1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/blkdev.h> 53 #include <linux/task_work.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/io_uring.h> 67 #include <linux/kprobes.h> 68 69 #include <linux/uaccess.h> 70 #include <asm/unistd.h> 71 #include <asm/mmu_context.h> 72 73 static void __unhash_process(struct task_struct *p, bool group_dead) 74 { 75 nr_threads--; 76 detach_pid(p, PIDTYPE_PID); 77 if (group_dead) { 78 detach_pid(p, PIDTYPE_TGID); 79 detach_pid(p, PIDTYPE_PGID); 80 detach_pid(p, PIDTYPE_SID); 81 82 list_del_rcu(&p->tasks); 83 list_del_init(&p->sibling); 84 __this_cpu_dec(process_counts); 85 } 86 list_del_rcu(&p->thread_group); 87 list_del_rcu(&p->thread_node); 88 } 89 90 /* 91 * This function expects the tasklist_lock write-locked. 92 */ 93 static void __exit_signal(struct task_struct *tsk) 94 { 95 struct signal_struct *sig = tsk->signal; 96 bool group_dead = thread_group_leader(tsk); 97 struct sighand_struct *sighand; 98 struct tty_struct *tty; 99 u64 utime, stime; 100 101 sighand = rcu_dereference_check(tsk->sighand, 102 lockdep_tasklist_lock_is_held()); 103 spin_lock(&sighand->siglock); 104 105 #ifdef CONFIG_POSIX_TIMERS 106 posix_cpu_timers_exit(tsk); 107 if (group_dead) 108 posix_cpu_timers_exit_group(tsk); 109 #endif 110 111 if (group_dead) { 112 tty = sig->tty; 113 sig->tty = NULL; 114 } else { 115 /* 116 * If there is any task waiting for the group exit 117 * then notify it: 118 */ 119 if (sig->notify_count > 0 && !--sig->notify_count) 120 wake_up_process(sig->group_exec_task); 121 122 if (tsk == sig->curr_target) 123 sig->curr_target = next_thread(tsk); 124 } 125 126 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 127 sizeof(unsigned long long)); 128 129 /* 130 * Accumulate here the counters for all threads as they die. We could 131 * skip the group leader because it is the last user of signal_struct, 132 * but we want to avoid the race with thread_group_cputime() which can 133 * see the empty ->thread_head list. 134 */ 135 task_cputime(tsk, &utime, &stime); 136 write_seqlock(&sig->stats_lock); 137 sig->utime += utime; 138 sig->stime += stime; 139 sig->gtime += task_gtime(tsk); 140 sig->min_flt += tsk->min_flt; 141 sig->maj_flt += tsk->maj_flt; 142 sig->nvcsw += tsk->nvcsw; 143 sig->nivcsw += tsk->nivcsw; 144 sig->inblock += task_io_get_inblock(tsk); 145 sig->oublock += task_io_get_oublock(tsk); 146 task_io_accounting_add(&sig->ioac, &tsk->ioac); 147 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 148 sig->nr_threads--; 149 __unhash_process(tsk, group_dead); 150 write_sequnlock(&sig->stats_lock); 151 152 /* 153 * Do this under ->siglock, we can race with another thread 154 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 155 */ 156 flush_sigqueue(&tsk->pending); 157 tsk->sighand = NULL; 158 spin_unlock(&sighand->siglock); 159 160 __cleanup_sighand(sighand); 161 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 162 if (group_dead) { 163 flush_sigqueue(&sig->shared_pending); 164 tty_kref_put(tty); 165 } 166 } 167 168 static void delayed_put_task_struct(struct rcu_head *rhp) 169 { 170 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 171 172 kprobe_flush_task(tsk); 173 perf_event_delayed_put(tsk); 174 trace_sched_process_free(tsk); 175 put_task_struct(tsk); 176 } 177 178 void put_task_struct_rcu_user(struct task_struct *task) 179 { 180 if (refcount_dec_and_test(&task->rcu_users)) 181 call_rcu(&task->rcu, delayed_put_task_struct); 182 } 183 184 void release_task(struct task_struct *p) 185 { 186 struct task_struct *leader; 187 struct pid *thread_pid; 188 int zap_leader; 189 repeat: 190 /* don't need to get the RCU readlock here - the process is dead and 191 * can't be modifying its own credentials. But shut RCU-lockdep up */ 192 rcu_read_lock(); 193 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 194 rcu_read_unlock(); 195 196 cgroup_release(p); 197 198 write_lock_irq(&tasklist_lock); 199 ptrace_release_task(p); 200 thread_pid = get_pid(p->thread_pid); 201 __exit_signal(p); 202 203 /* 204 * If we are the last non-leader member of the thread 205 * group, and the leader is zombie, then notify the 206 * group leader's parent process. (if it wants notification.) 207 */ 208 zap_leader = 0; 209 leader = p->group_leader; 210 if (leader != p && thread_group_empty(leader) 211 && leader->exit_state == EXIT_ZOMBIE) { 212 /* 213 * If we were the last child thread and the leader has 214 * exited already, and the leader's parent ignores SIGCHLD, 215 * then we are the one who should release the leader. 216 */ 217 zap_leader = do_notify_parent(leader, leader->exit_signal); 218 if (zap_leader) 219 leader->exit_state = EXIT_DEAD; 220 } 221 222 write_unlock_irq(&tasklist_lock); 223 seccomp_filter_release(p); 224 proc_flush_pid(thread_pid); 225 put_pid(thread_pid); 226 release_thread(p); 227 put_task_struct_rcu_user(p); 228 229 p = leader; 230 if (unlikely(zap_leader)) 231 goto repeat; 232 } 233 234 int rcuwait_wake_up(struct rcuwait *w) 235 { 236 int ret = 0; 237 struct task_struct *task; 238 239 rcu_read_lock(); 240 241 /* 242 * Order condition vs @task, such that everything prior to the load 243 * of @task is visible. This is the condition as to why the user called 244 * rcuwait_wake() in the first place. Pairs with set_current_state() 245 * barrier (A) in rcuwait_wait_event(). 246 * 247 * WAIT WAKE 248 * [S] tsk = current [S] cond = true 249 * MB (A) MB (B) 250 * [L] cond [L] tsk 251 */ 252 smp_mb(); /* (B) */ 253 254 task = rcu_dereference(w->task); 255 if (task) 256 ret = wake_up_process(task); 257 rcu_read_unlock(); 258 259 return ret; 260 } 261 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 262 263 /* 264 * Determine if a process group is "orphaned", according to the POSIX 265 * definition in 2.2.2.52. Orphaned process groups are not to be affected 266 * by terminal-generated stop signals. Newly orphaned process groups are 267 * to receive a SIGHUP and a SIGCONT. 268 * 269 * "I ask you, have you ever known what it is to be an orphan?" 270 */ 271 static int will_become_orphaned_pgrp(struct pid *pgrp, 272 struct task_struct *ignored_task) 273 { 274 struct task_struct *p; 275 276 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 277 if ((p == ignored_task) || 278 (p->exit_state && thread_group_empty(p)) || 279 is_global_init(p->real_parent)) 280 continue; 281 282 if (task_pgrp(p->real_parent) != pgrp && 283 task_session(p->real_parent) == task_session(p)) 284 return 0; 285 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 286 287 return 1; 288 } 289 290 int is_current_pgrp_orphaned(void) 291 { 292 int retval; 293 294 read_lock(&tasklist_lock); 295 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 296 read_unlock(&tasklist_lock); 297 298 return retval; 299 } 300 301 static bool has_stopped_jobs(struct pid *pgrp) 302 { 303 struct task_struct *p; 304 305 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 306 if (p->signal->flags & SIGNAL_STOP_STOPPED) 307 return true; 308 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 309 310 return false; 311 } 312 313 /* 314 * Check to see if any process groups have become orphaned as 315 * a result of our exiting, and if they have any stopped jobs, 316 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 317 */ 318 static void 319 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 320 { 321 struct pid *pgrp = task_pgrp(tsk); 322 struct task_struct *ignored_task = tsk; 323 324 if (!parent) 325 /* exit: our father is in a different pgrp than 326 * we are and we were the only connection outside. 327 */ 328 parent = tsk->real_parent; 329 else 330 /* reparent: our child is in a different pgrp than 331 * we are, and it was the only connection outside. 332 */ 333 ignored_task = NULL; 334 335 if (task_pgrp(parent) != pgrp && 336 task_session(parent) == task_session(tsk) && 337 will_become_orphaned_pgrp(pgrp, ignored_task) && 338 has_stopped_jobs(pgrp)) { 339 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 340 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 341 } 342 } 343 344 static void coredump_task_exit(struct task_struct *tsk) 345 { 346 struct core_state *core_state; 347 348 /* 349 * Serialize with any possible pending coredump. 350 * We must hold siglock around checking core_state 351 * and setting PF_POSTCOREDUMP. The core-inducing thread 352 * will increment ->nr_threads for each thread in the 353 * group without PF_POSTCOREDUMP set. 354 */ 355 spin_lock_irq(&tsk->sighand->siglock); 356 tsk->flags |= PF_POSTCOREDUMP; 357 core_state = tsk->signal->core_state; 358 spin_unlock_irq(&tsk->sighand->siglock); 359 if (core_state) { 360 struct core_thread self; 361 362 self.task = current; 363 if (self.task->flags & PF_SIGNALED) 364 self.next = xchg(&core_state->dumper.next, &self); 365 else 366 self.task = NULL; 367 /* 368 * Implies mb(), the result of xchg() must be visible 369 * to core_state->dumper. 370 */ 371 if (atomic_dec_and_test(&core_state->nr_threads)) 372 complete(&core_state->startup); 373 374 for (;;) { 375 set_current_state(TASK_UNINTERRUPTIBLE); 376 if (!self.task) /* see coredump_finish() */ 377 break; 378 freezable_schedule(); 379 } 380 __set_current_state(TASK_RUNNING); 381 } 382 } 383 384 #ifdef CONFIG_MEMCG 385 /* 386 * A task is exiting. If it owned this mm, find a new owner for the mm. 387 */ 388 void mm_update_next_owner(struct mm_struct *mm) 389 { 390 struct task_struct *c, *g, *p = current; 391 392 retry: 393 /* 394 * If the exiting or execing task is not the owner, it's 395 * someone else's problem. 396 */ 397 if (mm->owner != p) 398 return; 399 /* 400 * The current owner is exiting/execing and there are no other 401 * candidates. Do not leave the mm pointing to a possibly 402 * freed task structure. 403 */ 404 if (atomic_read(&mm->mm_users) <= 1) { 405 WRITE_ONCE(mm->owner, NULL); 406 return; 407 } 408 409 read_lock(&tasklist_lock); 410 /* 411 * Search in the children 412 */ 413 list_for_each_entry(c, &p->children, sibling) { 414 if (c->mm == mm) 415 goto assign_new_owner; 416 } 417 418 /* 419 * Search in the siblings 420 */ 421 list_for_each_entry(c, &p->real_parent->children, sibling) { 422 if (c->mm == mm) 423 goto assign_new_owner; 424 } 425 426 /* 427 * Search through everything else, we should not get here often. 428 */ 429 for_each_process(g) { 430 if (g->flags & PF_KTHREAD) 431 continue; 432 for_each_thread(g, c) { 433 if (c->mm == mm) 434 goto assign_new_owner; 435 if (c->mm) 436 break; 437 } 438 } 439 read_unlock(&tasklist_lock); 440 /* 441 * We found no owner yet mm_users > 1: this implies that we are 442 * most likely racing with swapoff (try_to_unuse()) or /proc or 443 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 444 */ 445 WRITE_ONCE(mm->owner, NULL); 446 return; 447 448 assign_new_owner: 449 BUG_ON(c == p); 450 get_task_struct(c); 451 /* 452 * The task_lock protects c->mm from changing. 453 * We always want mm->owner->mm == mm 454 */ 455 task_lock(c); 456 /* 457 * Delay read_unlock() till we have the task_lock() 458 * to ensure that c does not slip away underneath us 459 */ 460 read_unlock(&tasklist_lock); 461 if (c->mm != mm) { 462 task_unlock(c); 463 put_task_struct(c); 464 goto retry; 465 } 466 WRITE_ONCE(mm->owner, c); 467 task_unlock(c); 468 put_task_struct(c); 469 } 470 #endif /* CONFIG_MEMCG */ 471 472 /* 473 * Turn us into a lazy TLB process if we 474 * aren't already.. 475 */ 476 static void exit_mm(void) 477 { 478 struct mm_struct *mm = current->mm; 479 480 exit_mm_release(current, mm); 481 if (!mm) 482 return; 483 sync_mm_rss(mm); 484 mmap_read_lock(mm); 485 mmgrab(mm); 486 BUG_ON(mm != current->active_mm); 487 /* more a memory barrier than a real lock */ 488 task_lock(current); 489 /* 490 * When a thread stops operating on an address space, the loop 491 * in membarrier_private_expedited() may not observe that 492 * tsk->mm, and the loop in membarrier_global_expedited() may 493 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 494 * rq->membarrier_state, so those would not issue an IPI. 495 * Membarrier requires a memory barrier after accessing 496 * user-space memory, before clearing tsk->mm or the 497 * rq->membarrier_state. 498 */ 499 smp_mb__after_spinlock(); 500 local_irq_disable(); 501 current->mm = NULL; 502 membarrier_update_current_mm(NULL); 503 enter_lazy_tlb(mm, current); 504 local_irq_enable(); 505 task_unlock(current); 506 mmap_read_unlock(mm); 507 mm_update_next_owner(mm); 508 mmput(mm); 509 if (test_thread_flag(TIF_MEMDIE)) 510 exit_oom_victim(); 511 } 512 513 static struct task_struct *find_alive_thread(struct task_struct *p) 514 { 515 struct task_struct *t; 516 517 for_each_thread(p, t) { 518 if (!(t->flags & PF_EXITING)) 519 return t; 520 } 521 return NULL; 522 } 523 524 static struct task_struct *find_child_reaper(struct task_struct *father, 525 struct list_head *dead) 526 __releases(&tasklist_lock) 527 __acquires(&tasklist_lock) 528 { 529 struct pid_namespace *pid_ns = task_active_pid_ns(father); 530 struct task_struct *reaper = pid_ns->child_reaper; 531 struct task_struct *p, *n; 532 533 if (likely(reaper != father)) 534 return reaper; 535 536 reaper = find_alive_thread(father); 537 if (reaper) { 538 pid_ns->child_reaper = reaper; 539 return reaper; 540 } 541 542 write_unlock_irq(&tasklist_lock); 543 544 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 545 list_del_init(&p->ptrace_entry); 546 release_task(p); 547 } 548 549 zap_pid_ns_processes(pid_ns); 550 write_lock_irq(&tasklist_lock); 551 552 return father; 553 } 554 555 /* 556 * When we die, we re-parent all our children, and try to: 557 * 1. give them to another thread in our thread group, if such a member exists 558 * 2. give it to the first ancestor process which prctl'd itself as a 559 * child_subreaper for its children (like a service manager) 560 * 3. give it to the init process (PID 1) in our pid namespace 561 */ 562 static struct task_struct *find_new_reaper(struct task_struct *father, 563 struct task_struct *child_reaper) 564 { 565 struct task_struct *thread, *reaper; 566 567 thread = find_alive_thread(father); 568 if (thread) 569 return thread; 570 571 if (father->signal->has_child_subreaper) { 572 unsigned int ns_level = task_pid(father)->level; 573 /* 574 * Find the first ->is_child_subreaper ancestor in our pid_ns. 575 * We can't check reaper != child_reaper to ensure we do not 576 * cross the namespaces, the exiting parent could be injected 577 * by setns() + fork(). 578 * We check pid->level, this is slightly more efficient than 579 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 580 */ 581 for (reaper = father->real_parent; 582 task_pid(reaper)->level == ns_level; 583 reaper = reaper->real_parent) { 584 if (reaper == &init_task) 585 break; 586 if (!reaper->signal->is_child_subreaper) 587 continue; 588 thread = find_alive_thread(reaper); 589 if (thread) 590 return thread; 591 } 592 } 593 594 return child_reaper; 595 } 596 597 /* 598 * Any that need to be release_task'd are put on the @dead list. 599 */ 600 static void reparent_leader(struct task_struct *father, struct task_struct *p, 601 struct list_head *dead) 602 { 603 if (unlikely(p->exit_state == EXIT_DEAD)) 604 return; 605 606 /* We don't want people slaying init. */ 607 p->exit_signal = SIGCHLD; 608 609 /* If it has exited notify the new parent about this child's death. */ 610 if (!p->ptrace && 611 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 612 if (do_notify_parent(p, p->exit_signal)) { 613 p->exit_state = EXIT_DEAD; 614 list_add(&p->ptrace_entry, dead); 615 } 616 } 617 618 kill_orphaned_pgrp(p, father); 619 } 620 621 /* 622 * This does two things: 623 * 624 * A. Make init inherit all the child processes 625 * B. Check to see if any process groups have become orphaned 626 * as a result of our exiting, and if they have any stopped 627 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 628 */ 629 static void forget_original_parent(struct task_struct *father, 630 struct list_head *dead) 631 { 632 struct task_struct *p, *t, *reaper; 633 634 if (unlikely(!list_empty(&father->ptraced))) 635 exit_ptrace(father, dead); 636 637 /* Can drop and reacquire tasklist_lock */ 638 reaper = find_child_reaper(father, dead); 639 if (list_empty(&father->children)) 640 return; 641 642 reaper = find_new_reaper(father, reaper); 643 list_for_each_entry(p, &father->children, sibling) { 644 for_each_thread(p, t) { 645 RCU_INIT_POINTER(t->real_parent, reaper); 646 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 647 if (likely(!t->ptrace)) 648 t->parent = t->real_parent; 649 if (t->pdeath_signal) 650 group_send_sig_info(t->pdeath_signal, 651 SEND_SIG_NOINFO, t, 652 PIDTYPE_TGID); 653 } 654 /* 655 * If this is a threaded reparent there is no need to 656 * notify anyone anything has happened. 657 */ 658 if (!same_thread_group(reaper, father)) 659 reparent_leader(father, p, dead); 660 } 661 list_splice_tail_init(&father->children, &reaper->children); 662 } 663 664 /* 665 * Send signals to all our closest relatives so that they know 666 * to properly mourn us.. 667 */ 668 static void exit_notify(struct task_struct *tsk, int group_dead) 669 { 670 bool autoreap; 671 struct task_struct *p, *n; 672 LIST_HEAD(dead); 673 674 write_lock_irq(&tasklist_lock); 675 forget_original_parent(tsk, &dead); 676 677 if (group_dead) 678 kill_orphaned_pgrp(tsk->group_leader, NULL); 679 680 tsk->exit_state = EXIT_ZOMBIE; 681 if (unlikely(tsk->ptrace)) { 682 int sig = thread_group_leader(tsk) && 683 thread_group_empty(tsk) && 684 !ptrace_reparented(tsk) ? 685 tsk->exit_signal : SIGCHLD; 686 autoreap = do_notify_parent(tsk, sig); 687 } else if (thread_group_leader(tsk)) { 688 autoreap = thread_group_empty(tsk) && 689 do_notify_parent(tsk, tsk->exit_signal); 690 } else { 691 autoreap = true; 692 } 693 694 if (autoreap) { 695 tsk->exit_state = EXIT_DEAD; 696 list_add(&tsk->ptrace_entry, &dead); 697 } 698 699 /* mt-exec, de_thread() is waiting for group leader */ 700 if (unlikely(tsk->signal->notify_count < 0)) 701 wake_up_process(tsk->signal->group_exec_task); 702 write_unlock_irq(&tasklist_lock); 703 704 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 705 list_del_init(&p->ptrace_entry); 706 release_task(p); 707 } 708 } 709 710 #ifdef CONFIG_DEBUG_STACK_USAGE 711 static void check_stack_usage(void) 712 { 713 static DEFINE_SPINLOCK(low_water_lock); 714 static int lowest_to_date = THREAD_SIZE; 715 unsigned long free; 716 717 free = stack_not_used(current); 718 719 if (free >= lowest_to_date) 720 return; 721 722 spin_lock(&low_water_lock); 723 if (free < lowest_to_date) { 724 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 725 current->comm, task_pid_nr(current), free); 726 lowest_to_date = free; 727 } 728 spin_unlock(&low_water_lock); 729 } 730 #else 731 static inline void check_stack_usage(void) {} 732 #endif 733 734 void __noreturn do_exit(long code) 735 { 736 struct task_struct *tsk = current; 737 int group_dead; 738 739 WARN_ON(blk_needs_flush_plug(tsk)); 740 741 /* 742 * If do_dead is called because this processes oopsed, it's possible 743 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 744 * continuing. Amongst other possible reasons, this is to prevent 745 * mm_release()->clear_child_tid() from writing to a user-controlled 746 * kernel address. 747 * 748 * On uptodate architectures force_uaccess_begin is a noop. On 749 * architectures that still have set_fs/get_fs in addition to handling 750 * oopses handles kernel threads that run as set_fs(KERNEL_DS) by 751 * default. 752 */ 753 force_uaccess_begin(); 754 755 kcov_task_exit(tsk); 756 757 coredump_task_exit(tsk); 758 ptrace_event(PTRACE_EVENT_EXIT, code); 759 760 validate_creds_for_do_exit(tsk); 761 762 io_uring_files_cancel(); 763 exit_signals(tsk); /* sets PF_EXITING */ 764 765 /* sync mm's RSS info before statistics gathering */ 766 if (tsk->mm) 767 sync_mm_rss(tsk->mm); 768 acct_update_integrals(tsk); 769 group_dead = atomic_dec_and_test(&tsk->signal->live); 770 if (group_dead) { 771 /* 772 * If the last thread of global init has exited, panic 773 * immediately to get a useable coredump. 774 */ 775 if (unlikely(is_global_init(tsk))) 776 panic("Attempted to kill init! exitcode=0x%08x\n", 777 tsk->signal->group_exit_code ?: (int)code); 778 779 #ifdef CONFIG_POSIX_TIMERS 780 hrtimer_cancel(&tsk->signal->real_timer); 781 exit_itimers(tsk->signal); 782 #endif 783 if (tsk->mm) 784 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 785 } 786 acct_collect(code, group_dead); 787 if (group_dead) 788 tty_audit_exit(); 789 audit_free(tsk); 790 791 tsk->exit_code = code; 792 taskstats_exit(tsk, group_dead); 793 794 exit_mm(); 795 796 if (group_dead) 797 acct_process(); 798 trace_sched_process_exit(tsk); 799 800 exit_sem(tsk); 801 exit_shm(tsk); 802 exit_files(tsk); 803 exit_fs(tsk); 804 if (group_dead) 805 disassociate_ctty(1); 806 exit_task_namespaces(tsk); 807 exit_task_work(tsk); 808 exit_thread(tsk); 809 810 /* 811 * Flush inherited counters to the parent - before the parent 812 * gets woken up by child-exit notifications. 813 * 814 * because of cgroup mode, must be called before cgroup_exit() 815 */ 816 perf_event_exit_task(tsk); 817 818 sched_autogroup_exit_task(tsk); 819 cgroup_exit(tsk); 820 821 /* 822 * FIXME: do that only when needed, using sched_exit tracepoint 823 */ 824 flush_ptrace_hw_breakpoint(tsk); 825 826 exit_tasks_rcu_start(); 827 exit_notify(tsk, group_dead); 828 proc_exit_connector(tsk); 829 mpol_put_task_policy(tsk); 830 #ifdef CONFIG_FUTEX 831 if (unlikely(current->pi_state_cache)) 832 kfree(current->pi_state_cache); 833 #endif 834 /* 835 * Make sure we are holding no locks: 836 */ 837 debug_check_no_locks_held(); 838 839 if (tsk->io_context) 840 exit_io_context(tsk); 841 842 if (tsk->splice_pipe) 843 free_pipe_info(tsk->splice_pipe); 844 845 if (tsk->task_frag.page) 846 put_page(tsk->task_frag.page); 847 848 validate_creds_for_do_exit(tsk); 849 850 check_stack_usage(); 851 preempt_disable(); 852 if (tsk->nr_dirtied) 853 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 854 exit_rcu(); 855 exit_tasks_rcu_finish(); 856 857 lockdep_free_task(tsk); 858 do_task_dead(); 859 } 860 861 void __noreturn make_task_dead(int signr) 862 { 863 /* 864 * Take the task off the cpu after something catastrophic has 865 * happened. 866 * 867 * We can get here from a kernel oops, sometimes with preemption off. 868 * Start by checking for critical errors. 869 * Then fix up important state like USER_DS and preemption. 870 * Then do everything else. 871 */ 872 struct task_struct *tsk = current; 873 874 if (unlikely(in_interrupt())) 875 panic("Aiee, killing interrupt handler!"); 876 if (unlikely(!tsk->pid)) 877 panic("Attempted to kill the idle task!"); 878 879 if (unlikely(in_atomic())) { 880 pr_info("note: %s[%d] exited with preempt_count %d\n", 881 current->comm, task_pid_nr(current), 882 preempt_count()); 883 preempt_count_set(PREEMPT_ENABLED); 884 } 885 886 /* 887 * We're taking recursive faults here in make_task_dead. Safest is to just 888 * leave this task alone and wait for reboot. 889 */ 890 if (unlikely(tsk->flags & PF_EXITING)) { 891 pr_alert("Fixing recursive fault but reboot is needed!\n"); 892 futex_exit_recursive(tsk); 893 tsk->exit_state = EXIT_DEAD; 894 refcount_inc(&tsk->rcu_users); 895 do_task_dead(); 896 } 897 898 do_exit(signr); 899 } 900 901 SYSCALL_DEFINE1(exit, int, error_code) 902 { 903 do_exit((error_code&0xff)<<8); 904 } 905 906 /* 907 * Take down every thread in the group. This is called by fatal signals 908 * as well as by sys_exit_group (below). 909 */ 910 void 911 do_group_exit(int exit_code) 912 { 913 struct signal_struct *sig = current->signal; 914 915 if (sig->flags & SIGNAL_GROUP_EXIT) 916 exit_code = sig->group_exit_code; 917 else if (sig->group_exec_task) 918 exit_code = 0; 919 else if (!thread_group_empty(current)) { 920 struct sighand_struct *const sighand = current->sighand; 921 922 spin_lock_irq(&sighand->siglock); 923 if (sig->flags & SIGNAL_GROUP_EXIT) 924 /* Another thread got here before we took the lock. */ 925 exit_code = sig->group_exit_code; 926 else if (sig->group_exec_task) 927 exit_code = 0; 928 else { 929 sig->group_exit_code = exit_code; 930 sig->flags = SIGNAL_GROUP_EXIT; 931 zap_other_threads(current); 932 } 933 spin_unlock_irq(&sighand->siglock); 934 } 935 936 do_exit(exit_code); 937 /* NOTREACHED */ 938 } 939 940 /* 941 * this kills every thread in the thread group. Note that any externally 942 * wait4()-ing process will get the correct exit code - even if this 943 * thread is not the thread group leader. 944 */ 945 SYSCALL_DEFINE1(exit_group, int, error_code) 946 { 947 do_group_exit((error_code & 0xff) << 8); 948 /* NOTREACHED */ 949 return 0; 950 } 951 952 struct waitid_info { 953 pid_t pid; 954 uid_t uid; 955 int status; 956 int cause; 957 }; 958 959 struct wait_opts { 960 enum pid_type wo_type; 961 int wo_flags; 962 struct pid *wo_pid; 963 964 struct waitid_info *wo_info; 965 int wo_stat; 966 struct rusage *wo_rusage; 967 968 wait_queue_entry_t child_wait; 969 int notask_error; 970 }; 971 972 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 973 { 974 return wo->wo_type == PIDTYPE_MAX || 975 task_pid_type(p, wo->wo_type) == wo->wo_pid; 976 } 977 978 static int 979 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 980 { 981 if (!eligible_pid(wo, p)) 982 return 0; 983 984 /* 985 * Wait for all children (clone and not) if __WALL is set or 986 * if it is traced by us. 987 */ 988 if (ptrace || (wo->wo_flags & __WALL)) 989 return 1; 990 991 /* 992 * Otherwise, wait for clone children *only* if __WCLONE is set; 993 * otherwise, wait for non-clone children *only*. 994 * 995 * Note: a "clone" child here is one that reports to its parent 996 * using a signal other than SIGCHLD, or a non-leader thread which 997 * we can only see if it is traced by us. 998 */ 999 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1000 return 0; 1001 1002 return 1; 1003 } 1004 1005 /* 1006 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1007 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1008 * the lock and this task is uninteresting. If we return nonzero, we have 1009 * released the lock and the system call should return. 1010 */ 1011 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1012 { 1013 int state, status; 1014 pid_t pid = task_pid_vnr(p); 1015 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1016 struct waitid_info *infop; 1017 1018 if (!likely(wo->wo_flags & WEXITED)) 1019 return 0; 1020 1021 if (unlikely(wo->wo_flags & WNOWAIT)) { 1022 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1023 ? p->signal->group_exit_code : p->exit_code; 1024 get_task_struct(p); 1025 read_unlock(&tasklist_lock); 1026 sched_annotate_sleep(); 1027 if (wo->wo_rusage) 1028 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1029 put_task_struct(p); 1030 goto out_info; 1031 } 1032 /* 1033 * Move the task's state to DEAD/TRACE, only one thread can do this. 1034 */ 1035 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1036 EXIT_TRACE : EXIT_DEAD; 1037 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1038 return 0; 1039 /* 1040 * We own this thread, nobody else can reap it. 1041 */ 1042 read_unlock(&tasklist_lock); 1043 sched_annotate_sleep(); 1044 1045 /* 1046 * Check thread_group_leader() to exclude the traced sub-threads. 1047 */ 1048 if (state == EXIT_DEAD && thread_group_leader(p)) { 1049 struct signal_struct *sig = p->signal; 1050 struct signal_struct *psig = current->signal; 1051 unsigned long maxrss; 1052 u64 tgutime, tgstime; 1053 1054 /* 1055 * The resource counters for the group leader are in its 1056 * own task_struct. Those for dead threads in the group 1057 * are in its signal_struct, as are those for the child 1058 * processes it has previously reaped. All these 1059 * accumulate in the parent's signal_struct c* fields. 1060 * 1061 * We don't bother to take a lock here to protect these 1062 * p->signal fields because the whole thread group is dead 1063 * and nobody can change them. 1064 * 1065 * psig->stats_lock also protects us from our sub-theads 1066 * which can reap other children at the same time. Until 1067 * we change k_getrusage()-like users to rely on this lock 1068 * we have to take ->siglock as well. 1069 * 1070 * We use thread_group_cputime_adjusted() to get times for 1071 * the thread group, which consolidates times for all threads 1072 * in the group including the group leader. 1073 */ 1074 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1075 spin_lock_irq(¤t->sighand->siglock); 1076 write_seqlock(&psig->stats_lock); 1077 psig->cutime += tgutime + sig->cutime; 1078 psig->cstime += tgstime + sig->cstime; 1079 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1080 psig->cmin_flt += 1081 p->min_flt + sig->min_flt + sig->cmin_flt; 1082 psig->cmaj_flt += 1083 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1084 psig->cnvcsw += 1085 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1086 psig->cnivcsw += 1087 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1088 psig->cinblock += 1089 task_io_get_inblock(p) + 1090 sig->inblock + sig->cinblock; 1091 psig->coublock += 1092 task_io_get_oublock(p) + 1093 sig->oublock + sig->coublock; 1094 maxrss = max(sig->maxrss, sig->cmaxrss); 1095 if (psig->cmaxrss < maxrss) 1096 psig->cmaxrss = maxrss; 1097 task_io_accounting_add(&psig->ioac, &p->ioac); 1098 task_io_accounting_add(&psig->ioac, &sig->ioac); 1099 write_sequnlock(&psig->stats_lock); 1100 spin_unlock_irq(¤t->sighand->siglock); 1101 } 1102 1103 if (wo->wo_rusage) 1104 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1105 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1106 ? p->signal->group_exit_code : p->exit_code; 1107 wo->wo_stat = status; 1108 1109 if (state == EXIT_TRACE) { 1110 write_lock_irq(&tasklist_lock); 1111 /* We dropped tasklist, ptracer could die and untrace */ 1112 ptrace_unlink(p); 1113 1114 /* If parent wants a zombie, don't release it now */ 1115 state = EXIT_ZOMBIE; 1116 if (do_notify_parent(p, p->exit_signal)) 1117 state = EXIT_DEAD; 1118 p->exit_state = state; 1119 write_unlock_irq(&tasklist_lock); 1120 } 1121 if (state == EXIT_DEAD) 1122 release_task(p); 1123 1124 out_info: 1125 infop = wo->wo_info; 1126 if (infop) { 1127 if ((status & 0x7f) == 0) { 1128 infop->cause = CLD_EXITED; 1129 infop->status = status >> 8; 1130 } else { 1131 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1132 infop->status = status & 0x7f; 1133 } 1134 infop->pid = pid; 1135 infop->uid = uid; 1136 } 1137 1138 return pid; 1139 } 1140 1141 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1142 { 1143 if (ptrace) { 1144 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1145 return &p->exit_code; 1146 } else { 1147 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1148 return &p->signal->group_exit_code; 1149 } 1150 return NULL; 1151 } 1152 1153 /** 1154 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1155 * @wo: wait options 1156 * @ptrace: is the wait for ptrace 1157 * @p: task to wait for 1158 * 1159 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1160 * 1161 * CONTEXT: 1162 * read_lock(&tasklist_lock), which is released if return value is 1163 * non-zero. Also, grabs and releases @p->sighand->siglock. 1164 * 1165 * RETURNS: 1166 * 0 if wait condition didn't exist and search for other wait conditions 1167 * should continue. Non-zero return, -errno on failure and @p's pid on 1168 * success, implies that tasklist_lock is released and wait condition 1169 * search should terminate. 1170 */ 1171 static int wait_task_stopped(struct wait_opts *wo, 1172 int ptrace, struct task_struct *p) 1173 { 1174 struct waitid_info *infop; 1175 int exit_code, *p_code, why; 1176 uid_t uid = 0; /* unneeded, required by compiler */ 1177 pid_t pid; 1178 1179 /* 1180 * Traditionally we see ptrace'd stopped tasks regardless of options. 1181 */ 1182 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1183 return 0; 1184 1185 if (!task_stopped_code(p, ptrace)) 1186 return 0; 1187 1188 exit_code = 0; 1189 spin_lock_irq(&p->sighand->siglock); 1190 1191 p_code = task_stopped_code(p, ptrace); 1192 if (unlikely(!p_code)) 1193 goto unlock_sig; 1194 1195 exit_code = *p_code; 1196 if (!exit_code) 1197 goto unlock_sig; 1198 1199 if (!unlikely(wo->wo_flags & WNOWAIT)) 1200 *p_code = 0; 1201 1202 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1203 unlock_sig: 1204 spin_unlock_irq(&p->sighand->siglock); 1205 if (!exit_code) 1206 return 0; 1207 1208 /* 1209 * Now we are pretty sure this task is interesting. 1210 * Make sure it doesn't get reaped out from under us while we 1211 * give up the lock and then examine it below. We don't want to 1212 * keep holding onto the tasklist_lock while we call getrusage and 1213 * possibly take page faults for user memory. 1214 */ 1215 get_task_struct(p); 1216 pid = task_pid_vnr(p); 1217 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1218 read_unlock(&tasklist_lock); 1219 sched_annotate_sleep(); 1220 if (wo->wo_rusage) 1221 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1222 put_task_struct(p); 1223 1224 if (likely(!(wo->wo_flags & WNOWAIT))) 1225 wo->wo_stat = (exit_code << 8) | 0x7f; 1226 1227 infop = wo->wo_info; 1228 if (infop) { 1229 infop->cause = why; 1230 infop->status = exit_code; 1231 infop->pid = pid; 1232 infop->uid = uid; 1233 } 1234 return pid; 1235 } 1236 1237 /* 1238 * Handle do_wait work for one task in a live, non-stopped state. 1239 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1240 * the lock and this task is uninteresting. If we return nonzero, we have 1241 * released the lock and the system call should return. 1242 */ 1243 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1244 { 1245 struct waitid_info *infop; 1246 pid_t pid; 1247 uid_t uid; 1248 1249 if (!unlikely(wo->wo_flags & WCONTINUED)) 1250 return 0; 1251 1252 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1253 return 0; 1254 1255 spin_lock_irq(&p->sighand->siglock); 1256 /* Re-check with the lock held. */ 1257 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1258 spin_unlock_irq(&p->sighand->siglock); 1259 return 0; 1260 } 1261 if (!unlikely(wo->wo_flags & WNOWAIT)) 1262 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1263 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1264 spin_unlock_irq(&p->sighand->siglock); 1265 1266 pid = task_pid_vnr(p); 1267 get_task_struct(p); 1268 read_unlock(&tasklist_lock); 1269 sched_annotate_sleep(); 1270 if (wo->wo_rusage) 1271 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1272 put_task_struct(p); 1273 1274 infop = wo->wo_info; 1275 if (!infop) { 1276 wo->wo_stat = 0xffff; 1277 } else { 1278 infop->cause = CLD_CONTINUED; 1279 infop->pid = pid; 1280 infop->uid = uid; 1281 infop->status = SIGCONT; 1282 } 1283 return pid; 1284 } 1285 1286 /* 1287 * Consider @p for a wait by @parent. 1288 * 1289 * -ECHILD should be in ->notask_error before the first call. 1290 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1291 * Returns zero if the search for a child should continue; 1292 * then ->notask_error is 0 if @p is an eligible child, 1293 * or still -ECHILD. 1294 */ 1295 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1296 struct task_struct *p) 1297 { 1298 /* 1299 * We can race with wait_task_zombie() from another thread. 1300 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1301 * can't confuse the checks below. 1302 */ 1303 int exit_state = READ_ONCE(p->exit_state); 1304 int ret; 1305 1306 if (unlikely(exit_state == EXIT_DEAD)) 1307 return 0; 1308 1309 ret = eligible_child(wo, ptrace, p); 1310 if (!ret) 1311 return ret; 1312 1313 if (unlikely(exit_state == EXIT_TRACE)) { 1314 /* 1315 * ptrace == 0 means we are the natural parent. In this case 1316 * we should clear notask_error, debugger will notify us. 1317 */ 1318 if (likely(!ptrace)) 1319 wo->notask_error = 0; 1320 return 0; 1321 } 1322 1323 if (likely(!ptrace) && unlikely(p->ptrace)) { 1324 /* 1325 * If it is traced by its real parent's group, just pretend 1326 * the caller is ptrace_do_wait() and reap this child if it 1327 * is zombie. 1328 * 1329 * This also hides group stop state from real parent; otherwise 1330 * a single stop can be reported twice as group and ptrace stop. 1331 * If a ptracer wants to distinguish these two events for its 1332 * own children it should create a separate process which takes 1333 * the role of real parent. 1334 */ 1335 if (!ptrace_reparented(p)) 1336 ptrace = 1; 1337 } 1338 1339 /* slay zombie? */ 1340 if (exit_state == EXIT_ZOMBIE) { 1341 /* we don't reap group leaders with subthreads */ 1342 if (!delay_group_leader(p)) { 1343 /* 1344 * A zombie ptracee is only visible to its ptracer. 1345 * Notification and reaping will be cascaded to the 1346 * real parent when the ptracer detaches. 1347 */ 1348 if (unlikely(ptrace) || likely(!p->ptrace)) 1349 return wait_task_zombie(wo, p); 1350 } 1351 1352 /* 1353 * Allow access to stopped/continued state via zombie by 1354 * falling through. Clearing of notask_error is complex. 1355 * 1356 * When !@ptrace: 1357 * 1358 * If WEXITED is set, notask_error should naturally be 1359 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1360 * so, if there are live subthreads, there are events to 1361 * wait for. If all subthreads are dead, it's still safe 1362 * to clear - this function will be called again in finite 1363 * amount time once all the subthreads are released and 1364 * will then return without clearing. 1365 * 1366 * When @ptrace: 1367 * 1368 * Stopped state is per-task and thus can't change once the 1369 * target task dies. Only continued and exited can happen. 1370 * Clear notask_error if WCONTINUED | WEXITED. 1371 */ 1372 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1373 wo->notask_error = 0; 1374 } else { 1375 /* 1376 * @p is alive and it's gonna stop, continue or exit, so 1377 * there always is something to wait for. 1378 */ 1379 wo->notask_error = 0; 1380 } 1381 1382 /* 1383 * Wait for stopped. Depending on @ptrace, different stopped state 1384 * is used and the two don't interact with each other. 1385 */ 1386 ret = wait_task_stopped(wo, ptrace, p); 1387 if (ret) 1388 return ret; 1389 1390 /* 1391 * Wait for continued. There's only one continued state and the 1392 * ptracer can consume it which can confuse the real parent. Don't 1393 * use WCONTINUED from ptracer. You don't need or want it. 1394 */ 1395 return wait_task_continued(wo, p); 1396 } 1397 1398 /* 1399 * Do the work of do_wait() for one thread in the group, @tsk. 1400 * 1401 * -ECHILD should be in ->notask_error before the first call. 1402 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1403 * Returns zero if the search for a child should continue; then 1404 * ->notask_error is 0 if there were any eligible children, 1405 * or still -ECHILD. 1406 */ 1407 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1408 { 1409 struct task_struct *p; 1410 1411 list_for_each_entry(p, &tsk->children, sibling) { 1412 int ret = wait_consider_task(wo, 0, p); 1413 1414 if (ret) 1415 return ret; 1416 } 1417 1418 return 0; 1419 } 1420 1421 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1422 { 1423 struct task_struct *p; 1424 1425 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1426 int ret = wait_consider_task(wo, 1, p); 1427 1428 if (ret) 1429 return ret; 1430 } 1431 1432 return 0; 1433 } 1434 1435 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1436 int sync, void *key) 1437 { 1438 struct wait_opts *wo = container_of(wait, struct wait_opts, 1439 child_wait); 1440 struct task_struct *p = key; 1441 1442 if (!eligible_pid(wo, p)) 1443 return 0; 1444 1445 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1446 return 0; 1447 1448 return default_wake_function(wait, mode, sync, key); 1449 } 1450 1451 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1452 { 1453 __wake_up_sync_key(&parent->signal->wait_chldexit, 1454 TASK_INTERRUPTIBLE, p); 1455 } 1456 1457 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1458 struct task_struct *target) 1459 { 1460 struct task_struct *parent = 1461 !ptrace ? target->real_parent : target->parent; 1462 1463 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1464 same_thread_group(current, parent)); 1465 } 1466 1467 /* 1468 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1469 * and tracee lists to find the target task. 1470 */ 1471 static int do_wait_pid(struct wait_opts *wo) 1472 { 1473 bool ptrace; 1474 struct task_struct *target; 1475 int retval; 1476 1477 ptrace = false; 1478 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1479 if (target && is_effectively_child(wo, ptrace, target)) { 1480 retval = wait_consider_task(wo, ptrace, target); 1481 if (retval) 1482 return retval; 1483 } 1484 1485 ptrace = true; 1486 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1487 if (target && target->ptrace && 1488 is_effectively_child(wo, ptrace, target)) { 1489 retval = wait_consider_task(wo, ptrace, target); 1490 if (retval) 1491 return retval; 1492 } 1493 1494 return 0; 1495 } 1496 1497 static long do_wait(struct wait_opts *wo) 1498 { 1499 int retval; 1500 1501 trace_sched_process_wait(wo->wo_pid); 1502 1503 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1504 wo->child_wait.private = current; 1505 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1506 repeat: 1507 /* 1508 * If there is nothing that can match our criteria, just get out. 1509 * We will clear ->notask_error to zero if we see any child that 1510 * might later match our criteria, even if we are not able to reap 1511 * it yet. 1512 */ 1513 wo->notask_error = -ECHILD; 1514 if ((wo->wo_type < PIDTYPE_MAX) && 1515 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1516 goto notask; 1517 1518 set_current_state(TASK_INTERRUPTIBLE); 1519 read_lock(&tasklist_lock); 1520 1521 if (wo->wo_type == PIDTYPE_PID) { 1522 retval = do_wait_pid(wo); 1523 if (retval) 1524 goto end; 1525 } else { 1526 struct task_struct *tsk = current; 1527 1528 do { 1529 retval = do_wait_thread(wo, tsk); 1530 if (retval) 1531 goto end; 1532 1533 retval = ptrace_do_wait(wo, tsk); 1534 if (retval) 1535 goto end; 1536 1537 if (wo->wo_flags & __WNOTHREAD) 1538 break; 1539 } while_each_thread(current, tsk); 1540 } 1541 read_unlock(&tasklist_lock); 1542 1543 notask: 1544 retval = wo->notask_error; 1545 if (!retval && !(wo->wo_flags & WNOHANG)) { 1546 retval = -ERESTARTSYS; 1547 if (!signal_pending(current)) { 1548 schedule(); 1549 goto repeat; 1550 } 1551 } 1552 end: 1553 __set_current_state(TASK_RUNNING); 1554 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1555 return retval; 1556 } 1557 1558 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1559 int options, struct rusage *ru) 1560 { 1561 struct wait_opts wo; 1562 struct pid *pid = NULL; 1563 enum pid_type type; 1564 long ret; 1565 unsigned int f_flags = 0; 1566 1567 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1568 __WNOTHREAD|__WCLONE|__WALL)) 1569 return -EINVAL; 1570 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1571 return -EINVAL; 1572 1573 switch (which) { 1574 case P_ALL: 1575 type = PIDTYPE_MAX; 1576 break; 1577 case P_PID: 1578 type = PIDTYPE_PID; 1579 if (upid <= 0) 1580 return -EINVAL; 1581 1582 pid = find_get_pid(upid); 1583 break; 1584 case P_PGID: 1585 type = PIDTYPE_PGID; 1586 if (upid < 0) 1587 return -EINVAL; 1588 1589 if (upid) 1590 pid = find_get_pid(upid); 1591 else 1592 pid = get_task_pid(current, PIDTYPE_PGID); 1593 break; 1594 case P_PIDFD: 1595 type = PIDTYPE_PID; 1596 if (upid < 0) 1597 return -EINVAL; 1598 1599 pid = pidfd_get_pid(upid, &f_flags); 1600 if (IS_ERR(pid)) 1601 return PTR_ERR(pid); 1602 1603 break; 1604 default: 1605 return -EINVAL; 1606 } 1607 1608 wo.wo_type = type; 1609 wo.wo_pid = pid; 1610 wo.wo_flags = options; 1611 wo.wo_info = infop; 1612 wo.wo_rusage = ru; 1613 if (f_flags & O_NONBLOCK) 1614 wo.wo_flags |= WNOHANG; 1615 1616 ret = do_wait(&wo); 1617 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) 1618 ret = -EAGAIN; 1619 1620 put_pid(pid); 1621 return ret; 1622 } 1623 1624 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1625 infop, int, options, struct rusage __user *, ru) 1626 { 1627 struct rusage r; 1628 struct waitid_info info = {.status = 0}; 1629 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1630 int signo = 0; 1631 1632 if (err > 0) { 1633 signo = SIGCHLD; 1634 err = 0; 1635 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1636 return -EFAULT; 1637 } 1638 if (!infop) 1639 return err; 1640 1641 if (!user_write_access_begin(infop, sizeof(*infop))) 1642 return -EFAULT; 1643 1644 unsafe_put_user(signo, &infop->si_signo, Efault); 1645 unsafe_put_user(0, &infop->si_errno, Efault); 1646 unsafe_put_user(info.cause, &infop->si_code, Efault); 1647 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1648 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1649 unsafe_put_user(info.status, &infop->si_status, Efault); 1650 user_write_access_end(); 1651 return err; 1652 Efault: 1653 user_write_access_end(); 1654 return -EFAULT; 1655 } 1656 1657 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1658 struct rusage *ru) 1659 { 1660 struct wait_opts wo; 1661 struct pid *pid = NULL; 1662 enum pid_type type; 1663 long ret; 1664 1665 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1666 __WNOTHREAD|__WCLONE|__WALL)) 1667 return -EINVAL; 1668 1669 /* -INT_MIN is not defined */ 1670 if (upid == INT_MIN) 1671 return -ESRCH; 1672 1673 if (upid == -1) 1674 type = PIDTYPE_MAX; 1675 else if (upid < 0) { 1676 type = PIDTYPE_PGID; 1677 pid = find_get_pid(-upid); 1678 } else if (upid == 0) { 1679 type = PIDTYPE_PGID; 1680 pid = get_task_pid(current, PIDTYPE_PGID); 1681 } else /* upid > 0 */ { 1682 type = PIDTYPE_PID; 1683 pid = find_get_pid(upid); 1684 } 1685 1686 wo.wo_type = type; 1687 wo.wo_pid = pid; 1688 wo.wo_flags = options | WEXITED; 1689 wo.wo_info = NULL; 1690 wo.wo_stat = 0; 1691 wo.wo_rusage = ru; 1692 ret = do_wait(&wo); 1693 put_pid(pid); 1694 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1695 ret = -EFAULT; 1696 1697 return ret; 1698 } 1699 1700 int kernel_wait(pid_t pid, int *stat) 1701 { 1702 struct wait_opts wo = { 1703 .wo_type = PIDTYPE_PID, 1704 .wo_pid = find_get_pid(pid), 1705 .wo_flags = WEXITED, 1706 }; 1707 int ret; 1708 1709 ret = do_wait(&wo); 1710 if (ret > 0 && wo.wo_stat) 1711 *stat = wo.wo_stat; 1712 put_pid(wo.wo_pid); 1713 return ret; 1714 } 1715 1716 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1717 int, options, struct rusage __user *, ru) 1718 { 1719 struct rusage r; 1720 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1721 1722 if (err > 0) { 1723 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1724 return -EFAULT; 1725 } 1726 return err; 1727 } 1728 1729 #ifdef __ARCH_WANT_SYS_WAITPID 1730 1731 /* 1732 * sys_waitpid() remains for compatibility. waitpid() should be 1733 * implemented by calling sys_wait4() from libc.a. 1734 */ 1735 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1736 { 1737 return kernel_wait4(pid, stat_addr, options, NULL); 1738 } 1739 1740 #endif 1741 1742 #ifdef CONFIG_COMPAT 1743 COMPAT_SYSCALL_DEFINE4(wait4, 1744 compat_pid_t, pid, 1745 compat_uint_t __user *, stat_addr, 1746 int, options, 1747 struct compat_rusage __user *, ru) 1748 { 1749 struct rusage r; 1750 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1751 if (err > 0) { 1752 if (ru && put_compat_rusage(&r, ru)) 1753 return -EFAULT; 1754 } 1755 return err; 1756 } 1757 1758 COMPAT_SYSCALL_DEFINE5(waitid, 1759 int, which, compat_pid_t, pid, 1760 struct compat_siginfo __user *, infop, int, options, 1761 struct compat_rusage __user *, uru) 1762 { 1763 struct rusage ru; 1764 struct waitid_info info = {.status = 0}; 1765 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1766 int signo = 0; 1767 if (err > 0) { 1768 signo = SIGCHLD; 1769 err = 0; 1770 if (uru) { 1771 /* kernel_waitid() overwrites everything in ru */ 1772 if (COMPAT_USE_64BIT_TIME) 1773 err = copy_to_user(uru, &ru, sizeof(ru)); 1774 else 1775 err = put_compat_rusage(&ru, uru); 1776 if (err) 1777 return -EFAULT; 1778 } 1779 } 1780 1781 if (!infop) 1782 return err; 1783 1784 if (!user_write_access_begin(infop, sizeof(*infop))) 1785 return -EFAULT; 1786 1787 unsafe_put_user(signo, &infop->si_signo, Efault); 1788 unsafe_put_user(0, &infop->si_errno, Efault); 1789 unsafe_put_user(info.cause, &infop->si_code, Efault); 1790 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1791 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1792 unsafe_put_user(info.status, &infop->si_status, Efault); 1793 user_write_access_end(); 1794 return err; 1795 Efault: 1796 user_write_access_end(); 1797 return -EFAULT; 1798 } 1799 #endif 1800 1801 /** 1802 * thread_group_exited - check that a thread group has exited 1803 * @pid: tgid of thread group to be checked. 1804 * 1805 * Test if the thread group represented by tgid has exited (all 1806 * threads are zombies, dead or completely gone). 1807 * 1808 * Return: true if the thread group has exited. false otherwise. 1809 */ 1810 bool thread_group_exited(struct pid *pid) 1811 { 1812 struct task_struct *task; 1813 bool exited; 1814 1815 rcu_read_lock(); 1816 task = pid_task(pid, PIDTYPE_PID); 1817 exited = !task || 1818 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1819 rcu_read_unlock(); 1820 1821 return exited; 1822 } 1823 EXPORT_SYMBOL(thread_group_exited); 1824 1825 __weak void abort(void) 1826 { 1827 BUG(); 1828 1829 /* if that doesn't kill us, halt */ 1830 panic("Oops failed to kill thread"); 1831 } 1832 EXPORT_SYMBOL(abort); 1833