1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/iocontext.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/fdtable.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/freezer.h> 36 #include <linux/cgroup.h> 37 #include <linux/syscalls.h> 38 #include <linux/signal.h> 39 #include <linux/posix-timers.h> 40 #include <linux/cn_proc.h> 41 #include <linux/mutex.h> 42 #include <linux/futex.h> 43 #include <linux/compat.h> 44 #include <linux/pipe_fs_i.h> 45 #include <linux/audit.h> /* for audit_free() */ 46 #include <linux/resource.h> 47 #include <linux/blkdev.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/tracehook.h> 50 #include <trace/sched.h> 51 52 #include <asm/uaccess.h> 53 #include <asm/unistd.h> 54 #include <asm/pgtable.h> 55 #include <asm/mmu_context.h> 56 57 static void exit_mm(struct task_struct * tsk); 58 59 static inline int task_detached(struct task_struct *p) 60 { 61 return p->exit_signal == -1; 62 } 63 64 static void __unhash_process(struct task_struct *p) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (thread_group_leader(p)) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 __get_cpu_var(process_counts)--; 74 } 75 list_del_rcu(&p->thread_group); 76 list_del_init(&p->sibling); 77 } 78 79 /* 80 * This function expects the tasklist_lock write-locked. 81 */ 82 static void __exit_signal(struct task_struct *tsk) 83 { 84 struct signal_struct *sig = tsk->signal; 85 struct sighand_struct *sighand; 86 87 BUG_ON(!sig); 88 BUG_ON(!atomic_read(&sig->count)); 89 90 sighand = rcu_dereference(tsk->sighand); 91 spin_lock(&sighand->siglock); 92 93 posix_cpu_timers_exit(tsk); 94 if (atomic_dec_and_test(&sig->count)) 95 posix_cpu_timers_exit_group(tsk); 96 else { 97 /* 98 * If there is any task waiting for the group exit 99 * then notify it: 100 */ 101 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 102 wake_up_process(sig->group_exit_task); 103 104 if (tsk == sig->curr_target) 105 sig->curr_target = next_thread(tsk); 106 /* 107 * Accumulate here the counters for all threads but the 108 * group leader as they die, so they can be added into 109 * the process-wide totals when those are taken. 110 * The group leader stays around as a zombie as long 111 * as there are other threads. When it gets reaped, 112 * the exit.c code will add its counts into these totals. 113 * We won't ever get here for the group leader, since it 114 * will have been the last reference on the signal_struct. 115 */ 116 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 117 sig->min_flt += tsk->min_flt; 118 sig->maj_flt += tsk->maj_flt; 119 sig->nvcsw += tsk->nvcsw; 120 sig->nivcsw += tsk->nivcsw; 121 sig->inblock += task_io_get_inblock(tsk); 122 sig->oublock += task_io_get_oublock(tsk); 123 task_io_accounting_add(&sig->ioac, &tsk->ioac); 124 sig = NULL; /* Marker for below. */ 125 } 126 127 __unhash_process(tsk); 128 129 /* 130 * Do this under ->siglock, we can race with another thread 131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 132 */ 133 flush_sigqueue(&tsk->pending); 134 135 tsk->signal = NULL; 136 tsk->sighand = NULL; 137 spin_unlock(&sighand->siglock); 138 139 __cleanup_sighand(sighand); 140 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 141 if (sig) { 142 flush_sigqueue(&sig->shared_pending); 143 taskstats_tgid_free(sig); 144 __cleanup_signal(sig); 145 } 146 } 147 148 static void delayed_put_task_struct(struct rcu_head *rhp) 149 { 150 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 151 152 trace_sched_process_free(tsk); 153 put_task_struct(tsk); 154 } 155 156 157 void release_task(struct task_struct * p) 158 { 159 struct task_struct *leader; 160 int zap_leader; 161 repeat: 162 tracehook_prepare_release_task(p); 163 atomic_dec(&p->user->processes); 164 proc_flush_task(p); 165 write_lock_irq(&tasklist_lock); 166 tracehook_finish_release_task(p); 167 __exit_signal(p); 168 169 /* 170 * If we are the last non-leader member of the thread 171 * group, and the leader is zombie, then notify the 172 * group leader's parent process. (if it wants notification.) 173 */ 174 zap_leader = 0; 175 leader = p->group_leader; 176 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 177 BUG_ON(task_detached(leader)); 178 do_notify_parent(leader, leader->exit_signal); 179 /* 180 * If we were the last child thread and the leader has 181 * exited already, and the leader's parent ignores SIGCHLD, 182 * then we are the one who should release the leader. 183 * 184 * do_notify_parent() will have marked it self-reaping in 185 * that case. 186 */ 187 zap_leader = task_detached(leader); 188 189 /* 190 * This maintains the invariant that release_task() 191 * only runs on a task in EXIT_DEAD, just for sanity. 192 */ 193 if (zap_leader) 194 leader->exit_state = EXIT_DEAD; 195 } 196 197 write_unlock_irq(&tasklist_lock); 198 release_thread(p); 199 call_rcu(&p->rcu, delayed_put_task_struct); 200 201 p = leader; 202 if (unlikely(zap_leader)) 203 goto repeat; 204 } 205 206 /* 207 * This checks not only the pgrp, but falls back on the pid if no 208 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 209 * without this... 210 * 211 * The caller must hold rcu lock or the tasklist lock. 212 */ 213 struct pid *session_of_pgrp(struct pid *pgrp) 214 { 215 struct task_struct *p; 216 struct pid *sid = NULL; 217 218 p = pid_task(pgrp, PIDTYPE_PGID); 219 if (p == NULL) 220 p = pid_task(pgrp, PIDTYPE_PID); 221 if (p != NULL) 222 sid = task_session(p); 223 224 return sid; 225 } 226 227 /* 228 * Determine if a process group is "orphaned", according to the POSIX 229 * definition in 2.2.2.52. Orphaned process groups are not to be affected 230 * by terminal-generated stop signals. Newly orphaned process groups are 231 * to receive a SIGHUP and a SIGCONT. 232 * 233 * "I ask you, have you ever known what it is to be an orphan?" 234 */ 235 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 236 { 237 struct task_struct *p; 238 239 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 240 if ((p == ignored_task) || 241 (p->exit_state && thread_group_empty(p)) || 242 is_global_init(p->real_parent)) 243 continue; 244 245 if (task_pgrp(p->real_parent) != pgrp && 246 task_session(p->real_parent) == task_session(p)) 247 return 0; 248 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 249 250 return 1; 251 } 252 253 int is_current_pgrp_orphaned(void) 254 { 255 int retval; 256 257 read_lock(&tasklist_lock); 258 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 259 read_unlock(&tasklist_lock); 260 261 return retval; 262 } 263 264 static int has_stopped_jobs(struct pid *pgrp) 265 { 266 int retval = 0; 267 struct task_struct *p; 268 269 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 270 if (!task_is_stopped(p)) 271 continue; 272 retval = 1; 273 break; 274 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 275 return retval; 276 } 277 278 /* 279 * Check to see if any process groups have become orphaned as 280 * a result of our exiting, and if they have any stopped jobs, 281 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 282 */ 283 static void 284 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 285 { 286 struct pid *pgrp = task_pgrp(tsk); 287 struct task_struct *ignored_task = tsk; 288 289 if (!parent) 290 /* exit: our father is in a different pgrp than 291 * we are and we were the only connection outside. 292 */ 293 parent = tsk->real_parent; 294 else 295 /* reparent: our child is in a different pgrp than 296 * we are, and it was the only connection outside. 297 */ 298 ignored_task = NULL; 299 300 if (task_pgrp(parent) != pgrp && 301 task_session(parent) == task_session(tsk) && 302 will_become_orphaned_pgrp(pgrp, ignored_task) && 303 has_stopped_jobs(pgrp)) { 304 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 305 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 306 } 307 } 308 309 /** 310 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 311 * 312 * If a kernel thread is launched as a result of a system call, or if 313 * it ever exits, it should generally reparent itself to kthreadd so it 314 * isn't in the way of other processes and is correctly cleaned up on exit. 315 * 316 * The various task state such as scheduling policy and priority may have 317 * been inherited from a user process, so we reset them to sane values here. 318 * 319 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 320 */ 321 static void reparent_to_kthreadd(void) 322 { 323 write_lock_irq(&tasklist_lock); 324 325 ptrace_unlink(current); 326 /* Reparent to init */ 327 current->real_parent = current->parent = kthreadd_task; 328 list_move_tail(¤t->sibling, ¤t->real_parent->children); 329 330 /* Set the exit signal to SIGCHLD so we signal init on exit */ 331 current->exit_signal = SIGCHLD; 332 333 if (task_nice(current) < 0) 334 set_user_nice(current, 0); 335 /* cpus_allowed? */ 336 /* rt_priority? */ 337 /* signals? */ 338 security_task_reparent_to_init(current); 339 memcpy(current->signal->rlim, init_task.signal->rlim, 340 sizeof(current->signal->rlim)); 341 atomic_inc(&(INIT_USER->__count)); 342 write_unlock_irq(&tasklist_lock); 343 switch_uid(INIT_USER); 344 } 345 346 void __set_special_pids(struct pid *pid) 347 { 348 struct task_struct *curr = current->group_leader; 349 pid_t nr = pid_nr(pid); 350 351 if (task_session(curr) != pid) { 352 change_pid(curr, PIDTYPE_SID, pid); 353 set_task_session(curr, nr); 354 } 355 if (task_pgrp(curr) != pid) { 356 change_pid(curr, PIDTYPE_PGID, pid); 357 set_task_pgrp(curr, nr); 358 } 359 } 360 361 static void set_special_pids(struct pid *pid) 362 { 363 write_lock_irq(&tasklist_lock); 364 __set_special_pids(pid); 365 write_unlock_irq(&tasklist_lock); 366 } 367 368 /* 369 * Let kernel threads use this to say that they 370 * allow a certain signal (since daemonize() will 371 * have disabled all of them by default). 372 */ 373 int allow_signal(int sig) 374 { 375 if (!valid_signal(sig) || sig < 1) 376 return -EINVAL; 377 378 spin_lock_irq(¤t->sighand->siglock); 379 sigdelset(¤t->blocked, sig); 380 if (!current->mm) { 381 /* Kernel threads handle their own signals. 382 Let the signal code know it'll be handled, so 383 that they don't get converted to SIGKILL or 384 just silently dropped */ 385 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 386 } 387 recalc_sigpending(); 388 spin_unlock_irq(¤t->sighand->siglock); 389 return 0; 390 } 391 392 EXPORT_SYMBOL(allow_signal); 393 394 int disallow_signal(int sig) 395 { 396 if (!valid_signal(sig) || sig < 1) 397 return -EINVAL; 398 399 spin_lock_irq(¤t->sighand->siglock); 400 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 401 recalc_sigpending(); 402 spin_unlock_irq(¤t->sighand->siglock); 403 return 0; 404 } 405 406 EXPORT_SYMBOL(disallow_signal); 407 408 /* 409 * Put all the gunge required to become a kernel thread without 410 * attached user resources in one place where it belongs. 411 */ 412 413 void daemonize(const char *name, ...) 414 { 415 va_list args; 416 struct fs_struct *fs; 417 sigset_t blocked; 418 419 va_start(args, name); 420 vsnprintf(current->comm, sizeof(current->comm), name, args); 421 va_end(args); 422 423 /* 424 * If we were started as result of loading a module, close all of the 425 * user space pages. We don't need them, and if we didn't close them 426 * they would be locked into memory. 427 */ 428 exit_mm(current); 429 /* 430 * We don't want to have TIF_FREEZE set if the system-wide hibernation 431 * or suspend transition begins right now. 432 */ 433 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 434 435 if (current->nsproxy != &init_nsproxy) { 436 get_nsproxy(&init_nsproxy); 437 switch_task_namespaces(current, &init_nsproxy); 438 } 439 set_special_pids(&init_struct_pid); 440 proc_clear_tty(current); 441 442 /* Block and flush all signals */ 443 sigfillset(&blocked); 444 sigprocmask(SIG_BLOCK, &blocked, NULL); 445 flush_signals(current); 446 447 /* Become as one with the init task */ 448 449 exit_fs(current); /* current->fs->count--; */ 450 fs = init_task.fs; 451 current->fs = fs; 452 atomic_inc(&fs->count); 453 454 exit_files(current); 455 current->files = init_task.files; 456 atomic_inc(¤t->files->count); 457 458 reparent_to_kthreadd(); 459 } 460 461 EXPORT_SYMBOL(daemonize); 462 463 static void close_files(struct files_struct * files) 464 { 465 int i, j; 466 struct fdtable *fdt; 467 468 j = 0; 469 470 /* 471 * It is safe to dereference the fd table without RCU or 472 * ->file_lock because this is the last reference to the 473 * files structure. 474 */ 475 fdt = files_fdtable(files); 476 for (;;) { 477 unsigned long set; 478 i = j * __NFDBITS; 479 if (i >= fdt->max_fds) 480 break; 481 set = fdt->open_fds->fds_bits[j++]; 482 while (set) { 483 if (set & 1) { 484 struct file * file = xchg(&fdt->fd[i], NULL); 485 if (file) { 486 filp_close(file, files); 487 cond_resched(); 488 } 489 } 490 i++; 491 set >>= 1; 492 } 493 } 494 } 495 496 struct files_struct *get_files_struct(struct task_struct *task) 497 { 498 struct files_struct *files; 499 500 task_lock(task); 501 files = task->files; 502 if (files) 503 atomic_inc(&files->count); 504 task_unlock(task); 505 506 return files; 507 } 508 509 void put_files_struct(struct files_struct *files) 510 { 511 struct fdtable *fdt; 512 513 if (atomic_dec_and_test(&files->count)) { 514 close_files(files); 515 /* 516 * Free the fd and fdset arrays if we expanded them. 517 * If the fdtable was embedded, pass files for freeing 518 * at the end of the RCU grace period. Otherwise, 519 * you can free files immediately. 520 */ 521 fdt = files_fdtable(files); 522 if (fdt != &files->fdtab) 523 kmem_cache_free(files_cachep, files); 524 free_fdtable(fdt); 525 } 526 } 527 528 void reset_files_struct(struct files_struct *files) 529 { 530 struct task_struct *tsk = current; 531 struct files_struct *old; 532 533 old = tsk->files; 534 task_lock(tsk); 535 tsk->files = files; 536 task_unlock(tsk); 537 put_files_struct(old); 538 } 539 540 void exit_files(struct task_struct *tsk) 541 { 542 struct files_struct * files = tsk->files; 543 544 if (files) { 545 task_lock(tsk); 546 tsk->files = NULL; 547 task_unlock(tsk); 548 put_files_struct(files); 549 } 550 } 551 552 void put_fs_struct(struct fs_struct *fs) 553 { 554 /* No need to hold fs->lock if we are killing it */ 555 if (atomic_dec_and_test(&fs->count)) { 556 path_put(&fs->root); 557 path_put(&fs->pwd); 558 kmem_cache_free(fs_cachep, fs); 559 } 560 } 561 562 void exit_fs(struct task_struct *tsk) 563 { 564 struct fs_struct * fs = tsk->fs; 565 566 if (fs) { 567 task_lock(tsk); 568 tsk->fs = NULL; 569 task_unlock(tsk); 570 put_fs_struct(fs); 571 } 572 } 573 574 EXPORT_SYMBOL_GPL(exit_fs); 575 576 #ifdef CONFIG_MM_OWNER 577 /* 578 * Task p is exiting and it owned mm, lets find a new owner for it 579 */ 580 static inline int 581 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 582 { 583 /* 584 * If there are other users of the mm and the owner (us) is exiting 585 * we need to find a new owner to take on the responsibility. 586 */ 587 if (atomic_read(&mm->mm_users) <= 1) 588 return 0; 589 if (mm->owner != p) 590 return 0; 591 return 1; 592 } 593 594 void mm_update_next_owner(struct mm_struct *mm) 595 { 596 struct task_struct *c, *g, *p = current; 597 598 retry: 599 if (!mm_need_new_owner(mm, p)) 600 return; 601 602 read_lock(&tasklist_lock); 603 /* 604 * Search in the children 605 */ 606 list_for_each_entry(c, &p->children, sibling) { 607 if (c->mm == mm) 608 goto assign_new_owner; 609 } 610 611 /* 612 * Search in the siblings 613 */ 614 list_for_each_entry(c, &p->parent->children, sibling) { 615 if (c->mm == mm) 616 goto assign_new_owner; 617 } 618 619 /* 620 * Search through everything else. We should not get 621 * here often 622 */ 623 do_each_thread(g, c) { 624 if (c->mm == mm) 625 goto assign_new_owner; 626 } while_each_thread(g, c); 627 628 read_unlock(&tasklist_lock); 629 /* 630 * We found no owner yet mm_users > 1: this implies that we are 631 * most likely racing with swapoff (try_to_unuse()) or /proc or 632 * ptrace or page migration (get_task_mm()). Mark owner as NULL, 633 * so that subsystems can understand the callback and take action. 634 */ 635 down_write(&mm->mmap_sem); 636 cgroup_mm_owner_callbacks(mm->owner, NULL); 637 mm->owner = NULL; 638 up_write(&mm->mmap_sem); 639 return; 640 641 assign_new_owner: 642 BUG_ON(c == p); 643 get_task_struct(c); 644 read_unlock(&tasklist_lock); 645 down_write(&mm->mmap_sem); 646 /* 647 * The task_lock protects c->mm from changing. 648 * We always want mm->owner->mm == mm 649 */ 650 task_lock(c); 651 if (c->mm != mm) { 652 task_unlock(c); 653 up_write(&mm->mmap_sem); 654 put_task_struct(c); 655 goto retry; 656 } 657 cgroup_mm_owner_callbacks(mm->owner, c); 658 mm->owner = c; 659 task_unlock(c); 660 up_write(&mm->mmap_sem); 661 put_task_struct(c); 662 } 663 #endif /* CONFIG_MM_OWNER */ 664 665 /* 666 * Turn us into a lazy TLB process if we 667 * aren't already.. 668 */ 669 static void exit_mm(struct task_struct * tsk) 670 { 671 struct mm_struct *mm = tsk->mm; 672 struct core_state *core_state; 673 674 mm_release(tsk, mm); 675 if (!mm) 676 return; 677 /* 678 * Serialize with any possible pending coredump. 679 * We must hold mmap_sem around checking core_state 680 * and clearing tsk->mm. The core-inducing thread 681 * will increment ->nr_threads for each thread in the 682 * group with ->mm != NULL. 683 */ 684 down_read(&mm->mmap_sem); 685 core_state = mm->core_state; 686 if (core_state) { 687 struct core_thread self; 688 up_read(&mm->mmap_sem); 689 690 self.task = tsk; 691 self.next = xchg(&core_state->dumper.next, &self); 692 /* 693 * Implies mb(), the result of xchg() must be visible 694 * to core_state->dumper. 695 */ 696 if (atomic_dec_and_test(&core_state->nr_threads)) 697 complete(&core_state->startup); 698 699 for (;;) { 700 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 701 if (!self.task) /* see coredump_finish() */ 702 break; 703 schedule(); 704 } 705 __set_task_state(tsk, TASK_RUNNING); 706 down_read(&mm->mmap_sem); 707 } 708 atomic_inc(&mm->mm_count); 709 BUG_ON(mm != tsk->active_mm); 710 /* more a memory barrier than a real lock */ 711 task_lock(tsk); 712 tsk->mm = NULL; 713 up_read(&mm->mmap_sem); 714 enter_lazy_tlb(mm, current); 715 /* We don't want this task to be frozen prematurely */ 716 clear_freeze_flag(tsk); 717 task_unlock(tsk); 718 mm_update_next_owner(mm); 719 mmput(mm); 720 } 721 722 /* 723 * Return nonzero if @parent's children should reap themselves. 724 * 725 * Called with write_lock_irq(&tasklist_lock) held. 726 */ 727 static int ignoring_children(struct task_struct *parent) 728 { 729 int ret; 730 struct sighand_struct *psig = parent->sighand; 731 unsigned long flags; 732 spin_lock_irqsave(&psig->siglock, flags); 733 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 734 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT)); 735 spin_unlock_irqrestore(&psig->siglock, flags); 736 return ret; 737 } 738 739 /* 740 * Detach all tasks we were using ptrace on. 741 * Any that need to be release_task'd are put on the @dead list. 742 * 743 * Called with write_lock(&tasklist_lock) held. 744 */ 745 static void ptrace_exit(struct task_struct *parent, struct list_head *dead) 746 { 747 struct task_struct *p, *n; 748 int ign = -1; 749 750 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) { 751 __ptrace_unlink(p); 752 753 if (p->exit_state != EXIT_ZOMBIE) 754 continue; 755 756 /* 757 * If it's a zombie, our attachedness prevented normal 758 * parent notification or self-reaping. Do notification 759 * now if it would have happened earlier. If it should 760 * reap itself, add it to the @dead list. We can't call 761 * release_task() here because we already hold tasklist_lock. 762 * 763 * If it's our own child, there is no notification to do. 764 * But if our normal children self-reap, then this child 765 * was prevented by ptrace and we must reap it now. 766 */ 767 if (!task_detached(p) && thread_group_empty(p)) { 768 if (!same_thread_group(p->real_parent, parent)) 769 do_notify_parent(p, p->exit_signal); 770 else { 771 if (ign < 0) 772 ign = ignoring_children(parent); 773 if (ign) 774 p->exit_signal = -1; 775 } 776 } 777 778 if (task_detached(p)) { 779 /* 780 * Mark it as in the process of being reaped. 781 */ 782 p->exit_state = EXIT_DEAD; 783 list_add(&p->ptrace_entry, dead); 784 } 785 } 786 } 787 788 /* 789 * Finish up exit-time ptrace cleanup. 790 * 791 * Called without locks. 792 */ 793 static void ptrace_exit_finish(struct task_struct *parent, 794 struct list_head *dead) 795 { 796 struct task_struct *p, *n; 797 798 BUG_ON(!list_empty(&parent->ptraced)); 799 800 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 801 list_del_init(&p->ptrace_entry); 802 release_task(p); 803 } 804 } 805 806 static void reparent_thread(struct task_struct *p, struct task_struct *father) 807 { 808 if (p->pdeath_signal) 809 /* We already hold the tasklist_lock here. */ 810 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 811 812 list_move_tail(&p->sibling, &p->real_parent->children); 813 814 /* If this is a threaded reparent there is no need to 815 * notify anyone anything has happened. 816 */ 817 if (same_thread_group(p->real_parent, father)) 818 return; 819 820 /* We don't want people slaying init. */ 821 if (!task_detached(p)) 822 p->exit_signal = SIGCHLD; 823 824 /* If we'd notified the old parent about this child's death, 825 * also notify the new parent. 826 */ 827 if (!ptrace_reparented(p) && 828 p->exit_state == EXIT_ZOMBIE && 829 !task_detached(p) && thread_group_empty(p)) 830 do_notify_parent(p, p->exit_signal); 831 832 kill_orphaned_pgrp(p, father); 833 } 834 835 /* 836 * When we die, we re-parent all our children. 837 * Try to give them to another thread in our thread 838 * group, and if no such member exists, give it to 839 * the child reaper process (ie "init") in our pid 840 * space. 841 */ 842 static struct task_struct *find_new_reaper(struct task_struct *father) 843 { 844 struct pid_namespace *pid_ns = task_active_pid_ns(father); 845 struct task_struct *thread; 846 847 thread = father; 848 while_each_thread(father, thread) { 849 if (thread->flags & PF_EXITING) 850 continue; 851 if (unlikely(pid_ns->child_reaper == father)) 852 pid_ns->child_reaper = thread; 853 return thread; 854 } 855 856 if (unlikely(pid_ns->child_reaper == father)) { 857 write_unlock_irq(&tasklist_lock); 858 if (unlikely(pid_ns == &init_pid_ns)) 859 panic("Attempted to kill init!"); 860 861 zap_pid_ns_processes(pid_ns); 862 write_lock_irq(&tasklist_lock); 863 /* 864 * We can not clear ->child_reaper or leave it alone. 865 * There may by stealth EXIT_DEAD tasks on ->children, 866 * forget_original_parent() must move them somewhere. 867 */ 868 pid_ns->child_reaper = init_pid_ns.child_reaper; 869 } 870 871 return pid_ns->child_reaper; 872 } 873 874 static void forget_original_parent(struct task_struct *father) 875 { 876 struct task_struct *p, *n, *reaper; 877 LIST_HEAD(ptrace_dead); 878 879 write_lock_irq(&tasklist_lock); 880 reaper = find_new_reaper(father); 881 /* 882 * First clean up ptrace if we were using it. 883 */ 884 ptrace_exit(father, &ptrace_dead); 885 886 list_for_each_entry_safe(p, n, &father->children, sibling) { 887 p->real_parent = reaper; 888 if (p->parent == father) { 889 BUG_ON(p->ptrace); 890 p->parent = p->real_parent; 891 } 892 reparent_thread(p, father); 893 } 894 895 write_unlock_irq(&tasklist_lock); 896 BUG_ON(!list_empty(&father->children)); 897 898 ptrace_exit_finish(father, &ptrace_dead); 899 } 900 901 /* 902 * Send signals to all our closest relatives so that they know 903 * to properly mourn us.. 904 */ 905 static void exit_notify(struct task_struct *tsk, int group_dead) 906 { 907 int signal; 908 void *cookie; 909 910 /* 911 * This does two things: 912 * 913 * A. Make init inherit all the child processes 914 * B. Check to see if any process groups have become orphaned 915 * as a result of our exiting, and if they have any stopped 916 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 917 */ 918 forget_original_parent(tsk); 919 exit_task_namespaces(tsk); 920 921 write_lock_irq(&tasklist_lock); 922 if (group_dead) 923 kill_orphaned_pgrp(tsk->group_leader, NULL); 924 925 /* Let father know we died 926 * 927 * Thread signals are configurable, but you aren't going to use 928 * that to send signals to arbitary processes. 929 * That stops right now. 930 * 931 * If the parent exec id doesn't match the exec id we saved 932 * when we started then we know the parent has changed security 933 * domain. 934 * 935 * If our self_exec id doesn't match our parent_exec_id then 936 * we have changed execution domain as these two values started 937 * the same after a fork. 938 */ 939 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 940 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 941 tsk->self_exec_id != tsk->parent_exec_id) && 942 !capable(CAP_KILL)) 943 tsk->exit_signal = SIGCHLD; 944 945 signal = tracehook_notify_death(tsk, &cookie, group_dead); 946 if (signal >= 0) 947 signal = do_notify_parent(tsk, signal); 948 949 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 950 951 /* mt-exec, de_thread() is waiting for us */ 952 if (thread_group_leader(tsk) && 953 tsk->signal->group_exit_task && 954 tsk->signal->notify_count < 0) 955 wake_up_process(tsk->signal->group_exit_task); 956 957 write_unlock_irq(&tasklist_lock); 958 959 tracehook_report_death(tsk, signal, cookie, group_dead); 960 961 /* If the process is dead, release it - nobody will wait for it */ 962 if (signal == DEATH_REAP) 963 release_task(tsk); 964 } 965 966 #ifdef CONFIG_DEBUG_STACK_USAGE 967 static void check_stack_usage(void) 968 { 969 static DEFINE_SPINLOCK(low_water_lock); 970 static int lowest_to_date = THREAD_SIZE; 971 unsigned long *n = end_of_stack(current); 972 unsigned long free; 973 974 while (*n == 0) 975 n++; 976 free = (unsigned long)n - (unsigned long)end_of_stack(current); 977 978 if (free >= lowest_to_date) 979 return; 980 981 spin_lock(&low_water_lock); 982 if (free < lowest_to_date) { 983 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 984 "left\n", 985 current->comm, free); 986 lowest_to_date = free; 987 } 988 spin_unlock(&low_water_lock); 989 } 990 #else 991 static inline void check_stack_usage(void) {} 992 #endif 993 994 NORET_TYPE void do_exit(long code) 995 { 996 struct task_struct *tsk = current; 997 int group_dead; 998 999 profile_task_exit(tsk); 1000 1001 WARN_ON(atomic_read(&tsk->fs_excl)); 1002 1003 if (unlikely(in_interrupt())) 1004 panic("Aiee, killing interrupt handler!"); 1005 if (unlikely(!tsk->pid)) 1006 panic("Attempted to kill the idle task!"); 1007 1008 tracehook_report_exit(&code); 1009 1010 /* 1011 * We're taking recursive faults here in do_exit. Safest is to just 1012 * leave this task alone and wait for reboot. 1013 */ 1014 if (unlikely(tsk->flags & PF_EXITING)) { 1015 printk(KERN_ALERT 1016 "Fixing recursive fault but reboot is needed!\n"); 1017 /* 1018 * We can do this unlocked here. The futex code uses 1019 * this flag just to verify whether the pi state 1020 * cleanup has been done or not. In the worst case it 1021 * loops once more. We pretend that the cleanup was 1022 * done as there is no way to return. Either the 1023 * OWNER_DIED bit is set by now or we push the blocked 1024 * task into the wait for ever nirwana as well. 1025 */ 1026 tsk->flags |= PF_EXITPIDONE; 1027 if (tsk->io_context) 1028 exit_io_context(); 1029 set_current_state(TASK_UNINTERRUPTIBLE); 1030 schedule(); 1031 } 1032 1033 exit_signals(tsk); /* sets PF_EXITING */ 1034 /* 1035 * tsk->flags are checked in the futex code to protect against 1036 * an exiting task cleaning up the robust pi futexes. 1037 */ 1038 smp_mb(); 1039 spin_unlock_wait(&tsk->pi_lock); 1040 1041 if (unlikely(in_atomic())) 1042 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 1043 current->comm, task_pid_nr(current), 1044 preempt_count()); 1045 1046 acct_update_integrals(tsk); 1047 if (tsk->mm) { 1048 update_hiwater_rss(tsk->mm); 1049 update_hiwater_vm(tsk->mm); 1050 } 1051 group_dead = atomic_dec_and_test(&tsk->signal->live); 1052 if (group_dead) { 1053 hrtimer_cancel(&tsk->signal->real_timer); 1054 exit_itimers(tsk->signal); 1055 } 1056 acct_collect(code, group_dead); 1057 #ifdef CONFIG_FUTEX 1058 if (unlikely(tsk->robust_list)) 1059 exit_robust_list(tsk); 1060 #ifdef CONFIG_COMPAT 1061 if (unlikely(tsk->compat_robust_list)) 1062 compat_exit_robust_list(tsk); 1063 #endif 1064 #endif 1065 if (group_dead) 1066 tty_audit_exit(); 1067 if (unlikely(tsk->audit_context)) 1068 audit_free(tsk); 1069 1070 tsk->exit_code = code; 1071 taskstats_exit(tsk, group_dead); 1072 1073 exit_mm(tsk); 1074 1075 if (group_dead) 1076 acct_process(); 1077 trace_sched_process_exit(tsk); 1078 1079 exit_sem(tsk); 1080 exit_files(tsk); 1081 exit_fs(tsk); 1082 check_stack_usage(); 1083 exit_thread(); 1084 cgroup_exit(tsk, 1); 1085 exit_keys(tsk); 1086 1087 if (group_dead && tsk->signal->leader) 1088 disassociate_ctty(1); 1089 1090 module_put(task_thread_info(tsk)->exec_domain->module); 1091 if (tsk->binfmt) 1092 module_put(tsk->binfmt->module); 1093 1094 proc_exit_connector(tsk); 1095 exit_notify(tsk, group_dead); 1096 #ifdef CONFIG_NUMA 1097 mpol_put(tsk->mempolicy); 1098 tsk->mempolicy = NULL; 1099 #endif 1100 #ifdef CONFIG_FUTEX 1101 /* 1102 * This must happen late, after the PID is not 1103 * hashed anymore: 1104 */ 1105 if (unlikely(!list_empty(&tsk->pi_state_list))) 1106 exit_pi_state_list(tsk); 1107 if (unlikely(current->pi_state_cache)) 1108 kfree(current->pi_state_cache); 1109 #endif 1110 /* 1111 * Make sure we are holding no locks: 1112 */ 1113 debug_check_no_locks_held(tsk); 1114 /* 1115 * We can do this unlocked here. The futex code uses this flag 1116 * just to verify whether the pi state cleanup has been done 1117 * or not. In the worst case it loops once more. 1118 */ 1119 tsk->flags |= PF_EXITPIDONE; 1120 1121 if (tsk->io_context) 1122 exit_io_context(); 1123 1124 if (tsk->splice_pipe) 1125 __free_pipe_info(tsk->splice_pipe); 1126 1127 preempt_disable(); 1128 /* causes final put_task_struct in finish_task_switch(). */ 1129 tsk->state = TASK_DEAD; 1130 1131 schedule(); 1132 BUG(); 1133 /* Avoid "noreturn function does return". */ 1134 for (;;) 1135 cpu_relax(); /* For when BUG is null */ 1136 } 1137 1138 EXPORT_SYMBOL_GPL(do_exit); 1139 1140 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1141 { 1142 if (comp) 1143 complete(comp); 1144 1145 do_exit(code); 1146 } 1147 1148 EXPORT_SYMBOL(complete_and_exit); 1149 1150 asmlinkage long sys_exit(int error_code) 1151 { 1152 do_exit((error_code&0xff)<<8); 1153 } 1154 1155 /* 1156 * Take down every thread in the group. This is called by fatal signals 1157 * as well as by sys_exit_group (below). 1158 */ 1159 NORET_TYPE void 1160 do_group_exit(int exit_code) 1161 { 1162 struct signal_struct *sig = current->signal; 1163 1164 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1165 1166 if (signal_group_exit(sig)) 1167 exit_code = sig->group_exit_code; 1168 else if (!thread_group_empty(current)) { 1169 struct sighand_struct *const sighand = current->sighand; 1170 spin_lock_irq(&sighand->siglock); 1171 if (signal_group_exit(sig)) 1172 /* Another thread got here before we took the lock. */ 1173 exit_code = sig->group_exit_code; 1174 else { 1175 sig->group_exit_code = exit_code; 1176 sig->flags = SIGNAL_GROUP_EXIT; 1177 zap_other_threads(current); 1178 } 1179 spin_unlock_irq(&sighand->siglock); 1180 } 1181 1182 do_exit(exit_code); 1183 /* NOTREACHED */ 1184 } 1185 1186 /* 1187 * this kills every thread in the thread group. Note that any externally 1188 * wait4()-ing process will get the correct exit code - even if this 1189 * thread is not the thread group leader. 1190 */ 1191 asmlinkage void sys_exit_group(int error_code) 1192 { 1193 do_group_exit((error_code & 0xff) << 8); 1194 } 1195 1196 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1197 { 1198 struct pid *pid = NULL; 1199 if (type == PIDTYPE_PID) 1200 pid = task->pids[type].pid; 1201 else if (type < PIDTYPE_MAX) 1202 pid = task->group_leader->pids[type].pid; 1203 return pid; 1204 } 1205 1206 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1207 struct task_struct *p) 1208 { 1209 int err; 1210 1211 if (type < PIDTYPE_MAX) { 1212 if (task_pid_type(p, type) != pid) 1213 return 0; 1214 } 1215 1216 /* Wait for all children (clone and not) if __WALL is set; 1217 * otherwise, wait for clone children *only* if __WCLONE is 1218 * set; otherwise, wait for non-clone children *only*. (Note: 1219 * A "clone" child here is one that reports to its parent 1220 * using a signal other than SIGCHLD.) */ 1221 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1222 && !(options & __WALL)) 1223 return 0; 1224 1225 err = security_task_wait(p); 1226 if (err) 1227 return err; 1228 1229 return 1; 1230 } 1231 1232 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1233 int why, int status, 1234 struct siginfo __user *infop, 1235 struct rusage __user *rusagep) 1236 { 1237 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1238 1239 put_task_struct(p); 1240 if (!retval) 1241 retval = put_user(SIGCHLD, &infop->si_signo); 1242 if (!retval) 1243 retval = put_user(0, &infop->si_errno); 1244 if (!retval) 1245 retval = put_user((short)why, &infop->si_code); 1246 if (!retval) 1247 retval = put_user(pid, &infop->si_pid); 1248 if (!retval) 1249 retval = put_user(uid, &infop->si_uid); 1250 if (!retval) 1251 retval = put_user(status, &infop->si_status); 1252 if (!retval) 1253 retval = pid; 1254 return retval; 1255 } 1256 1257 /* 1258 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1259 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1260 * the lock and this task is uninteresting. If we return nonzero, we have 1261 * released the lock and the system call should return. 1262 */ 1263 static int wait_task_zombie(struct task_struct *p, int options, 1264 struct siginfo __user *infop, 1265 int __user *stat_addr, struct rusage __user *ru) 1266 { 1267 unsigned long state; 1268 int retval, status, traced; 1269 pid_t pid = task_pid_vnr(p); 1270 1271 if (!likely(options & WEXITED)) 1272 return 0; 1273 1274 if (unlikely(options & WNOWAIT)) { 1275 uid_t uid = p->uid; 1276 int exit_code = p->exit_code; 1277 int why, status; 1278 1279 get_task_struct(p); 1280 read_unlock(&tasklist_lock); 1281 if ((exit_code & 0x7f) == 0) { 1282 why = CLD_EXITED; 1283 status = exit_code >> 8; 1284 } else { 1285 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1286 status = exit_code & 0x7f; 1287 } 1288 return wait_noreap_copyout(p, pid, uid, why, 1289 status, infop, ru); 1290 } 1291 1292 /* 1293 * Try to move the task's state to DEAD 1294 * only one thread is allowed to do this: 1295 */ 1296 state = xchg(&p->exit_state, EXIT_DEAD); 1297 if (state != EXIT_ZOMBIE) { 1298 BUG_ON(state != EXIT_DEAD); 1299 return 0; 1300 } 1301 1302 traced = ptrace_reparented(p); 1303 1304 if (likely(!traced)) { 1305 struct signal_struct *psig; 1306 struct signal_struct *sig; 1307 struct task_cputime cputime; 1308 1309 /* 1310 * The resource counters for the group leader are in its 1311 * own task_struct. Those for dead threads in the group 1312 * are in its signal_struct, as are those for the child 1313 * processes it has previously reaped. All these 1314 * accumulate in the parent's signal_struct c* fields. 1315 * 1316 * We don't bother to take a lock here to protect these 1317 * p->signal fields, because they are only touched by 1318 * __exit_signal, which runs with tasklist_lock 1319 * write-locked anyway, and so is excluded here. We do 1320 * need to protect the access to p->parent->signal fields, 1321 * as other threads in the parent group can be right 1322 * here reaping other children at the same time. 1323 * 1324 * We use thread_group_cputime() to get times for the thread 1325 * group, which consolidates times for all threads in the 1326 * group including the group leader. 1327 */ 1328 spin_lock_irq(&p->parent->sighand->siglock); 1329 psig = p->parent->signal; 1330 sig = p->signal; 1331 thread_group_cputime(p, &cputime); 1332 psig->cutime = 1333 cputime_add(psig->cutime, 1334 cputime_add(cputime.utime, 1335 sig->cutime)); 1336 psig->cstime = 1337 cputime_add(psig->cstime, 1338 cputime_add(cputime.stime, 1339 sig->cstime)); 1340 psig->cgtime = 1341 cputime_add(psig->cgtime, 1342 cputime_add(p->gtime, 1343 cputime_add(sig->gtime, 1344 sig->cgtime))); 1345 psig->cmin_flt += 1346 p->min_flt + sig->min_flt + sig->cmin_flt; 1347 psig->cmaj_flt += 1348 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1349 psig->cnvcsw += 1350 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1351 psig->cnivcsw += 1352 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1353 psig->cinblock += 1354 task_io_get_inblock(p) + 1355 sig->inblock + sig->cinblock; 1356 psig->coublock += 1357 task_io_get_oublock(p) + 1358 sig->oublock + sig->coublock; 1359 task_io_accounting_add(&psig->ioac, &p->ioac); 1360 task_io_accounting_add(&psig->ioac, &sig->ioac); 1361 spin_unlock_irq(&p->parent->sighand->siglock); 1362 } 1363 1364 /* 1365 * Now we are sure this task is interesting, and no other 1366 * thread can reap it because we set its state to EXIT_DEAD. 1367 */ 1368 read_unlock(&tasklist_lock); 1369 1370 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1371 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1372 ? p->signal->group_exit_code : p->exit_code; 1373 if (!retval && stat_addr) 1374 retval = put_user(status, stat_addr); 1375 if (!retval && infop) 1376 retval = put_user(SIGCHLD, &infop->si_signo); 1377 if (!retval && infop) 1378 retval = put_user(0, &infop->si_errno); 1379 if (!retval && infop) { 1380 int why; 1381 1382 if ((status & 0x7f) == 0) { 1383 why = CLD_EXITED; 1384 status >>= 8; 1385 } else { 1386 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1387 status &= 0x7f; 1388 } 1389 retval = put_user((short)why, &infop->si_code); 1390 if (!retval) 1391 retval = put_user(status, &infop->si_status); 1392 } 1393 if (!retval && infop) 1394 retval = put_user(pid, &infop->si_pid); 1395 if (!retval && infop) 1396 retval = put_user(p->uid, &infop->si_uid); 1397 if (!retval) 1398 retval = pid; 1399 1400 if (traced) { 1401 write_lock_irq(&tasklist_lock); 1402 /* We dropped tasklist, ptracer could die and untrace */ 1403 ptrace_unlink(p); 1404 /* 1405 * If this is not a detached task, notify the parent. 1406 * If it's still not detached after that, don't release 1407 * it now. 1408 */ 1409 if (!task_detached(p)) { 1410 do_notify_parent(p, p->exit_signal); 1411 if (!task_detached(p)) { 1412 p->exit_state = EXIT_ZOMBIE; 1413 p = NULL; 1414 } 1415 } 1416 write_unlock_irq(&tasklist_lock); 1417 } 1418 if (p != NULL) 1419 release_task(p); 1420 1421 return retval; 1422 } 1423 1424 /* 1425 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1426 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1427 * the lock and this task is uninteresting. If we return nonzero, we have 1428 * released the lock and the system call should return. 1429 */ 1430 static int wait_task_stopped(int ptrace, struct task_struct *p, 1431 int options, struct siginfo __user *infop, 1432 int __user *stat_addr, struct rusage __user *ru) 1433 { 1434 int retval, exit_code, why; 1435 uid_t uid = 0; /* unneeded, required by compiler */ 1436 pid_t pid; 1437 1438 if (!(options & WUNTRACED)) 1439 return 0; 1440 1441 exit_code = 0; 1442 spin_lock_irq(&p->sighand->siglock); 1443 1444 if (unlikely(!task_is_stopped_or_traced(p))) 1445 goto unlock_sig; 1446 1447 if (!ptrace && p->signal->group_stop_count > 0) 1448 /* 1449 * A group stop is in progress and this is the group leader. 1450 * We won't report until all threads have stopped. 1451 */ 1452 goto unlock_sig; 1453 1454 exit_code = p->exit_code; 1455 if (!exit_code) 1456 goto unlock_sig; 1457 1458 if (!unlikely(options & WNOWAIT)) 1459 p->exit_code = 0; 1460 1461 uid = p->uid; 1462 unlock_sig: 1463 spin_unlock_irq(&p->sighand->siglock); 1464 if (!exit_code) 1465 return 0; 1466 1467 /* 1468 * Now we are pretty sure this task is interesting. 1469 * Make sure it doesn't get reaped out from under us while we 1470 * give up the lock and then examine it below. We don't want to 1471 * keep holding onto the tasklist_lock while we call getrusage and 1472 * possibly take page faults for user memory. 1473 */ 1474 get_task_struct(p); 1475 pid = task_pid_vnr(p); 1476 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1477 read_unlock(&tasklist_lock); 1478 1479 if (unlikely(options & WNOWAIT)) 1480 return wait_noreap_copyout(p, pid, uid, 1481 why, exit_code, 1482 infop, ru); 1483 1484 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1485 if (!retval && stat_addr) 1486 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1487 if (!retval && infop) 1488 retval = put_user(SIGCHLD, &infop->si_signo); 1489 if (!retval && infop) 1490 retval = put_user(0, &infop->si_errno); 1491 if (!retval && infop) 1492 retval = put_user((short)why, &infop->si_code); 1493 if (!retval && infop) 1494 retval = put_user(exit_code, &infop->si_status); 1495 if (!retval && infop) 1496 retval = put_user(pid, &infop->si_pid); 1497 if (!retval && infop) 1498 retval = put_user(uid, &infop->si_uid); 1499 if (!retval) 1500 retval = pid; 1501 put_task_struct(p); 1502 1503 BUG_ON(!retval); 1504 return retval; 1505 } 1506 1507 /* 1508 * Handle do_wait work for one task in a live, non-stopped state. 1509 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1510 * the lock and this task is uninteresting. If we return nonzero, we have 1511 * released the lock and the system call should return. 1512 */ 1513 static int wait_task_continued(struct task_struct *p, int options, 1514 struct siginfo __user *infop, 1515 int __user *stat_addr, struct rusage __user *ru) 1516 { 1517 int retval; 1518 pid_t pid; 1519 uid_t uid; 1520 1521 if (!unlikely(options & WCONTINUED)) 1522 return 0; 1523 1524 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1525 return 0; 1526 1527 spin_lock_irq(&p->sighand->siglock); 1528 /* Re-check with the lock held. */ 1529 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1530 spin_unlock_irq(&p->sighand->siglock); 1531 return 0; 1532 } 1533 if (!unlikely(options & WNOWAIT)) 1534 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1535 spin_unlock_irq(&p->sighand->siglock); 1536 1537 pid = task_pid_vnr(p); 1538 uid = p->uid; 1539 get_task_struct(p); 1540 read_unlock(&tasklist_lock); 1541 1542 if (!infop) { 1543 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1544 put_task_struct(p); 1545 if (!retval && stat_addr) 1546 retval = put_user(0xffff, stat_addr); 1547 if (!retval) 1548 retval = pid; 1549 } else { 1550 retval = wait_noreap_copyout(p, pid, uid, 1551 CLD_CONTINUED, SIGCONT, 1552 infop, ru); 1553 BUG_ON(retval == 0); 1554 } 1555 1556 return retval; 1557 } 1558 1559 /* 1560 * Consider @p for a wait by @parent. 1561 * 1562 * -ECHILD should be in *@notask_error before the first call. 1563 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1564 * Returns zero if the search for a child should continue; 1565 * then *@notask_error is 0 if @p is an eligible child, 1566 * or another error from security_task_wait(), or still -ECHILD. 1567 */ 1568 static int wait_consider_task(struct task_struct *parent, int ptrace, 1569 struct task_struct *p, int *notask_error, 1570 enum pid_type type, struct pid *pid, int options, 1571 struct siginfo __user *infop, 1572 int __user *stat_addr, struct rusage __user *ru) 1573 { 1574 int ret = eligible_child(type, pid, options, p); 1575 if (!ret) 1576 return ret; 1577 1578 if (unlikely(ret < 0)) { 1579 /* 1580 * If we have not yet seen any eligible child, 1581 * then let this error code replace -ECHILD. 1582 * A permission error will give the user a clue 1583 * to look for security policy problems, rather 1584 * than for mysterious wait bugs. 1585 */ 1586 if (*notask_error) 1587 *notask_error = ret; 1588 } 1589 1590 if (likely(!ptrace) && unlikely(p->ptrace)) { 1591 /* 1592 * This child is hidden by ptrace. 1593 * We aren't allowed to see it now, but eventually we will. 1594 */ 1595 *notask_error = 0; 1596 return 0; 1597 } 1598 1599 if (p->exit_state == EXIT_DEAD) 1600 return 0; 1601 1602 /* 1603 * We don't reap group leaders with subthreads. 1604 */ 1605 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1606 return wait_task_zombie(p, options, infop, stat_addr, ru); 1607 1608 /* 1609 * It's stopped or running now, so it might 1610 * later continue, exit, or stop again. 1611 */ 1612 *notask_error = 0; 1613 1614 if (task_is_stopped_or_traced(p)) 1615 return wait_task_stopped(ptrace, p, options, 1616 infop, stat_addr, ru); 1617 1618 return wait_task_continued(p, options, infop, stat_addr, ru); 1619 } 1620 1621 /* 1622 * Do the work of do_wait() for one thread in the group, @tsk. 1623 * 1624 * -ECHILD should be in *@notask_error before the first call. 1625 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1626 * Returns zero if the search for a child should continue; then 1627 * *@notask_error is 0 if there were any eligible children, 1628 * or another error from security_task_wait(), or still -ECHILD. 1629 */ 1630 static int do_wait_thread(struct task_struct *tsk, int *notask_error, 1631 enum pid_type type, struct pid *pid, int options, 1632 struct siginfo __user *infop, int __user *stat_addr, 1633 struct rusage __user *ru) 1634 { 1635 struct task_struct *p; 1636 1637 list_for_each_entry(p, &tsk->children, sibling) { 1638 /* 1639 * Do not consider detached threads. 1640 */ 1641 if (!task_detached(p)) { 1642 int ret = wait_consider_task(tsk, 0, p, notask_error, 1643 type, pid, options, 1644 infop, stat_addr, ru); 1645 if (ret) 1646 return ret; 1647 } 1648 } 1649 1650 return 0; 1651 } 1652 1653 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, 1654 enum pid_type type, struct pid *pid, int options, 1655 struct siginfo __user *infop, int __user *stat_addr, 1656 struct rusage __user *ru) 1657 { 1658 struct task_struct *p; 1659 1660 /* 1661 * Traditionally we see ptrace'd stopped tasks regardless of options. 1662 */ 1663 options |= WUNTRACED; 1664 1665 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1666 int ret = wait_consider_task(tsk, 1, p, notask_error, 1667 type, pid, options, 1668 infop, stat_addr, ru); 1669 if (ret) 1670 return ret; 1671 } 1672 1673 return 0; 1674 } 1675 1676 static long do_wait(enum pid_type type, struct pid *pid, int options, 1677 struct siginfo __user *infop, int __user *stat_addr, 1678 struct rusage __user *ru) 1679 { 1680 DECLARE_WAITQUEUE(wait, current); 1681 struct task_struct *tsk; 1682 int retval; 1683 1684 trace_sched_process_wait(pid); 1685 1686 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1687 repeat: 1688 /* 1689 * If there is nothing that can match our critiera just get out. 1690 * We will clear @retval to zero if we see any child that might later 1691 * match our criteria, even if we are not able to reap it yet. 1692 */ 1693 retval = -ECHILD; 1694 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1695 goto end; 1696 1697 current->state = TASK_INTERRUPTIBLE; 1698 read_lock(&tasklist_lock); 1699 tsk = current; 1700 do { 1701 int tsk_result = do_wait_thread(tsk, &retval, 1702 type, pid, options, 1703 infop, stat_addr, ru); 1704 if (!tsk_result) 1705 tsk_result = ptrace_do_wait(tsk, &retval, 1706 type, pid, options, 1707 infop, stat_addr, ru); 1708 if (tsk_result) { 1709 /* 1710 * tasklist_lock is unlocked and we have a final result. 1711 */ 1712 retval = tsk_result; 1713 goto end; 1714 } 1715 1716 if (options & __WNOTHREAD) 1717 break; 1718 tsk = next_thread(tsk); 1719 BUG_ON(tsk->signal != current->signal); 1720 } while (tsk != current); 1721 read_unlock(&tasklist_lock); 1722 1723 if (!retval && !(options & WNOHANG)) { 1724 retval = -ERESTARTSYS; 1725 if (!signal_pending(current)) { 1726 schedule(); 1727 goto repeat; 1728 } 1729 } 1730 1731 end: 1732 current->state = TASK_RUNNING; 1733 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1734 if (infop) { 1735 if (retval > 0) 1736 retval = 0; 1737 else { 1738 /* 1739 * For a WNOHANG return, clear out all the fields 1740 * we would set so the user can easily tell the 1741 * difference. 1742 */ 1743 if (!retval) 1744 retval = put_user(0, &infop->si_signo); 1745 if (!retval) 1746 retval = put_user(0, &infop->si_errno); 1747 if (!retval) 1748 retval = put_user(0, &infop->si_code); 1749 if (!retval) 1750 retval = put_user(0, &infop->si_pid); 1751 if (!retval) 1752 retval = put_user(0, &infop->si_uid); 1753 if (!retval) 1754 retval = put_user(0, &infop->si_status); 1755 } 1756 } 1757 return retval; 1758 } 1759 1760 asmlinkage long sys_waitid(int which, pid_t upid, 1761 struct siginfo __user *infop, int options, 1762 struct rusage __user *ru) 1763 { 1764 struct pid *pid = NULL; 1765 enum pid_type type; 1766 long ret; 1767 1768 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1769 return -EINVAL; 1770 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1771 return -EINVAL; 1772 1773 switch (which) { 1774 case P_ALL: 1775 type = PIDTYPE_MAX; 1776 break; 1777 case P_PID: 1778 type = PIDTYPE_PID; 1779 if (upid <= 0) 1780 return -EINVAL; 1781 break; 1782 case P_PGID: 1783 type = PIDTYPE_PGID; 1784 if (upid <= 0) 1785 return -EINVAL; 1786 break; 1787 default: 1788 return -EINVAL; 1789 } 1790 1791 if (type < PIDTYPE_MAX) 1792 pid = find_get_pid(upid); 1793 ret = do_wait(type, pid, options, infop, NULL, ru); 1794 put_pid(pid); 1795 1796 /* avoid REGPARM breakage on x86: */ 1797 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1798 return ret; 1799 } 1800 1801 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, 1802 int options, struct rusage __user *ru) 1803 { 1804 struct pid *pid = NULL; 1805 enum pid_type type; 1806 long ret; 1807 1808 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1809 __WNOTHREAD|__WCLONE|__WALL)) 1810 return -EINVAL; 1811 1812 if (upid == -1) 1813 type = PIDTYPE_MAX; 1814 else if (upid < 0) { 1815 type = PIDTYPE_PGID; 1816 pid = find_get_pid(-upid); 1817 } else if (upid == 0) { 1818 type = PIDTYPE_PGID; 1819 pid = get_pid(task_pgrp(current)); 1820 } else /* upid > 0 */ { 1821 type = PIDTYPE_PID; 1822 pid = find_get_pid(upid); 1823 } 1824 1825 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1826 put_pid(pid); 1827 1828 /* avoid REGPARM breakage on x86: */ 1829 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1830 return ret; 1831 } 1832 1833 #ifdef __ARCH_WANT_SYS_WAITPID 1834 1835 /* 1836 * sys_waitpid() remains for compatibility. waitpid() should be 1837 * implemented by calling sys_wait4() from libc.a. 1838 */ 1839 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1840 { 1841 return sys_wait4(pid, stat_addr, options, NULL); 1842 } 1843 1844 #endif 1845