583 		 * to look for security policy problems, rather
1584 		 * than for mysterious wait bugs.
1585 		 */
1586 		if (*notask_error)
1587 			*notask_error = ret;
1588 	}
1589 
1590 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1591 		/*
1592 		 * This child is hidden by ptrace.
1593 		 * We aren't allowed to see it now, but eventually we will.
1594 		 */
1595 		*notask_error = 0;
1596 		return 0;
1597 	}
1598 
1599 	if (p->exit_state == EXIT_DEAD)
1600 		return 0;
1601 
1602 	/*
1603 	 * We don't reap group leaders with subthreads.
1604 	 */
1605 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1606 		return wait_task_zombie(p, options, infop, stat_addr, ru);
1607 
1608 	/*
1609 	 * It's stopped or running now, so it might
1610 	 * later continue, exit, or stop again.
1611 	 */
1612 	*notask_error = 0;
1613 
1614 	if (task_is_stopped_or_traced(p))
1615 		return wait_task_stopped(ptrace, p, options,
1616 					 infop, stat_addr, ru);
1617 
1618 	return wait_task_continued(p, options, infop, stat_addr, ru);
1619 }
1620 
1621 /*
1622  * Do the work of do_wait() for one thread in the group, @tsk.
1623  *
1624  * -ECHILD should be in *@notask_error before the first call.
1625  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1626  * Returns zero if the search for a child should continue; then
1627  * *@notask_error is 0 if there were any eligible children,
1628  * or another error from security_task_wait(), or still -ECHILD.
1629  */
1630 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1631 			  enum pid_type type, struct pid *pid, int options,
1632 			  struct siginfo __user *infop, int __user *stat_addr,
1633 			  struct rusage __user *ru)
1634 {
1635 	struct task_struct *p;
1636 
1637 	list_for_each_entry(p, &tsk->children, sibling) {
1638 		/*
1639 		 * Do not consider detached threads.
1640 		 */
1641 		if (!task_detached(p)) {
1642 			int ret = wait_consider_task(tsk, 0, p, notask_error,
1643 						     type, pid, options,
1644 						     infop, stat_addr, ru);
1645 			if (ret)
1646 				return ret;
1647 		}
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1654 			  enum pid_type type, struct pid *pid, int options,
1655 			  struct siginfo __user *infop, int __user *stat_addr,
1656 			  struct rusage __user *ru)
1657 {
1658 	struct task_struct *p;
1659 
1660 	/*
1661 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1662 	 */
1663 	options |= WUNTRACED;
1664 
1665 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1666 		int ret = wait_consider_task(tsk, 1, p, notask_error,
1667 					     type, pid, options,
1668 					     infop, stat_addr, ru);
1669 		if (ret)
1670 			return ret;
1671 	}
1672 
1673 	return 0;
1674 }
1675 
1676 static long do_wait(enum pid_type type, struct pid *pid, int options,
1677 		    struct siginfo __user *infop, int __user *stat_addr,
1678 		    struct rusage __user *ru)
1679 {
1680 	DECLARE_WAITQUEUE(wait, current);
1681 	struct task_struct *tsk;
1682 	int retval;
1683 
1684 	trace_sched_process_wait(pid);
1685 
1686 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1687 repeat:
1688 	/*
1689 	 * If there is nothing that can match our critiera just get out.
1690 	 * We will clear @retval to zero if we see any child that might later
1691 	 * match our criteria, even if we are not able to reap it yet.
1692 	 */
1693 	retval = -ECHILD;
1694 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1695 		goto end;
1696 
1697 	current->state = TASK_INTERRUPTIBLE;
1698 	read_lock(&tasklist_lock);
1699 	tsk = current;
1700 	do {
1701 		int tsk_result = do_wait_thread(tsk, &retval,
1702 						type, pid, options,
1703 						infop, stat_addr, ru);
1704 		if (!tsk_result)
1705 			tsk_result = ptrace_do_wait(tsk, &retval,
1706 						    type, pid, options,
1707 						    infop, stat_addr, ru);
1708 		if (tsk_result) {
1709 			/*
1710 			 * tasklist_lock is unlocked and we have a final result.
1711 			 */
1712 			retval = tsk_result;
1713 			goto end;
1714 		}
1715 
1716 		if (options & __WNOTHREAD)
1717 			break;
1718 		tsk = next_thread(tsk);
1719 		BUG_ON(tsk->signal != current->signal);
1720 	} while (tsk != current);
1721 	read_unlock(&tasklist_lock);
1722 
1723 	if (!retval && !(options & WNOHANG)) {
1724 		retval = -ERESTARTSYS;
1725 		if (!signal_pending(current)) {
1726 			schedule();
1727 			goto repeat;
1728 		}
1729 	}
1730 
1731 end:
1732 	current->state = TASK_RUNNING;
1733 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1734 	if (infop) {
1735 		if (retval > 0)
1736 			retval = 0;
1737 		else {
1738 			/*
1739 			 * For a WNOHANG return, clear out all the fields
1740 			 * we would set so the user can easily tell the
1741 			 * difference.
1742 			 */
1743 			if (!retval)
1744 				retval = put_user(0, &infop->si_signo);
1745 			if (!retval)
1746 				retval = put_user(0, &infop->si_errno);
1747 			if (!retval)
1748 				retval = put_user(0, &infop->si_code);
1749 			if (!retval)
1750 				retval = put_user(0, &infop->si_pid);
1751 			if (!retval)
1752 				retval = put_user(0, &infop->si_uid);
1753 			if (!retval)
1754 				retval = put_user(0, &infop->si_status);
1755 		}
1756 	}
1757 	return retval;
1758 }
1759 
1760 asmlinkage long sys_waitid(int which, pid_t upid,
1761 			   struct siginfo __user *infop, int options,
1762 			   struct rusage __user *ru)
1763 {
1764 	struct pid *pid = NULL;
1765 	enum pid_type type;
1766 	long ret;
1767 
1768 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1769 		return -EINVAL;
1770 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1771 		return -EINVAL;
1772 
1773 	switch (which) {
1774 	case P_ALL:
1775 		type = PIDTYPE_MAX;
1776 		break;
1777 	case P_PID:
1778 		type = PIDTYPE_PID;
1779 		if (upid <= 0)
1780 			return -EINVAL;
1781 		break;
1782 	case P_PGID:
1783 		type = PIDTYPE_PGID;
1784 		if (upid <= 0)
1785 			return -EINVAL;
1786 		break;
1787 	default:
1788 		return -EINVAL;
1789 	}
1790 
1791 	if (type < PIDTYPE_MAX)
1792 		pid = find_get_pid(upid);
1793 	ret = do_wait(type, pid, options, infop, NULL, ru);
1794 	put_pid(pid);
1795 
1796 	/* avoid REGPARM breakage on x86: */
1797 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1798 	return ret;
1799 }
1800 
1801 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1802 			  int options, struct rusage __user *ru)
1803 {
1804 	struct pid *pid = NULL;
1805 	enum pid_type type;
1806 	long ret;
1807 
1808 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1809 			__WNOTHREAD|__WCLONE|__WALL))
1810 		return -EINVAL;
1811 
1812 	if (upid == -1)
1813 		type = PIDTYPE_MAX;
1814 	else if (upid < 0) {
1815 		type = PIDTYPE_PGID;
1816 		pid = find_get_pid(-upid);
1817 	} else if (upid == 0) {
1818 		type = PIDTYPE_PGID;
1819 		pid = get_pid(task_pgrp(current));
1820 	} else /* upid > 0 */ {
1821 		type = PIDTYPE_PID;
1822 		pid = find_get_pid(upid);
1823 	}
1824 
1825 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1826 	put_pid(pid);
1827 
1828 	/* avoid REGPARM breakage on x86: */
1829 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1830 	return ret;
1831 }
1832 
1833 #ifdef __ARCH_WANT_SYS_WAITPID
1834 
1835 /*
1836  * sys_waitpid() remains for compatibility. waitpid() should be
1837  * implemented by calling sys_wait4() from libc.a.
1838  */
1839 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1840 {
1841 	return sys_wait4(pid, stat_addr, options, NULL);
1842 }
1843 
1844 #endif
1845