1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void exit_mm(struct task_struct *tsk); 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 } 76 list_del_rcu(&p->thread_group); 77 list_del_rcu(&p->thread_node); 78 } 79 80 /* 81 * This function expects the tasklist_lock write-locked. 82 */ 83 static void __exit_signal(struct task_struct *tsk) 84 { 85 struct signal_struct *sig = tsk->signal; 86 bool group_dead = thread_group_leader(tsk); 87 struct sighand_struct *sighand; 88 struct tty_struct *uninitialized_var(tty); 89 cputime_t utime, stime; 90 91 sighand = rcu_dereference_check(tsk->sighand, 92 lockdep_tasklist_lock_is_held()); 93 spin_lock(&sighand->siglock); 94 95 posix_cpu_timers_exit(tsk); 96 if (group_dead) { 97 posix_cpu_timers_exit_group(tsk); 98 tty = sig->tty; 99 sig->tty = NULL; 100 } else { 101 /* 102 * This can only happen if the caller is de_thread(). 103 * FIXME: this is the temporary hack, we should teach 104 * posix-cpu-timers to handle this case correctly. 105 */ 106 if (unlikely(has_group_leader_pid(tsk))) 107 posix_cpu_timers_exit_group(tsk); 108 109 /* 110 * If there is any task waiting for the group exit 111 * then notify it: 112 */ 113 if (sig->notify_count > 0 && !--sig->notify_count) 114 wake_up_process(sig->group_exit_task); 115 116 if (tsk == sig->curr_target) 117 sig->curr_target = next_thread(tsk); 118 /* 119 * Accumulate here the counters for all threads but the 120 * group leader as they die, so they can be added into 121 * the process-wide totals when those are taken. 122 * The group leader stays around as a zombie as long 123 * as there are other threads. When it gets reaped, 124 * the exit.c code will add its counts into these totals. 125 * We won't ever get here for the group leader, since it 126 * will have been the last reference on the signal_struct. 127 */ 128 task_cputime(tsk, &utime, &stime); 129 sig->utime += utime; 130 sig->stime += stime; 131 sig->gtime += task_gtime(tsk); 132 sig->min_flt += tsk->min_flt; 133 sig->maj_flt += tsk->maj_flt; 134 sig->nvcsw += tsk->nvcsw; 135 sig->nivcsw += tsk->nivcsw; 136 sig->inblock += task_io_get_inblock(tsk); 137 sig->oublock += task_io_get_oublock(tsk); 138 task_io_accounting_add(&sig->ioac, &tsk->ioac); 139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 140 } 141 142 sig->nr_threads--; 143 __unhash_process(tsk, group_dead); 144 145 /* 146 * Do this under ->siglock, we can race with another thread 147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 148 */ 149 flush_sigqueue(&tsk->pending); 150 tsk->sighand = NULL; 151 spin_unlock(&sighand->siglock); 152 153 __cleanup_sighand(sighand); 154 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 155 if (group_dead) { 156 flush_sigqueue(&sig->shared_pending); 157 tty_kref_put(tty); 158 } 159 } 160 161 static void delayed_put_task_struct(struct rcu_head *rhp) 162 { 163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 164 165 perf_event_delayed_put(tsk); 166 trace_sched_process_free(tsk); 167 put_task_struct(tsk); 168 } 169 170 171 void release_task(struct task_struct *p) 172 { 173 struct task_struct *leader; 174 int zap_leader; 175 repeat: 176 /* don't need to get the RCU readlock here - the process is dead and 177 * can't be modifying its own credentials. But shut RCU-lockdep up */ 178 rcu_read_lock(); 179 atomic_dec(&__task_cred(p)->user->processes); 180 rcu_read_unlock(); 181 182 proc_flush_task(p); 183 184 write_lock_irq(&tasklist_lock); 185 ptrace_release_task(p); 186 __exit_signal(p); 187 188 /* 189 * If we are the last non-leader member of the thread 190 * group, and the leader is zombie, then notify the 191 * group leader's parent process. (if it wants notification.) 192 */ 193 zap_leader = 0; 194 leader = p->group_leader; 195 if (leader != p && thread_group_empty(leader) 196 && leader->exit_state == EXIT_ZOMBIE) { 197 /* 198 * If we were the last child thread and the leader has 199 * exited already, and the leader's parent ignores SIGCHLD, 200 * then we are the one who should release the leader. 201 */ 202 zap_leader = do_notify_parent(leader, leader->exit_signal); 203 if (zap_leader) 204 leader->exit_state = EXIT_DEAD; 205 } 206 207 write_unlock_irq(&tasklist_lock); 208 release_thread(p); 209 call_rcu(&p->rcu, delayed_put_task_struct); 210 211 p = leader; 212 if (unlikely(zap_leader)) 213 goto repeat; 214 } 215 216 /* 217 * This checks not only the pgrp, but falls back on the pid if no 218 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 219 * without this... 220 * 221 * The caller must hold rcu lock or the tasklist lock. 222 */ 223 struct pid *session_of_pgrp(struct pid *pgrp) 224 { 225 struct task_struct *p; 226 struct pid *sid = NULL; 227 228 p = pid_task(pgrp, PIDTYPE_PGID); 229 if (p == NULL) 230 p = pid_task(pgrp, PIDTYPE_PID); 231 if (p != NULL) 232 sid = task_session(p); 233 234 return sid; 235 } 236 237 /* 238 * Determine if a process group is "orphaned", according to the POSIX 239 * definition in 2.2.2.52. Orphaned process groups are not to be affected 240 * by terminal-generated stop signals. Newly orphaned process groups are 241 * to receive a SIGHUP and a SIGCONT. 242 * 243 * "I ask you, have you ever known what it is to be an orphan?" 244 */ 245 static int will_become_orphaned_pgrp(struct pid *pgrp, 246 struct task_struct *ignored_task) 247 { 248 struct task_struct *p; 249 250 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 251 if ((p == ignored_task) || 252 (p->exit_state && thread_group_empty(p)) || 253 is_global_init(p->real_parent)) 254 continue; 255 256 if (task_pgrp(p->real_parent) != pgrp && 257 task_session(p->real_parent) == task_session(p)) 258 return 0; 259 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 260 261 return 1; 262 } 263 264 int is_current_pgrp_orphaned(void) 265 { 266 int retval; 267 268 read_lock(&tasklist_lock); 269 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 270 read_unlock(&tasklist_lock); 271 272 return retval; 273 } 274 275 static bool has_stopped_jobs(struct pid *pgrp) 276 { 277 struct task_struct *p; 278 279 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 280 if (p->signal->flags & SIGNAL_STOP_STOPPED) 281 return true; 282 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 283 284 return false; 285 } 286 287 /* 288 * Check to see if any process groups have become orphaned as 289 * a result of our exiting, and if they have any stopped jobs, 290 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 291 */ 292 static void 293 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 294 { 295 struct pid *pgrp = task_pgrp(tsk); 296 struct task_struct *ignored_task = tsk; 297 298 if (!parent) 299 /* exit: our father is in a different pgrp than 300 * we are and we were the only connection outside. 301 */ 302 parent = tsk->real_parent; 303 else 304 /* reparent: our child is in a different pgrp than 305 * we are, and it was the only connection outside. 306 */ 307 ignored_task = NULL; 308 309 if (task_pgrp(parent) != pgrp && 310 task_session(parent) == task_session(tsk) && 311 will_become_orphaned_pgrp(pgrp, ignored_task) && 312 has_stopped_jobs(pgrp)) { 313 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 314 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 315 } 316 } 317 318 #ifdef CONFIG_MEMCG 319 /* 320 * A task is exiting. If it owned this mm, find a new owner for the mm. 321 */ 322 void mm_update_next_owner(struct mm_struct *mm) 323 { 324 struct task_struct *c, *g, *p = current; 325 326 retry: 327 /* 328 * If the exiting or execing task is not the owner, it's 329 * someone else's problem. 330 */ 331 if (mm->owner != p) 332 return; 333 /* 334 * The current owner is exiting/execing and there are no other 335 * candidates. Do not leave the mm pointing to a possibly 336 * freed task structure. 337 */ 338 if (atomic_read(&mm->mm_users) <= 1) { 339 mm->owner = NULL; 340 return; 341 } 342 343 read_lock(&tasklist_lock); 344 /* 345 * Search in the children 346 */ 347 list_for_each_entry(c, &p->children, sibling) { 348 if (c->mm == mm) 349 goto assign_new_owner; 350 } 351 352 /* 353 * Search in the siblings 354 */ 355 list_for_each_entry(c, &p->real_parent->children, sibling) { 356 if (c->mm == mm) 357 goto assign_new_owner; 358 } 359 360 /* 361 * Search through everything else, we should not get here often. 362 */ 363 for_each_process(g) { 364 if (g->flags & PF_KTHREAD) 365 continue; 366 for_each_thread(g, c) { 367 if (c->mm == mm) 368 goto assign_new_owner; 369 if (c->mm) 370 break; 371 } 372 } 373 read_unlock(&tasklist_lock); 374 /* 375 * We found no owner yet mm_users > 1: this implies that we are 376 * most likely racing with swapoff (try_to_unuse()) or /proc or 377 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 378 */ 379 mm->owner = NULL; 380 return; 381 382 assign_new_owner: 383 BUG_ON(c == p); 384 get_task_struct(c); 385 /* 386 * The task_lock protects c->mm from changing. 387 * We always want mm->owner->mm == mm 388 */ 389 task_lock(c); 390 /* 391 * Delay read_unlock() till we have the task_lock() 392 * to ensure that c does not slip away underneath us 393 */ 394 read_unlock(&tasklist_lock); 395 if (c->mm != mm) { 396 task_unlock(c); 397 put_task_struct(c); 398 goto retry; 399 } 400 mm->owner = c; 401 task_unlock(c); 402 put_task_struct(c); 403 } 404 #endif /* CONFIG_MEMCG */ 405 406 /* 407 * Turn us into a lazy TLB process if we 408 * aren't already.. 409 */ 410 static void exit_mm(struct task_struct *tsk) 411 { 412 struct mm_struct *mm = tsk->mm; 413 struct core_state *core_state; 414 415 mm_release(tsk, mm); 416 if (!mm) 417 return; 418 sync_mm_rss(mm); 419 /* 420 * Serialize with any possible pending coredump. 421 * We must hold mmap_sem around checking core_state 422 * and clearing tsk->mm. The core-inducing thread 423 * will increment ->nr_threads for each thread in the 424 * group with ->mm != NULL. 425 */ 426 down_read(&mm->mmap_sem); 427 core_state = mm->core_state; 428 if (core_state) { 429 struct core_thread self; 430 431 up_read(&mm->mmap_sem); 432 433 self.task = tsk; 434 self.next = xchg(&core_state->dumper.next, &self); 435 /* 436 * Implies mb(), the result of xchg() must be visible 437 * to core_state->dumper. 438 */ 439 if (atomic_dec_and_test(&core_state->nr_threads)) 440 complete(&core_state->startup); 441 442 for (;;) { 443 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 444 if (!self.task) /* see coredump_finish() */ 445 break; 446 freezable_schedule(); 447 } 448 __set_task_state(tsk, TASK_RUNNING); 449 down_read(&mm->mmap_sem); 450 } 451 atomic_inc(&mm->mm_count); 452 BUG_ON(mm != tsk->active_mm); 453 /* more a memory barrier than a real lock */ 454 task_lock(tsk); 455 tsk->mm = NULL; 456 up_read(&mm->mmap_sem); 457 enter_lazy_tlb(mm, current); 458 task_unlock(tsk); 459 mm_update_next_owner(mm); 460 mmput(mm); 461 clear_thread_flag(TIF_MEMDIE); 462 } 463 464 /* 465 * When we die, we re-parent all our children, and try to: 466 * 1. give them to another thread in our thread group, if such a member exists 467 * 2. give it to the first ancestor process which prctl'd itself as a 468 * child_subreaper for its children (like a service manager) 469 * 3. give it to the init process (PID 1) in our pid namespace 470 */ 471 static struct task_struct *find_new_reaper(struct task_struct *father) 472 __releases(&tasklist_lock) 473 __acquires(&tasklist_lock) 474 { 475 struct pid_namespace *pid_ns = task_active_pid_ns(father); 476 struct task_struct *thread; 477 478 thread = father; 479 while_each_thread(father, thread) { 480 if (thread->flags & PF_EXITING) 481 continue; 482 if (unlikely(pid_ns->child_reaper == father)) 483 pid_ns->child_reaper = thread; 484 return thread; 485 } 486 487 if (unlikely(pid_ns->child_reaper == father)) { 488 write_unlock_irq(&tasklist_lock); 489 if (unlikely(pid_ns == &init_pid_ns)) { 490 panic("Attempted to kill init! exitcode=0x%08x\n", 491 father->signal->group_exit_code ?: 492 father->exit_code); 493 } 494 495 zap_pid_ns_processes(pid_ns); 496 write_lock_irq(&tasklist_lock); 497 } else if (father->signal->has_child_subreaper) { 498 struct task_struct *reaper; 499 500 /* 501 * Find the first ancestor marked as child_subreaper. 502 * Note that the code below checks same_thread_group(reaper, 503 * pid_ns->child_reaper). This is what we need to DTRT in a 504 * PID namespace. However we still need the check above, see 505 * http://marc.info/?l=linux-kernel&m=131385460420380 506 */ 507 for (reaper = father->real_parent; 508 reaper != &init_task; 509 reaper = reaper->real_parent) { 510 if (same_thread_group(reaper, pid_ns->child_reaper)) 511 break; 512 if (!reaper->signal->is_child_subreaper) 513 continue; 514 thread = reaper; 515 do { 516 if (!(thread->flags & PF_EXITING)) 517 return reaper; 518 } while_each_thread(reaper, thread); 519 } 520 } 521 522 return pid_ns->child_reaper; 523 } 524 525 /* 526 * Any that need to be release_task'd are put on the @dead list. 527 */ 528 static void reparent_leader(struct task_struct *father, struct task_struct *p, 529 struct list_head *dead) 530 { 531 list_move_tail(&p->sibling, &p->real_parent->children); 532 533 if (p->exit_state == EXIT_DEAD) 534 return; 535 /* 536 * If this is a threaded reparent there is no need to 537 * notify anyone anything has happened. 538 */ 539 if (same_thread_group(p->real_parent, father)) 540 return; 541 542 /* We don't want people slaying init. */ 543 p->exit_signal = SIGCHLD; 544 545 /* If it has exited notify the new parent about this child's death. */ 546 if (!p->ptrace && 547 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 548 if (do_notify_parent(p, p->exit_signal)) { 549 p->exit_state = EXIT_DEAD; 550 list_move_tail(&p->sibling, dead); 551 } 552 } 553 554 kill_orphaned_pgrp(p, father); 555 } 556 557 static void forget_original_parent(struct task_struct *father) 558 { 559 struct task_struct *p, *n, *reaper; 560 LIST_HEAD(dead_children); 561 562 write_lock_irq(&tasklist_lock); 563 /* 564 * Note that exit_ptrace() and find_new_reaper() might 565 * drop tasklist_lock and reacquire it. 566 */ 567 exit_ptrace(father); 568 reaper = find_new_reaper(father); 569 570 list_for_each_entry_safe(p, n, &father->children, sibling) { 571 struct task_struct *t = p; 572 573 do { 574 t->real_parent = reaper; 575 if (t->parent == father) { 576 BUG_ON(t->ptrace); 577 t->parent = t->real_parent; 578 } 579 if (t->pdeath_signal) 580 group_send_sig_info(t->pdeath_signal, 581 SEND_SIG_NOINFO, t); 582 } while_each_thread(p, t); 583 reparent_leader(father, p, &dead_children); 584 } 585 write_unlock_irq(&tasklist_lock); 586 587 BUG_ON(!list_empty(&father->children)); 588 589 list_for_each_entry_safe(p, n, &dead_children, sibling) { 590 list_del_init(&p->sibling); 591 release_task(p); 592 } 593 } 594 595 /* 596 * Send signals to all our closest relatives so that they know 597 * to properly mourn us.. 598 */ 599 static void exit_notify(struct task_struct *tsk, int group_dead) 600 { 601 bool autoreap; 602 603 /* 604 * This does two things: 605 * 606 * A. Make init inherit all the child processes 607 * B. Check to see if any process groups have become orphaned 608 * as a result of our exiting, and if they have any stopped 609 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 610 */ 611 forget_original_parent(tsk); 612 613 write_lock_irq(&tasklist_lock); 614 if (group_dead) 615 kill_orphaned_pgrp(tsk->group_leader, NULL); 616 617 if (unlikely(tsk->ptrace)) { 618 int sig = thread_group_leader(tsk) && 619 thread_group_empty(tsk) && 620 !ptrace_reparented(tsk) ? 621 tsk->exit_signal : SIGCHLD; 622 autoreap = do_notify_parent(tsk, sig); 623 } else if (thread_group_leader(tsk)) { 624 autoreap = thread_group_empty(tsk) && 625 do_notify_parent(tsk, tsk->exit_signal); 626 } else { 627 autoreap = true; 628 } 629 630 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 631 632 /* mt-exec, de_thread() is waiting for group leader */ 633 if (unlikely(tsk->signal->notify_count < 0)) 634 wake_up_process(tsk->signal->group_exit_task); 635 write_unlock_irq(&tasklist_lock); 636 637 /* If the process is dead, release it - nobody will wait for it */ 638 if (autoreap) 639 release_task(tsk); 640 } 641 642 #ifdef CONFIG_DEBUG_STACK_USAGE 643 static void check_stack_usage(void) 644 { 645 static DEFINE_SPINLOCK(low_water_lock); 646 static int lowest_to_date = THREAD_SIZE; 647 unsigned long free; 648 649 free = stack_not_used(current); 650 651 if (free >= lowest_to_date) 652 return; 653 654 spin_lock(&low_water_lock); 655 if (free < lowest_to_date) { 656 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n", 657 current->comm, task_pid_nr(current), free); 658 lowest_to_date = free; 659 } 660 spin_unlock(&low_water_lock); 661 } 662 #else 663 static inline void check_stack_usage(void) {} 664 #endif 665 666 void do_exit(long code) 667 { 668 struct task_struct *tsk = current; 669 int group_dead; 670 671 profile_task_exit(tsk); 672 673 WARN_ON(blk_needs_flush_plug(tsk)); 674 675 if (unlikely(in_interrupt())) 676 panic("Aiee, killing interrupt handler!"); 677 if (unlikely(!tsk->pid)) 678 panic("Attempted to kill the idle task!"); 679 680 /* 681 * If do_exit is called because this processes oopsed, it's possible 682 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 683 * continuing. Amongst other possible reasons, this is to prevent 684 * mm_release()->clear_child_tid() from writing to a user-controlled 685 * kernel address. 686 */ 687 set_fs(USER_DS); 688 689 ptrace_event(PTRACE_EVENT_EXIT, code); 690 691 validate_creds_for_do_exit(tsk); 692 693 /* 694 * We're taking recursive faults here in do_exit. Safest is to just 695 * leave this task alone and wait for reboot. 696 */ 697 if (unlikely(tsk->flags & PF_EXITING)) { 698 pr_alert("Fixing recursive fault but reboot is needed!\n"); 699 /* 700 * We can do this unlocked here. The futex code uses 701 * this flag just to verify whether the pi state 702 * cleanup has been done or not. In the worst case it 703 * loops once more. We pretend that the cleanup was 704 * done as there is no way to return. Either the 705 * OWNER_DIED bit is set by now or we push the blocked 706 * task into the wait for ever nirwana as well. 707 */ 708 tsk->flags |= PF_EXITPIDONE; 709 set_current_state(TASK_UNINTERRUPTIBLE); 710 schedule(); 711 } 712 713 exit_signals(tsk); /* sets PF_EXITING */ 714 /* 715 * tsk->flags are checked in the futex code to protect against 716 * an exiting task cleaning up the robust pi futexes. 717 */ 718 smp_mb(); 719 raw_spin_unlock_wait(&tsk->pi_lock); 720 721 if (unlikely(in_atomic())) 722 pr_info("note: %s[%d] exited with preempt_count %d\n", 723 current->comm, task_pid_nr(current), 724 preempt_count()); 725 726 acct_update_integrals(tsk); 727 /* sync mm's RSS info before statistics gathering */ 728 if (tsk->mm) 729 sync_mm_rss(tsk->mm); 730 group_dead = atomic_dec_and_test(&tsk->signal->live); 731 if (group_dead) { 732 hrtimer_cancel(&tsk->signal->real_timer); 733 exit_itimers(tsk->signal); 734 if (tsk->mm) 735 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 736 } 737 acct_collect(code, group_dead); 738 if (group_dead) 739 tty_audit_exit(); 740 audit_free(tsk); 741 742 tsk->exit_code = code; 743 taskstats_exit(tsk, group_dead); 744 745 exit_mm(tsk); 746 747 if (group_dead) 748 acct_process(); 749 trace_sched_process_exit(tsk); 750 751 exit_sem(tsk); 752 exit_shm(tsk); 753 exit_files(tsk); 754 exit_fs(tsk); 755 if (group_dead) 756 disassociate_ctty(1); 757 exit_task_namespaces(tsk); 758 exit_task_work(tsk); 759 exit_thread(); 760 761 /* 762 * Flush inherited counters to the parent - before the parent 763 * gets woken up by child-exit notifications. 764 * 765 * because of cgroup mode, must be called before cgroup_exit() 766 */ 767 perf_event_exit_task(tsk); 768 769 cgroup_exit(tsk); 770 771 module_put(task_thread_info(tsk)->exec_domain->module); 772 773 /* 774 * FIXME: do that only when needed, using sched_exit tracepoint 775 */ 776 flush_ptrace_hw_breakpoint(tsk); 777 778 exit_notify(tsk, group_dead); 779 proc_exit_connector(tsk); 780 #ifdef CONFIG_NUMA 781 task_lock(tsk); 782 mpol_put(tsk->mempolicy); 783 tsk->mempolicy = NULL; 784 task_unlock(tsk); 785 #endif 786 #ifdef CONFIG_FUTEX 787 if (unlikely(current->pi_state_cache)) 788 kfree(current->pi_state_cache); 789 #endif 790 /* 791 * Make sure we are holding no locks: 792 */ 793 debug_check_no_locks_held(); 794 /* 795 * We can do this unlocked here. The futex code uses this flag 796 * just to verify whether the pi state cleanup has been done 797 * or not. In the worst case it loops once more. 798 */ 799 tsk->flags |= PF_EXITPIDONE; 800 801 if (tsk->io_context) 802 exit_io_context(tsk); 803 804 if (tsk->splice_pipe) 805 free_pipe_info(tsk->splice_pipe); 806 807 if (tsk->task_frag.page) 808 put_page(tsk->task_frag.page); 809 810 validate_creds_for_do_exit(tsk); 811 812 check_stack_usage(); 813 preempt_disable(); 814 if (tsk->nr_dirtied) 815 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 816 exit_rcu(); 817 818 /* 819 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 820 * when the following two conditions become true. 821 * - There is race condition of mmap_sem (It is acquired by 822 * exit_mm()), and 823 * - SMI occurs before setting TASK_RUNINNG. 824 * (or hypervisor of virtual machine switches to other guest) 825 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 826 * 827 * To avoid it, we have to wait for releasing tsk->pi_lock which 828 * is held by try_to_wake_up() 829 */ 830 smp_mb(); 831 raw_spin_unlock_wait(&tsk->pi_lock); 832 833 /* causes final put_task_struct in finish_task_switch(). */ 834 tsk->state = TASK_DEAD; 835 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 836 schedule(); 837 BUG(); 838 /* Avoid "noreturn function does return". */ 839 for (;;) 840 cpu_relax(); /* For when BUG is null */ 841 } 842 EXPORT_SYMBOL_GPL(do_exit); 843 844 void complete_and_exit(struct completion *comp, long code) 845 { 846 if (comp) 847 complete(comp); 848 849 do_exit(code); 850 } 851 EXPORT_SYMBOL(complete_and_exit); 852 853 SYSCALL_DEFINE1(exit, int, error_code) 854 { 855 do_exit((error_code&0xff)<<8); 856 } 857 858 /* 859 * Take down every thread in the group. This is called by fatal signals 860 * as well as by sys_exit_group (below). 861 */ 862 void 863 do_group_exit(int exit_code) 864 { 865 struct signal_struct *sig = current->signal; 866 867 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 868 869 if (signal_group_exit(sig)) 870 exit_code = sig->group_exit_code; 871 else if (!thread_group_empty(current)) { 872 struct sighand_struct *const sighand = current->sighand; 873 874 spin_lock_irq(&sighand->siglock); 875 if (signal_group_exit(sig)) 876 /* Another thread got here before we took the lock. */ 877 exit_code = sig->group_exit_code; 878 else { 879 sig->group_exit_code = exit_code; 880 sig->flags = SIGNAL_GROUP_EXIT; 881 zap_other_threads(current); 882 } 883 spin_unlock_irq(&sighand->siglock); 884 } 885 886 do_exit(exit_code); 887 /* NOTREACHED */ 888 } 889 890 /* 891 * this kills every thread in the thread group. Note that any externally 892 * wait4()-ing process will get the correct exit code - even if this 893 * thread is not the thread group leader. 894 */ 895 SYSCALL_DEFINE1(exit_group, int, error_code) 896 { 897 do_group_exit((error_code & 0xff) << 8); 898 /* NOTREACHED */ 899 return 0; 900 } 901 902 struct wait_opts { 903 enum pid_type wo_type; 904 int wo_flags; 905 struct pid *wo_pid; 906 907 struct siginfo __user *wo_info; 908 int __user *wo_stat; 909 struct rusage __user *wo_rusage; 910 911 wait_queue_t child_wait; 912 int notask_error; 913 }; 914 915 static inline 916 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 917 { 918 if (type != PIDTYPE_PID) 919 task = task->group_leader; 920 return task->pids[type].pid; 921 } 922 923 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 924 { 925 return wo->wo_type == PIDTYPE_MAX || 926 task_pid_type(p, wo->wo_type) == wo->wo_pid; 927 } 928 929 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 930 { 931 if (!eligible_pid(wo, p)) 932 return 0; 933 /* Wait for all children (clone and not) if __WALL is set; 934 * otherwise, wait for clone children *only* if __WCLONE is 935 * set; otherwise, wait for non-clone children *only*. (Note: 936 * A "clone" child here is one that reports to its parent 937 * using a signal other than SIGCHLD.) */ 938 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 939 && !(wo->wo_flags & __WALL)) 940 return 0; 941 942 return 1; 943 } 944 945 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 946 pid_t pid, uid_t uid, int why, int status) 947 { 948 struct siginfo __user *infop; 949 int retval = wo->wo_rusage 950 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 951 952 put_task_struct(p); 953 infop = wo->wo_info; 954 if (infop) { 955 if (!retval) 956 retval = put_user(SIGCHLD, &infop->si_signo); 957 if (!retval) 958 retval = put_user(0, &infop->si_errno); 959 if (!retval) 960 retval = put_user((short)why, &infop->si_code); 961 if (!retval) 962 retval = put_user(pid, &infop->si_pid); 963 if (!retval) 964 retval = put_user(uid, &infop->si_uid); 965 if (!retval) 966 retval = put_user(status, &infop->si_status); 967 } 968 if (!retval) 969 retval = pid; 970 return retval; 971 } 972 973 /* 974 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 975 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 976 * the lock and this task is uninteresting. If we return nonzero, we have 977 * released the lock and the system call should return. 978 */ 979 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 980 { 981 unsigned long state; 982 int retval, status, traced; 983 pid_t pid = task_pid_vnr(p); 984 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 985 struct siginfo __user *infop; 986 987 if (!likely(wo->wo_flags & WEXITED)) 988 return 0; 989 990 if (unlikely(wo->wo_flags & WNOWAIT)) { 991 int exit_code = p->exit_code; 992 int why; 993 994 get_task_struct(p); 995 read_unlock(&tasklist_lock); 996 if ((exit_code & 0x7f) == 0) { 997 why = CLD_EXITED; 998 status = exit_code >> 8; 999 } else { 1000 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1001 status = exit_code & 0x7f; 1002 } 1003 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1004 } 1005 1006 traced = ptrace_reparented(p); 1007 /* 1008 * Move the task's state to DEAD/TRACE, only one thread can do this. 1009 */ 1010 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD; 1011 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1012 return 0; 1013 /* 1014 * It can be ptraced but not reparented, check 1015 * thread_group_leader() to filter out sub-threads. 1016 */ 1017 if (likely(!traced) && thread_group_leader(p)) { 1018 struct signal_struct *psig; 1019 struct signal_struct *sig; 1020 unsigned long maxrss; 1021 cputime_t tgutime, tgstime; 1022 1023 /* 1024 * The resource counters for the group leader are in its 1025 * own task_struct. Those for dead threads in the group 1026 * are in its signal_struct, as are those for the child 1027 * processes it has previously reaped. All these 1028 * accumulate in the parent's signal_struct c* fields. 1029 * 1030 * We don't bother to take a lock here to protect these 1031 * p->signal fields, because they are only touched by 1032 * __exit_signal, which runs with tasklist_lock 1033 * write-locked anyway, and so is excluded here. We do 1034 * need to protect the access to parent->signal fields, 1035 * as other threads in the parent group can be right 1036 * here reaping other children at the same time. 1037 * 1038 * We use thread_group_cputime_adjusted() to get times for 1039 * the thread group, which consolidates times for all threads 1040 * in the group including the group leader. 1041 */ 1042 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1043 spin_lock_irq(&p->real_parent->sighand->siglock); 1044 psig = p->real_parent->signal; 1045 sig = p->signal; 1046 psig->cutime += tgutime + sig->cutime; 1047 psig->cstime += tgstime + sig->cstime; 1048 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1049 psig->cmin_flt += 1050 p->min_flt + sig->min_flt + sig->cmin_flt; 1051 psig->cmaj_flt += 1052 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1053 psig->cnvcsw += 1054 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1055 psig->cnivcsw += 1056 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1057 psig->cinblock += 1058 task_io_get_inblock(p) + 1059 sig->inblock + sig->cinblock; 1060 psig->coublock += 1061 task_io_get_oublock(p) + 1062 sig->oublock + sig->coublock; 1063 maxrss = max(sig->maxrss, sig->cmaxrss); 1064 if (psig->cmaxrss < maxrss) 1065 psig->cmaxrss = maxrss; 1066 task_io_accounting_add(&psig->ioac, &p->ioac); 1067 task_io_accounting_add(&psig->ioac, &sig->ioac); 1068 spin_unlock_irq(&p->real_parent->sighand->siglock); 1069 } 1070 1071 /* 1072 * Now we are sure this task is interesting, and no other 1073 * thread can reap it because we its state == DEAD/TRACE. 1074 */ 1075 read_unlock(&tasklist_lock); 1076 1077 retval = wo->wo_rusage 1078 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1079 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1080 ? p->signal->group_exit_code : p->exit_code; 1081 if (!retval && wo->wo_stat) 1082 retval = put_user(status, wo->wo_stat); 1083 1084 infop = wo->wo_info; 1085 if (!retval && infop) 1086 retval = put_user(SIGCHLD, &infop->si_signo); 1087 if (!retval && infop) 1088 retval = put_user(0, &infop->si_errno); 1089 if (!retval && infop) { 1090 int why; 1091 1092 if ((status & 0x7f) == 0) { 1093 why = CLD_EXITED; 1094 status >>= 8; 1095 } else { 1096 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1097 status &= 0x7f; 1098 } 1099 retval = put_user((short)why, &infop->si_code); 1100 if (!retval) 1101 retval = put_user(status, &infop->si_status); 1102 } 1103 if (!retval && infop) 1104 retval = put_user(pid, &infop->si_pid); 1105 if (!retval && infop) 1106 retval = put_user(uid, &infop->si_uid); 1107 if (!retval) 1108 retval = pid; 1109 1110 if (state == EXIT_TRACE) { 1111 write_lock_irq(&tasklist_lock); 1112 /* We dropped tasklist, ptracer could die and untrace */ 1113 ptrace_unlink(p); 1114 1115 /* If parent wants a zombie, don't release it now */ 1116 state = EXIT_ZOMBIE; 1117 if (do_notify_parent(p, p->exit_signal)) 1118 state = EXIT_DEAD; 1119 p->exit_state = state; 1120 write_unlock_irq(&tasklist_lock); 1121 } 1122 if (state == EXIT_DEAD) 1123 release_task(p); 1124 1125 return retval; 1126 } 1127 1128 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1129 { 1130 if (ptrace) { 1131 if (task_is_stopped_or_traced(p) && 1132 !(p->jobctl & JOBCTL_LISTENING)) 1133 return &p->exit_code; 1134 } else { 1135 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1136 return &p->signal->group_exit_code; 1137 } 1138 return NULL; 1139 } 1140 1141 /** 1142 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1143 * @wo: wait options 1144 * @ptrace: is the wait for ptrace 1145 * @p: task to wait for 1146 * 1147 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1148 * 1149 * CONTEXT: 1150 * read_lock(&tasklist_lock), which is released if return value is 1151 * non-zero. Also, grabs and releases @p->sighand->siglock. 1152 * 1153 * RETURNS: 1154 * 0 if wait condition didn't exist and search for other wait conditions 1155 * should continue. Non-zero return, -errno on failure and @p's pid on 1156 * success, implies that tasklist_lock is released and wait condition 1157 * search should terminate. 1158 */ 1159 static int wait_task_stopped(struct wait_opts *wo, 1160 int ptrace, struct task_struct *p) 1161 { 1162 struct siginfo __user *infop; 1163 int retval, exit_code, *p_code, why; 1164 uid_t uid = 0; /* unneeded, required by compiler */ 1165 pid_t pid; 1166 1167 /* 1168 * Traditionally we see ptrace'd stopped tasks regardless of options. 1169 */ 1170 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1171 return 0; 1172 1173 if (!task_stopped_code(p, ptrace)) 1174 return 0; 1175 1176 exit_code = 0; 1177 spin_lock_irq(&p->sighand->siglock); 1178 1179 p_code = task_stopped_code(p, ptrace); 1180 if (unlikely(!p_code)) 1181 goto unlock_sig; 1182 1183 exit_code = *p_code; 1184 if (!exit_code) 1185 goto unlock_sig; 1186 1187 if (!unlikely(wo->wo_flags & WNOWAIT)) 1188 *p_code = 0; 1189 1190 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1191 unlock_sig: 1192 spin_unlock_irq(&p->sighand->siglock); 1193 if (!exit_code) 1194 return 0; 1195 1196 /* 1197 * Now we are pretty sure this task is interesting. 1198 * Make sure it doesn't get reaped out from under us while we 1199 * give up the lock and then examine it below. We don't want to 1200 * keep holding onto the tasklist_lock while we call getrusage and 1201 * possibly take page faults for user memory. 1202 */ 1203 get_task_struct(p); 1204 pid = task_pid_vnr(p); 1205 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1206 read_unlock(&tasklist_lock); 1207 1208 if (unlikely(wo->wo_flags & WNOWAIT)) 1209 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1210 1211 retval = wo->wo_rusage 1212 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1213 if (!retval && wo->wo_stat) 1214 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1215 1216 infop = wo->wo_info; 1217 if (!retval && infop) 1218 retval = put_user(SIGCHLD, &infop->si_signo); 1219 if (!retval && infop) 1220 retval = put_user(0, &infop->si_errno); 1221 if (!retval && infop) 1222 retval = put_user((short)why, &infop->si_code); 1223 if (!retval && infop) 1224 retval = put_user(exit_code, &infop->si_status); 1225 if (!retval && infop) 1226 retval = put_user(pid, &infop->si_pid); 1227 if (!retval && infop) 1228 retval = put_user(uid, &infop->si_uid); 1229 if (!retval) 1230 retval = pid; 1231 put_task_struct(p); 1232 1233 BUG_ON(!retval); 1234 return retval; 1235 } 1236 1237 /* 1238 * Handle do_wait work for one task in a live, non-stopped state. 1239 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1240 * the lock and this task is uninteresting. If we return nonzero, we have 1241 * released the lock and the system call should return. 1242 */ 1243 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1244 { 1245 int retval; 1246 pid_t pid; 1247 uid_t uid; 1248 1249 if (!unlikely(wo->wo_flags & WCONTINUED)) 1250 return 0; 1251 1252 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1253 return 0; 1254 1255 spin_lock_irq(&p->sighand->siglock); 1256 /* Re-check with the lock held. */ 1257 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1258 spin_unlock_irq(&p->sighand->siglock); 1259 return 0; 1260 } 1261 if (!unlikely(wo->wo_flags & WNOWAIT)) 1262 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1263 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1264 spin_unlock_irq(&p->sighand->siglock); 1265 1266 pid = task_pid_vnr(p); 1267 get_task_struct(p); 1268 read_unlock(&tasklist_lock); 1269 1270 if (!wo->wo_info) { 1271 retval = wo->wo_rusage 1272 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1273 put_task_struct(p); 1274 if (!retval && wo->wo_stat) 1275 retval = put_user(0xffff, wo->wo_stat); 1276 if (!retval) 1277 retval = pid; 1278 } else { 1279 retval = wait_noreap_copyout(wo, p, pid, uid, 1280 CLD_CONTINUED, SIGCONT); 1281 BUG_ON(retval == 0); 1282 } 1283 1284 return retval; 1285 } 1286 1287 /* 1288 * Consider @p for a wait by @parent. 1289 * 1290 * -ECHILD should be in ->notask_error before the first call. 1291 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1292 * Returns zero if the search for a child should continue; 1293 * then ->notask_error is 0 if @p is an eligible child, 1294 * or another error from security_task_wait(), or still -ECHILD. 1295 */ 1296 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1297 struct task_struct *p) 1298 { 1299 int ret; 1300 1301 if (unlikely(p->exit_state == EXIT_DEAD)) 1302 return 0; 1303 1304 ret = eligible_child(wo, p); 1305 if (!ret) 1306 return ret; 1307 1308 ret = security_task_wait(p); 1309 if (unlikely(ret < 0)) { 1310 /* 1311 * If we have not yet seen any eligible child, 1312 * then let this error code replace -ECHILD. 1313 * A permission error will give the user a clue 1314 * to look for security policy problems, rather 1315 * than for mysterious wait bugs. 1316 */ 1317 if (wo->notask_error) 1318 wo->notask_error = ret; 1319 return 0; 1320 } 1321 1322 if (unlikely(p->exit_state == EXIT_TRACE)) { 1323 /* 1324 * ptrace == 0 means we are the natural parent. In this case 1325 * we should clear notask_error, debugger will notify us. 1326 */ 1327 if (likely(!ptrace)) 1328 wo->notask_error = 0; 1329 return 0; 1330 } 1331 1332 if (likely(!ptrace) && unlikely(p->ptrace)) { 1333 /* 1334 * If it is traced by its real parent's group, just pretend 1335 * the caller is ptrace_do_wait() and reap this child if it 1336 * is zombie. 1337 * 1338 * This also hides group stop state from real parent; otherwise 1339 * a single stop can be reported twice as group and ptrace stop. 1340 * If a ptracer wants to distinguish these two events for its 1341 * own children it should create a separate process which takes 1342 * the role of real parent. 1343 */ 1344 if (!ptrace_reparented(p)) 1345 ptrace = 1; 1346 } 1347 1348 /* slay zombie? */ 1349 if (p->exit_state == EXIT_ZOMBIE) { 1350 /* we don't reap group leaders with subthreads */ 1351 if (!delay_group_leader(p)) { 1352 /* 1353 * A zombie ptracee is only visible to its ptracer. 1354 * Notification and reaping will be cascaded to the 1355 * real parent when the ptracer detaches. 1356 */ 1357 if (unlikely(ptrace) || likely(!p->ptrace)) 1358 return wait_task_zombie(wo, p); 1359 } 1360 1361 /* 1362 * Allow access to stopped/continued state via zombie by 1363 * falling through. Clearing of notask_error is complex. 1364 * 1365 * When !@ptrace: 1366 * 1367 * If WEXITED is set, notask_error should naturally be 1368 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1369 * so, if there are live subthreads, there are events to 1370 * wait for. If all subthreads are dead, it's still safe 1371 * to clear - this function will be called again in finite 1372 * amount time once all the subthreads are released and 1373 * will then return without clearing. 1374 * 1375 * When @ptrace: 1376 * 1377 * Stopped state is per-task and thus can't change once the 1378 * target task dies. Only continued and exited can happen. 1379 * Clear notask_error if WCONTINUED | WEXITED. 1380 */ 1381 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1382 wo->notask_error = 0; 1383 } else { 1384 /* 1385 * @p is alive and it's gonna stop, continue or exit, so 1386 * there always is something to wait for. 1387 */ 1388 wo->notask_error = 0; 1389 } 1390 1391 /* 1392 * Wait for stopped. Depending on @ptrace, different stopped state 1393 * is used and the two don't interact with each other. 1394 */ 1395 ret = wait_task_stopped(wo, ptrace, p); 1396 if (ret) 1397 return ret; 1398 1399 /* 1400 * Wait for continued. There's only one continued state and the 1401 * ptracer can consume it which can confuse the real parent. Don't 1402 * use WCONTINUED from ptracer. You don't need or want it. 1403 */ 1404 return wait_task_continued(wo, p); 1405 } 1406 1407 /* 1408 * Do the work of do_wait() for one thread in the group, @tsk. 1409 * 1410 * -ECHILD should be in ->notask_error before the first call. 1411 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1412 * Returns zero if the search for a child should continue; then 1413 * ->notask_error is 0 if there were any eligible children, 1414 * or another error from security_task_wait(), or still -ECHILD. 1415 */ 1416 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1417 { 1418 struct task_struct *p; 1419 1420 list_for_each_entry(p, &tsk->children, sibling) { 1421 int ret = wait_consider_task(wo, 0, p); 1422 1423 if (ret) 1424 return ret; 1425 } 1426 1427 return 0; 1428 } 1429 1430 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1431 { 1432 struct task_struct *p; 1433 1434 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1435 int ret = wait_consider_task(wo, 1, p); 1436 1437 if (ret) 1438 return ret; 1439 } 1440 1441 return 0; 1442 } 1443 1444 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1445 int sync, void *key) 1446 { 1447 struct wait_opts *wo = container_of(wait, struct wait_opts, 1448 child_wait); 1449 struct task_struct *p = key; 1450 1451 if (!eligible_pid(wo, p)) 1452 return 0; 1453 1454 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1455 return 0; 1456 1457 return default_wake_function(wait, mode, sync, key); 1458 } 1459 1460 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1461 { 1462 __wake_up_sync_key(&parent->signal->wait_chldexit, 1463 TASK_INTERRUPTIBLE, 1, p); 1464 } 1465 1466 static long do_wait(struct wait_opts *wo) 1467 { 1468 struct task_struct *tsk; 1469 int retval; 1470 1471 trace_sched_process_wait(wo->wo_pid); 1472 1473 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1474 wo->child_wait.private = current; 1475 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1476 repeat: 1477 /* 1478 * If there is nothing that can match our critiera just get out. 1479 * We will clear ->notask_error to zero if we see any child that 1480 * might later match our criteria, even if we are not able to reap 1481 * it yet. 1482 */ 1483 wo->notask_error = -ECHILD; 1484 if ((wo->wo_type < PIDTYPE_MAX) && 1485 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1486 goto notask; 1487 1488 set_current_state(TASK_INTERRUPTIBLE); 1489 read_lock(&tasklist_lock); 1490 tsk = current; 1491 do { 1492 retval = do_wait_thread(wo, tsk); 1493 if (retval) 1494 goto end; 1495 1496 retval = ptrace_do_wait(wo, tsk); 1497 if (retval) 1498 goto end; 1499 1500 if (wo->wo_flags & __WNOTHREAD) 1501 break; 1502 } while_each_thread(current, tsk); 1503 read_unlock(&tasklist_lock); 1504 1505 notask: 1506 retval = wo->notask_error; 1507 if (!retval && !(wo->wo_flags & WNOHANG)) { 1508 retval = -ERESTARTSYS; 1509 if (!signal_pending(current)) { 1510 schedule(); 1511 goto repeat; 1512 } 1513 } 1514 end: 1515 __set_current_state(TASK_RUNNING); 1516 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1517 return retval; 1518 } 1519 1520 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1521 infop, int, options, struct rusage __user *, ru) 1522 { 1523 struct wait_opts wo; 1524 struct pid *pid = NULL; 1525 enum pid_type type; 1526 long ret; 1527 1528 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1529 return -EINVAL; 1530 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1531 return -EINVAL; 1532 1533 switch (which) { 1534 case P_ALL: 1535 type = PIDTYPE_MAX; 1536 break; 1537 case P_PID: 1538 type = PIDTYPE_PID; 1539 if (upid <= 0) 1540 return -EINVAL; 1541 break; 1542 case P_PGID: 1543 type = PIDTYPE_PGID; 1544 if (upid <= 0) 1545 return -EINVAL; 1546 break; 1547 default: 1548 return -EINVAL; 1549 } 1550 1551 if (type < PIDTYPE_MAX) 1552 pid = find_get_pid(upid); 1553 1554 wo.wo_type = type; 1555 wo.wo_pid = pid; 1556 wo.wo_flags = options; 1557 wo.wo_info = infop; 1558 wo.wo_stat = NULL; 1559 wo.wo_rusage = ru; 1560 ret = do_wait(&wo); 1561 1562 if (ret > 0) { 1563 ret = 0; 1564 } else if (infop) { 1565 /* 1566 * For a WNOHANG return, clear out all the fields 1567 * we would set so the user can easily tell the 1568 * difference. 1569 */ 1570 if (!ret) 1571 ret = put_user(0, &infop->si_signo); 1572 if (!ret) 1573 ret = put_user(0, &infop->si_errno); 1574 if (!ret) 1575 ret = put_user(0, &infop->si_code); 1576 if (!ret) 1577 ret = put_user(0, &infop->si_pid); 1578 if (!ret) 1579 ret = put_user(0, &infop->si_uid); 1580 if (!ret) 1581 ret = put_user(0, &infop->si_status); 1582 } 1583 1584 put_pid(pid); 1585 return ret; 1586 } 1587 1588 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1589 int, options, struct rusage __user *, ru) 1590 { 1591 struct wait_opts wo; 1592 struct pid *pid = NULL; 1593 enum pid_type type; 1594 long ret; 1595 1596 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1597 __WNOTHREAD|__WCLONE|__WALL)) 1598 return -EINVAL; 1599 1600 if (upid == -1) 1601 type = PIDTYPE_MAX; 1602 else if (upid < 0) { 1603 type = PIDTYPE_PGID; 1604 pid = find_get_pid(-upid); 1605 } else if (upid == 0) { 1606 type = PIDTYPE_PGID; 1607 pid = get_task_pid(current, PIDTYPE_PGID); 1608 } else /* upid > 0 */ { 1609 type = PIDTYPE_PID; 1610 pid = find_get_pid(upid); 1611 } 1612 1613 wo.wo_type = type; 1614 wo.wo_pid = pid; 1615 wo.wo_flags = options | WEXITED; 1616 wo.wo_info = NULL; 1617 wo.wo_stat = stat_addr; 1618 wo.wo_rusage = ru; 1619 ret = do_wait(&wo); 1620 put_pid(pid); 1621 1622 return ret; 1623 } 1624 1625 #ifdef __ARCH_WANT_SYS_WAITPID 1626 1627 /* 1628 * sys_waitpid() remains for compatibility. waitpid() should be 1629 * implemented by calling sys_wait4() from libc.a. 1630 */ 1631 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1632 { 1633 return sys_wait4(pid, stat_addr, options, NULL); 1634 } 1635 1636 #endif 1637