xref: /openbmc/linux/kernel/exit.c (revision 355f841a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72 
73 static void __unhash_process(struct task_struct *p, bool group_dead)
74 {
75 	nr_threads--;
76 	detach_pid(p, PIDTYPE_PID);
77 	if (group_dead) {
78 		detach_pid(p, PIDTYPE_TGID);
79 		detach_pid(p, PIDTYPE_PGID);
80 		detach_pid(p, PIDTYPE_SID);
81 
82 		list_del_rcu(&p->tasks);
83 		list_del_init(&p->sibling);
84 		__this_cpu_dec(process_counts);
85 	}
86 	list_del_rcu(&p->thread_group);
87 	list_del_rcu(&p->thread_node);
88 }
89 
90 /*
91  * This function expects the tasklist_lock write-locked.
92  */
93 static void __exit_signal(struct task_struct *tsk)
94 {
95 	struct signal_struct *sig = tsk->signal;
96 	bool group_dead = thread_group_leader(tsk);
97 	struct sighand_struct *sighand;
98 	struct tty_struct *tty;
99 	u64 utime, stime;
100 
101 	sighand = rcu_dereference_check(tsk->sighand,
102 					lockdep_tasklist_lock_is_held());
103 	spin_lock(&sighand->siglock);
104 
105 #ifdef CONFIG_POSIX_TIMERS
106 	posix_cpu_timers_exit(tsk);
107 	if (group_dead)
108 		posix_cpu_timers_exit_group(tsk);
109 #endif
110 
111 	if (group_dead) {
112 		tty = sig->tty;
113 		sig->tty = NULL;
114 	} else {
115 		/*
116 		 * If there is any task waiting for the group exit
117 		 * then notify it:
118 		 */
119 		if (sig->notify_count > 0 && !--sig->notify_count)
120 			wake_up_process(sig->group_exec_task);
121 
122 		if (tsk == sig->curr_target)
123 			sig->curr_target = next_thread(tsk);
124 	}
125 
126 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
127 			      sizeof(unsigned long long));
128 
129 	/*
130 	 * Accumulate here the counters for all threads as they die. We could
131 	 * skip the group leader because it is the last user of signal_struct,
132 	 * but we want to avoid the race with thread_group_cputime() which can
133 	 * see the empty ->thread_head list.
134 	 */
135 	task_cputime(tsk, &utime, &stime);
136 	write_seqlock(&sig->stats_lock);
137 	sig->utime += utime;
138 	sig->stime += stime;
139 	sig->gtime += task_gtime(tsk);
140 	sig->min_flt += tsk->min_flt;
141 	sig->maj_flt += tsk->maj_flt;
142 	sig->nvcsw += tsk->nvcsw;
143 	sig->nivcsw += tsk->nivcsw;
144 	sig->inblock += task_io_get_inblock(tsk);
145 	sig->oublock += task_io_get_oublock(tsk);
146 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
147 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
148 	sig->nr_threads--;
149 	__unhash_process(tsk, group_dead);
150 	write_sequnlock(&sig->stats_lock);
151 
152 	/*
153 	 * Do this under ->siglock, we can race with another thread
154 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
155 	 */
156 	flush_sigqueue(&tsk->pending);
157 	tsk->sighand = NULL;
158 	spin_unlock(&sighand->siglock);
159 
160 	__cleanup_sighand(sighand);
161 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
162 	if (group_dead) {
163 		flush_sigqueue(&sig->shared_pending);
164 		tty_kref_put(tty);
165 	}
166 }
167 
168 static void delayed_put_task_struct(struct rcu_head *rhp)
169 {
170 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171 
172 	kprobe_flush_task(tsk);
173 	perf_event_delayed_put(tsk);
174 	trace_sched_process_free(tsk);
175 	put_task_struct(tsk);
176 }
177 
178 void put_task_struct_rcu_user(struct task_struct *task)
179 {
180 	if (refcount_dec_and_test(&task->rcu_users))
181 		call_rcu(&task->rcu, delayed_put_task_struct);
182 }
183 
184 void release_task(struct task_struct *p)
185 {
186 	struct task_struct *leader;
187 	struct pid *thread_pid;
188 	int zap_leader;
189 repeat:
190 	/* don't need to get the RCU readlock here - the process is dead and
191 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
192 	rcu_read_lock();
193 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
194 	rcu_read_unlock();
195 
196 	cgroup_release(p);
197 
198 	write_lock_irq(&tasklist_lock);
199 	ptrace_release_task(p);
200 	thread_pid = get_pid(p->thread_pid);
201 	__exit_signal(p);
202 
203 	/*
204 	 * If we are the last non-leader member of the thread
205 	 * group, and the leader is zombie, then notify the
206 	 * group leader's parent process. (if it wants notification.)
207 	 */
208 	zap_leader = 0;
209 	leader = p->group_leader;
210 	if (leader != p && thread_group_empty(leader)
211 			&& leader->exit_state == EXIT_ZOMBIE) {
212 		/*
213 		 * If we were the last child thread and the leader has
214 		 * exited already, and the leader's parent ignores SIGCHLD,
215 		 * then we are the one who should release the leader.
216 		 */
217 		zap_leader = do_notify_parent(leader, leader->exit_signal);
218 		if (zap_leader)
219 			leader->exit_state = EXIT_DEAD;
220 	}
221 
222 	write_unlock_irq(&tasklist_lock);
223 	seccomp_filter_release(p);
224 	proc_flush_pid(thread_pid);
225 	put_pid(thread_pid);
226 	release_thread(p);
227 	put_task_struct_rcu_user(p);
228 
229 	p = leader;
230 	if (unlikely(zap_leader))
231 		goto repeat;
232 }
233 
234 int rcuwait_wake_up(struct rcuwait *w)
235 {
236 	int ret = 0;
237 	struct task_struct *task;
238 
239 	rcu_read_lock();
240 
241 	/*
242 	 * Order condition vs @task, such that everything prior to the load
243 	 * of @task is visible. This is the condition as to why the user called
244 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
245 	 * barrier (A) in rcuwait_wait_event().
246 	 *
247 	 *    WAIT                WAKE
248 	 *    [S] tsk = current	  [S] cond = true
249 	 *        MB (A)	      MB (B)
250 	 *    [L] cond		  [L] tsk
251 	 */
252 	smp_mb(); /* (B) */
253 
254 	task = rcu_dereference(w->task);
255 	if (task)
256 		ret = wake_up_process(task);
257 	rcu_read_unlock();
258 
259 	return ret;
260 }
261 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
262 
263 /*
264  * Determine if a process group is "orphaned", according to the POSIX
265  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
266  * by terminal-generated stop signals.  Newly orphaned process groups are
267  * to receive a SIGHUP and a SIGCONT.
268  *
269  * "I ask you, have you ever known what it is to be an orphan?"
270  */
271 static int will_become_orphaned_pgrp(struct pid *pgrp,
272 					struct task_struct *ignored_task)
273 {
274 	struct task_struct *p;
275 
276 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
277 		if ((p == ignored_task) ||
278 		    (p->exit_state && thread_group_empty(p)) ||
279 		    is_global_init(p->real_parent))
280 			continue;
281 
282 		if (task_pgrp(p->real_parent) != pgrp &&
283 		    task_session(p->real_parent) == task_session(p))
284 			return 0;
285 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
286 
287 	return 1;
288 }
289 
290 int is_current_pgrp_orphaned(void)
291 {
292 	int retval;
293 
294 	read_lock(&tasklist_lock);
295 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
296 	read_unlock(&tasklist_lock);
297 
298 	return retval;
299 }
300 
301 static bool has_stopped_jobs(struct pid *pgrp)
302 {
303 	struct task_struct *p;
304 
305 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
306 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
307 			return true;
308 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
309 
310 	return false;
311 }
312 
313 /*
314  * Check to see if any process groups have become orphaned as
315  * a result of our exiting, and if they have any stopped jobs,
316  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
317  */
318 static void
319 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
320 {
321 	struct pid *pgrp = task_pgrp(tsk);
322 	struct task_struct *ignored_task = tsk;
323 
324 	if (!parent)
325 		/* exit: our father is in a different pgrp than
326 		 * we are and we were the only connection outside.
327 		 */
328 		parent = tsk->real_parent;
329 	else
330 		/* reparent: our child is in a different pgrp than
331 		 * we are, and it was the only connection outside.
332 		 */
333 		ignored_task = NULL;
334 
335 	if (task_pgrp(parent) != pgrp &&
336 	    task_session(parent) == task_session(tsk) &&
337 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
338 	    has_stopped_jobs(pgrp)) {
339 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
340 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
341 	}
342 }
343 
344 static void coredump_task_exit(struct task_struct *tsk)
345 {
346 	struct core_state *core_state;
347 
348 	/*
349 	 * Serialize with any possible pending coredump.
350 	 * We must hold siglock around checking core_state
351 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
352 	 * will increment ->nr_threads for each thread in the
353 	 * group without PF_POSTCOREDUMP set.
354 	 */
355 	spin_lock_irq(&tsk->sighand->siglock);
356 	tsk->flags |= PF_POSTCOREDUMP;
357 	core_state = tsk->signal->core_state;
358 	spin_unlock_irq(&tsk->sighand->siglock);
359 	if (core_state) {
360 		struct core_thread self;
361 
362 		self.task = current;
363 		if (self.task->flags & PF_SIGNALED)
364 			self.next = xchg(&core_state->dumper.next, &self);
365 		else
366 			self.task = NULL;
367 		/*
368 		 * Implies mb(), the result of xchg() must be visible
369 		 * to core_state->dumper.
370 		 */
371 		if (atomic_dec_and_test(&core_state->nr_threads))
372 			complete(&core_state->startup);
373 
374 		for (;;) {
375 			set_current_state(TASK_UNINTERRUPTIBLE);
376 			if (!self.task) /* see coredump_finish() */
377 				break;
378 			freezable_schedule();
379 		}
380 		__set_current_state(TASK_RUNNING);
381 	}
382 }
383 
384 #ifdef CONFIG_MEMCG
385 /*
386  * A task is exiting.   If it owned this mm, find a new owner for the mm.
387  */
388 void mm_update_next_owner(struct mm_struct *mm)
389 {
390 	struct task_struct *c, *g, *p = current;
391 
392 retry:
393 	/*
394 	 * If the exiting or execing task is not the owner, it's
395 	 * someone else's problem.
396 	 */
397 	if (mm->owner != p)
398 		return;
399 	/*
400 	 * The current owner is exiting/execing and there are no other
401 	 * candidates.  Do not leave the mm pointing to a possibly
402 	 * freed task structure.
403 	 */
404 	if (atomic_read(&mm->mm_users) <= 1) {
405 		WRITE_ONCE(mm->owner, NULL);
406 		return;
407 	}
408 
409 	read_lock(&tasklist_lock);
410 	/*
411 	 * Search in the children
412 	 */
413 	list_for_each_entry(c, &p->children, sibling) {
414 		if (c->mm == mm)
415 			goto assign_new_owner;
416 	}
417 
418 	/*
419 	 * Search in the siblings
420 	 */
421 	list_for_each_entry(c, &p->real_parent->children, sibling) {
422 		if (c->mm == mm)
423 			goto assign_new_owner;
424 	}
425 
426 	/*
427 	 * Search through everything else, we should not get here often.
428 	 */
429 	for_each_process(g) {
430 		if (g->flags & PF_KTHREAD)
431 			continue;
432 		for_each_thread(g, c) {
433 			if (c->mm == mm)
434 				goto assign_new_owner;
435 			if (c->mm)
436 				break;
437 		}
438 	}
439 	read_unlock(&tasklist_lock);
440 	/*
441 	 * We found no owner yet mm_users > 1: this implies that we are
442 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
443 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
444 	 */
445 	WRITE_ONCE(mm->owner, NULL);
446 	return;
447 
448 assign_new_owner:
449 	BUG_ON(c == p);
450 	get_task_struct(c);
451 	/*
452 	 * The task_lock protects c->mm from changing.
453 	 * We always want mm->owner->mm == mm
454 	 */
455 	task_lock(c);
456 	/*
457 	 * Delay read_unlock() till we have the task_lock()
458 	 * to ensure that c does not slip away underneath us
459 	 */
460 	read_unlock(&tasklist_lock);
461 	if (c->mm != mm) {
462 		task_unlock(c);
463 		put_task_struct(c);
464 		goto retry;
465 	}
466 	WRITE_ONCE(mm->owner, c);
467 	task_unlock(c);
468 	put_task_struct(c);
469 }
470 #endif /* CONFIG_MEMCG */
471 
472 /*
473  * Turn us into a lazy TLB process if we
474  * aren't already..
475  */
476 static void exit_mm(void)
477 {
478 	struct mm_struct *mm = current->mm;
479 
480 	exit_mm_release(current, mm);
481 	if (!mm)
482 		return;
483 	sync_mm_rss(mm);
484 	mmap_read_lock(mm);
485 	mmgrab(mm);
486 	BUG_ON(mm != current->active_mm);
487 	/* more a memory barrier than a real lock */
488 	task_lock(current);
489 	/*
490 	 * When a thread stops operating on an address space, the loop
491 	 * in membarrier_private_expedited() may not observe that
492 	 * tsk->mm, and the loop in membarrier_global_expedited() may
493 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
494 	 * rq->membarrier_state, so those would not issue an IPI.
495 	 * Membarrier requires a memory barrier after accessing
496 	 * user-space memory, before clearing tsk->mm or the
497 	 * rq->membarrier_state.
498 	 */
499 	smp_mb__after_spinlock();
500 	local_irq_disable();
501 	current->mm = NULL;
502 	membarrier_update_current_mm(NULL);
503 	enter_lazy_tlb(mm, current);
504 	local_irq_enable();
505 	task_unlock(current);
506 	mmap_read_unlock(mm);
507 	mm_update_next_owner(mm);
508 	mmput(mm);
509 	if (test_thread_flag(TIF_MEMDIE))
510 		exit_oom_victim();
511 }
512 
513 static struct task_struct *find_alive_thread(struct task_struct *p)
514 {
515 	struct task_struct *t;
516 
517 	for_each_thread(p, t) {
518 		if (!(t->flags & PF_EXITING))
519 			return t;
520 	}
521 	return NULL;
522 }
523 
524 static struct task_struct *find_child_reaper(struct task_struct *father,
525 						struct list_head *dead)
526 	__releases(&tasklist_lock)
527 	__acquires(&tasklist_lock)
528 {
529 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
530 	struct task_struct *reaper = pid_ns->child_reaper;
531 	struct task_struct *p, *n;
532 
533 	if (likely(reaper != father))
534 		return reaper;
535 
536 	reaper = find_alive_thread(father);
537 	if (reaper) {
538 		pid_ns->child_reaper = reaper;
539 		return reaper;
540 	}
541 
542 	write_unlock_irq(&tasklist_lock);
543 
544 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
545 		list_del_init(&p->ptrace_entry);
546 		release_task(p);
547 	}
548 
549 	zap_pid_ns_processes(pid_ns);
550 	write_lock_irq(&tasklist_lock);
551 
552 	return father;
553 }
554 
555 /*
556  * When we die, we re-parent all our children, and try to:
557  * 1. give them to another thread in our thread group, if such a member exists
558  * 2. give it to the first ancestor process which prctl'd itself as a
559  *    child_subreaper for its children (like a service manager)
560  * 3. give it to the init process (PID 1) in our pid namespace
561  */
562 static struct task_struct *find_new_reaper(struct task_struct *father,
563 					   struct task_struct *child_reaper)
564 {
565 	struct task_struct *thread, *reaper;
566 
567 	thread = find_alive_thread(father);
568 	if (thread)
569 		return thread;
570 
571 	if (father->signal->has_child_subreaper) {
572 		unsigned int ns_level = task_pid(father)->level;
573 		/*
574 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
575 		 * We can't check reaper != child_reaper to ensure we do not
576 		 * cross the namespaces, the exiting parent could be injected
577 		 * by setns() + fork().
578 		 * We check pid->level, this is slightly more efficient than
579 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
580 		 */
581 		for (reaper = father->real_parent;
582 		     task_pid(reaper)->level == ns_level;
583 		     reaper = reaper->real_parent) {
584 			if (reaper == &init_task)
585 				break;
586 			if (!reaper->signal->is_child_subreaper)
587 				continue;
588 			thread = find_alive_thread(reaper);
589 			if (thread)
590 				return thread;
591 		}
592 	}
593 
594 	return child_reaper;
595 }
596 
597 /*
598 * Any that need to be release_task'd are put on the @dead list.
599  */
600 static void reparent_leader(struct task_struct *father, struct task_struct *p,
601 				struct list_head *dead)
602 {
603 	if (unlikely(p->exit_state == EXIT_DEAD))
604 		return;
605 
606 	/* We don't want people slaying init. */
607 	p->exit_signal = SIGCHLD;
608 
609 	/* If it has exited notify the new parent about this child's death. */
610 	if (!p->ptrace &&
611 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
612 		if (do_notify_parent(p, p->exit_signal)) {
613 			p->exit_state = EXIT_DEAD;
614 			list_add(&p->ptrace_entry, dead);
615 		}
616 	}
617 
618 	kill_orphaned_pgrp(p, father);
619 }
620 
621 /*
622  * This does two things:
623  *
624  * A.  Make init inherit all the child processes
625  * B.  Check to see if any process groups have become orphaned
626  *	as a result of our exiting, and if they have any stopped
627  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
628  */
629 static void forget_original_parent(struct task_struct *father,
630 					struct list_head *dead)
631 {
632 	struct task_struct *p, *t, *reaper;
633 
634 	if (unlikely(!list_empty(&father->ptraced)))
635 		exit_ptrace(father, dead);
636 
637 	/* Can drop and reacquire tasklist_lock */
638 	reaper = find_child_reaper(father, dead);
639 	if (list_empty(&father->children))
640 		return;
641 
642 	reaper = find_new_reaper(father, reaper);
643 	list_for_each_entry(p, &father->children, sibling) {
644 		for_each_thread(p, t) {
645 			RCU_INIT_POINTER(t->real_parent, reaper);
646 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
647 			if (likely(!t->ptrace))
648 				t->parent = t->real_parent;
649 			if (t->pdeath_signal)
650 				group_send_sig_info(t->pdeath_signal,
651 						    SEND_SIG_NOINFO, t,
652 						    PIDTYPE_TGID);
653 		}
654 		/*
655 		 * If this is a threaded reparent there is no need to
656 		 * notify anyone anything has happened.
657 		 */
658 		if (!same_thread_group(reaper, father))
659 			reparent_leader(father, p, dead);
660 	}
661 	list_splice_tail_init(&father->children, &reaper->children);
662 }
663 
664 /*
665  * Send signals to all our closest relatives so that they know
666  * to properly mourn us..
667  */
668 static void exit_notify(struct task_struct *tsk, int group_dead)
669 {
670 	bool autoreap;
671 	struct task_struct *p, *n;
672 	LIST_HEAD(dead);
673 
674 	write_lock_irq(&tasklist_lock);
675 	forget_original_parent(tsk, &dead);
676 
677 	if (group_dead)
678 		kill_orphaned_pgrp(tsk->group_leader, NULL);
679 
680 	tsk->exit_state = EXIT_ZOMBIE;
681 	if (unlikely(tsk->ptrace)) {
682 		int sig = thread_group_leader(tsk) &&
683 				thread_group_empty(tsk) &&
684 				!ptrace_reparented(tsk) ?
685 			tsk->exit_signal : SIGCHLD;
686 		autoreap = do_notify_parent(tsk, sig);
687 	} else if (thread_group_leader(tsk)) {
688 		autoreap = thread_group_empty(tsk) &&
689 			do_notify_parent(tsk, tsk->exit_signal);
690 	} else {
691 		autoreap = true;
692 	}
693 
694 	if (autoreap) {
695 		tsk->exit_state = EXIT_DEAD;
696 		list_add(&tsk->ptrace_entry, &dead);
697 	}
698 
699 	/* mt-exec, de_thread() is waiting for group leader */
700 	if (unlikely(tsk->signal->notify_count < 0))
701 		wake_up_process(tsk->signal->group_exec_task);
702 	write_unlock_irq(&tasklist_lock);
703 
704 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
705 		list_del_init(&p->ptrace_entry);
706 		release_task(p);
707 	}
708 }
709 
710 #ifdef CONFIG_DEBUG_STACK_USAGE
711 static void check_stack_usage(void)
712 {
713 	static DEFINE_SPINLOCK(low_water_lock);
714 	static int lowest_to_date = THREAD_SIZE;
715 	unsigned long free;
716 
717 	free = stack_not_used(current);
718 
719 	if (free >= lowest_to_date)
720 		return;
721 
722 	spin_lock(&low_water_lock);
723 	if (free < lowest_to_date) {
724 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
725 			current->comm, task_pid_nr(current), free);
726 		lowest_to_date = free;
727 	}
728 	spin_unlock(&low_water_lock);
729 }
730 #else
731 static inline void check_stack_usage(void) {}
732 #endif
733 
734 void __noreturn do_exit(long code)
735 {
736 	struct task_struct *tsk = current;
737 	int group_dead;
738 
739 	WARN_ON(blk_needs_flush_plug(tsk));
740 
741 	/*
742 	 * If do_dead is called because this processes oopsed, it's possible
743 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
744 	 * continuing. Amongst other possible reasons, this is to prevent
745 	 * mm_release()->clear_child_tid() from writing to a user-controlled
746 	 * kernel address.
747 	 *
748 	 * On uptodate architectures force_uaccess_begin is a noop.  On
749 	 * architectures that still have set_fs/get_fs in addition to handling
750 	 * oopses handles kernel threads that run as set_fs(KERNEL_DS) by
751 	 * default.
752 	 */
753 	force_uaccess_begin();
754 
755 	kcov_task_exit(tsk);
756 
757 	coredump_task_exit(tsk);
758 	ptrace_event(PTRACE_EVENT_EXIT, code);
759 
760 	validate_creds_for_do_exit(tsk);
761 
762 	io_uring_files_cancel();
763 	exit_signals(tsk);  /* sets PF_EXITING */
764 
765 	/* sync mm's RSS info before statistics gathering */
766 	if (tsk->mm)
767 		sync_mm_rss(tsk->mm);
768 	acct_update_integrals(tsk);
769 	group_dead = atomic_dec_and_test(&tsk->signal->live);
770 	if (group_dead) {
771 		/*
772 		 * If the last thread of global init has exited, panic
773 		 * immediately to get a useable coredump.
774 		 */
775 		if (unlikely(is_global_init(tsk)))
776 			panic("Attempted to kill init! exitcode=0x%08x\n",
777 				tsk->signal->group_exit_code ?: (int)code);
778 
779 #ifdef CONFIG_POSIX_TIMERS
780 		hrtimer_cancel(&tsk->signal->real_timer);
781 		exit_itimers(tsk->signal);
782 #endif
783 		if (tsk->mm)
784 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
785 	}
786 	acct_collect(code, group_dead);
787 	if (group_dead)
788 		tty_audit_exit();
789 	audit_free(tsk);
790 
791 	tsk->exit_code = code;
792 	taskstats_exit(tsk, group_dead);
793 
794 	exit_mm();
795 
796 	if (group_dead)
797 		acct_process();
798 	trace_sched_process_exit(tsk);
799 
800 	exit_sem(tsk);
801 	exit_shm(tsk);
802 	exit_files(tsk);
803 	exit_fs(tsk);
804 	if (group_dead)
805 		disassociate_ctty(1);
806 	exit_task_namespaces(tsk);
807 	exit_task_work(tsk);
808 	exit_thread(tsk);
809 
810 	/*
811 	 * Flush inherited counters to the parent - before the parent
812 	 * gets woken up by child-exit notifications.
813 	 *
814 	 * because of cgroup mode, must be called before cgroup_exit()
815 	 */
816 	perf_event_exit_task(tsk);
817 
818 	sched_autogroup_exit_task(tsk);
819 	cgroup_exit(tsk);
820 
821 	/*
822 	 * FIXME: do that only when needed, using sched_exit tracepoint
823 	 */
824 	flush_ptrace_hw_breakpoint(tsk);
825 
826 	exit_tasks_rcu_start();
827 	exit_notify(tsk, group_dead);
828 	proc_exit_connector(tsk);
829 	mpol_put_task_policy(tsk);
830 #ifdef CONFIG_FUTEX
831 	if (unlikely(current->pi_state_cache))
832 		kfree(current->pi_state_cache);
833 #endif
834 	/*
835 	 * Make sure we are holding no locks:
836 	 */
837 	debug_check_no_locks_held();
838 
839 	if (tsk->io_context)
840 		exit_io_context(tsk);
841 
842 	if (tsk->splice_pipe)
843 		free_pipe_info(tsk->splice_pipe);
844 
845 	if (tsk->task_frag.page)
846 		put_page(tsk->task_frag.page);
847 
848 	validate_creds_for_do_exit(tsk);
849 
850 	check_stack_usage();
851 	preempt_disable();
852 	if (tsk->nr_dirtied)
853 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
854 	exit_rcu();
855 	exit_tasks_rcu_finish();
856 
857 	lockdep_free_task(tsk);
858 	do_task_dead();
859 }
860 
861 void __noreturn make_task_dead(int signr)
862 {
863 	/*
864 	 * Take the task off the cpu after something catastrophic has
865 	 * happened.
866 	 *
867 	 * We can get here from a kernel oops, sometimes with preemption off.
868 	 * Start by checking for critical errors.
869 	 * Then fix up important state like USER_DS and preemption.
870 	 * Then do everything else.
871 	 */
872 	struct task_struct *tsk = current;
873 
874 	if (unlikely(in_interrupt()))
875 		panic("Aiee, killing interrupt handler!");
876 	if (unlikely(!tsk->pid))
877 		panic("Attempted to kill the idle task!");
878 
879 	if (unlikely(in_atomic())) {
880 		pr_info("note: %s[%d] exited with preempt_count %d\n",
881 			current->comm, task_pid_nr(current),
882 			preempt_count());
883 		preempt_count_set(PREEMPT_ENABLED);
884 	}
885 
886 	/*
887 	 * We're taking recursive faults here in make_task_dead. Safest is to just
888 	 * leave this task alone and wait for reboot.
889 	 */
890 	if (unlikely(tsk->flags & PF_EXITING)) {
891 		pr_alert("Fixing recursive fault but reboot is needed!\n");
892 		futex_exit_recursive(tsk);
893 		tsk->exit_state = EXIT_DEAD;
894 		refcount_inc(&tsk->rcu_users);
895 		do_task_dead();
896 	}
897 
898 	do_exit(signr);
899 }
900 
901 SYSCALL_DEFINE1(exit, int, error_code)
902 {
903 	do_exit((error_code&0xff)<<8);
904 }
905 
906 /*
907  * Take down every thread in the group.  This is called by fatal signals
908  * as well as by sys_exit_group (below).
909  */
910 void
911 do_group_exit(int exit_code)
912 {
913 	struct signal_struct *sig = current->signal;
914 
915 	if (sig->flags & SIGNAL_GROUP_EXIT)
916 		exit_code = sig->group_exit_code;
917 	else if (sig->group_exec_task)
918 		exit_code = 0;
919 	else if (!thread_group_empty(current)) {
920 		struct sighand_struct *const sighand = current->sighand;
921 
922 		spin_lock_irq(&sighand->siglock);
923 		if (sig->flags & SIGNAL_GROUP_EXIT)
924 			/* Another thread got here before we took the lock.  */
925 			exit_code = sig->group_exit_code;
926 		else if (sig->group_exec_task)
927 			exit_code = 0;
928 		else {
929 			sig->group_exit_code = exit_code;
930 			sig->flags = SIGNAL_GROUP_EXIT;
931 			zap_other_threads(current);
932 		}
933 		spin_unlock_irq(&sighand->siglock);
934 	}
935 
936 	do_exit(exit_code);
937 	/* NOTREACHED */
938 }
939 
940 /*
941  * this kills every thread in the thread group. Note that any externally
942  * wait4()-ing process will get the correct exit code - even if this
943  * thread is not the thread group leader.
944  */
945 SYSCALL_DEFINE1(exit_group, int, error_code)
946 {
947 	do_group_exit((error_code & 0xff) << 8);
948 	/* NOTREACHED */
949 	return 0;
950 }
951 
952 struct waitid_info {
953 	pid_t pid;
954 	uid_t uid;
955 	int status;
956 	int cause;
957 };
958 
959 struct wait_opts {
960 	enum pid_type		wo_type;
961 	int			wo_flags;
962 	struct pid		*wo_pid;
963 
964 	struct waitid_info	*wo_info;
965 	int			wo_stat;
966 	struct rusage		*wo_rusage;
967 
968 	wait_queue_entry_t		child_wait;
969 	int			notask_error;
970 };
971 
972 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
973 {
974 	return	wo->wo_type == PIDTYPE_MAX ||
975 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
976 }
977 
978 static int
979 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
980 {
981 	if (!eligible_pid(wo, p))
982 		return 0;
983 
984 	/*
985 	 * Wait for all children (clone and not) if __WALL is set or
986 	 * if it is traced by us.
987 	 */
988 	if (ptrace || (wo->wo_flags & __WALL))
989 		return 1;
990 
991 	/*
992 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
993 	 * otherwise, wait for non-clone children *only*.
994 	 *
995 	 * Note: a "clone" child here is one that reports to its parent
996 	 * using a signal other than SIGCHLD, or a non-leader thread which
997 	 * we can only see if it is traced by us.
998 	 */
999 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1000 		return 0;
1001 
1002 	return 1;
1003 }
1004 
1005 /*
1006  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1007  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1008  * the lock and this task is uninteresting.  If we return nonzero, we have
1009  * released the lock and the system call should return.
1010  */
1011 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1012 {
1013 	int state, status;
1014 	pid_t pid = task_pid_vnr(p);
1015 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1016 	struct waitid_info *infop;
1017 
1018 	if (!likely(wo->wo_flags & WEXITED))
1019 		return 0;
1020 
1021 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1022 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1023 			? p->signal->group_exit_code : p->exit_code;
1024 		get_task_struct(p);
1025 		read_unlock(&tasklist_lock);
1026 		sched_annotate_sleep();
1027 		if (wo->wo_rusage)
1028 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1029 		put_task_struct(p);
1030 		goto out_info;
1031 	}
1032 	/*
1033 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1034 	 */
1035 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1036 		EXIT_TRACE : EXIT_DEAD;
1037 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1038 		return 0;
1039 	/*
1040 	 * We own this thread, nobody else can reap it.
1041 	 */
1042 	read_unlock(&tasklist_lock);
1043 	sched_annotate_sleep();
1044 
1045 	/*
1046 	 * Check thread_group_leader() to exclude the traced sub-threads.
1047 	 */
1048 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1049 		struct signal_struct *sig = p->signal;
1050 		struct signal_struct *psig = current->signal;
1051 		unsigned long maxrss;
1052 		u64 tgutime, tgstime;
1053 
1054 		/*
1055 		 * The resource counters for the group leader are in its
1056 		 * own task_struct.  Those for dead threads in the group
1057 		 * are in its signal_struct, as are those for the child
1058 		 * processes it has previously reaped.  All these
1059 		 * accumulate in the parent's signal_struct c* fields.
1060 		 *
1061 		 * We don't bother to take a lock here to protect these
1062 		 * p->signal fields because the whole thread group is dead
1063 		 * and nobody can change them.
1064 		 *
1065 		 * psig->stats_lock also protects us from our sub-theads
1066 		 * which can reap other children at the same time. Until
1067 		 * we change k_getrusage()-like users to rely on this lock
1068 		 * we have to take ->siglock as well.
1069 		 *
1070 		 * We use thread_group_cputime_adjusted() to get times for
1071 		 * the thread group, which consolidates times for all threads
1072 		 * in the group including the group leader.
1073 		 */
1074 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1075 		spin_lock_irq(&current->sighand->siglock);
1076 		write_seqlock(&psig->stats_lock);
1077 		psig->cutime += tgutime + sig->cutime;
1078 		psig->cstime += tgstime + sig->cstime;
1079 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1080 		psig->cmin_flt +=
1081 			p->min_flt + sig->min_flt + sig->cmin_flt;
1082 		psig->cmaj_flt +=
1083 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1084 		psig->cnvcsw +=
1085 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1086 		psig->cnivcsw +=
1087 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1088 		psig->cinblock +=
1089 			task_io_get_inblock(p) +
1090 			sig->inblock + sig->cinblock;
1091 		psig->coublock +=
1092 			task_io_get_oublock(p) +
1093 			sig->oublock + sig->coublock;
1094 		maxrss = max(sig->maxrss, sig->cmaxrss);
1095 		if (psig->cmaxrss < maxrss)
1096 			psig->cmaxrss = maxrss;
1097 		task_io_accounting_add(&psig->ioac, &p->ioac);
1098 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1099 		write_sequnlock(&psig->stats_lock);
1100 		spin_unlock_irq(&current->sighand->siglock);
1101 	}
1102 
1103 	if (wo->wo_rusage)
1104 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1105 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1106 		? p->signal->group_exit_code : p->exit_code;
1107 	wo->wo_stat = status;
1108 
1109 	if (state == EXIT_TRACE) {
1110 		write_lock_irq(&tasklist_lock);
1111 		/* We dropped tasklist, ptracer could die and untrace */
1112 		ptrace_unlink(p);
1113 
1114 		/* If parent wants a zombie, don't release it now */
1115 		state = EXIT_ZOMBIE;
1116 		if (do_notify_parent(p, p->exit_signal))
1117 			state = EXIT_DEAD;
1118 		p->exit_state = state;
1119 		write_unlock_irq(&tasklist_lock);
1120 	}
1121 	if (state == EXIT_DEAD)
1122 		release_task(p);
1123 
1124 out_info:
1125 	infop = wo->wo_info;
1126 	if (infop) {
1127 		if ((status & 0x7f) == 0) {
1128 			infop->cause = CLD_EXITED;
1129 			infop->status = status >> 8;
1130 		} else {
1131 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1132 			infop->status = status & 0x7f;
1133 		}
1134 		infop->pid = pid;
1135 		infop->uid = uid;
1136 	}
1137 
1138 	return pid;
1139 }
1140 
1141 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1142 {
1143 	if (ptrace) {
1144 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1145 			return &p->exit_code;
1146 	} else {
1147 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1148 			return &p->signal->group_exit_code;
1149 	}
1150 	return NULL;
1151 }
1152 
1153 /**
1154  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1155  * @wo: wait options
1156  * @ptrace: is the wait for ptrace
1157  * @p: task to wait for
1158  *
1159  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1160  *
1161  * CONTEXT:
1162  * read_lock(&tasklist_lock), which is released if return value is
1163  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1164  *
1165  * RETURNS:
1166  * 0 if wait condition didn't exist and search for other wait conditions
1167  * should continue.  Non-zero return, -errno on failure and @p's pid on
1168  * success, implies that tasklist_lock is released and wait condition
1169  * search should terminate.
1170  */
1171 static int wait_task_stopped(struct wait_opts *wo,
1172 				int ptrace, struct task_struct *p)
1173 {
1174 	struct waitid_info *infop;
1175 	int exit_code, *p_code, why;
1176 	uid_t uid = 0; /* unneeded, required by compiler */
1177 	pid_t pid;
1178 
1179 	/*
1180 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1181 	 */
1182 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1183 		return 0;
1184 
1185 	if (!task_stopped_code(p, ptrace))
1186 		return 0;
1187 
1188 	exit_code = 0;
1189 	spin_lock_irq(&p->sighand->siglock);
1190 
1191 	p_code = task_stopped_code(p, ptrace);
1192 	if (unlikely(!p_code))
1193 		goto unlock_sig;
1194 
1195 	exit_code = *p_code;
1196 	if (!exit_code)
1197 		goto unlock_sig;
1198 
1199 	if (!unlikely(wo->wo_flags & WNOWAIT))
1200 		*p_code = 0;
1201 
1202 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1203 unlock_sig:
1204 	spin_unlock_irq(&p->sighand->siglock);
1205 	if (!exit_code)
1206 		return 0;
1207 
1208 	/*
1209 	 * Now we are pretty sure this task is interesting.
1210 	 * Make sure it doesn't get reaped out from under us while we
1211 	 * give up the lock and then examine it below.  We don't want to
1212 	 * keep holding onto the tasklist_lock while we call getrusage and
1213 	 * possibly take page faults for user memory.
1214 	 */
1215 	get_task_struct(p);
1216 	pid = task_pid_vnr(p);
1217 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1218 	read_unlock(&tasklist_lock);
1219 	sched_annotate_sleep();
1220 	if (wo->wo_rusage)
1221 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1222 	put_task_struct(p);
1223 
1224 	if (likely(!(wo->wo_flags & WNOWAIT)))
1225 		wo->wo_stat = (exit_code << 8) | 0x7f;
1226 
1227 	infop = wo->wo_info;
1228 	if (infop) {
1229 		infop->cause = why;
1230 		infop->status = exit_code;
1231 		infop->pid = pid;
1232 		infop->uid = uid;
1233 	}
1234 	return pid;
1235 }
1236 
1237 /*
1238  * Handle do_wait work for one task in a live, non-stopped state.
1239  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1240  * the lock and this task is uninteresting.  If we return nonzero, we have
1241  * released the lock and the system call should return.
1242  */
1243 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1244 {
1245 	struct waitid_info *infop;
1246 	pid_t pid;
1247 	uid_t uid;
1248 
1249 	if (!unlikely(wo->wo_flags & WCONTINUED))
1250 		return 0;
1251 
1252 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1253 		return 0;
1254 
1255 	spin_lock_irq(&p->sighand->siglock);
1256 	/* Re-check with the lock held.  */
1257 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1258 		spin_unlock_irq(&p->sighand->siglock);
1259 		return 0;
1260 	}
1261 	if (!unlikely(wo->wo_flags & WNOWAIT))
1262 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1263 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1264 	spin_unlock_irq(&p->sighand->siglock);
1265 
1266 	pid = task_pid_vnr(p);
1267 	get_task_struct(p);
1268 	read_unlock(&tasklist_lock);
1269 	sched_annotate_sleep();
1270 	if (wo->wo_rusage)
1271 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1272 	put_task_struct(p);
1273 
1274 	infop = wo->wo_info;
1275 	if (!infop) {
1276 		wo->wo_stat = 0xffff;
1277 	} else {
1278 		infop->cause = CLD_CONTINUED;
1279 		infop->pid = pid;
1280 		infop->uid = uid;
1281 		infop->status = SIGCONT;
1282 	}
1283 	return pid;
1284 }
1285 
1286 /*
1287  * Consider @p for a wait by @parent.
1288  *
1289  * -ECHILD should be in ->notask_error before the first call.
1290  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1291  * Returns zero if the search for a child should continue;
1292  * then ->notask_error is 0 if @p is an eligible child,
1293  * or still -ECHILD.
1294  */
1295 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1296 				struct task_struct *p)
1297 {
1298 	/*
1299 	 * We can race with wait_task_zombie() from another thread.
1300 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1301 	 * can't confuse the checks below.
1302 	 */
1303 	int exit_state = READ_ONCE(p->exit_state);
1304 	int ret;
1305 
1306 	if (unlikely(exit_state == EXIT_DEAD))
1307 		return 0;
1308 
1309 	ret = eligible_child(wo, ptrace, p);
1310 	if (!ret)
1311 		return ret;
1312 
1313 	if (unlikely(exit_state == EXIT_TRACE)) {
1314 		/*
1315 		 * ptrace == 0 means we are the natural parent. In this case
1316 		 * we should clear notask_error, debugger will notify us.
1317 		 */
1318 		if (likely(!ptrace))
1319 			wo->notask_error = 0;
1320 		return 0;
1321 	}
1322 
1323 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1324 		/*
1325 		 * If it is traced by its real parent's group, just pretend
1326 		 * the caller is ptrace_do_wait() and reap this child if it
1327 		 * is zombie.
1328 		 *
1329 		 * This also hides group stop state from real parent; otherwise
1330 		 * a single stop can be reported twice as group and ptrace stop.
1331 		 * If a ptracer wants to distinguish these two events for its
1332 		 * own children it should create a separate process which takes
1333 		 * the role of real parent.
1334 		 */
1335 		if (!ptrace_reparented(p))
1336 			ptrace = 1;
1337 	}
1338 
1339 	/* slay zombie? */
1340 	if (exit_state == EXIT_ZOMBIE) {
1341 		/* we don't reap group leaders with subthreads */
1342 		if (!delay_group_leader(p)) {
1343 			/*
1344 			 * A zombie ptracee is only visible to its ptracer.
1345 			 * Notification and reaping will be cascaded to the
1346 			 * real parent when the ptracer detaches.
1347 			 */
1348 			if (unlikely(ptrace) || likely(!p->ptrace))
1349 				return wait_task_zombie(wo, p);
1350 		}
1351 
1352 		/*
1353 		 * Allow access to stopped/continued state via zombie by
1354 		 * falling through.  Clearing of notask_error is complex.
1355 		 *
1356 		 * When !@ptrace:
1357 		 *
1358 		 * If WEXITED is set, notask_error should naturally be
1359 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1360 		 * so, if there are live subthreads, there are events to
1361 		 * wait for.  If all subthreads are dead, it's still safe
1362 		 * to clear - this function will be called again in finite
1363 		 * amount time once all the subthreads are released and
1364 		 * will then return without clearing.
1365 		 *
1366 		 * When @ptrace:
1367 		 *
1368 		 * Stopped state is per-task and thus can't change once the
1369 		 * target task dies.  Only continued and exited can happen.
1370 		 * Clear notask_error if WCONTINUED | WEXITED.
1371 		 */
1372 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1373 			wo->notask_error = 0;
1374 	} else {
1375 		/*
1376 		 * @p is alive and it's gonna stop, continue or exit, so
1377 		 * there always is something to wait for.
1378 		 */
1379 		wo->notask_error = 0;
1380 	}
1381 
1382 	/*
1383 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1384 	 * is used and the two don't interact with each other.
1385 	 */
1386 	ret = wait_task_stopped(wo, ptrace, p);
1387 	if (ret)
1388 		return ret;
1389 
1390 	/*
1391 	 * Wait for continued.  There's only one continued state and the
1392 	 * ptracer can consume it which can confuse the real parent.  Don't
1393 	 * use WCONTINUED from ptracer.  You don't need or want it.
1394 	 */
1395 	return wait_task_continued(wo, p);
1396 }
1397 
1398 /*
1399  * Do the work of do_wait() for one thread in the group, @tsk.
1400  *
1401  * -ECHILD should be in ->notask_error before the first call.
1402  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1403  * Returns zero if the search for a child should continue; then
1404  * ->notask_error is 0 if there were any eligible children,
1405  * or still -ECHILD.
1406  */
1407 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1408 {
1409 	struct task_struct *p;
1410 
1411 	list_for_each_entry(p, &tsk->children, sibling) {
1412 		int ret = wait_consider_task(wo, 0, p);
1413 
1414 		if (ret)
1415 			return ret;
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1422 {
1423 	struct task_struct *p;
1424 
1425 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1426 		int ret = wait_consider_task(wo, 1, p);
1427 
1428 		if (ret)
1429 			return ret;
1430 	}
1431 
1432 	return 0;
1433 }
1434 
1435 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1436 				int sync, void *key)
1437 {
1438 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1439 						child_wait);
1440 	struct task_struct *p = key;
1441 
1442 	if (!eligible_pid(wo, p))
1443 		return 0;
1444 
1445 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1446 		return 0;
1447 
1448 	return default_wake_function(wait, mode, sync, key);
1449 }
1450 
1451 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1452 {
1453 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1454 			   TASK_INTERRUPTIBLE, p);
1455 }
1456 
1457 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1458 				 struct task_struct *target)
1459 {
1460 	struct task_struct *parent =
1461 		!ptrace ? target->real_parent : target->parent;
1462 
1463 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1464 				     same_thread_group(current, parent));
1465 }
1466 
1467 /*
1468  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1469  * and tracee lists to find the target task.
1470  */
1471 static int do_wait_pid(struct wait_opts *wo)
1472 {
1473 	bool ptrace;
1474 	struct task_struct *target;
1475 	int retval;
1476 
1477 	ptrace = false;
1478 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1479 	if (target && is_effectively_child(wo, ptrace, target)) {
1480 		retval = wait_consider_task(wo, ptrace, target);
1481 		if (retval)
1482 			return retval;
1483 	}
1484 
1485 	ptrace = true;
1486 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1487 	if (target && target->ptrace &&
1488 	    is_effectively_child(wo, ptrace, target)) {
1489 		retval = wait_consider_task(wo, ptrace, target);
1490 		if (retval)
1491 			return retval;
1492 	}
1493 
1494 	return 0;
1495 }
1496 
1497 static long do_wait(struct wait_opts *wo)
1498 {
1499 	int retval;
1500 
1501 	trace_sched_process_wait(wo->wo_pid);
1502 
1503 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1504 	wo->child_wait.private = current;
1505 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1506 repeat:
1507 	/*
1508 	 * If there is nothing that can match our criteria, just get out.
1509 	 * We will clear ->notask_error to zero if we see any child that
1510 	 * might later match our criteria, even if we are not able to reap
1511 	 * it yet.
1512 	 */
1513 	wo->notask_error = -ECHILD;
1514 	if ((wo->wo_type < PIDTYPE_MAX) &&
1515 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1516 		goto notask;
1517 
1518 	set_current_state(TASK_INTERRUPTIBLE);
1519 	read_lock(&tasklist_lock);
1520 
1521 	if (wo->wo_type == PIDTYPE_PID) {
1522 		retval = do_wait_pid(wo);
1523 		if (retval)
1524 			goto end;
1525 	} else {
1526 		struct task_struct *tsk = current;
1527 
1528 		do {
1529 			retval = do_wait_thread(wo, tsk);
1530 			if (retval)
1531 				goto end;
1532 
1533 			retval = ptrace_do_wait(wo, tsk);
1534 			if (retval)
1535 				goto end;
1536 
1537 			if (wo->wo_flags & __WNOTHREAD)
1538 				break;
1539 		} while_each_thread(current, tsk);
1540 	}
1541 	read_unlock(&tasklist_lock);
1542 
1543 notask:
1544 	retval = wo->notask_error;
1545 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1546 		retval = -ERESTARTSYS;
1547 		if (!signal_pending(current)) {
1548 			schedule();
1549 			goto repeat;
1550 		}
1551 	}
1552 end:
1553 	__set_current_state(TASK_RUNNING);
1554 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1555 	return retval;
1556 }
1557 
1558 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1559 			  int options, struct rusage *ru)
1560 {
1561 	struct wait_opts wo;
1562 	struct pid *pid = NULL;
1563 	enum pid_type type;
1564 	long ret;
1565 	unsigned int f_flags = 0;
1566 
1567 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1568 			__WNOTHREAD|__WCLONE|__WALL))
1569 		return -EINVAL;
1570 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1571 		return -EINVAL;
1572 
1573 	switch (which) {
1574 	case P_ALL:
1575 		type = PIDTYPE_MAX;
1576 		break;
1577 	case P_PID:
1578 		type = PIDTYPE_PID;
1579 		if (upid <= 0)
1580 			return -EINVAL;
1581 
1582 		pid = find_get_pid(upid);
1583 		break;
1584 	case P_PGID:
1585 		type = PIDTYPE_PGID;
1586 		if (upid < 0)
1587 			return -EINVAL;
1588 
1589 		if (upid)
1590 			pid = find_get_pid(upid);
1591 		else
1592 			pid = get_task_pid(current, PIDTYPE_PGID);
1593 		break;
1594 	case P_PIDFD:
1595 		type = PIDTYPE_PID;
1596 		if (upid < 0)
1597 			return -EINVAL;
1598 
1599 		pid = pidfd_get_pid(upid, &f_flags);
1600 		if (IS_ERR(pid))
1601 			return PTR_ERR(pid);
1602 
1603 		break;
1604 	default:
1605 		return -EINVAL;
1606 	}
1607 
1608 	wo.wo_type	= type;
1609 	wo.wo_pid	= pid;
1610 	wo.wo_flags	= options;
1611 	wo.wo_info	= infop;
1612 	wo.wo_rusage	= ru;
1613 	if (f_flags & O_NONBLOCK)
1614 		wo.wo_flags |= WNOHANG;
1615 
1616 	ret = do_wait(&wo);
1617 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1618 		ret = -EAGAIN;
1619 
1620 	put_pid(pid);
1621 	return ret;
1622 }
1623 
1624 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1625 		infop, int, options, struct rusage __user *, ru)
1626 {
1627 	struct rusage r;
1628 	struct waitid_info info = {.status = 0};
1629 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1630 	int signo = 0;
1631 
1632 	if (err > 0) {
1633 		signo = SIGCHLD;
1634 		err = 0;
1635 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1636 			return -EFAULT;
1637 	}
1638 	if (!infop)
1639 		return err;
1640 
1641 	if (!user_write_access_begin(infop, sizeof(*infop)))
1642 		return -EFAULT;
1643 
1644 	unsafe_put_user(signo, &infop->si_signo, Efault);
1645 	unsafe_put_user(0, &infop->si_errno, Efault);
1646 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1647 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1648 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1649 	unsafe_put_user(info.status, &infop->si_status, Efault);
1650 	user_write_access_end();
1651 	return err;
1652 Efault:
1653 	user_write_access_end();
1654 	return -EFAULT;
1655 }
1656 
1657 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1658 		  struct rusage *ru)
1659 {
1660 	struct wait_opts wo;
1661 	struct pid *pid = NULL;
1662 	enum pid_type type;
1663 	long ret;
1664 
1665 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1666 			__WNOTHREAD|__WCLONE|__WALL))
1667 		return -EINVAL;
1668 
1669 	/* -INT_MIN is not defined */
1670 	if (upid == INT_MIN)
1671 		return -ESRCH;
1672 
1673 	if (upid == -1)
1674 		type = PIDTYPE_MAX;
1675 	else if (upid < 0) {
1676 		type = PIDTYPE_PGID;
1677 		pid = find_get_pid(-upid);
1678 	} else if (upid == 0) {
1679 		type = PIDTYPE_PGID;
1680 		pid = get_task_pid(current, PIDTYPE_PGID);
1681 	} else /* upid > 0 */ {
1682 		type = PIDTYPE_PID;
1683 		pid = find_get_pid(upid);
1684 	}
1685 
1686 	wo.wo_type	= type;
1687 	wo.wo_pid	= pid;
1688 	wo.wo_flags	= options | WEXITED;
1689 	wo.wo_info	= NULL;
1690 	wo.wo_stat	= 0;
1691 	wo.wo_rusage	= ru;
1692 	ret = do_wait(&wo);
1693 	put_pid(pid);
1694 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1695 		ret = -EFAULT;
1696 
1697 	return ret;
1698 }
1699 
1700 int kernel_wait(pid_t pid, int *stat)
1701 {
1702 	struct wait_opts wo = {
1703 		.wo_type	= PIDTYPE_PID,
1704 		.wo_pid		= find_get_pid(pid),
1705 		.wo_flags	= WEXITED,
1706 	};
1707 	int ret;
1708 
1709 	ret = do_wait(&wo);
1710 	if (ret > 0 && wo.wo_stat)
1711 		*stat = wo.wo_stat;
1712 	put_pid(wo.wo_pid);
1713 	return ret;
1714 }
1715 
1716 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1717 		int, options, struct rusage __user *, ru)
1718 {
1719 	struct rusage r;
1720 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1721 
1722 	if (err > 0) {
1723 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1724 			return -EFAULT;
1725 	}
1726 	return err;
1727 }
1728 
1729 #ifdef __ARCH_WANT_SYS_WAITPID
1730 
1731 /*
1732  * sys_waitpid() remains for compatibility. waitpid() should be
1733  * implemented by calling sys_wait4() from libc.a.
1734  */
1735 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1736 {
1737 	return kernel_wait4(pid, stat_addr, options, NULL);
1738 }
1739 
1740 #endif
1741 
1742 #ifdef CONFIG_COMPAT
1743 COMPAT_SYSCALL_DEFINE4(wait4,
1744 	compat_pid_t, pid,
1745 	compat_uint_t __user *, stat_addr,
1746 	int, options,
1747 	struct compat_rusage __user *, ru)
1748 {
1749 	struct rusage r;
1750 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1751 	if (err > 0) {
1752 		if (ru && put_compat_rusage(&r, ru))
1753 			return -EFAULT;
1754 	}
1755 	return err;
1756 }
1757 
1758 COMPAT_SYSCALL_DEFINE5(waitid,
1759 		int, which, compat_pid_t, pid,
1760 		struct compat_siginfo __user *, infop, int, options,
1761 		struct compat_rusage __user *, uru)
1762 {
1763 	struct rusage ru;
1764 	struct waitid_info info = {.status = 0};
1765 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1766 	int signo = 0;
1767 	if (err > 0) {
1768 		signo = SIGCHLD;
1769 		err = 0;
1770 		if (uru) {
1771 			/* kernel_waitid() overwrites everything in ru */
1772 			if (COMPAT_USE_64BIT_TIME)
1773 				err = copy_to_user(uru, &ru, sizeof(ru));
1774 			else
1775 				err = put_compat_rusage(&ru, uru);
1776 			if (err)
1777 				return -EFAULT;
1778 		}
1779 	}
1780 
1781 	if (!infop)
1782 		return err;
1783 
1784 	if (!user_write_access_begin(infop, sizeof(*infop)))
1785 		return -EFAULT;
1786 
1787 	unsafe_put_user(signo, &infop->si_signo, Efault);
1788 	unsafe_put_user(0, &infop->si_errno, Efault);
1789 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1790 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1791 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1792 	unsafe_put_user(info.status, &infop->si_status, Efault);
1793 	user_write_access_end();
1794 	return err;
1795 Efault:
1796 	user_write_access_end();
1797 	return -EFAULT;
1798 }
1799 #endif
1800 
1801 /**
1802  * thread_group_exited - check that a thread group has exited
1803  * @pid: tgid of thread group to be checked.
1804  *
1805  * Test if the thread group represented by tgid has exited (all
1806  * threads are zombies, dead or completely gone).
1807  *
1808  * Return: true if the thread group has exited. false otherwise.
1809  */
1810 bool thread_group_exited(struct pid *pid)
1811 {
1812 	struct task_struct *task;
1813 	bool exited;
1814 
1815 	rcu_read_lock();
1816 	task = pid_task(pid, PIDTYPE_PID);
1817 	exited = !task ||
1818 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1819 	rcu_read_unlock();
1820 
1821 	return exited;
1822 }
1823 EXPORT_SYMBOL(thread_group_exited);
1824 
1825 __weak void abort(void)
1826 {
1827 	BUG();
1828 
1829 	/* if that doesn't kill us, halt */
1830 	panic("Oops failed to kill thread");
1831 }
1832 EXPORT_SYMBOL(abort);
1833