xref: /openbmc/linux/kernel/exit.c (revision 2c935bc5)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 #include <linux/random.h>
58 #include <linux/rcuwait.h>
59 
60 #include <linux/uaccess.h>
61 #include <asm/unistd.h>
62 #include <asm/pgtable.h>
63 #include <asm/mmu_context.h>
64 
65 static void __unhash_process(struct task_struct *p, bool group_dead)
66 {
67 	nr_threads--;
68 	detach_pid(p, PIDTYPE_PID);
69 	if (group_dead) {
70 		detach_pid(p, PIDTYPE_PGID);
71 		detach_pid(p, PIDTYPE_SID);
72 
73 		list_del_rcu(&p->tasks);
74 		list_del_init(&p->sibling);
75 		__this_cpu_dec(process_counts);
76 	}
77 	list_del_rcu(&p->thread_group);
78 	list_del_rcu(&p->thread_node);
79 }
80 
81 /*
82  * This function expects the tasklist_lock write-locked.
83  */
84 static void __exit_signal(struct task_struct *tsk)
85 {
86 	struct signal_struct *sig = tsk->signal;
87 	bool group_dead = thread_group_leader(tsk);
88 	struct sighand_struct *sighand;
89 	struct tty_struct *uninitialized_var(tty);
90 	cputime_t utime, stime;
91 
92 	sighand = rcu_dereference_check(tsk->sighand,
93 					lockdep_tasklist_lock_is_held());
94 	spin_lock(&sighand->siglock);
95 
96 #ifdef CONFIG_POSIX_TIMERS
97 	posix_cpu_timers_exit(tsk);
98 	if (group_dead) {
99 		posix_cpu_timers_exit_group(tsk);
100 	} else {
101 		/*
102 		 * This can only happen if the caller is de_thread().
103 		 * FIXME: this is the temporary hack, we should teach
104 		 * posix-cpu-timers to handle this case correctly.
105 		 */
106 		if (unlikely(has_group_leader_pid(tsk)))
107 			posix_cpu_timers_exit_group(tsk);
108 	}
109 #endif
110 
111 	if (group_dead) {
112 		tty = sig->tty;
113 		sig->tty = NULL;
114 	} else {
115 		/*
116 		 * If there is any task waiting for the group exit
117 		 * then notify it:
118 		 */
119 		if (sig->notify_count > 0 && !--sig->notify_count)
120 			wake_up_process(sig->group_exit_task);
121 
122 		if (tsk == sig->curr_target)
123 			sig->curr_target = next_thread(tsk);
124 	}
125 
126 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
127 			      sizeof(unsigned long long));
128 
129 	/*
130 	 * Accumulate here the counters for all threads as they die. We could
131 	 * skip the group leader because it is the last user of signal_struct,
132 	 * but we want to avoid the race with thread_group_cputime() which can
133 	 * see the empty ->thread_head list.
134 	 */
135 	task_cputime(tsk, &utime, &stime);
136 	write_seqlock(&sig->stats_lock);
137 	sig->utime += utime;
138 	sig->stime += stime;
139 	sig->gtime += task_gtime(tsk);
140 	sig->min_flt += tsk->min_flt;
141 	sig->maj_flt += tsk->maj_flt;
142 	sig->nvcsw += tsk->nvcsw;
143 	sig->nivcsw += tsk->nivcsw;
144 	sig->inblock += task_io_get_inblock(tsk);
145 	sig->oublock += task_io_get_oublock(tsk);
146 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
147 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
148 	sig->nr_threads--;
149 	__unhash_process(tsk, group_dead);
150 	write_sequnlock(&sig->stats_lock);
151 
152 	/*
153 	 * Do this under ->siglock, we can race with another thread
154 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
155 	 */
156 	flush_sigqueue(&tsk->pending);
157 	tsk->sighand = NULL;
158 	spin_unlock(&sighand->siglock);
159 
160 	__cleanup_sighand(sighand);
161 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
162 	if (group_dead) {
163 		flush_sigqueue(&sig->shared_pending);
164 		tty_kref_put(tty);
165 	}
166 }
167 
168 static void delayed_put_task_struct(struct rcu_head *rhp)
169 {
170 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171 
172 	perf_event_delayed_put(tsk);
173 	trace_sched_process_free(tsk);
174 	put_task_struct(tsk);
175 }
176 
177 
178 void release_task(struct task_struct *p)
179 {
180 	struct task_struct *leader;
181 	int zap_leader;
182 repeat:
183 	/* don't need to get the RCU readlock here - the process is dead and
184 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
185 	rcu_read_lock();
186 	atomic_dec(&__task_cred(p)->user->processes);
187 	rcu_read_unlock();
188 
189 	proc_flush_task(p);
190 
191 	write_lock_irq(&tasklist_lock);
192 	ptrace_release_task(p);
193 	__exit_signal(p);
194 
195 	/*
196 	 * If we are the last non-leader member of the thread
197 	 * group, and the leader is zombie, then notify the
198 	 * group leader's parent process. (if it wants notification.)
199 	 */
200 	zap_leader = 0;
201 	leader = p->group_leader;
202 	if (leader != p && thread_group_empty(leader)
203 			&& leader->exit_state == EXIT_ZOMBIE) {
204 		/*
205 		 * If we were the last child thread and the leader has
206 		 * exited already, and the leader's parent ignores SIGCHLD,
207 		 * then we are the one who should release the leader.
208 		 */
209 		zap_leader = do_notify_parent(leader, leader->exit_signal);
210 		if (zap_leader)
211 			leader->exit_state = EXIT_DEAD;
212 	}
213 
214 	write_unlock_irq(&tasklist_lock);
215 	release_thread(p);
216 	call_rcu(&p->rcu, delayed_put_task_struct);
217 
218 	p = leader;
219 	if (unlikely(zap_leader))
220 		goto repeat;
221 }
222 
223 /*
224  * Note that if this function returns a valid task_struct pointer (!NULL)
225  * task->usage must remain >0 for the duration of the RCU critical section.
226  */
227 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
228 {
229 	struct sighand_struct *sighand;
230 	struct task_struct *task;
231 
232 	/*
233 	 * We need to verify that release_task() was not called and thus
234 	 * delayed_put_task_struct() can't run and drop the last reference
235 	 * before rcu_read_unlock(). We check task->sighand != NULL,
236 	 * but we can read the already freed and reused memory.
237 	 */
238 retry:
239 	task = rcu_dereference(*ptask);
240 	if (!task)
241 		return NULL;
242 
243 	probe_kernel_address(&task->sighand, sighand);
244 
245 	/*
246 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
247 	 * was already freed we can not miss the preceding update of this
248 	 * pointer.
249 	 */
250 	smp_rmb();
251 	if (unlikely(task != READ_ONCE(*ptask)))
252 		goto retry;
253 
254 	/*
255 	 * We've re-checked that "task == *ptask", now we have two different
256 	 * cases:
257 	 *
258 	 * 1. This is actually the same task/task_struct. In this case
259 	 *    sighand != NULL tells us it is still alive.
260 	 *
261 	 * 2. This is another task which got the same memory for task_struct.
262 	 *    We can't know this of course, and we can not trust
263 	 *    sighand != NULL.
264 	 *
265 	 *    In this case we actually return a random value, but this is
266 	 *    correct.
267 	 *
268 	 *    If we return NULL - we can pretend that we actually noticed that
269 	 *    *ptask was updated when the previous task has exited. Or pretend
270 	 *    that probe_slab_address(&sighand) reads NULL.
271 	 *
272 	 *    If we return the new task (because sighand is not NULL for any
273 	 *    reason) - this is fine too. This (new) task can't go away before
274 	 *    another gp pass.
275 	 *
276 	 *    And note: We could even eliminate the false positive if re-read
277 	 *    task->sighand once again to avoid the falsely NULL. But this case
278 	 *    is very unlikely so we don't care.
279 	 */
280 	if (!sighand)
281 		return NULL;
282 
283 	return task;
284 }
285 
286 void rcuwait_wake_up(struct rcuwait *w)
287 {
288 	struct task_struct *task;
289 
290 	rcu_read_lock();
291 
292 	/*
293 	 * Order condition vs @task, such that everything prior to the load
294 	 * of @task is visible. This is the condition as to why the user called
295 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
296 	 * barrier (A) in rcuwait_wait_event().
297 	 *
298 	 *    WAIT                WAKE
299 	 *    [S] tsk = current	  [S] cond = true
300 	 *        MB (A)	      MB (B)
301 	 *    [L] cond		  [L] tsk
302 	 */
303 	smp_rmb(); /* (B) */
304 
305 	/*
306 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
307 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
308 	 */
309 	task = rcu_dereference(w->task);
310 	if (task)
311 		wake_up_process(task);
312 	rcu_read_unlock();
313 }
314 
315 struct task_struct *try_get_task_struct(struct task_struct **ptask)
316 {
317 	struct task_struct *task;
318 
319 	rcu_read_lock();
320 	task = task_rcu_dereference(ptask);
321 	if (task)
322 		get_task_struct(task);
323 	rcu_read_unlock();
324 
325 	return task;
326 }
327 
328 /*
329  * Determine if a process group is "orphaned", according to the POSIX
330  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
331  * by terminal-generated stop signals.  Newly orphaned process groups are
332  * to receive a SIGHUP and a SIGCONT.
333  *
334  * "I ask you, have you ever known what it is to be an orphan?"
335  */
336 static int will_become_orphaned_pgrp(struct pid *pgrp,
337 					struct task_struct *ignored_task)
338 {
339 	struct task_struct *p;
340 
341 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
342 		if ((p == ignored_task) ||
343 		    (p->exit_state && thread_group_empty(p)) ||
344 		    is_global_init(p->real_parent))
345 			continue;
346 
347 		if (task_pgrp(p->real_parent) != pgrp &&
348 		    task_session(p->real_parent) == task_session(p))
349 			return 0;
350 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
351 
352 	return 1;
353 }
354 
355 int is_current_pgrp_orphaned(void)
356 {
357 	int retval;
358 
359 	read_lock(&tasklist_lock);
360 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
361 	read_unlock(&tasklist_lock);
362 
363 	return retval;
364 }
365 
366 static bool has_stopped_jobs(struct pid *pgrp)
367 {
368 	struct task_struct *p;
369 
370 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
371 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
372 			return true;
373 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
374 
375 	return false;
376 }
377 
378 /*
379  * Check to see if any process groups have become orphaned as
380  * a result of our exiting, and if they have any stopped jobs,
381  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
382  */
383 static void
384 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
385 {
386 	struct pid *pgrp = task_pgrp(tsk);
387 	struct task_struct *ignored_task = tsk;
388 
389 	if (!parent)
390 		/* exit: our father is in a different pgrp than
391 		 * we are and we were the only connection outside.
392 		 */
393 		parent = tsk->real_parent;
394 	else
395 		/* reparent: our child is in a different pgrp than
396 		 * we are, and it was the only connection outside.
397 		 */
398 		ignored_task = NULL;
399 
400 	if (task_pgrp(parent) != pgrp &&
401 	    task_session(parent) == task_session(tsk) &&
402 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
403 	    has_stopped_jobs(pgrp)) {
404 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
405 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
406 	}
407 }
408 
409 #ifdef CONFIG_MEMCG
410 /*
411  * A task is exiting.   If it owned this mm, find a new owner for the mm.
412  */
413 void mm_update_next_owner(struct mm_struct *mm)
414 {
415 	struct task_struct *c, *g, *p = current;
416 
417 retry:
418 	/*
419 	 * If the exiting or execing task is not the owner, it's
420 	 * someone else's problem.
421 	 */
422 	if (mm->owner != p)
423 		return;
424 	/*
425 	 * The current owner is exiting/execing and there are no other
426 	 * candidates.  Do not leave the mm pointing to a possibly
427 	 * freed task structure.
428 	 */
429 	if (atomic_read(&mm->mm_users) <= 1) {
430 		mm->owner = NULL;
431 		return;
432 	}
433 
434 	read_lock(&tasklist_lock);
435 	/*
436 	 * Search in the children
437 	 */
438 	list_for_each_entry(c, &p->children, sibling) {
439 		if (c->mm == mm)
440 			goto assign_new_owner;
441 	}
442 
443 	/*
444 	 * Search in the siblings
445 	 */
446 	list_for_each_entry(c, &p->real_parent->children, sibling) {
447 		if (c->mm == mm)
448 			goto assign_new_owner;
449 	}
450 
451 	/*
452 	 * Search through everything else, we should not get here often.
453 	 */
454 	for_each_process(g) {
455 		if (g->flags & PF_KTHREAD)
456 			continue;
457 		for_each_thread(g, c) {
458 			if (c->mm == mm)
459 				goto assign_new_owner;
460 			if (c->mm)
461 				break;
462 		}
463 	}
464 	read_unlock(&tasklist_lock);
465 	/*
466 	 * We found no owner yet mm_users > 1: this implies that we are
467 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
468 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
469 	 */
470 	mm->owner = NULL;
471 	return;
472 
473 assign_new_owner:
474 	BUG_ON(c == p);
475 	get_task_struct(c);
476 	/*
477 	 * The task_lock protects c->mm from changing.
478 	 * We always want mm->owner->mm == mm
479 	 */
480 	task_lock(c);
481 	/*
482 	 * Delay read_unlock() till we have the task_lock()
483 	 * to ensure that c does not slip away underneath us
484 	 */
485 	read_unlock(&tasklist_lock);
486 	if (c->mm != mm) {
487 		task_unlock(c);
488 		put_task_struct(c);
489 		goto retry;
490 	}
491 	mm->owner = c;
492 	task_unlock(c);
493 	put_task_struct(c);
494 }
495 #endif /* CONFIG_MEMCG */
496 
497 /*
498  * Turn us into a lazy TLB process if we
499  * aren't already..
500  */
501 static void exit_mm(void)
502 {
503 	struct mm_struct *mm = current->mm;
504 	struct core_state *core_state;
505 
506 	mm_release(current, mm);
507 	if (!mm)
508 		return;
509 	sync_mm_rss(mm);
510 	/*
511 	 * Serialize with any possible pending coredump.
512 	 * We must hold mmap_sem around checking core_state
513 	 * and clearing tsk->mm.  The core-inducing thread
514 	 * will increment ->nr_threads for each thread in the
515 	 * group with ->mm != NULL.
516 	 */
517 	down_read(&mm->mmap_sem);
518 	core_state = mm->core_state;
519 	if (core_state) {
520 		struct core_thread self;
521 
522 		up_read(&mm->mmap_sem);
523 
524 		self.task = current;
525 		self.next = xchg(&core_state->dumper.next, &self);
526 		/*
527 		 * Implies mb(), the result of xchg() must be visible
528 		 * to core_state->dumper.
529 		 */
530 		if (atomic_dec_and_test(&core_state->nr_threads))
531 			complete(&core_state->startup);
532 
533 		for (;;) {
534 			set_current_state(TASK_UNINTERRUPTIBLE);
535 			if (!self.task) /* see coredump_finish() */
536 				break;
537 			freezable_schedule();
538 		}
539 		__set_current_state(TASK_RUNNING);
540 		down_read(&mm->mmap_sem);
541 	}
542 	atomic_inc(&mm->mm_count);
543 	BUG_ON(mm != current->active_mm);
544 	/* more a memory barrier than a real lock */
545 	task_lock(current);
546 	current->mm = NULL;
547 	up_read(&mm->mmap_sem);
548 	enter_lazy_tlb(mm, current);
549 	task_unlock(current);
550 	mm_update_next_owner(mm);
551 	mmput(mm);
552 	if (test_thread_flag(TIF_MEMDIE))
553 		exit_oom_victim();
554 }
555 
556 static struct task_struct *find_alive_thread(struct task_struct *p)
557 {
558 	struct task_struct *t;
559 
560 	for_each_thread(p, t) {
561 		if (!(t->flags & PF_EXITING))
562 			return t;
563 	}
564 	return NULL;
565 }
566 
567 static struct task_struct *find_child_reaper(struct task_struct *father)
568 	__releases(&tasklist_lock)
569 	__acquires(&tasklist_lock)
570 {
571 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
572 	struct task_struct *reaper = pid_ns->child_reaper;
573 
574 	if (likely(reaper != father))
575 		return reaper;
576 
577 	reaper = find_alive_thread(father);
578 	if (reaper) {
579 		pid_ns->child_reaper = reaper;
580 		return reaper;
581 	}
582 
583 	write_unlock_irq(&tasklist_lock);
584 	if (unlikely(pid_ns == &init_pid_ns)) {
585 		panic("Attempted to kill init! exitcode=0x%08x\n",
586 			father->signal->group_exit_code ?: father->exit_code);
587 	}
588 	zap_pid_ns_processes(pid_ns);
589 	write_lock_irq(&tasklist_lock);
590 
591 	return father;
592 }
593 
594 /*
595  * When we die, we re-parent all our children, and try to:
596  * 1. give them to another thread in our thread group, if such a member exists
597  * 2. give it to the first ancestor process which prctl'd itself as a
598  *    child_subreaper for its children (like a service manager)
599  * 3. give it to the init process (PID 1) in our pid namespace
600  */
601 static struct task_struct *find_new_reaper(struct task_struct *father,
602 					   struct task_struct *child_reaper)
603 {
604 	struct task_struct *thread, *reaper;
605 
606 	thread = find_alive_thread(father);
607 	if (thread)
608 		return thread;
609 
610 	if (father->signal->has_child_subreaper) {
611 		/*
612 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
613 		 * We start from father to ensure we can not look into another
614 		 * namespace, this is safe because all its threads are dead.
615 		 */
616 		for (reaper = father;
617 		     !same_thread_group(reaper, child_reaper);
618 		     reaper = reaper->real_parent) {
619 			/* call_usermodehelper() descendants need this check */
620 			if (reaper == &init_task)
621 				break;
622 			if (!reaper->signal->is_child_subreaper)
623 				continue;
624 			thread = find_alive_thread(reaper);
625 			if (thread)
626 				return thread;
627 		}
628 	}
629 
630 	return child_reaper;
631 }
632 
633 /*
634 * Any that need to be release_task'd are put on the @dead list.
635  */
636 static void reparent_leader(struct task_struct *father, struct task_struct *p,
637 				struct list_head *dead)
638 {
639 	if (unlikely(p->exit_state == EXIT_DEAD))
640 		return;
641 
642 	/* We don't want people slaying init. */
643 	p->exit_signal = SIGCHLD;
644 
645 	/* If it has exited notify the new parent about this child's death. */
646 	if (!p->ptrace &&
647 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
648 		if (do_notify_parent(p, p->exit_signal)) {
649 			p->exit_state = EXIT_DEAD;
650 			list_add(&p->ptrace_entry, dead);
651 		}
652 	}
653 
654 	kill_orphaned_pgrp(p, father);
655 }
656 
657 /*
658  * This does two things:
659  *
660  * A.  Make init inherit all the child processes
661  * B.  Check to see if any process groups have become orphaned
662  *	as a result of our exiting, and if they have any stopped
663  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
664  */
665 static void forget_original_parent(struct task_struct *father,
666 					struct list_head *dead)
667 {
668 	struct task_struct *p, *t, *reaper;
669 
670 	if (unlikely(!list_empty(&father->ptraced)))
671 		exit_ptrace(father, dead);
672 
673 	/* Can drop and reacquire tasklist_lock */
674 	reaper = find_child_reaper(father);
675 	if (list_empty(&father->children))
676 		return;
677 
678 	reaper = find_new_reaper(father, reaper);
679 	list_for_each_entry(p, &father->children, sibling) {
680 		for_each_thread(p, t) {
681 			t->real_parent = reaper;
682 			BUG_ON((!t->ptrace) != (t->parent == father));
683 			if (likely(!t->ptrace))
684 				t->parent = t->real_parent;
685 			if (t->pdeath_signal)
686 				group_send_sig_info(t->pdeath_signal,
687 						    SEND_SIG_NOINFO, t);
688 		}
689 		/*
690 		 * If this is a threaded reparent there is no need to
691 		 * notify anyone anything has happened.
692 		 */
693 		if (!same_thread_group(reaper, father))
694 			reparent_leader(father, p, dead);
695 	}
696 	list_splice_tail_init(&father->children, &reaper->children);
697 }
698 
699 /*
700  * Send signals to all our closest relatives so that they know
701  * to properly mourn us..
702  */
703 static void exit_notify(struct task_struct *tsk, int group_dead)
704 {
705 	bool autoreap;
706 	struct task_struct *p, *n;
707 	LIST_HEAD(dead);
708 
709 	write_lock_irq(&tasklist_lock);
710 	forget_original_parent(tsk, &dead);
711 
712 	if (group_dead)
713 		kill_orphaned_pgrp(tsk->group_leader, NULL);
714 
715 	if (unlikely(tsk->ptrace)) {
716 		int sig = thread_group_leader(tsk) &&
717 				thread_group_empty(tsk) &&
718 				!ptrace_reparented(tsk) ?
719 			tsk->exit_signal : SIGCHLD;
720 		autoreap = do_notify_parent(tsk, sig);
721 	} else if (thread_group_leader(tsk)) {
722 		autoreap = thread_group_empty(tsk) &&
723 			do_notify_parent(tsk, tsk->exit_signal);
724 	} else {
725 		autoreap = true;
726 	}
727 
728 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
729 	if (tsk->exit_state == EXIT_DEAD)
730 		list_add(&tsk->ptrace_entry, &dead);
731 
732 	/* mt-exec, de_thread() is waiting for group leader */
733 	if (unlikely(tsk->signal->notify_count < 0))
734 		wake_up_process(tsk->signal->group_exit_task);
735 	write_unlock_irq(&tasklist_lock);
736 
737 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
738 		list_del_init(&p->ptrace_entry);
739 		release_task(p);
740 	}
741 }
742 
743 #ifdef CONFIG_DEBUG_STACK_USAGE
744 static void check_stack_usage(void)
745 {
746 	static DEFINE_SPINLOCK(low_water_lock);
747 	static int lowest_to_date = THREAD_SIZE;
748 	unsigned long free;
749 
750 	free = stack_not_used(current);
751 
752 	if (free >= lowest_to_date)
753 		return;
754 
755 	spin_lock(&low_water_lock);
756 	if (free < lowest_to_date) {
757 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
758 			current->comm, task_pid_nr(current), free);
759 		lowest_to_date = free;
760 	}
761 	spin_unlock(&low_water_lock);
762 }
763 #else
764 static inline void check_stack_usage(void) {}
765 #endif
766 
767 void __noreturn do_exit(long code)
768 {
769 	struct task_struct *tsk = current;
770 	int group_dead;
771 	TASKS_RCU(int tasks_rcu_i);
772 
773 	profile_task_exit(tsk);
774 	kcov_task_exit(tsk);
775 
776 	WARN_ON(blk_needs_flush_plug(tsk));
777 
778 	if (unlikely(in_interrupt()))
779 		panic("Aiee, killing interrupt handler!");
780 	if (unlikely(!tsk->pid))
781 		panic("Attempted to kill the idle task!");
782 
783 	/*
784 	 * If do_exit is called because this processes oopsed, it's possible
785 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
786 	 * continuing. Amongst other possible reasons, this is to prevent
787 	 * mm_release()->clear_child_tid() from writing to a user-controlled
788 	 * kernel address.
789 	 */
790 	set_fs(USER_DS);
791 
792 	ptrace_event(PTRACE_EVENT_EXIT, code);
793 
794 	validate_creds_for_do_exit(tsk);
795 
796 	/*
797 	 * We're taking recursive faults here in do_exit. Safest is to just
798 	 * leave this task alone and wait for reboot.
799 	 */
800 	if (unlikely(tsk->flags & PF_EXITING)) {
801 		pr_alert("Fixing recursive fault but reboot is needed!\n");
802 		/*
803 		 * We can do this unlocked here. The futex code uses
804 		 * this flag just to verify whether the pi state
805 		 * cleanup has been done or not. In the worst case it
806 		 * loops once more. We pretend that the cleanup was
807 		 * done as there is no way to return. Either the
808 		 * OWNER_DIED bit is set by now or we push the blocked
809 		 * task into the wait for ever nirwana as well.
810 		 */
811 		tsk->flags |= PF_EXITPIDONE;
812 		set_current_state(TASK_UNINTERRUPTIBLE);
813 		schedule();
814 	}
815 
816 	exit_signals(tsk);  /* sets PF_EXITING */
817 	/*
818 	 * Ensure that all new tsk->pi_lock acquisitions must observe
819 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
820 	 */
821 	smp_mb();
822 	/*
823 	 * Ensure that we must observe the pi_state in exit_mm() ->
824 	 * mm_release() -> exit_pi_state_list().
825 	 */
826 	raw_spin_unlock_wait(&tsk->pi_lock);
827 
828 	if (unlikely(in_atomic())) {
829 		pr_info("note: %s[%d] exited with preempt_count %d\n",
830 			current->comm, task_pid_nr(current),
831 			preempt_count());
832 		preempt_count_set(PREEMPT_ENABLED);
833 	}
834 
835 	/* sync mm's RSS info before statistics gathering */
836 	if (tsk->mm)
837 		sync_mm_rss(tsk->mm);
838 	acct_update_integrals(tsk);
839 	group_dead = atomic_dec_and_test(&tsk->signal->live);
840 	if (group_dead) {
841 #ifdef CONFIG_POSIX_TIMERS
842 		hrtimer_cancel(&tsk->signal->real_timer);
843 		exit_itimers(tsk->signal);
844 #endif
845 		if (tsk->mm)
846 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
847 	}
848 	acct_collect(code, group_dead);
849 	if (group_dead)
850 		tty_audit_exit();
851 	audit_free(tsk);
852 
853 	tsk->exit_code = code;
854 	taskstats_exit(tsk, group_dead);
855 
856 	exit_mm();
857 
858 	if (group_dead)
859 		acct_process();
860 	trace_sched_process_exit(tsk);
861 
862 	exit_sem(tsk);
863 	exit_shm(tsk);
864 	exit_files(tsk);
865 	exit_fs(tsk);
866 	if (group_dead)
867 		disassociate_ctty(1);
868 	exit_task_namespaces(tsk);
869 	exit_task_work(tsk);
870 	exit_thread(tsk);
871 
872 	/*
873 	 * Flush inherited counters to the parent - before the parent
874 	 * gets woken up by child-exit notifications.
875 	 *
876 	 * because of cgroup mode, must be called before cgroup_exit()
877 	 */
878 	perf_event_exit_task(tsk);
879 
880 	sched_autogroup_exit_task(tsk);
881 	cgroup_exit(tsk);
882 
883 	/*
884 	 * FIXME: do that only when needed, using sched_exit tracepoint
885 	 */
886 	flush_ptrace_hw_breakpoint(tsk);
887 
888 	TASKS_RCU(preempt_disable());
889 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
890 	TASKS_RCU(preempt_enable());
891 	exit_notify(tsk, group_dead);
892 	proc_exit_connector(tsk);
893 	mpol_put_task_policy(tsk);
894 #ifdef CONFIG_FUTEX
895 	if (unlikely(current->pi_state_cache))
896 		kfree(current->pi_state_cache);
897 #endif
898 	/*
899 	 * Make sure we are holding no locks:
900 	 */
901 	debug_check_no_locks_held();
902 	/*
903 	 * We can do this unlocked here. The futex code uses this flag
904 	 * just to verify whether the pi state cleanup has been done
905 	 * or not. In the worst case it loops once more.
906 	 */
907 	tsk->flags |= PF_EXITPIDONE;
908 
909 	if (tsk->io_context)
910 		exit_io_context(tsk);
911 
912 	if (tsk->splice_pipe)
913 		free_pipe_info(tsk->splice_pipe);
914 
915 	if (tsk->task_frag.page)
916 		put_page(tsk->task_frag.page);
917 
918 	validate_creds_for_do_exit(tsk);
919 
920 	check_stack_usage();
921 	preempt_disable();
922 	if (tsk->nr_dirtied)
923 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
924 	exit_rcu();
925 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
926 
927 	do_task_dead();
928 }
929 EXPORT_SYMBOL_GPL(do_exit);
930 
931 void complete_and_exit(struct completion *comp, long code)
932 {
933 	if (comp)
934 		complete(comp);
935 
936 	do_exit(code);
937 }
938 EXPORT_SYMBOL(complete_and_exit);
939 
940 SYSCALL_DEFINE1(exit, int, error_code)
941 {
942 	do_exit((error_code&0xff)<<8);
943 }
944 
945 /*
946  * Take down every thread in the group.  This is called by fatal signals
947  * as well as by sys_exit_group (below).
948  */
949 void
950 do_group_exit(int exit_code)
951 {
952 	struct signal_struct *sig = current->signal;
953 
954 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
955 
956 	if (signal_group_exit(sig))
957 		exit_code = sig->group_exit_code;
958 	else if (!thread_group_empty(current)) {
959 		struct sighand_struct *const sighand = current->sighand;
960 
961 		spin_lock_irq(&sighand->siglock);
962 		if (signal_group_exit(sig))
963 			/* Another thread got here before we took the lock.  */
964 			exit_code = sig->group_exit_code;
965 		else {
966 			sig->group_exit_code = exit_code;
967 			sig->flags = SIGNAL_GROUP_EXIT;
968 			zap_other_threads(current);
969 		}
970 		spin_unlock_irq(&sighand->siglock);
971 	}
972 
973 	do_exit(exit_code);
974 	/* NOTREACHED */
975 }
976 
977 /*
978  * this kills every thread in the thread group. Note that any externally
979  * wait4()-ing process will get the correct exit code - even if this
980  * thread is not the thread group leader.
981  */
982 SYSCALL_DEFINE1(exit_group, int, error_code)
983 {
984 	do_group_exit((error_code & 0xff) << 8);
985 	/* NOTREACHED */
986 	return 0;
987 }
988 
989 struct wait_opts {
990 	enum pid_type		wo_type;
991 	int			wo_flags;
992 	struct pid		*wo_pid;
993 
994 	struct siginfo __user	*wo_info;
995 	int __user		*wo_stat;
996 	struct rusage __user	*wo_rusage;
997 
998 	wait_queue_t		child_wait;
999 	int			notask_error;
1000 };
1001 
1002 static inline
1003 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1004 {
1005 	if (type != PIDTYPE_PID)
1006 		task = task->group_leader;
1007 	return task->pids[type].pid;
1008 }
1009 
1010 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1011 {
1012 	return	wo->wo_type == PIDTYPE_MAX ||
1013 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1014 }
1015 
1016 static int
1017 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1018 {
1019 	if (!eligible_pid(wo, p))
1020 		return 0;
1021 
1022 	/*
1023 	 * Wait for all children (clone and not) if __WALL is set or
1024 	 * if it is traced by us.
1025 	 */
1026 	if (ptrace || (wo->wo_flags & __WALL))
1027 		return 1;
1028 
1029 	/*
1030 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1031 	 * otherwise, wait for non-clone children *only*.
1032 	 *
1033 	 * Note: a "clone" child here is one that reports to its parent
1034 	 * using a signal other than SIGCHLD, or a non-leader thread which
1035 	 * we can only see if it is traced by us.
1036 	 */
1037 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1038 		return 0;
1039 
1040 	return 1;
1041 }
1042 
1043 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1044 				pid_t pid, uid_t uid, int why, int status)
1045 {
1046 	struct siginfo __user *infop;
1047 	int retval = wo->wo_rusage
1048 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1049 
1050 	put_task_struct(p);
1051 	infop = wo->wo_info;
1052 	if (infop) {
1053 		if (!retval)
1054 			retval = put_user(SIGCHLD, &infop->si_signo);
1055 		if (!retval)
1056 			retval = put_user(0, &infop->si_errno);
1057 		if (!retval)
1058 			retval = put_user((short)why, &infop->si_code);
1059 		if (!retval)
1060 			retval = put_user(pid, &infop->si_pid);
1061 		if (!retval)
1062 			retval = put_user(uid, &infop->si_uid);
1063 		if (!retval)
1064 			retval = put_user(status, &infop->si_status);
1065 	}
1066 	if (!retval)
1067 		retval = pid;
1068 	return retval;
1069 }
1070 
1071 /*
1072  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1073  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1074  * the lock and this task is uninteresting.  If we return nonzero, we have
1075  * released the lock and the system call should return.
1076  */
1077 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1078 {
1079 	int state, retval, status;
1080 	pid_t pid = task_pid_vnr(p);
1081 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1082 	struct siginfo __user *infop;
1083 
1084 	if (!likely(wo->wo_flags & WEXITED))
1085 		return 0;
1086 
1087 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1088 		int exit_code = p->exit_code;
1089 		int why;
1090 
1091 		get_task_struct(p);
1092 		read_unlock(&tasklist_lock);
1093 		sched_annotate_sleep();
1094 
1095 		if ((exit_code & 0x7f) == 0) {
1096 			why = CLD_EXITED;
1097 			status = exit_code >> 8;
1098 		} else {
1099 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1100 			status = exit_code & 0x7f;
1101 		}
1102 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1103 	}
1104 	/*
1105 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1106 	 */
1107 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1108 		EXIT_TRACE : EXIT_DEAD;
1109 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1110 		return 0;
1111 	/*
1112 	 * We own this thread, nobody else can reap it.
1113 	 */
1114 	read_unlock(&tasklist_lock);
1115 	sched_annotate_sleep();
1116 
1117 	/*
1118 	 * Check thread_group_leader() to exclude the traced sub-threads.
1119 	 */
1120 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1121 		struct signal_struct *sig = p->signal;
1122 		struct signal_struct *psig = current->signal;
1123 		unsigned long maxrss;
1124 		cputime_t tgutime, tgstime;
1125 
1126 		/*
1127 		 * The resource counters for the group leader are in its
1128 		 * own task_struct.  Those for dead threads in the group
1129 		 * are in its signal_struct, as are those for the child
1130 		 * processes it has previously reaped.  All these
1131 		 * accumulate in the parent's signal_struct c* fields.
1132 		 *
1133 		 * We don't bother to take a lock here to protect these
1134 		 * p->signal fields because the whole thread group is dead
1135 		 * and nobody can change them.
1136 		 *
1137 		 * psig->stats_lock also protects us from our sub-theads
1138 		 * which can reap other children at the same time. Until
1139 		 * we change k_getrusage()-like users to rely on this lock
1140 		 * we have to take ->siglock as well.
1141 		 *
1142 		 * We use thread_group_cputime_adjusted() to get times for
1143 		 * the thread group, which consolidates times for all threads
1144 		 * in the group including the group leader.
1145 		 */
1146 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1147 		spin_lock_irq(&current->sighand->siglock);
1148 		write_seqlock(&psig->stats_lock);
1149 		psig->cutime += tgutime + sig->cutime;
1150 		psig->cstime += tgstime + sig->cstime;
1151 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1152 		psig->cmin_flt +=
1153 			p->min_flt + sig->min_flt + sig->cmin_flt;
1154 		psig->cmaj_flt +=
1155 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1156 		psig->cnvcsw +=
1157 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1158 		psig->cnivcsw +=
1159 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1160 		psig->cinblock +=
1161 			task_io_get_inblock(p) +
1162 			sig->inblock + sig->cinblock;
1163 		psig->coublock +=
1164 			task_io_get_oublock(p) +
1165 			sig->oublock + sig->coublock;
1166 		maxrss = max(sig->maxrss, sig->cmaxrss);
1167 		if (psig->cmaxrss < maxrss)
1168 			psig->cmaxrss = maxrss;
1169 		task_io_accounting_add(&psig->ioac, &p->ioac);
1170 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1171 		write_sequnlock(&psig->stats_lock);
1172 		spin_unlock_irq(&current->sighand->siglock);
1173 	}
1174 
1175 	retval = wo->wo_rusage
1176 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1177 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1178 		? p->signal->group_exit_code : p->exit_code;
1179 	if (!retval && wo->wo_stat)
1180 		retval = put_user(status, wo->wo_stat);
1181 
1182 	infop = wo->wo_info;
1183 	if (!retval && infop)
1184 		retval = put_user(SIGCHLD, &infop->si_signo);
1185 	if (!retval && infop)
1186 		retval = put_user(0, &infop->si_errno);
1187 	if (!retval && infop) {
1188 		int why;
1189 
1190 		if ((status & 0x7f) == 0) {
1191 			why = CLD_EXITED;
1192 			status >>= 8;
1193 		} else {
1194 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1195 			status &= 0x7f;
1196 		}
1197 		retval = put_user((short)why, &infop->si_code);
1198 		if (!retval)
1199 			retval = put_user(status, &infop->si_status);
1200 	}
1201 	if (!retval && infop)
1202 		retval = put_user(pid, &infop->si_pid);
1203 	if (!retval && infop)
1204 		retval = put_user(uid, &infop->si_uid);
1205 	if (!retval)
1206 		retval = pid;
1207 
1208 	if (state == EXIT_TRACE) {
1209 		write_lock_irq(&tasklist_lock);
1210 		/* We dropped tasklist, ptracer could die and untrace */
1211 		ptrace_unlink(p);
1212 
1213 		/* If parent wants a zombie, don't release it now */
1214 		state = EXIT_ZOMBIE;
1215 		if (do_notify_parent(p, p->exit_signal))
1216 			state = EXIT_DEAD;
1217 		p->exit_state = state;
1218 		write_unlock_irq(&tasklist_lock);
1219 	}
1220 	if (state == EXIT_DEAD)
1221 		release_task(p);
1222 
1223 	return retval;
1224 }
1225 
1226 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1227 {
1228 	if (ptrace) {
1229 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1230 			return &p->exit_code;
1231 	} else {
1232 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1233 			return &p->signal->group_exit_code;
1234 	}
1235 	return NULL;
1236 }
1237 
1238 /**
1239  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1240  * @wo: wait options
1241  * @ptrace: is the wait for ptrace
1242  * @p: task to wait for
1243  *
1244  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1245  *
1246  * CONTEXT:
1247  * read_lock(&tasklist_lock), which is released if return value is
1248  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1249  *
1250  * RETURNS:
1251  * 0 if wait condition didn't exist and search for other wait conditions
1252  * should continue.  Non-zero return, -errno on failure and @p's pid on
1253  * success, implies that tasklist_lock is released and wait condition
1254  * search should terminate.
1255  */
1256 static int wait_task_stopped(struct wait_opts *wo,
1257 				int ptrace, struct task_struct *p)
1258 {
1259 	struct siginfo __user *infop;
1260 	int retval, exit_code, *p_code, why;
1261 	uid_t uid = 0; /* unneeded, required by compiler */
1262 	pid_t pid;
1263 
1264 	/*
1265 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1266 	 */
1267 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1268 		return 0;
1269 
1270 	if (!task_stopped_code(p, ptrace))
1271 		return 0;
1272 
1273 	exit_code = 0;
1274 	spin_lock_irq(&p->sighand->siglock);
1275 
1276 	p_code = task_stopped_code(p, ptrace);
1277 	if (unlikely(!p_code))
1278 		goto unlock_sig;
1279 
1280 	exit_code = *p_code;
1281 	if (!exit_code)
1282 		goto unlock_sig;
1283 
1284 	if (!unlikely(wo->wo_flags & WNOWAIT))
1285 		*p_code = 0;
1286 
1287 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1288 unlock_sig:
1289 	spin_unlock_irq(&p->sighand->siglock);
1290 	if (!exit_code)
1291 		return 0;
1292 
1293 	/*
1294 	 * Now we are pretty sure this task is interesting.
1295 	 * Make sure it doesn't get reaped out from under us while we
1296 	 * give up the lock and then examine it below.  We don't want to
1297 	 * keep holding onto the tasklist_lock while we call getrusage and
1298 	 * possibly take page faults for user memory.
1299 	 */
1300 	get_task_struct(p);
1301 	pid = task_pid_vnr(p);
1302 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1303 	read_unlock(&tasklist_lock);
1304 	sched_annotate_sleep();
1305 
1306 	if (unlikely(wo->wo_flags & WNOWAIT))
1307 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1308 
1309 	retval = wo->wo_rusage
1310 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1311 	if (!retval && wo->wo_stat)
1312 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1313 
1314 	infop = wo->wo_info;
1315 	if (!retval && infop)
1316 		retval = put_user(SIGCHLD, &infop->si_signo);
1317 	if (!retval && infop)
1318 		retval = put_user(0, &infop->si_errno);
1319 	if (!retval && infop)
1320 		retval = put_user((short)why, &infop->si_code);
1321 	if (!retval && infop)
1322 		retval = put_user(exit_code, &infop->si_status);
1323 	if (!retval && infop)
1324 		retval = put_user(pid, &infop->si_pid);
1325 	if (!retval && infop)
1326 		retval = put_user(uid, &infop->si_uid);
1327 	if (!retval)
1328 		retval = pid;
1329 	put_task_struct(p);
1330 
1331 	BUG_ON(!retval);
1332 	return retval;
1333 }
1334 
1335 /*
1336  * Handle do_wait work for one task in a live, non-stopped state.
1337  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1338  * the lock and this task is uninteresting.  If we return nonzero, we have
1339  * released the lock and the system call should return.
1340  */
1341 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1342 {
1343 	int retval;
1344 	pid_t pid;
1345 	uid_t uid;
1346 
1347 	if (!unlikely(wo->wo_flags & WCONTINUED))
1348 		return 0;
1349 
1350 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1351 		return 0;
1352 
1353 	spin_lock_irq(&p->sighand->siglock);
1354 	/* Re-check with the lock held.  */
1355 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1356 		spin_unlock_irq(&p->sighand->siglock);
1357 		return 0;
1358 	}
1359 	if (!unlikely(wo->wo_flags & WNOWAIT))
1360 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1361 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1362 	spin_unlock_irq(&p->sighand->siglock);
1363 
1364 	pid = task_pid_vnr(p);
1365 	get_task_struct(p);
1366 	read_unlock(&tasklist_lock);
1367 	sched_annotate_sleep();
1368 
1369 	if (!wo->wo_info) {
1370 		retval = wo->wo_rusage
1371 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1372 		put_task_struct(p);
1373 		if (!retval && wo->wo_stat)
1374 			retval = put_user(0xffff, wo->wo_stat);
1375 		if (!retval)
1376 			retval = pid;
1377 	} else {
1378 		retval = wait_noreap_copyout(wo, p, pid, uid,
1379 					     CLD_CONTINUED, SIGCONT);
1380 		BUG_ON(retval == 0);
1381 	}
1382 
1383 	return retval;
1384 }
1385 
1386 /*
1387  * Consider @p for a wait by @parent.
1388  *
1389  * -ECHILD should be in ->notask_error before the first call.
1390  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1391  * Returns zero if the search for a child should continue;
1392  * then ->notask_error is 0 if @p is an eligible child,
1393  * or another error from security_task_wait(), or still -ECHILD.
1394  */
1395 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1396 				struct task_struct *p)
1397 {
1398 	/*
1399 	 * We can race with wait_task_zombie() from another thread.
1400 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1401 	 * can't confuse the checks below.
1402 	 */
1403 	int exit_state = ACCESS_ONCE(p->exit_state);
1404 	int ret;
1405 
1406 	if (unlikely(exit_state == EXIT_DEAD))
1407 		return 0;
1408 
1409 	ret = eligible_child(wo, ptrace, p);
1410 	if (!ret)
1411 		return ret;
1412 
1413 	ret = security_task_wait(p);
1414 	if (unlikely(ret < 0)) {
1415 		/*
1416 		 * If we have not yet seen any eligible child,
1417 		 * then let this error code replace -ECHILD.
1418 		 * A permission error will give the user a clue
1419 		 * to look for security policy problems, rather
1420 		 * than for mysterious wait bugs.
1421 		 */
1422 		if (wo->notask_error)
1423 			wo->notask_error = ret;
1424 		return 0;
1425 	}
1426 
1427 	if (unlikely(exit_state == EXIT_TRACE)) {
1428 		/*
1429 		 * ptrace == 0 means we are the natural parent. In this case
1430 		 * we should clear notask_error, debugger will notify us.
1431 		 */
1432 		if (likely(!ptrace))
1433 			wo->notask_error = 0;
1434 		return 0;
1435 	}
1436 
1437 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1438 		/*
1439 		 * If it is traced by its real parent's group, just pretend
1440 		 * the caller is ptrace_do_wait() and reap this child if it
1441 		 * is zombie.
1442 		 *
1443 		 * This also hides group stop state from real parent; otherwise
1444 		 * a single stop can be reported twice as group and ptrace stop.
1445 		 * If a ptracer wants to distinguish these two events for its
1446 		 * own children it should create a separate process which takes
1447 		 * the role of real parent.
1448 		 */
1449 		if (!ptrace_reparented(p))
1450 			ptrace = 1;
1451 	}
1452 
1453 	/* slay zombie? */
1454 	if (exit_state == EXIT_ZOMBIE) {
1455 		/* we don't reap group leaders with subthreads */
1456 		if (!delay_group_leader(p)) {
1457 			/*
1458 			 * A zombie ptracee is only visible to its ptracer.
1459 			 * Notification and reaping will be cascaded to the
1460 			 * real parent when the ptracer detaches.
1461 			 */
1462 			if (unlikely(ptrace) || likely(!p->ptrace))
1463 				return wait_task_zombie(wo, p);
1464 		}
1465 
1466 		/*
1467 		 * Allow access to stopped/continued state via zombie by
1468 		 * falling through.  Clearing of notask_error is complex.
1469 		 *
1470 		 * When !@ptrace:
1471 		 *
1472 		 * If WEXITED is set, notask_error should naturally be
1473 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1474 		 * so, if there are live subthreads, there are events to
1475 		 * wait for.  If all subthreads are dead, it's still safe
1476 		 * to clear - this function will be called again in finite
1477 		 * amount time once all the subthreads are released and
1478 		 * will then return without clearing.
1479 		 *
1480 		 * When @ptrace:
1481 		 *
1482 		 * Stopped state is per-task and thus can't change once the
1483 		 * target task dies.  Only continued and exited can happen.
1484 		 * Clear notask_error if WCONTINUED | WEXITED.
1485 		 */
1486 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1487 			wo->notask_error = 0;
1488 	} else {
1489 		/*
1490 		 * @p is alive and it's gonna stop, continue or exit, so
1491 		 * there always is something to wait for.
1492 		 */
1493 		wo->notask_error = 0;
1494 	}
1495 
1496 	/*
1497 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1498 	 * is used and the two don't interact with each other.
1499 	 */
1500 	ret = wait_task_stopped(wo, ptrace, p);
1501 	if (ret)
1502 		return ret;
1503 
1504 	/*
1505 	 * Wait for continued.  There's only one continued state and the
1506 	 * ptracer can consume it which can confuse the real parent.  Don't
1507 	 * use WCONTINUED from ptracer.  You don't need or want it.
1508 	 */
1509 	return wait_task_continued(wo, p);
1510 }
1511 
1512 /*
1513  * Do the work of do_wait() for one thread in the group, @tsk.
1514  *
1515  * -ECHILD should be in ->notask_error before the first call.
1516  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1517  * Returns zero if the search for a child should continue; then
1518  * ->notask_error is 0 if there were any eligible children,
1519  * or another error from security_task_wait(), or still -ECHILD.
1520  */
1521 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1522 {
1523 	struct task_struct *p;
1524 
1525 	list_for_each_entry(p, &tsk->children, sibling) {
1526 		int ret = wait_consider_task(wo, 0, p);
1527 
1528 		if (ret)
1529 			return ret;
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1536 {
1537 	struct task_struct *p;
1538 
1539 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1540 		int ret = wait_consider_task(wo, 1, p);
1541 
1542 		if (ret)
1543 			return ret;
1544 	}
1545 
1546 	return 0;
1547 }
1548 
1549 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1550 				int sync, void *key)
1551 {
1552 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1553 						child_wait);
1554 	struct task_struct *p = key;
1555 
1556 	if (!eligible_pid(wo, p))
1557 		return 0;
1558 
1559 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1560 		return 0;
1561 
1562 	return default_wake_function(wait, mode, sync, key);
1563 }
1564 
1565 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1566 {
1567 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1568 				TASK_INTERRUPTIBLE, 1, p);
1569 }
1570 
1571 static long do_wait(struct wait_opts *wo)
1572 {
1573 	struct task_struct *tsk;
1574 	int retval;
1575 
1576 	trace_sched_process_wait(wo->wo_pid);
1577 
1578 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1579 	wo->child_wait.private = current;
1580 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1581 repeat:
1582 	/*
1583 	 * If there is nothing that can match our criteria, just get out.
1584 	 * We will clear ->notask_error to zero if we see any child that
1585 	 * might later match our criteria, even if we are not able to reap
1586 	 * it yet.
1587 	 */
1588 	wo->notask_error = -ECHILD;
1589 	if ((wo->wo_type < PIDTYPE_MAX) &&
1590 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1591 		goto notask;
1592 
1593 	set_current_state(TASK_INTERRUPTIBLE);
1594 	read_lock(&tasklist_lock);
1595 	tsk = current;
1596 	do {
1597 		retval = do_wait_thread(wo, tsk);
1598 		if (retval)
1599 			goto end;
1600 
1601 		retval = ptrace_do_wait(wo, tsk);
1602 		if (retval)
1603 			goto end;
1604 
1605 		if (wo->wo_flags & __WNOTHREAD)
1606 			break;
1607 	} while_each_thread(current, tsk);
1608 	read_unlock(&tasklist_lock);
1609 
1610 notask:
1611 	retval = wo->notask_error;
1612 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1613 		retval = -ERESTARTSYS;
1614 		if (!signal_pending(current)) {
1615 			schedule();
1616 			goto repeat;
1617 		}
1618 	}
1619 end:
1620 	__set_current_state(TASK_RUNNING);
1621 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1622 	return retval;
1623 }
1624 
1625 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1626 		infop, int, options, struct rusage __user *, ru)
1627 {
1628 	struct wait_opts wo;
1629 	struct pid *pid = NULL;
1630 	enum pid_type type;
1631 	long ret;
1632 
1633 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1634 			__WNOTHREAD|__WCLONE|__WALL))
1635 		return -EINVAL;
1636 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1637 		return -EINVAL;
1638 
1639 	switch (which) {
1640 	case P_ALL:
1641 		type = PIDTYPE_MAX;
1642 		break;
1643 	case P_PID:
1644 		type = PIDTYPE_PID;
1645 		if (upid <= 0)
1646 			return -EINVAL;
1647 		break;
1648 	case P_PGID:
1649 		type = PIDTYPE_PGID;
1650 		if (upid <= 0)
1651 			return -EINVAL;
1652 		break;
1653 	default:
1654 		return -EINVAL;
1655 	}
1656 
1657 	if (type < PIDTYPE_MAX)
1658 		pid = find_get_pid(upid);
1659 
1660 	wo.wo_type	= type;
1661 	wo.wo_pid	= pid;
1662 	wo.wo_flags	= options;
1663 	wo.wo_info	= infop;
1664 	wo.wo_stat	= NULL;
1665 	wo.wo_rusage	= ru;
1666 	ret = do_wait(&wo);
1667 
1668 	if (ret > 0) {
1669 		ret = 0;
1670 	} else if (infop) {
1671 		/*
1672 		 * For a WNOHANG return, clear out all the fields
1673 		 * we would set so the user can easily tell the
1674 		 * difference.
1675 		 */
1676 		if (!ret)
1677 			ret = put_user(0, &infop->si_signo);
1678 		if (!ret)
1679 			ret = put_user(0, &infop->si_errno);
1680 		if (!ret)
1681 			ret = put_user(0, &infop->si_code);
1682 		if (!ret)
1683 			ret = put_user(0, &infop->si_pid);
1684 		if (!ret)
1685 			ret = put_user(0, &infop->si_uid);
1686 		if (!ret)
1687 			ret = put_user(0, &infop->si_status);
1688 	}
1689 
1690 	put_pid(pid);
1691 	return ret;
1692 }
1693 
1694 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1695 		int, options, struct rusage __user *, ru)
1696 {
1697 	struct wait_opts wo;
1698 	struct pid *pid = NULL;
1699 	enum pid_type type;
1700 	long ret;
1701 
1702 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1703 			__WNOTHREAD|__WCLONE|__WALL))
1704 		return -EINVAL;
1705 
1706 	if (upid == -1)
1707 		type = PIDTYPE_MAX;
1708 	else if (upid < 0) {
1709 		type = PIDTYPE_PGID;
1710 		pid = find_get_pid(-upid);
1711 	} else if (upid == 0) {
1712 		type = PIDTYPE_PGID;
1713 		pid = get_task_pid(current, PIDTYPE_PGID);
1714 	} else /* upid > 0 */ {
1715 		type = PIDTYPE_PID;
1716 		pid = find_get_pid(upid);
1717 	}
1718 
1719 	wo.wo_type	= type;
1720 	wo.wo_pid	= pid;
1721 	wo.wo_flags	= options | WEXITED;
1722 	wo.wo_info	= NULL;
1723 	wo.wo_stat	= stat_addr;
1724 	wo.wo_rusage	= ru;
1725 	ret = do_wait(&wo);
1726 	put_pid(pid);
1727 
1728 	return ret;
1729 }
1730 
1731 #ifdef __ARCH_WANT_SYS_WAITPID
1732 
1733 /*
1734  * sys_waitpid() remains for compatibility. waitpid() should be
1735  * implemented by calling sys_wait4() from libc.a.
1736  */
1737 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1738 {
1739 	return sys_wait4(pid, stat_addr, options, NULL);
1740 }
1741 
1742 #endif
1743