xref: /openbmc/linux/kernel/exit.c (revision 2e35facf82bcdd9b9eb9129f4fb31127b79249ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71 
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *uninitialized_var(tty);
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead) {
107 		posix_cpu_timers_exit_group(tsk);
108 	} else {
109 		/*
110 		 * This can only happen if the caller is de_thread().
111 		 * FIXME: this is the temporary hack, we should teach
112 		 * posix-cpu-timers to handle this case correctly.
113 		 */
114 		if (unlikely(has_group_leader_pid(tsk)))
115 			posix_cpu_timers_exit_group(tsk);
116 	}
117 #endif
118 
119 	if (group_dead) {
120 		tty = sig->tty;
121 		sig->tty = NULL;
122 	} else {
123 		/*
124 		 * If there is any task waiting for the group exit
125 		 * then notify it:
126 		 */
127 		if (sig->notify_count > 0 && !--sig->notify_count)
128 			wake_up_process(sig->group_exit_task);
129 
130 		if (tsk == sig->curr_target)
131 			sig->curr_target = next_thread(tsk);
132 	}
133 
134 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 			      sizeof(unsigned long long));
136 
137 	/*
138 	 * Accumulate here the counters for all threads as they die. We could
139 	 * skip the group leader because it is the last user of signal_struct,
140 	 * but we want to avoid the race with thread_group_cputime() which can
141 	 * see the empty ->thread_head list.
142 	 */
143 	task_cputime(tsk, &utime, &stime);
144 	write_seqlock(&sig->stats_lock);
145 	sig->utime += utime;
146 	sig->stime += stime;
147 	sig->gtime += task_gtime(tsk);
148 	sig->min_flt += tsk->min_flt;
149 	sig->maj_flt += tsk->maj_flt;
150 	sig->nvcsw += tsk->nvcsw;
151 	sig->nivcsw += tsk->nivcsw;
152 	sig->inblock += task_io_get_inblock(tsk);
153 	sig->oublock += task_io_get_oublock(tsk);
154 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 	sig->nr_threads--;
157 	__unhash_process(tsk, group_dead);
158 	write_sequnlock(&sig->stats_lock);
159 
160 	/*
161 	 * Do this under ->siglock, we can race with another thread
162 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 	 */
164 	flush_sigqueue(&tsk->pending);
165 	tsk->sighand = NULL;
166 	spin_unlock(&sighand->siglock);
167 
168 	__cleanup_sighand(sighand);
169 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 	if (group_dead) {
171 		flush_sigqueue(&sig->shared_pending);
172 		tty_kref_put(tty);
173 	}
174 }
175 
176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179 
180 	perf_event_delayed_put(tsk);
181 	trace_sched_process_free(tsk);
182 	put_task_struct(tsk);
183 }
184 
185 
186 void release_task(struct task_struct *p)
187 {
188 	struct task_struct *leader;
189 	int zap_leader;
190 repeat:
191 	/* don't need to get the RCU readlock here - the process is dead and
192 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
193 	rcu_read_lock();
194 	atomic_dec(&__task_cred(p)->user->processes);
195 	rcu_read_unlock();
196 
197 	proc_flush_task(p);
198 
199 	write_lock_irq(&tasklist_lock);
200 	ptrace_release_task(p);
201 	__exit_signal(p);
202 
203 	/*
204 	 * If we are the last non-leader member of the thread
205 	 * group, and the leader is zombie, then notify the
206 	 * group leader's parent process. (if it wants notification.)
207 	 */
208 	zap_leader = 0;
209 	leader = p->group_leader;
210 	if (leader != p && thread_group_empty(leader)
211 			&& leader->exit_state == EXIT_ZOMBIE) {
212 		/*
213 		 * If we were the last child thread and the leader has
214 		 * exited already, and the leader's parent ignores SIGCHLD,
215 		 * then we are the one who should release the leader.
216 		 */
217 		zap_leader = do_notify_parent(leader, leader->exit_signal);
218 		if (zap_leader)
219 			leader->exit_state = EXIT_DEAD;
220 	}
221 
222 	write_unlock_irq(&tasklist_lock);
223 	cgroup_release(p);
224 	release_thread(p);
225 	call_rcu(&p->rcu, delayed_put_task_struct);
226 
227 	p = leader;
228 	if (unlikely(zap_leader))
229 		goto repeat;
230 }
231 
232 /*
233  * Note that if this function returns a valid task_struct pointer (!NULL)
234  * task->usage must remain >0 for the duration of the RCU critical section.
235  */
236 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
237 {
238 	struct sighand_struct *sighand;
239 	struct task_struct *task;
240 
241 	/*
242 	 * We need to verify that release_task() was not called and thus
243 	 * delayed_put_task_struct() can't run and drop the last reference
244 	 * before rcu_read_unlock(). We check task->sighand != NULL,
245 	 * but we can read the already freed and reused memory.
246 	 */
247 retry:
248 	task = rcu_dereference(*ptask);
249 	if (!task)
250 		return NULL;
251 
252 	probe_kernel_address(&task->sighand, sighand);
253 
254 	/*
255 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
256 	 * was already freed we can not miss the preceding update of this
257 	 * pointer.
258 	 */
259 	smp_rmb();
260 	if (unlikely(task != READ_ONCE(*ptask)))
261 		goto retry;
262 
263 	/*
264 	 * We've re-checked that "task == *ptask", now we have two different
265 	 * cases:
266 	 *
267 	 * 1. This is actually the same task/task_struct. In this case
268 	 *    sighand != NULL tells us it is still alive.
269 	 *
270 	 * 2. This is another task which got the same memory for task_struct.
271 	 *    We can't know this of course, and we can not trust
272 	 *    sighand != NULL.
273 	 *
274 	 *    In this case we actually return a random value, but this is
275 	 *    correct.
276 	 *
277 	 *    If we return NULL - we can pretend that we actually noticed that
278 	 *    *ptask was updated when the previous task has exited. Or pretend
279 	 *    that probe_slab_address(&sighand) reads NULL.
280 	 *
281 	 *    If we return the new task (because sighand is not NULL for any
282 	 *    reason) - this is fine too. This (new) task can't go away before
283 	 *    another gp pass.
284 	 *
285 	 *    And note: We could even eliminate the false positive if re-read
286 	 *    task->sighand once again to avoid the falsely NULL. But this case
287 	 *    is very unlikely so we don't care.
288 	 */
289 	if (!sighand)
290 		return NULL;
291 
292 	return task;
293 }
294 
295 void rcuwait_wake_up(struct rcuwait *w)
296 {
297 	struct task_struct *task;
298 
299 	rcu_read_lock();
300 
301 	/*
302 	 * Order condition vs @task, such that everything prior to the load
303 	 * of @task is visible. This is the condition as to why the user called
304 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
305 	 * barrier (A) in rcuwait_wait_event().
306 	 *
307 	 *    WAIT                WAKE
308 	 *    [S] tsk = current	  [S] cond = true
309 	 *        MB (A)	      MB (B)
310 	 *    [L] cond		  [L] tsk
311 	 */
312 	smp_mb(); /* (B) */
313 
314 	/*
315 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
316 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
317 	 */
318 	task = rcu_dereference(w->task);
319 	if (task)
320 		wake_up_process(task);
321 	rcu_read_unlock();
322 }
323 
324 /*
325  * Determine if a process group is "orphaned", according to the POSIX
326  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
327  * by terminal-generated stop signals.  Newly orphaned process groups are
328  * to receive a SIGHUP and a SIGCONT.
329  *
330  * "I ask you, have you ever known what it is to be an orphan?"
331  */
332 static int will_become_orphaned_pgrp(struct pid *pgrp,
333 					struct task_struct *ignored_task)
334 {
335 	struct task_struct *p;
336 
337 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
338 		if ((p == ignored_task) ||
339 		    (p->exit_state && thread_group_empty(p)) ||
340 		    is_global_init(p->real_parent))
341 			continue;
342 
343 		if (task_pgrp(p->real_parent) != pgrp &&
344 		    task_session(p->real_parent) == task_session(p))
345 			return 0;
346 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
347 
348 	return 1;
349 }
350 
351 int is_current_pgrp_orphaned(void)
352 {
353 	int retval;
354 
355 	read_lock(&tasklist_lock);
356 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
357 	read_unlock(&tasklist_lock);
358 
359 	return retval;
360 }
361 
362 static bool has_stopped_jobs(struct pid *pgrp)
363 {
364 	struct task_struct *p;
365 
366 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
367 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
368 			return true;
369 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
370 
371 	return false;
372 }
373 
374 /*
375  * Check to see if any process groups have become orphaned as
376  * a result of our exiting, and if they have any stopped jobs,
377  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
378  */
379 static void
380 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
381 {
382 	struct pid *pgrp = task_pgrp(tsk);
383 	struct task_struct *ignored_task = tsk;
384 
385 	if (!parent)
386 		/* exit: our father is in a different pgrp than
387 		 * we are and we were the only connection outside.
388 		 */
389 		parent = tsk->real_parent;
390 	else
391 		/* reparent: our child is in a different pgrp than
392 		 * we are, and it was the only connection outside.
393 		 */
394 		ignored_task = NULL;
395 
396 	if (task_pgrp(parent) != pgrp &&
397 	    task_session(parent) == task_session(tsk) &&
398 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
399 	    has_stopped_jobs(pgrp)) {
400 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
401 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
402 	}
403 }
404 
405 #ifdef CONFIG_MEMCG
406 /*
407  * A task is exiting.   If it owned this mm, find a new owner for the mm.
408  */
409 void mm_update_next_owner(struct mm_struct *mm)
410 {
411 	struct task_struct *c, *g, *p = current;
412 
413 retry:
414 	/*
415 	 * If the exiting or execing task is not the owner, it's
416 	 * someone else's problem.
417 	 */
418 	if (mm->owner != p)
419 		return;
420 	/*
421 	 * The current owner is exiting/execing and there are no other
422 	 * candidates.  Do not leave the mm pointing to a possibly
423 	 * freed task structure.
424 	 */
425 	if (atomic_read(&mm->mm_users) <= 1) {
426 		WRITE_ONCE(mm->owner, NULL);
427 		return;
428 	}
429 
430 	read_lock(&tasklist_lock);
431 	/*
432 	 * Search in the children
433 	 */
434 	list_for_each_entry(c, &p->children, sibling) {
435 		if (c->mm == mm)
436 			goto assign_new_owner;
437 	}
438 
439 	/*
440 	 * Search in the siblings
441 	 */
442 	list_for_each_entry(c, &p->real_parent->children, sibling) {
443 		if (c->mm == mm)
444 			goto assign_new_owner;
445 	}
446 
447 	/*
448 	 * Search through everything else, we should not get here often.
449 	 */
450 	for_each_process(g) {
451 		if (g->flags & PF_KTHREAD)
452 			continue;
453 		for_each_thread(g, c) {
454 			if (c->mm == mm)
455 				goto assign_new_owner;
456 			if (c->mm)
457 				break;
458 		}
459 	}
460 	read_unlock(&tasklist_lock);
461 	/*
462 	 * We found no owner yet mm_users > 1: this implies that we are
463 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
464 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
465 	 */
466 	WRITE_ONCE(mm->owner, NULL);
467 	return;
468 
469 assign_new_owner:
470 	BUG_ON(c == p);
471 	get_task_struct(c);
472 	/*
473 	 * The task_lock protects c->mm from changing.
474 	 * We always want mm->owner->mm == mm
475 	 */
476 	task_lock(c);
477 	/*
478 	 * Delay read_unlock() till we have the task_lock()
479 	 * to ensure that c does not slip away underneath us
480 	 */
481 	read_unlock(&tasklist_lock);
482 	if (c->mm != mm) {
483 		task_unlock(c);
484 		put_task_struct(c);
485 		goto retry;
486 	}
487 	WRITE_ONCE(mm->owner, c);
488 	task_unlock(c);
489 	put_task_struct(c);
490 }
491 #endif /* CONFIG_MEMCG */
492 
493 /*
494  * Turn us into a lazy TLB process if we
495  * aren't already..
496  */
497 static void exit_mm(void)
498 {
499 	struct mm_struct *mm = current->mm;
500 	struct core_state *core_state;
501 
502 	mm_release(current, mm);
503 	if (!mm)
504 		return;
505 	sync_mm_rss(mm);
506 	/*
507 	 * Serialize with any possible pending coredump.
508 	 * We must hold mmap_sem around checking core_state
509 	 * and clearing tsk->mm.  The core-inducing thread
510 	 * will increment ->nr_threads for each thread in the
511 	 * group with ->mm != NULL.
512 	 */
513 	down_read(&mm->mmap_sem);
514 	core_state = mm->core_state;
515 	if (core_state) {
516 		struct core_thread self;
517 
518 		up_read(&mm->mmap_sem);
519 
520 		self.task = current;
521 		self.next = xchg(&core_state->dumper.next, &self);
522 		/*
523 		 * Implies mb(), the result of xchg() must be visible
524 		 * to core_state->dumper.
525 		 */
526 		if (atomic_dec_and_test(&core_state->nr_threads))
527 			complete(&core_state->startup);
528 
529 		for (;;) {
530 			set_current_state(TASK_UNINTERRUPTIBLE);
531 			if (!self.task) /* see coredump_finish() */
532 				break;
533 			freezable_schedule();
534 		}
535 		__set_current_state(TASK_RUNNING);
536 		down_read(&mm->mmap_sem);
537 	}
538 	mmgrab(mm);
539 	BUG_ON(mm != current->active_mm);
540 	/* more a memory barrier than a real lock */
541 	task_lock(current);
542 	current->mm = NULL;
543 	up_read(&mm->mmap_sem);
544 	enter_lazy_tlb(mm, current);
545 	task_unlock(current);
546 	mm_update_next_owner(mm);
547 	mmput(mm);
548 	if (test_thread_flag(TIF_MEMDIE))
549 		exit_oom_victim();
550 }
551 
552 static struct task_struct *find_alive_thread(struct task_struct *p)
553 {
554 	struct task_struct *t;
555 
556 	for_each_thread(p, t) {
557 		if (!(t->flags & PF_EXITING))
558 			return t;
559 	}
560 	return NULL;
561 }
562 
563 static struct task_struct *find_child_reaper(struct task_struct *father,
564 						struct list_head *dead)
565 	__releases(&tasklist_lock)
566 	__acquires(&tasklist_lock)
567 {
568 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
569 	struct task_struct *reaper = pid_ns->child_reaper;
570 	struct task_struct *p, *n;
571 
572 	if (likely(reaper != father))
573 		return reaper;
574 
575 	reaper = find_alive_thread(father);
576 	if (reaper) {
577 		pid_ns->child_reaper = reaper;
578 		return reaper;
579 	}
580 
581 	write_unlock_irq(&tasklist_lock);
582 	if (unlikely(pid_ns == &init_pid_ns)) {
583 		panic("Attempted to kill init! exitcode=0x%08x\n",
584 			father->signal->group_exit_code ?: father->exit_code);
585 	}
586 
587 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
588 		list_del_init(&p->ptrace_entry);
589 		release_task(p);
590 	}
591 
592 	zap_pid_ns_processes(pid_ns);
593 	write_lock_irq(&tasklist_lock);
594 
595 	return father;
596 }
597 
598 /*
599  * When we die, we re-parent all our children, and try to:
600  * 1. give them to another thread in our thread group, if such a member exists
601  * 2. give it to the first ancestor process which prctl'd itself as a
602  *    child_subreaper for its children (like a service manager)
603  * 3. give it to the init process (PID 1) in our pid namespace
604  */
605 static struct task_struct *find_new_reaper(struct task_struct *father,
606 					   struct task_struct *child_reaper)
607 {
608 	struct task_struct *thread, *reaper;
609 
610 	thread = find_alive_thread(father);
611 	if (thread)
612 		return thread;
613 
614 	if (father->signal->has_child_subreaper) {
615 		unsigned int ns_level = task_pid(father)->level;
616 		/*
617 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
618 		 * We can't check reaper != child_reaper to ensure we do not
619 		 * cross the namespaces, the exiting parent could be injected
620 		 * by setns() + fork().
621 		 * We check pid->level, this is slightly more efficient than
622 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
623 		 */
624 		for (reaper = father->real_parent;
625 		     task_pid(reaper)->level == ns_level;
626 		     reaper = reaper->real_parent) {
627 			if (reaper == &init_task)
628 				break;
629 			if (!reaper->signal->is_child_subreaper)
630 				continue;
631 			thread = find_alive_thread(reaper);
632 			if (thread)
633 				return thread;
634 		}
635 	}
636 
637 	return child_reaper;
638 }
639 
640 /*
641 * Any that need to be release_task'd are put on the @dead list.
642  */
643 static void reparent_leader(struct task_struct *father, struct task_struct *p,
644 				struct list_head *dead)
645 {
646 	if (unlikely(p->exit_state == EXIT_DEAD))
647 		return;
648 
649 	/* We don't want people slaying init. */
650 	p->exit_signal = SIGCHLD;
651 
652 	/* If it has exited notify the new parent about this child's death. */
653 	if (!p->ptrace &&
654 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
655 		if (do_notify_parent(p, p->exit_signal)) {
656 			p->exit_state = EXIT_DEAD;
657 			list_add(&p->ptrace_entry, dead);
658 		}
659 	}
660 
661 	kill_orphaned_pgrp(p, father);
662 }
663 
664 /*
665  * This does two things:
666  *
667  * A.  Make init inherit all the child processes
668  * B.  Check to see if any process groups have become orphaned
669  *	as a result of our exiting, and if they have any stopped
670  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
671  */
672 static void forget_original_parent(struct task_struct *father,
673 					struct list_head *dead)
674 {
675 	struct task_struct *p, *t, *reaper;
676 
677 	if (unlikely(!list_empty(&father->ptraced)))
678 		exit_ptrace(father, dead);
679 
680 	/* Can drop and reacquire tasklist_lock */
681 	reaper = find_child_reaper(father, dead);
682 	if (list_empty(&father->children))
683 		return;
684 
685 	reaper = find_new_reaper(father, reaper);
686 	list_for_each_entry(p, &father->children, sibling) {
687 		for_each_thread(p, t) {
688 			t->real_parent = reaper;
689 			BUG_ON((!t->ptrace) != (t->parent == father));
690 			if (likely(!t->ptrace))
691 				t->parent = t->real_parent;
692 			if (t->pdeath_signal)
693 				group_send_sig_info(t->pdeath_signal,
694 						    SEND_SIG_NOINFO, t,
695 						    PIDTYPE_TGID);
696 		}
697 		/*
698 		 * If this is a threaded reparent there is no need to
699 		 * notify anyone anything has happened.
700 		 */
701 		if (!same_thread_group(reaper, father))
702 			reparent_leader(father, p, dead);
703 	}
704 	list_splice_tail_init(&father->children, &reaper->children);
705 }
706 
707 /*
708  * Send signals to all our closest relatives so that they know
709  * to properly mourn us..
710  */
711 static void exit_notify(struct task_struct *tsk, int group_dead)
712 {
713 	bool autoreap;
714 	struct task_struct *p, *n;
715 	LIST_HEAD(dead);
716 
717 	write_lock_irq(&tasklist_lock);
718 	forget_original_parent(tsk, &dead);
719 
720 	if (group_dead)
721 		kill_orphaned_pgrp(tsk->group_leader, NULL);
722 
723 	if (unlikely(tsk->ptrace)) {
724 		int sig = thread_group_leader(tsk) &&
725 				thread_group_empty(tsk) &&
726 				!ptrace_reparented(tsk) ?
727 			tsk->exit_signal : SIGCHLD;
728 		autoreap = do_notify_parent(tsk, sig);
729 	} else if (thread_group_leader(tsk)) {
730 		autoreap = thread_group_empty(tsk) &&
731 			do_notify_parent(tsk, tsk->exit_signal);
732 	} else {
733 		autoreap = true;
734 	}
735 
736 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
737 	if (tsk->exit_state == EXIT_DEAD)
738 		list_add(&tsk->ptrace_entry, &dead);
739 
740 	/* mt-exec, de_thread() is waiting for group leader */
741 	if (unlikely(tsk->signal->notify_count < 0))
742 		wake_up_process(tsk->signal->group_exit_task);
743 	write_unlock_irq(&tasklist_lock);
744 
745 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
746 		list_del_init(&p->ptrace_entry);
747 		release_task(p);
748 	}
749 }
750 
751 #ifdef CONFIG_DEBUG_STACK_USAGE
752 static void check_stack_usage(void)
753 {
754 	static DEFINE_SPINLOCK(low_water_lock);
755 	static int lowest_to_date = THREAD_SIZE;
756 	unsigned long free;
757 
758 	free = stack_not_used(current);
759 
760 	if (free >= lowest_to_date)
761 		return;
762 
763 	spin_lock(&low_water_lock);
764 	if (free < lowest_to_date) {
765 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
766 			current->comm, task_pid_nr(current), free);
767 		lowest_to_date = free;
768 	}
769 	spin_unlock(&low_water_lock);
770 }
771 #else
772 static inline void check_stack_usage(void) {}
773 #endif
774 
775 void __noreturn do_exit(long code)
776 {
777 	struct task_struct *tsk = current;
778 	int group_dead;
779 
780 	profile_task_exit(tsk);
781 	kcov_task_exit(tsk);
782 
783 	WARN_ON(blk_needs_flush_plug(tsk));
784 
785 	if (unlikely(in_interrupt()))
786 		panic("Aiee, killing interrupt handler!");
787 	if (unlikely(!tsk->pid))
788 		panic("Attempted to kill the idle task!");
789 
790 	/*
791 	 * If do_exit is called because this processes oopsed, it's possible
792 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
793 	 * continuing. Amongst other possible reasons, this is to prevent
794 	 * mm_release()->clear_child_tid() from writing to a user-controlled
795 	 * kernel address.
796 	 */
797 	set_fs(USER_DS);
798 
799 	ptrace_event(PTRACE_EVENT_EXIT, code);
800 
801 	validate_creds_for_do_exit(tsk);
802 
803 	/*
804 	 * We're taking recursive faults here in do_exit. Safest is to just
805 	 * leave this task alone and wait for reboot.
806 	 */
807 	if (unlikely(tsk->flags & PF_EXITING)) {
808 		pr_alert("Fixing recursive fault but reboot is needed!\n");
809 		/*
810 		 * We can do this unlocked here. The futex code uses
811 		 * this flag just to verify whether the pi state
812 		 * cleanup has been done or not. In the worst case it
813 		 * loops once more. We pretend that the cleanup was
814 		 * done as there is no way to return. Either the
815 		 * OWNER_DIED bit is set by now or we push the blocked
816 		 * task into the wait for ever nirwana as well.
817 		 */
818 		tsk->flags |= PF_EXITPIDONE;
819 		set_current_state(TASK_UNINTERRUPTIBLE);
820 		schedule();
821 	}
822 
823 	exit_signals(tsk);  /* sets PF_EXITING */
824 	/*
825 	 * Ensure that all new tsk->pi_lock acquisitions must observe
826 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
827 	 */
828 	smp_mb();
829 	/*
830 	 * Ensure that we must observe the pi_state in exit_mm() ->
831 	 * mm_release() -> exit_pi_state_list().
832 	 */
833 	raw_spin_lock_irq(&tsk->pi_lock);
834 	raw_spin_unlock_irq(&tsk->pi_lock);
835 
836 	if (unlikely(in_atomic())) {
837 		pr_info("note: %s[%d] exited with preempt_count %d\n",
838 			current->comm, task_pid_nr(current),
839 			preempt_count());
840 		preempt_count_set(PREEMPT_ENABLED);
841 	}
842 
843 	/* sync mm's RSS info before statistics gathering */
844 	if (tsk->mm)
845 		sync_mm_rss(tsk->mm);
846 	acct_update_integrals(tsk);
847 	group_dead = atomic_dec_and_test(&tsk->signal->live);
848 	if (group_dead) {
849 #ifdef CONFIG_POSIX_TIMERS
850 		hrtimer_cancel(&tsk->signal->real_timer);
851 		exit_itimers(tsk->signal);
852 #endif
853 		if (tsk->mm)
854 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
855 	}
856 	acct_collect(code, group_dead);
857 	if (group_dead)
858 		tty_audit_exit();
859 	audit_free(tsk);
860 
861 	tsk->exit_code = code;
862 	taskstats_exit(tsk, group_dead);
863 
864 	exit_mm();
865 
866 	if (group_dead)
867 		acct_process();
868 	trace_sched_process_exit(tsk);
869 
870 	exit_sem(tsk);
871 	exit_shm(tsk);
872 	exit_files(tsk);
873 	exit_fs(tsk);
874 	if (group_dead)
875 		disassociate_ctty(1);
876 	exit_task_namespaces(tsk);
877 	exit_task_work(tsk);
878 	exit_thread(tsk);
879 	exit_umh(tsk);
880 
881 	/*
882 	 * Flush inherited counters to the parent - before the parent
883 	 * gets woken up by child-exit notifications.
884 	 *
885 	 * because of cgroup mode, must be called before cgroup_exit()
886 	 */
887 	perf_event_exit_task(tsk);
888 
889 	sched_autogroup_exit_task(tsk);
890 	cgroup_exit(tsk);
891 
892 	/*
893 	 * FIXME: do that only when needed, using sched_exit tracepoint
894 	 */
895 	flush_ptrace_hw_breakpoint(tsk);
896 
897 	exit_tasks_rcu_start();
898 	exit_notify(tsk, group_dead);
899 	proc_exit_connector(tsk);
900 	mpol_put_task_policy(tsk);
901 #ifdef CONFIG_FUTEX
902 	if (unlikely(current->pi_state_cache))
903 		kfree(current->pi_state_cache);
904 #endif
905 	/*
906 	 * Make sure we are holding no locks:
907 	 */
908 	debug_check_no_locks_held();
909 	/*
910 	 * We can do this unlocked here. The futex code uses this flag
911 	 * just to verify whether the pi state cleanup has been done
912 	 * or not. In the worst case it loops once more.
913 	 */
914 	tsk->flags |= PF_EXITPIDONE;
915 
916 	if (tsk->io_context)
917 		exit_io_context(tsk);
918 
919 	if (tsk->splice_pipe)
920 		free_pipe_info(tsk->splice_pipe);
921 
922 	if (tsk->task_frag.page)
923 		put_page(tsk->task_frag.page);
924 
925 	validate_creds_for_do_exit(tsk);
926 
927 	check_stack_usage();
928 	preempt_disable();
929 	if (tsk->nr_dirtied)
930 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
931 	exit_rcu();
932 	exit_tasks_rcu_finish();
933 
934 	lockdep_free_task(tsk);
935 	do_task_dead();
936 }
937 EXPORT_SYMBOL_GPL(do_exit);
938 
939 void complete_and_exit(struct completion *comp, long code)
940 {
941 	if (comp)
942 		complete(comp);
943 
944 	do_exit(code);
945 }
946 EXPORT_SYMBOL(complete_and_exit);
947 
948 SYSCALL_DEFINE1(exit, int, error_code)
949 {
950 	do_exit((error_code&0xff)<<8);
951 }
952 
953 /*
954  * Take down every thread in the group.  This is called by fatal signals
955  * as well as by sys_exit_group (below).
956  */
957 void
958 do_group_exit(int exit_code)
959 {
960 	struct signal_struct *sig = current->signal;
961 
962 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
963 
964 	if (signal_group_exit(sig))
965 		exit_code = sig->group_exit_code;
966 	else if (!thread_group_empty(current)) {
967 		struct sighand_struct *const sighand = current->sighand;
968 
969 		spin_lock_irq(&sighand->siglock);
970 		if (signal_group_exit(sig))
971 			/* Another thread got here before we took the lock.  */
972 			exit_code = sig->group_exit_code;
973 		else {
974 			sig->group_exit_code = exit_code;
975 			sig->flags = SIGNAL_GROUP_EXIT;
976 			zap_other_threads(current);
977 		}
978 		spin_unlock_irq(&sighand->siglock);
979 	}
980 
981 	do_exit(exit_code);
982 	/* NOTREACHED */
983 }
984 
985 /*
986  * this kills every thread in the thread group. Note that any externally
987  * wait4()-ing process will get the correct exit code - even if this
988  * thread is not the thread group leader.
989  */
990 SYSCALL_DEFINE1(exit_group, int, error_code)
991 {
992 	do_group_exit((error_code & 0xff) << 8);
993 	/* NOTREACHED */
994 	return 0;
995 }
996 
997 struct waitid_info {
998 	pid_t pid;
999 	uid_t uid;
1000 	int status;
1001 	int cause;
1002 };
1003 
1004 struct wait_opts {
1005 	enum pid_type		wo_type;
1006 	int			wo_flags;
1007 	struct pid		*wo_pid;
1008 
1009 	struct waitid_info	*wo_info;
1010 	int			wo_stat;
1011 	struct rusage		*wo_rusage;
1012 
1013 	wait_queue_entry_t		child_wait;
1014 	int			notask_error;
1015 };
1016 
1017 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1018 {
1019 	return	wo->wo_type == PIDTYPE_MAX ||
1020 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1021 }
1022 
1023 static int
1024 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1025 {
1026 	if (!eligible_pid(wo, p))
1027 		return 0;
1028 
1029 	/*
1030 	 * Wait for all children (clone and not) if __WALL is set or
1031 	 * if it is traced by us.
1032 	 */
1033 	if (ptrace || (wo->wo_flags & __WALL))
1034 		return 1;
1035 
1036 	/*
1037 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1038 	 * otherwise, wait for non-clone children *only*.
1039 	 *
1040 	 * Note: a "clone" child here is one that reports to its parent
1041 	 * using a signal other than SIGCHLD, or a non-leader thread which
1042 	 * we can only see if it is traced by us.
1043 	 */
1044 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1045 		return 0;
1046 
1047 	return 1;
1048 }
1049 
1050 /*
1051  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1052  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1053  * the lock and this task is uninteresting.  If we return nonzero, we have
1054  * released the lock and the system call should return.
1055  */
1056 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1057 {
1058 	int state, status;
1059 	pid_t pid = task_pid_vnr(p);
1060 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1061 	struct waitid_info *infop;
1062 
1063 	if (!likely(wo->wo_flags & WEXITED))
1064 		return 0;
1065 
1066 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1067 		status = p->exit_code;
1068 		get_task_struct(p);
1069 		read_unlock(&tasklist_lock);
1070 		sched_annotate_sleep();
1071 		if (wo->wo_rusage)
1072 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1073 		put_task_struct(p);
1074 		goto out_info;
1075 	}
1076 	/*
1077 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1078 	 */
1079 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1080 		EXIT_TRACE : EXIT_DEAD;
1081 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1082 		return 0;
1083 	/*
1084 	 * We own this thread, nobody else can reap it.
1085 	 */
1086 	read_unlock(&tasklist_lock);
1087 	sched_annotate_sleep();
1088 
1089 	/*
1090 	 * Check thread_group_leader() to exclude the traced sub-threads.
1091 	 */
1092 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1093 		struct signal_struct *sig = p->signal;
1094 		struct signal_struct *psig = current->signal;
1095 		unsigned long maxrss;
1096 		u64 tgutime, tgstime;
1097 
1098 		/*
1099 		 * The resource counters for the group leader are in its
1100 		 * own task_struct.  Those for dead threads in the group
1101 		 * are in its signal_struct, as are those for the child
1102 		 * processes it has previously reaped.  All these
1103 		 * accumulate in the parent's signal_struct c* fields.
1104 		 *
1105 		 * We don't bother to take a lock here to protect these
1106 		 * p->signal fields because the whole thread group is dead
1107 		 * and nobody can change them.
1108 		 *
1109 		 * psig->stats_lock also protects us from our sub-theads
1110 		 * which can reap other children at the same time. Until
1111 		 * we change k_getrusage()-like users to rely on this lock
1112 		 * we have to take ->siglock as well.
1113 		 *
1114 		 * We use thread_group_cputime_adjusted() to get times for
1115 		 * the thread group, which consolidates times for all threads
1116 		 * in the group including the group leader.
1117 		 */
1118 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1119 		spin_lock_irq(&current->sighand->siglock);
1120 		write_seqlock(&psig->stats_lock);
1121 		psig->cutime += tgutime + sig->cutime;
1122 		psig->cstime += tgstime + sig->cstime;
1123 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1124 		psig->cmin_flt +=
1125 			p->min_flt + sig->min_flt + sig->cmin_flt;
1126 		psig->cmaj_flt +=
1127 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1128 		psig->cnvcsw +=
1129 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1130 		psig->cnivcsw +=
1131 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1132 		psig->cinblock +=
1133 			task_io_get_inblock(p) +
1134 			sig->inblock + sig->cinblock;
1135 		psig->coublock +=
1136 			task_io_get_oublock(p) +
1137 			sig->oublock + sig->coublock;
1138 		maxrss = max(sig->maxrss, sig->cmaxrss);
1139 		if (psig->cmaxrss < maxrss)
1140 			psig->cmaxrss = maxrss;
1141 		task_io_accounting_add(&psig->ioac, &p->ioac);
1142 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1143 		write_sequnlock(&psig->stats_lock);
1144 		spin_unlock_irq(&current->sighand->siglock);
1145 	}
1146 
1147 	if (wo->wo_rusage)
1148 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1149 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1150 		? p->signal->group_exit_code : p->exit_code;
1151 	wo->wo_stat = status;
1152 
1153 	if (state == EXIT_TRACE) {
1154 		write_lock_irq(&tasklist_lock);
1155 		/* We dropped tasklist, ptracer could die and untrace */
1156 		ptrace_unlink(p);
1157 
1158 		/* If parent wants a zombie, don't release it now */
1159 		state = EXIT_ZOMBIE;
1160 		if (do_notify_parent(p, p->exit_signal))
1161 			state = EXIT_DEAD;
1162 		p->exit_state = state;
1163 		write_unlock_irq(&tasklist_lock);
1164 	}
1165 	if (state == EXIT_DEAD)
1166 		release_task(p);
1167 
1168 out_info:
1169 	infop = wo->wo_info;
1170 	if (infop) {
1171 		if ((status & 0x7f) == 0) {
1172 			infop->cause = CLD_EXITED;
1173 			infop->status = status >> 8;
1174 		} else {
1175 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1176 			infop->status = status & 0x7f;
1177 		}
1178 		infop->pid = pid;
1179 		infop->uid = uid;
1180 	}
1181 
1182 	return pid;
1183 }
1184 
1185 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1186 {
1187 	if (ptrace) {
1188 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1189 			return &p->exit_code;
1190 	} else {
1191 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1192 			return &p->signal->group_exit_code;
1193 	}
1194 	return NULL;
1195 }
1196 
1197 /**
1198  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1199  * @wo: wait options
1200  * @ptrace: is the wait for ptrace
1201  * @p: task to wait for
1202  *
1203  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1204  *
1205  * CONTEXT:
1206  * read_lock(&tasklist_lock), which is released if return value is
1207  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1208  *
1209  * RETURNS:
1210  * 0 if wait condition didn't exist and search for other wait conditions
1211  * should continue.  Non-zero return, -errno on failure and @p's pid on
1212  * success, implies that tasklist_lock is released and wait condition
1213  * search should terminate.
1214  */
1215 static int wait_task_stopped(struct wait_opts *wo,
1216 				int ptrace, struct task_struct *p)
1217 {
1218 	struct waitid_info *infop;
1219 	int exit_code, *p_code, why;
1220 	uid_t uid = 0; /* unneeded, required by compiler */
1221 	pid_t pid;
1222 
1223 	/*
1224 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1225 	 */
1226 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1227 		return 0;
1228 
1229 	if (!task_stopped_code(p, ptrace))
1230 		return 0;
1231 
1232 	exit_code = 0;
1233 	spin_lock_irq(&p->sighand->siglock);
1234 
1235 	p_code = task_stopped_code(p, ptrace);
1236 	if (unlikely(!p_code))
1237 		goto unlock_sig;
1238 
1239 	exit_code = *p_code;
1240 	if (!exit_code)
1241 		goto unlock_sig;
1242 
1243 	if (!unlikely(wo->wo_flags & WNOWAIT))
1244 		*p_code = 0;
1245 
1246 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1247 unlock_sig:
1248 	spin_unlock_irq(&p->sighand->siglock);
1249 	if (!exit_code)
1250 		return 0;
1251 
1252 	/*
1253 	 * Now we are pretty sure this task is interesting.
1254 	 * Make sure it doesn't get reaped out from under us while we
1255 	 * give up the lock and then examine it below.  We don't want to
1256 	 * keep holding onto the tasklist_lock while we call getrusage and
1257 	 * possibly take page faults for user memory.
1258 	 */
1259 	get_task_struct(p);
1260 	pid = task_pid_vnr(p);
1261 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1262 	read_unlock(&tasklist_lock);
1263 	sched_annotate_sleep();
1264 	if (wo->wo_rusage)
1265 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1266 	put_task_struct(p);
1267 
1268 	if (likely(!(wo->wo_flags & WNOWAIT)))
1269 		wo->wo_stat = (exit_code << 8) | 0x7f;
1270 
1271 	infop = wo->wo_info;
1272 	if (infop) {
1273 		infop->cause = why;
1274 		infop->status = exit_code;
1275 		infop->pid = pid;
1276 		infop->uid = uid;
1277 	}
1278 	return pid;
1279 }
1280 
1281 /*
1282  * Handle do_wait work for one task in a live, non-stopped state.
1283  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1284  * the lock and this task is uninteresting.  If we return nonzero, we have
1285  * released the lock and the system call should return.
1286  */
1287 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1288 {
1289 	struct waitid_info *infop;
1290 	pid_t pid;
1291 	uid_t uid;
1292 
1293 	if (!unlikely(wo->wo_flags & WCONTINUED))
1294 		return 0;
1295 
1296 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1297 		return 0;
1298 
1299 	spin_lock_irq(&p->sighand->siglock);
1300 	/* Re-check with the lock held.  */
1301 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1302 		spin_unlock_irq(&p->sighand->siglock);
1303 		return 0;
1304 	}
1305 	if (!unlikely(wo->wo_flags & WNOWAIT))
1306 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1307 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1308 	spin_unlock_irq(&p->sighand->siglock);
1309 
1310 	pid = task_pid_vnr(p);
1311 	get_task_struct(p);
1312 	read_unlock(&tasklist_lock);
1313 	sched_annotate_sleep();
1314 	if (wo->wo_rusage)
1315 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1316 	put_task_struct(p);
1317 
1318 	infop = wo->wo_info;
1319 	if (!infop) {
1320 		wo->wo_stat = 0xffff;
1321 	} else {
1322 		infop->cause = CLD_CONTINUED;
1323 		infop->pid = pid;
1324 		infop->uid = uid;
1325 		infop->status = SIGCONT;
1326 	}
1327 	return pid;
1328 }
1329 
1330 /*
1331  * Consider @p for a wait by @parent.
1332  *
1333  * -ECHILD should be in ->notask_error before the first call.
1334  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1335  * Returns zero if the search for a child should continue;
1336  * then ->notask_error is 0 if @p is an eligible child,
1337  * or still -ECHILD.
1338  */
1339 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1340 				struct task_struct *p)
1341 {
1342 	/*
1343 	 * We can race with wait_task_zombie() from another thread.
1344 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1345 	 * can't confuse the checks below.
1346 	 */
1347 	int exit_state = READ_ONCE(p->exit_state);
1348 	int ret;
1349 
1350 	if (unlikely(exit_state == EXIT_DEAD))
1351 		return 0;
1352 
1353 	ret = eligible_child(wo, ptrace, p);
1354 	if (!ret)
1355 		return ret;
1356 
1357 	if (unlikely(exit_state == EXIT_TRACE)) {
1358 		/*
1359 		 * ptrace == 0 means we are the natural parent. In this case
1360 		 * we should clear notask_error, debugger will notify us.
1361 		 */
1362 		if (likely(!ptrace))
1363 			wo->notask_error = 0;
1364 		return 0;
1365 	}
1366 
1367 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1368 		/*
1369 		 * If it is traced by its real parent's group, just pretend
1370 		 * the caller is ptrace_do_wait() and reap this child if it
1371 		 * is zombie.
1372 		 *
1373 		 * This also hides group stop state from real parent; otherwise
1374 		 * a single stop can be reported twice as group and ptrace stop.
1375 		 * If a ptracer wants to distinguish these two events for its
1376 		 * own children it should create a separate process which takes
1377 		 * the role of real parent.
1378 		 */
1379 		if (!ptrace_reparented(p))
1380 			ptrace = 1;
1381 	}
1382 
1383 	/* slay zombie? */
1384 	if (exit_state == EXIT_ZOMBIE) {
1385 		/* we don't reap group leaders with subthreads */
1386 		if (!delay_group_leader(p)) {
1387 			/*
1388 			 * A zombie ptracee is only visible to its ptracer.
1389 			 * Notification and reaping will be cascaded to the
1390 			 * real parent when the ptracer detaches.
1391 			 */
1392 			if (unlikely(ptrace) || likely(!p->ptrace))
1393 				return wait_task_zombie(wo, p);
1394 		}
1395 
1396 		/*
1397 		 * Allow access to stopped/continued state via zombie by
1398 		 * falling through.  Clearing of notask_error is complex.
1399 		 *
1400 		 * When !@ptrace:
1401 		 *
1402 		 * If WEXITED is set, notask_error should naturally be
1403 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1404 		 * so, if there are live subthreads, there are events to
1405 		 * wait for.  If all subthreads are dead, it's still safe
1406 		 * to clear - this function will be called again in finite
1407 		 * amount time once all the subthreads are released and
1408 		 * will then return without clearing.
1409 		 *
1410 		 * When @ptrace:
1411 		 *
1412 		 * Stopped state is per-task and thus can't change once the
1413 		 * target task dies.  Only continued and exited can happen.
1414 		 * Clear notask_error if WCONTINUED | WEXITED.
1415 		 */
1416 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1417 			wo->notask_error = 0;
1418 	} else {
1419 		/*
1420 		 * @p is alive and it's gonna stop, continue or exit, so
1421 		 * there always is something to wait for.
1422 		 */
1423 		wo->notask_error = 0;
1424 	}
1425 
1426 	/*
1427 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1428 	 * is used and the two don't interact with each other.
1429 	 */
1430 	ret = wait_task_stopped(wo, ptrace, p);
1431 	if (ret)
1432 		return ret;
1433 
1434 	/*
1435 	 * Wait for continued.  There's only one continued state and the
1436 	 * ptracer can consume it which can confuse the real parent.  Don't
1437 	 * use WCONTINUED from ptracer.  You don't need or want it.
1438 	 */
1439 	return wait_task_continued(wo, p);
1440 }
1441 
1442 /*
1443  * Do the work of do_wait() for one thread in the group, @tsk.
1444  *
1445  * -ECHILD should be in ->notask_error before the first call.
1446  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1447  * Returns zero if the search for a child should continue; then
1448  * ->notask_error is 0 if there were any eligible children,
1449  * or still -ECHILD.
1450  */
1451 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1452 {
1453 	struct task_struct *p;
1454 
1455 	list_for_each_entry(p, &tsk->children, sibling) {
1456 		int ret = wait_consider_task(wo, 0, p);
1457 
1458 		if (ret)
1459 			return ret;
1460 	}
1461 
1462 	return 0;
1463 }
1464 
1465 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1466 {
1467 	struct task_struct *p;
1468 
1469 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1470 		int ret = wait_consider_task(wo, 1, p);
1471 
1472 		if (ret)
1473 			return ret;
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1480 				int sync, void *key)
1481 {
1482 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1483 						child_wait);
1484 	struct task_struct *p = key;
1485 
1486 	if (!eligible_pid(wo, p))
1487 		return 0;
1488 
1489 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1490 		return 0;
1491 
1492 	return default_wake_function(wait, mode, sync, key);
1493 }
1494 
1495 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1496 {
1497 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1498 				TASK_INTERRUPTIBLE, 1, p);
1499 }
1500 
1501 static long do_wait(struct wait_opts *wo)
1502 {
1503 	struct task_struct *tsk;
1504 	int retval;
1505 
1506 	trace_sched_process_wait(wo->wo_pid);
1507 
1508 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1509 	wo->child_wait.private = current;
1510 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1511 repeat:
1512 	/*
1513 	 * If there is nothing that can match our criteria, just get out.
1514 	 * We will clear ->notask_error to zero if we see any child that
1515 	 * might later match our criteria, even if we are not able to reap
1516 	 * it yet.
1517 	 */
1518 	wo->notask_error = -ECHILD;
1519 	if ((wo->wo_type < PIDTYPE_MAX) &&
1520 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1521 		goto notask;
1522 
1523 	set_current_state(TASK_INTERRUPTIBLE);
1524 	read_lock(&tasklist_lock);
1525 	tsk = current;
1526 	do {
1527 		retval = do_wait_thread(wo, tsk);
1528 		if (retval)
1529 			goto end;
1530 
1531 		retval = ptrace_do_wait(wo, tsk);
1532 		if (retval)
1533 			goto end;
1534 
1535 		if (wo->wo_flags & __WNOTHREAD)
1536 			break;
1537 	} while_each_thread(current, tsk);
1538 	read_unlock(&tasklist_lock);
1539 
1540 notask:
1541 	retval = wo->notask_error;
1542 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1543 		retval = -ERESTARTSYS;
1544 		if (!signal_pending(current)) {
1545 			schedule();
1546 			goto repeat;
1547 		}
1548 	}
1549 end:
1550 	__set_current_state(TASK_RUNNING);
1551 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1552 	return retval;
1553 }
1554 
1555 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1556 			  int options, struct rusage *ru)
1557 {
1558 	struct wait_opts wo;
1559 	struct pid *pid = NULL;
1560 	enum pid_type type;
1561 	long ret;
1562 
1563 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1564 			__WNOTHREAD|__WCLONE|__WALL))
1565 		return -EINVAL;
1566 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1567 		return -EINVAL;
1568 
1569 	switch (which) {
1570 	case P_ALL:
1571 		type = PIDTYPE_MAX;
1572 		break;
1573 	case P_PID:
1574 		type = PIDTYPE_PID;
1575 		if (upid <= 0)
1576 			return -EINVAL;
1577 		break;
1578 	case P_PGID:
1579 		type = PIDTYPE_PGID;
1580 		if (upid <= 0)
1581 			return -EINVAL;
1582 		break;
1583 	default:
1584 		return -EINVAL;
1585 	}
1586 
1587 	if (type < PIDTYPE_MAX)
1588 		pid = find_get_pid(upid);
1589 
1590 	wo.wo_type	= type;
1591 	wo.wo_pid	= pid;
1592 	wo.wo_flags	= options;
1593 	wo.wo_info	= infop;
1594 	wo.wo_rusage	= ru;
1595 	ret = do_wait(&wo);
1596 
1597 	put_pid(pid);
1598 	return ret;
1599 }
1600 
1601 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1602 		infop, int, options, struct rusage __user *, ru)
1603 {
1604 	struct rusage r;
1605 	struct waitid_info info = {.status = 0};
1606 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1607 	int signo = 0;
1608 
1609 	if (err > 0) {
1610 		signo = SIGCHLD;
1611 		err = 0;
1612 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1613 			return -EFAULT;
1614 	}
1615 	if (!infop)
1616 		return err;
1617 
1618 	if (!user_access_begin(infop, sizeof(*infop)))
1619 		return -EFAULT;
1620 
1621 	unsafe_put_user(signo, &infop->si_signo, Efault);
1622 	unsafe_put_user(0, &infop->si_errno, Efault);
1623 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1624 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1625 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1626 	unsafe_put_user(info.status, &infop->si_status, Efault);
1627 	user_access_end();
1628 	return err;
1629 Efault:
1630 	user_access_end();
1631 	return -EFAULT;
1632 }
1633 
1634 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1635 		  struct rusage *ru)
1636 {
1637 	struct wait_opts wo;
1638 	struct pid *pid = NULL;
1639 	enum pid_type type;
1640 	long ret;
1641 
1642 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1643 			__WNOTHREAD|__WCLONE|__WALL))
1644 		return -EINVAL;
1645 
1646 	/* -INT_MIN is not defined */
1647 	if (upid == INT_MIN)
1648 		return -ESRCH;
1649 
1650 	if (upid == -1)
1651 		type = PIDTYPE_MAX;
1652 	else if (upid < 0) {
1653 		type = PIDTYPE_PGID;
1654 		pid = find_get_pid(-upid);
1655 	} else if (upid == 0) {
1656 		type = PIDTYPE_PGID;
1657 		pid = get_task_pid(current, PIDTYPE_PGID);
1658 	} else /* upid > 0 */ {
1659 		type = PIDTYPE_PID;
1660 		pid = find_get_pid(upid);
1661 	}
1662 
1663 	wo.wo_type	= type;
1664 	wo.wo_pid	= pid;
1665 	wo.wo_flags	= options | WEXITED;
1666 	wo.wo_info	= NULL;
1667 	wo.wo_stat	= 0;
1668 	wo.wo_rusage	= ru;
1669 	ret = do_wait(&wo);
1670 	put_pid(pid);
1671 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1672 		ret = -EFAULT;
1673 
1674 	return ret;
1675 }
1676 
1677 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1678 		int, options, struct rusage __user *, ru)
1679 {
1680 	struct rusage r;
1681 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1682 
1683 	if (err > 0) {
1684 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1685 			return -EFAULT;
1686 	}
1687 	return err;
1688 }
1689 
1690 #ifdef __ARCH_WANT_SYS_WAITPID
1691 
1692 /*
1693  * sys_waitpid() remains for compatibility. waitpid() should be
1694  * implemented by calling sys_wait4() from libc.a.
1695  */
1696 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1697 {
1698 	return kernel_wait4(pid, stat_addr, options, NULL);
1699 }
1700 
1701 #endif
1702 
1703 #ifdef CONFIG_COMPAT
1704 COMPAT_SYSCALL_DEFINE4(wait4,
1705 	compat_pid_t, pid,
1706 	compat_uint_t __user *, stat_addr,
1707 	int, options,
1708 	struct compat_rusage __user *, ru)
1709 {
1710 	struct rusage r;
1711 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1712 	if (err > 0) {
1713 		if (ru && put_compat_rusage(&r, ru))
1714 			return -EFAULT;
1715 	}
1716 	return err;
1717 }
1718 
1719 COMPAT_SYSCALL_DEFINE5(waitid,
1720 		int, which, compat_pid_t, pid,
1721 		struct compat_siginfo __user *, infop, int, options,
1722 		struct compat_rusage __user *, uru)
1723 {
1724 	struct rusage ru;
1725 	struct waitid_info info = {.status = 0};
1726 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1727 	int signo = 0;
1728 	if (err > 0) {
1729 		signo = SIGCHLD;
1730 		err = 0;
1731 		if (uru) {
1732 			/* kernel_waitid() overwrites everything in ru */
1733 			if (COMPAT_USE_64BIT_TIME)
1734 				err = copy_to_user(uru, &ru, sizeof(ru));
1735 			else
1736 				err = put_compat_rusage(&ru, uru);
1737 			if (err)
1738 				return -EFAULT;
1739 		}
1740 	}
1741 
1742 	if (!infop)
1743 		return err;
1744 
1745 	if (!user_access_begin(infop, sizeof(*infop)))
1746 		return -EFAULT;
1747 
1748 	unsafe_put_user(signo, &infop->si_signo, Efault);
1749 	unsafe_put_user(0, &infop->si_errno, Efault);
1750 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1751 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1752 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1753 	unsafe_put_user(info.status, &infop->si_status, Efault);
1754 	user_access_end();
1755 	return err;
1756 Efault:
1757 	user_access_end();
1758 	return -EFAULT;
1759 }
1760 #endif
1761 
1762 __weak void abort(void)
1763 {
1764 	BUG();
1765 
1766 	/* if that doesn't kill us, halt */
1767 	panic("Oops failed to kill thread");
1768 }
1769 EXPORT_SYMBOL(abort);
1770