xref: /openbmc/linux/kernel/exit.c (revision 22246614)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu_context.h>
53 
54 static void exit_mm(struct task_struct * tsk);
55 
56 static inline int task_detached(struct task_struct *p)
57 {
58 	return p->exit_signal == -1;
59 }
60 
61 static void __unhash_process(struct task_struct *p)
62 {
63 	nr_threads--;
64 	detach_pid(p, PIDTYPE_PID);
65 	if (thread_group_leader(p)) {
66 		detach_pid(p, PIDTYPE_PGID);
67 		detach_pid(p, PIDTYPE_SID);
68 
69 		list_del_rcu(&p->tasks);
70 		__get_cpu_var(process_counts)--;
71 	}
72 	list_del_rcu(&p->thread_group);
73 	remove_parent(p);
74 }
75 
76 /*
77  * This function expects the tasklist_lock write-locked.
78  */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 	struct signal_struct *sig = tsk->signal;
82 	struct sighand_struct *sighand;
83 
84 	BUG_ON(!sig);
85 	BUG_ON(!atomic_read(&sig->count));
86 
87 	rcu_read_lock();
88 	sighand = rcu_dereference(tsk->sighand);
89 	spin_lock(&sighand->siglock);
90 
91 	posix_cpu_timers_exit(tsk);
92 	if (atomic_dec_and_test(&sig->count))
93 		posix_cpu_timers_exit_group(tsk);
94 	else {
95 		/*
96 		 * If there is any task waiting for the group exit
97 		 * then notify it:
98 		 */
99 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100 			wake_up_process(sig->group_exit_task);
101 
102 		if (tsk == sig->curr_target)
103 			sig->curr_target = next_thread(tsk);
104 		/*
105 		 * Accumulate here the counters for all threads but the
106 		 * group leader as they die, so they can be added into
107 		 * the process-wide totals when those are taken.
108 		 * The group leader stays around as a zombie as long
109 		 * as there are other threads.  When it gets reaped,
110 		 * the exit.c code will add its counts into these totals.
111 		 * We won't ever get here for the group leader, since it
112 		 * will have been the last reference on the signal_struct.
113 		 */
114 		sig->utime = cputime_add(sig->utime, tsk->utime);
115 		sig->stime = cputime_add(sig->stime, tsk->stime);
116 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
117 		sig->min_flt += tsk->min_flt;
118 		sig->maj_flt += tsk->maj_flt;
119 		sig->nvcsw += tsk->nvcsw;
120 		sig->nivcsw += tsk->nivcsw;
121 		sig->inblock += task_io_get_inblock(tsk);
122 		sig->oublock += task_io_get_oublock(tsk);
123 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
124 		sig = NULL; /* Marker for below. */
125 	}
126 
127 	__unhash_process(tsk);
128 
129 	tsk->signal = NULL;
130 	tsk->sighand = NULL;
131 	spin_unlock(&sighand->siglock);
132 	rcu_read_unlock();
133 
134 	__cleanup_sighand(sighand);
135 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
136 	flush_sigqueue(&tsk->pending);
137 	if (sig) {
138 		flush_sigqueue(&sig->shared_pending);
139 		taskstats_tgid_free(sig);
140 		__cleanup_signal(sig);
141 	}
142 }
143 
144 static void delayed_put_task_struct(struct rcu_head *rhp)
145 {
146 	put_task_struct(container_of(rhp, struct task_struct, rcu));
147 }
148 
149 void release_task(struct task_struct * p)
150 {
151 	struct task_struct *leader;
152 	int zap_leader;
153 repeat:
154 	atomic_dec(&p->user->processes);
155 	proc_flush_task(p);
156 	write_lock_irq(&tasklist_lock);
157 	ptrace_unlink(p);
158 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
159 	__exit_signal(p);
160 
161 	/*
162 	 * If we are the last non-leader member of the thread
163 	 * group, and the leader is zombie, then notify the
164 	 * group leader's parent process. (if it wants notification.)
165 	 */
166 	zap_leader = 0;
167 	leader = p->group_leader;
168 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
169 		BUG_ON(task_detached(leader));
170 		do_notify_parent(leader, leader->exit_signal);
171 		/*
172 		 * If we were the last child thread and the leader has
173 		 * exited already, and the leader's parent ignores SIGCHLD,
174 		 * then we are the one who should release the leader.
175 		 *
176 		 * do_notify_parent() will have marked it self-reaping in
177 		 * that case.
178 		 */
179 		zap_leader = task_detached(leader);
180 	}
181 
182 	write_unlock_irq(&tasklist_lock);
183 	release_thread(p);
184 	call_rcu(&p->rcu, delayed_put_task_struct);
185 
186 	p = leader;
187 	if (unlikely(zap_leader))
188 		goto repeat;
189 }
190 
191 /*
192  * This checks not only the pgrp, but falls back on the pid if no
193  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
194  * without this...
195  *
196  * The caller must hold rcu lock or the tasklist lock.
197  */
198 struct pid *session_of_pgrp(struct pid *pgrp)
199 {
200 	struct task_struct *p;
201 	struct pid *sid = NULL;
202 
203 	p = pid_task(pgrp, PIDTYPE_PGID);
204 	if (p == NULL)
205 		p = pid_task(pgrp, PIDTYPE_PID);
206 	if (p != NULL)
207 		sid = task_session(p);
208 
209 	return sid;
210 }
211 
212 /*
213  * Determine if a process group is "orphaned", according to the POSIX
214  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
215  * by terminal-generated stop signals.  Newly orphaned process groups are
216  * to receive a SIGHUP and a SIGCONT.
217  *
218  * "I ask you, have you ever known what it is to be an orphan?"
219  */
220 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
221 {
222 	struct task_struct *p;
223 
224 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
225 		if ((p == ignored_task) ||
226 		    (p->exit_state && thread_group_empty(p)) ||
227 		    is_global_init(p->real_parent))
228 			continue;
229 
230 		if (task_pgrp(p->real_parent) != pgrp &&
231 		    task_session(p->real_parent) == task_session(p))
232 			return 0;
233 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
234 
235 	return 1;
236 }
237 
238 int is_current_pgrp_orphaned(void)
239 {
240 	int retval;
241 
242 	read_lock(&tasklist_lock);
243 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
244 	read_unlock(&tasklist_lock);
245 
246 	return retval;
247 }
248 
249 static int has_stopped_jobs(struct pid *pgrp)
250 {
251 	int retval = 0;
252 	struct task_struct *p;
253 
254 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
255 		if (!task_is_stopped(p))
256 			continue;
257 		retval = 1;
258 		break;
259 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
260 	return retval;
261 }
262 
263 /*
264  * Check to see if any process groups have become orphaned as
265  * a result of our exiting, and if they have any stopped jobs,
266  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
267  */
268 static void
269 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
270 {
271 	struct pid *pgrp = task_pgrp(tsk);
272 	struct task_struct *ignored_task = tsk;
273 
274 	if (!parent)
275 		 /* exit: our father is in a different pgrp than
276 		  * we are and we were the only connection outside.
277 		  */
278 		parent = tsk->real_parent;
279 	else
280 		/* reparent: our child is in a different pgrp than
281 		 * we are, and it was the only connection outside.
282 		 */
283 		ignored_task = NULL;
284 
285 	if (task_pgrp(parent) != pgrp &&
286 	    task_session(parent) == task_session(tsk) &&
287 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
288 	    has_stopped_jobs(pgrp)) {
289 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
290 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
291 	}
292 }
293 
294 /**
295  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
296  *
297  * If a kernel thread is launched as a result of a system call, or if
298  * it ever exits, it should generally reparent itself to kthreadd so it
299  * isn't in the way of other processes and is correctly cleaned up on exit.
300  *
301  * The various task state such as scheduling policy and priority may have
302  * been inherited from a user process, so we reset them to sane values here.
303  *
304  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
305  */
306 static void reparent_to_kthreadd(void)
307 {
308 	write_lock_irq(&tasklist_lock);
309 
310 	ptrace_unlink(current);
311 	/* Reparent to init */
312 	remove_parent(current);
313 	current->real_parent = current->parent = kthreadd_task;
314 	add_parent(current);
315 
316 	/* Set the exit signal to SIGCHLD so we signal init on exit */
317 	current->exit_signal = SIGCHLD;
318 
319 	if (task_nice(current) < 0)
320 		set_user_nice(current, 0);
321 	/* cpus_allowed? */
322 	/* rt_priority? */
323 	/* signals? */
324 	security_task_reparent_to_init(current);
325 	memcpy(current->signal->rlim, init_task.signal->rlim,
326 	       sizeof(current->signal->rlim));
327 	atomic_inc(&(INIT_USER->__count));
328 	write_unlock_irq(&tasklist_lock);
329 	switch_uid(INIT_USER);
330 }
331 
332 void __set_special_pids(struct pid *pid)
333 {
334 	struct task_struct *curr = current->group_leader;
335 	pid_t nr = pid_nr(pid);
336 
337 	if (task_session(curr) != pid) {
338 		change_pid(curr, PIDTYPE_SID, pid);
339 		set_task_session(curr, nr);
340 	}
341 	if (task_pgrp(curr) != pid) {
342 		change_pid(curr, PIDTYPE_PGID, pid);
343 		set_task_pgrp(curr, nr);
344 	}
345 }
346 
347 static void set_special_pids(struct pid *pid)
348 {
349 	write_lock_irq(&tasklist_lock);
350 	__set_special_pids(pid);
351 	write_unlock_irq(&tasklist_lock);
352 }
353 
354 /*
355  * Let kernel threads use this to say that they
356  * allow a certain signal (since daemonize() will
357  * have disabled all of them by default).
358  */
359 int allow_signal(int sig)
360 {
361 	if (!valid_signal(sig) || sig < 1)
362 		return -EINVAL;
363 
364 	spin_lock_irq(&current->sighand->siglock);
365 	sigdelset(&current->blocked, sig);
366 	if (!current->mm) {
367 		/* Kernel threads handle their own signals.
368 		   Let the signal code know it'll be handled, so
369 		   that they don't get converted to SIGKILL or
370 		   just silently dropped */
371 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
372 	}
373 	recalc_sigpending();
374 	spin_unlock_irq(&current->sighand->siglock);
375 	return 0;
376 }
377 
378 EXPORT_SYMBOL(allow_signal);
379 
380 int disallow_signal(int sig)
381 {
382 	if (!valid_signal(sig) || sig < 1)
383 		return -EINVAL;
384 
385 	spin_lock_irq(&current->sighand->siglock);
386 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
387 	recalc_sigpending();
388 	spin_unlock_irq(&current->sighand->siglock);
389 	return 0;
390 }
391 
392 EXPORT_SYMBOL(disallow_signal);
393 
394 /*
395  *	Put all the gunge required to become a kernel thread without
396  *	attached user resources in one place where it belongs.
397  */
398 
399 void daemonize(const char *name, ...)
400 {
401 	va_list args;
402 	struct fs_struct *fs;
403 	sigset_t blocked;
404 
405 	va_start(args, name);
406 	vsnprintf(current->comm, sizeof(current->comm), name, args);
407 	va_end(args);
408 
409 	/*
410 	 * If we were started as result of loading a module, close all of the
411 	 * user space pages.  We don't need them, and if we didn't close them
412 	 * they would be locked into memory.
413 	 */
414 	exit_mm(current);
415 	/*
416 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
417 	 * or suspend transition begins right now.
418 	 */
419 	current->flags |= PF_NOFREEZE;
420 
421 	if (current->nsproxy != &init_nsproxy) {
422 		get_nsproxy(&init_nsproxy);
423 		switch_task_namespaces(current, &init_nsproxy);
424 	}
425 	set_special_pids(&init_struct_pid);
426 	proc_clear_tty(current);
427 
428 	/* Block and flush all signals */
429 	sigfillset(&blocked);
430 	sigprocmask(SIG_BLOCK, &blocked, NULL);
431 	flush_signals(current);
432 
433 	/* Become as one with the init task */
434 
435 	exit_fs(current);	/* current->fs->count--; */
436 	fs = init_task.fs;
437 	current->fs = fs;
438 	atomic_inc(&fs->count);
439 
440 	exit_files(current);
441 	current->files = init_task.files;
442 	atomic_inc(&current->files->count);
443 
444 	reparent_to_kthreadd();
445 }
446 
447 EXPORT_SYMBOL(daemonize);
448 
449 static void close_files(struct files_struct * files)
450 {
451 	int i, j;
452 	struct fdtable *fdt;
453 
454 	j = 0;
455 
456 	/*
457 	 * It is safe to dereference the fd table without RCU or
458 	 * ->file_lock because this is the last reference to the
459 	 * files structure.
460 	 */
461 	fdt = files_fdtable(files);
462 	for (;;) {
463 		unsigned long set;
464 		i = j * __NFDBITS;
465 		if (i >= fdt->max_fds)
466 			break;
467 		set = fdt->open_fds->fds_bits[j++];
468 		while (set) {
469 			if (set & 1) {
470 				struct file * file = xchg(&fdt->fd[i], NULL);
471 				if (file) {
472 					filp_close(file, files);
473 					cond_resched();
474 				}
475 			}
476 			i++;
477 			set >>= 1;
478 		}
479 	}
480 }
481 
482 struct files_struct *get_files_struct(struct task_struct *task)
483 {
484 	struct files_struct *files;
485 
486 	task_lock(task);
487 	files = task->files;
488 	if (files)
489 		atomic_inc(&files->count);
490 	task_unlock(task);
491 
492 	return files;
493 }
494 
495 void put_files_struct(struct files_struct *files)
496 {
497 	struct fdtable *fdt;
498 
499 	if (atomic_dec_and_test(&files->count)) {
500 		close_files(files);
501 		/*
502 		 * Free the fd and fdset arrays if we expanded them.
503 		 * If the fdtable was embedded, pass files for freeing
504 		 * at the end of the RCU grace period. Otherwise,
505 		 * you can free files immediately.
506 		 */
507 		fdt = files_fdtable(files);
508 		if (fdt != &files->fdtab)
509 			kmem_cache_free(files_cachep, files);
510 		free_fdtable(fdt);
511 	}
512 }
513 
514 void reset_files_struct(struct files_struct *files)
515 {
516 	struct task_struct *tsk = current;
517 	struct files_struct *old;
518 
519 	old = tsk->files;
520 	task_lock(tsk);
521 	tsk->files = files;
522 	task_unlock(tsk);
523 	put_files_struct(old);
524 }
525 
526 void exit_files(struct task_struct *tsk)
527 {
528 	struct files_struct * files = tsk->files;
529 
530 	if (files) {
531 		task_lock(tsk);
532 		tsk->files = NULL;
533 		task_unlock(tsk);
534 		put_files_struct(files);
535 	}
536 }
537 
538 void put_fs_struct(struct fs_struct *fs)
539 {
540 	/* No need to hold fs->lock if we are killing it */
541 	if (atomic_dec_and_test(&fs->count)) {
542 		path_put(&fs->root);
543 		path_put(&fs->pwd);
544 		if (fs->altroot.dentry)
545 			path_put(&fs->altroot);
546 		kmem_cache_free(fs_cachep, fs);
547 	}
548 }
549 
550 void exit_fs(struct task_struct *tsk)
551 {
552 	struct fs_struct * fs = tsk->fs;
553 
554 	if (fs) {
555 		task_lock(tsk);
556 		tsk->fs = NULL;
557 		task_unlock(tsk);
558 		put_fs_struct(fs);
559 	}
560 }
561 
562 EXPORT_SYMBOL_GPL(exit_fs);
563 
564 #ifdef CONFIG_MM_OWNER
565 /*
566  * Task p is exiting and it owned mm, lets find a new owner for it
567  */
568 static inline int
569 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
570 {
571 	/*
572 	 * If there are other users of the mm and the owner (us) is exiting
573 	 * we need to find a new owner to take on the responsibility.
574 	 */
575 	if (!mm)
576 		return 0;
577 	if (atomic_read(&mm->mm_users) <= 1)
578 		return 0;
579 	if (mm->owner != p)
580 		return 0;
581 	return 1;
582 }
583 
584 void mm_update_next_owner(struct mm_struct *mm)
585 {
586 	struct task_struct *c, *g, *p = current;
587 
588 retry:
589 	if (!mm_need_new_owner(mm, p))
590 		return;
591 
592 	read_lock(&tasklist_lock);
593 	/*
594 	 * Search in the children
595 	 */
596 	list_for_each_entry(c, &p->children, sibling) {
597 		if (c->mm == mm)
598 			goto assign_new_owner;
599 	}
600 
601 	/*
602 	 * Search in the siblings
603 	 */
604 	list_for_each_entry(c, &p->parent->children, sibling) {
605 		if (c->mm == mm)
606 			goto assign_new_owner;
607 	}
608 
609 	/*
610 	 * Search through everything else. We should not get
611 	 * here often
612 	 */
613 	do_each_thread(g, c) {
614 		if (c->mm == mm)
615 			goto assign_new_owner;
616 	} while_each_thread(g, c);
617 
618 	read_unlock(&tasklist_lock);
619 	return;
620 
621 assign_new_owner:
622 	BUG_ON(c == p);
623 	get_task_struct(c);
624 	/*
625 	 * The task_lock protects c->mm from changing.
626 	 * We always want mm->owner->mm == mm
627 	 */
628 	task_lock(c);
629 	/*
630 	 * Delay read_unlock() till we have the task_lock()
631 	 * to ensure that c does not slip away underneath us
632 	 */
633 	read_unlock(&tasklist_lock);
634 	if (c->mm != mm) {
635 		task_unlock(c);
636 		put_task_struct(c);
637 		goto retry;
638 	}
639 	cgroup_mm_owner_callbacks(mm->owner, c);
640 	mm->owner = c;
641 	task_unlock(c);
642 	put_task_struct(c);
643 }
644 #endif /* CONFIG_MM_OWNER */
645 
646 /*
647  * Turn us into a lazy TLB process if we
648  * aren't already..
649  */
650 static void exit_mm(struct task_struct * tsk)
651 {
652 	struct mm_struct *mm = tsk->mm;
653 
654 	mm_release(tsk, mm);
655 	if (!mm)
656 		return;
657 	/*
658 	 * Serialize with any possible pending coredump.
659 	 * We must hold mmap_sem around checking core_waiters
660 	 * and clearing tsk->mm.  The core-inducing thread
661 	 * will increment core_waiters for each thread in the
662 	 * group with ->mm != NULL.
663 	 */
664 	down_read(&mm->mmap_sem);
665 	if (mm->core_waiters) {
666 		up_read(&mm->mmap_sem);
667 		down_write(&mm->mmap_sem);
668 		if (!--mm->core_waiters)
669 			complete(mm->core_startup_done);
670 		up_write(&mm->mmap_sem);
671 
672 		wait_for_completion(&mm->core_done);
673 		down_read(&mm->mmap_sem);
674 	}
675 	atomic_inc(&mm->mm_count);
676 	BUG_ON(mm != tsk->active_mm);
677 	/* more a memory barrier than a real lock */
678 	task_lock(tsk);
679 	tsk->mm = NULL;
680 	up_read(&mm->mmap_sem);
681 	enter_lazy_tlb(mm, current);
682 	/* We don't want this task to be frozen prematurely */
683 	clear_freeze_flag(tsk);
684 	task_unlock(tsk);
685 	mm_update_next_owner(mm);
686 	mmput(mm);
687 }
688 
689 static void
690 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
691 {
692 	if (p->pdeath_signal)
693 		/* We already hold the tasklist_lock here.  */
694 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
695 
696 	/* Move the child from its dying parent to the new one.  */
697 	if (unlikely(traced)) {
698 		/* Preserve ptrace links if someone else is tracing this child.  */
699 		list_del_init(&p->ptrace_list);
700 		if (ptrace_reparented(p))
701 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
702 	} else {
703 		/* If this child is being traced, then we're the one tracing it
704 		 * anyway, so let go of it.
705 		 */
706 		p->ptrace = 0;
707 		remove_parent(p);
708 		p->parent = p->real_parent;
709 		add_parent(p);
710 
711 		if (task_is_traced(p)) {
712 			/*
713 			 * If it was at a trace stop, turn it into
714 			 * a normal stop since it's no longer being
715 			 * traced.
716 			 */
717 			ptrace_untrace(p);
718 		}
719 	}
720 
721 	/* If this is a threaded reparent there is no need to
722 	 * notify anyone anything has happened.
723 	 */
724 	if (same_thread_group(p->real_parent, father))
725 		return;
726 
727 	/* We don't want people slaying init.  */
728 	if (!task_detached(p))
729 		p->exit_signal = SIGCHLD;
730 
731 	/* If we'd notified the old parent about this child's death,
732 	 * also notify the new parent.
733 	 */
734 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
735 	    !task_detached(p) && thread_group_empty(p))
736 		do_notify_parent(p, p->exit_signal);
737 
738 	kill_orphaned_pgrp(p, father);
739 }
740 
741 /*
742  * When we die, we re-parent all our children.
743  * Try to give them to another thread in our thread
744  * group, and if no such member exists, give it to
745  * the child reaper process (ie "init") in our pid
746  * space.
747  */
748 static void forget_original_parent(struct task_struct *father)
749 {
750 	struct task_struct *p, *n, *reaper = father;
751 	struct list_head ptrace_dead;
752 
753 	INIT_LIST_HEAD(&ptrace_dead);
754 
755 	write_lock_irq(&tasklist_lock);
756 
757 	do {
758 		reaper = next_thread(reaper);
759 		if (reaper == father) {
760 			reaper = task_child_reaper(father);
761 			break;
762 		}
763 	} while (reaper->flags & PF_EXITING);
764 
765 	/*
766 	 * There are only two places where our children can be:
767 	 *
768 	 * - in our child list
769 	 * - in our ptraced child list
770 	 *
771 	 * Search them and reparent children.
772 	 */
773 	list_for_each_entry_safe(p, n, &father->children, sibling) {
774 		int ptrace;
775 
776 		ptrace = p->ptrace;
777 
778 		/* if father isn't the real parent, then ptrace must be enabled */
779 		BUG_ON(father != p->real_parent && !ptrace);
780 
781 		if (father == p->real_parent) {
782 			/* reparent with a reaper, real father it's us */
783 			p->real_parent = reaper;
784 			reparent_thread(p, father, 0);
785 		} else {
786 			/* reparent ptraced task to its real parent */
787 			__ptrace_unlink (p);
788 			if (p->exit_state == EXIT_ZOMBIE && !task_detached(p) &&
789 			    thread_group_empty(p))
790 				do_notify_parent(p, p->exit_signal);
791 		}
792 
793 		/*
794 		 * if the ptraced child is a detached zombie we must collect
795 		 * it before we exit, or it will remain zombie forever since
796 		 * we prevented it from self-reap itself while it was being
797 		 * traced by us, to be able to see it in wait4.
798 		 */
799 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && task_detached(p)))
800 			list_add(&p->ptrace_list, &ptrace_dead);
801 	}
802 
803 	list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
804 		p->real_parent = reaper;
805 		reparent_thread(p, father, 1);
806 	}
807 
808 	write_unlock_irq(&tasklist_lock);
809 	BUG_ON(!list_empty(&father->children));
810 	BUG_ON(!list_empty(&father->ptrace_children));
811 
812 	list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
813 		list_del_init(&p->ptrace_list);
814 		release_task(p);
815 	}
816 
817 }
818 
819 /*
820  * Send signals to all our closest relatives so that they know
821  * to properly mourn us..
822  */
823 static void exit_notify(struct task_struct *tsk, int group_dead)
824 {
825 	int state;
826 
827 	/*
828 	 * This does two things:
829 	 *
830   	 * A.  Make init inherit all the child processes
831 	 * B.  Check to see if any process groups have become orphaned
832 	 *	as a result of our exiting, and if they have any stopped
833 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
834 	 */
835 	forget_original_parent(tsk);
836 	exit_task_namespaces(tsk);
837 
838 	write_lock_irq(&tasklist_lock);
839 	if (group_dead)
840 		kill_orphaned_pgrp(tsk->group_leader, NULL);
841 
842 	/* Let father know we died
843 	 *
844 	 * Thread signals are configurable, but you aren't going to use
845 	 * that to send signals to arbitary processes.
846 	 * That stops right now.
847 	 *
848 	 * If the parent exec id doesn't match the exec id we saved
849 	 * when we started then we know the parent has changed security
850 	 * domain.
851 	 *
852 	 * If our self_exec id doesn't match our parent_exec_id then
853 	 * we have changed execution domain as these two values started
854 	 * the same after a fork.
855 	 */
856 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
857 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
858 	     tsk->self_exec_id != tsk->parent_exec_id) &&
859 	    !capable(CAP_KILL))
860 		tsk->exit_signal = SIGCHLD;
861 
862 	/* If something other than our normal parent is ptracing us, then
863 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
864 	 * only has special meaning to our real parent.
865 	 */
866 	if (!task_detached(tsk) && thread_group_empty(tsk)) {
867 		int signal = ptrace_reparented(tsk) ?
868 				SIGCHLD : tsk->exit_signal;
869 		do_notify_parent(tsk, signal);
870 	} else if (tsk->ptrace) {
871 		do_notify_parent(tsk, SIGCHLD);
872 	}
873 
874 	state = EXIT_ZOMBIE;
875 	if (task_detached(tsk) && likely(!tsk->ptrace))
876 		state = EXIT_DEAD;
877 	tsk->exit_state = state;
878 
879 	/* mt-exec, de_thread() is waiting for us */
880 	if (thread_group_leader(tsk) &&
881 	    tsk->signal->notify_count < 0 &&
882 	    tsk->signal->group_exit_task)
883 		wake_up_process(tsk->signal->group_exit_task);
884 
885 	write_unlock_irq(&tasklist_lock);
886 
887 	/* If the process is dead, release it - nobody will wait for it */
888 	if (state == EXIT_DEAD)
889 		release_task(tsk);
890 }
891 
892 #ifdef CONFIG_DEBUG_STACK_USAGE
893 static void check_stack_usage(void)
894 {
895 	static DEFINE_SPINLOCK(low_water_lock);
896 	static int lowest_to_date = THREAD_SIZE;
897 	unsigned long *n = end_of_stack(current);
898 	unsigned long free;
899 
900 	while (*n == 0)
901 		n++;
902 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
903 
904 	if (free >= lowest_to_date)
905 		return;
906 
907 	spin_lock(&low_water_lock);
908 	if (free < lowest_to_date) {
909 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
910 				"left\n",
911 				current->comm, free);
912 		lowest_to_date = free;
913 	}
914 	spin_unlock(&low_water_lock);
915 }
916 #else
917 static inline void check_stack_usage(void) {}
918 #endif
919 
920 static inline void exit_child_reaper(struct task_struct *tsk)
921 {
922 	if (likely(tsk->group_leader != task_child_reaper(tsk)))
923 		return;
924 
925 	if (tsk->nsproxy->pid_ns == &init_pid_ns)
926 		panic("Attempted to kill init!");
927 
928 	/*
929 	 * @tsk is the last thread in the 'cgroup-init' and is exiting.
930 	 * Terminate all remaining processes in the namespace and reap them
931 	 * before exiting @tsk.
932 	 *
933 	 * Note that @tsk (last thread of cgroup-init) may not necessarily
934 	 * be the child-reaper (i.e main thread of cgroup-init) of the
935 	 * namespace i.e the child_reaper may have already exited.
936 	 *
937 	 * Even after a child_reaper exits, we let it inherit orphaned children,
938 	 * because, pid_ns->child_reaper remains valid as long as there is
939 	 * at least one living sub-thread in the cgroup init.
940 
941 	 * This living sub-thread of the cgroup-init will be notified when
942 	 * a child inherited by the 'child-reaper' exits (do_notify_parent()
943 	 * uses __group_send_sig_info()). Further, when reaping child processes,
944 	 * do_wait() iterates over children of all living sub threads.
945 
946 	 * i.e even though 'child_reaper' thread is listed as the parent of the
947 	 * orphaned children, any living sub-thread in the cgroup-init can
948 	 * perform the role of the child_reaper.
949 	 */
950 	zap_pid_ns_processes(tsk->nsproxy->pid_ns);
951 }
952 
953 NORET_TYPE void do_exit(long code)
954 {
955 	struct task_struct *tsk = current;
956 	int group_dead;
957 
958 	profile_task_exit(tsk);
959 
960 	WARN_ON(atomic_read(&tsk->fs_excl));
961 
962 	if (unlikely(in_interrupt()))
963 		panic("Aiee, killing interrupt handler!");
964 	if (unlikely(!tsk->pid))
965 		panic("Attempted to kill the idle task!");
966 
967 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
968 		current->ptrace_message = code;
969 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
970 	}
971 
972 	/*
973 	 * We're taking recursive faults here in do_exit. Safest is to just
974 	 * leave this task alone and wait for reboot.
975 	 */
976 	if (unlikely(tsk->flags & PF_EXITING)) {
977 		printk(KERN_ALERT
978 			"Fixing recursive fault but reboot is needed!\n");
979 		/*
980 		 * We can do this unlocked here. The futex code uses
981 		 * this flag just to verify whether the pi state
982 		 * cleanup has been done or not. In the worst case it
983 		 * loops once more. We pretend that the cleanup was
984 		 * done as there is no way to return. Either the
985 		 * OWNER_DIED bit is set by now or we push the blocked
986 		 * task into the wait for ever nirwana as well.
987 		 */
988 		tsk->flags |= PF_EXITPIDONE;
989 		if (tsk->io_context)
990 			exit_io_context();
991 		set_current_state(TASK_UNINTERRUPTIBLE);
992 		schedule();
993 	}
994 
995 	exit_signals(tsk);  /* sets PF_EXITING */
996 	/*
997 	 * tsk->flags are checked in the futex code to protect against
998 	 * an exiting task cleaning up the robust pi futexes.
999 	 */
1000 	smp_mb();
1001 	spin_unlock_wait(&tsk->pi_lock);
1002 
1003 	if (unlikely(in_atomic()))
1004 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1005 				current->comm, task_pid_nr(current),
1006 				preempt_count());
1007 
1008 	acct_update_integrals(tsk);
1009 	if (tsk->mm) {
1010 		update_hiwater_rss(tsk->mm);
1011 		update_hiwater_vm(tsk->mm);
1012 	}
1013 	group_dead = atomic_dec_and_test(&tsk->signal->live);
1014 	if (group_dead) {
1015 		exit_child_reaper(tsk);
1016 		hrtimer_cancel(&tsk->signal->real_timer);
1017 		exit_itimers(tsk->signal);
1018 	}
1019 	acct_collect(code, group_dead);
1020 #ifdef CONFIG_FUTEX
1021 	if (unlikely(tsk->robust_list))
1022 		exit_robust_list(tsk);
1023 #ifdef CONFIG_COMPAT
1024 	if (unlikely(tsk->compat_robust_list))
1025 		compat_exit_robust_list(tsk);
1026 #endif
1027 #endif
1028 	if (group_dead)
1029 		tty_audit_exit();
1030 	if (unlikely(tsk->audit_context))
1031 		audit_free(tsk);
1032 
1033 	tsk->exit_code = code;
1034 	taskstats_exit(tsk, group_dead);
1035 
1036 	exit_mm(tsk);
1037 
1038 	if (group_dead)
1039 		acct_process();
1040 	exit_sem(tsk);
1041 	exit_files(tsk);
1042 	exit_fs(tsk);
1043 	check_stack_usage();
1044 	exit_thread();
1045 	cgroup_exit(tsk, 1);
1046 	exit_keys(tsk);
1047 
1048 	if (group_dead && tsk->signal->leader)
1049 		disassociate_ctty(1);
1050 
1051 	module_put(task_thread_info(tsk)->exec_domain->module);
1052 	if (tsk->binfmt)
1053 		module_put(tsk->binfmt->module);
1054 
1055 	proc_exit_connector(tsk);
1056 	exit_notify(tsk, group_dead);
1057 #ifdef CONFIG_NUMA
1058 	mpol_put(tsk->mempolicy);
1059 	tsk->mempolicy = NULL;
1060 #endif
1061 #ifdef CONFIG_FUTEX
1062 	/*
1063 	 * This must happen late, after the PID is not
1064 	 * hashed anymore:
1065 	 */
1066 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1067 		exit_pi_state_list(tsk);
1068 	if (unlikely(current->pi_state_cache))
1069 		kfree(current->pi_state_cache);
1070 #endif
1071 	/*
1072 	 * Make sure we are holding no locks:
1073 	 */
1074 	debug_check_no_locks_held(tsk);
1075 	/*
1076 	 * We can do this unlocked here. The futex code uses this flag
1077 	 * just to verify whether the pi state cleanup has been done
1078 	 * or not. In the worst case it loops once more.
1079 	 */
1080 	tsk->flags |= PF_EXITPIDONE;
1081 
1082 	if (tsk->io_context)
1083 		exit_io_context();
1084 
1085 	if (tsk->splice_pipe)
1086 		__free_pipe_info(tsk->splice_pipe);
1087 
1088 	preempt_disable();
1089 	/* causes final put_task_struct in finish_task_switch(). */
1090 	tsk->state = TASK_DEAD;
1091 
1092 	schedule();
1093 	BUG();
1094 	/* Avoid "noreturn function does return".  */
1095 	for (;;)
1096 		cpu_relax();	/* For when BUG is null */
1097 }
1098 
1099 EXPORT_SYMBOL_GPL(do_exit);
1100 
1101 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1102 {
1103 	if (comp)
1104 		complete(comp);
1105 
1106 	do_exit(code);
1107 }
1108 
1109 EXPORT_SYMBOL(complete_and_exit);
1110 
1111 asmlinkage long sys_exit(int error_code)
1112 {
1113 	do_exit((error_code&0xff)<<8);
1114 }
1115 
1116 /*
1117  * Take down every thread in the group.  This is called by fatal signals
1118  * as well as by sys_exit_group (below).
1119  */
1120 NORET_TYPE void
1121 do_group_exit(int exit_code)
1122 {
1123 	struct signal_struct *sig = current->signal;
1124 
1125 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1126 
1127 	if (signal_group_exit(sig))
1128 		exit_code = sig->group_exit_code;
1129 	else if (!thread_group_empty(current)) {
1130 		struct sighand_struct *const sighand = current->sighand;
1131 		spin_lock_irq(&sighand->siglock);
1132 		if (signal_group_exit(sig))
1133 			/* Another thread got here before we took the lock.  */
1134 			exit_code = sig->group_exit_code;
1135 		else {
1136 			sig->group_exit_code = exit_code;
1137 			sig->flags = SIGNAL_GROUP_EXIT;
1138 			zap_other_threads(current);
1139 		}
1140 		spin_unlock_irq(&sighand->siglock);
1141 	}
1142 
1143 	do_exit(exit_code);
1144 	/* NOTREACHED */
1145 }
1146 
1147 /*
1148  * this kills every thread in the thread group. Note that any externally
1149  * wait4()-ing process will get the correct exit code - even if this
1150  * thread is not the thread group leader.
1151  */
1152 asmlinkage void sys_exit_group(int error_code)
1153 {
1154 	do_group_exit((error_code & 0xff) << 8);
1155 }
1156 
1157 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1158 {
1159 	struct pid *pid = NULL;
1160 	if (type == PIDTYPE_PID)
1161 		pid = task->pids[type].pid;
1162 	else if (type < PIDTYPE_MAX)
1163 		pid = task->group_leader->pids[type].pid;
1164 	return pid;
1165 }
1166 
1167 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1168 			  struct task_struct *p)
1169 {
1170 	int err;
1171 
1172 	if (type < PIDTYPE_MAX) {
1173 		if (task_pid_type(p, type) != pid)
1174 			return 0;
1175 	}
1176 
1177 	/*
1178 	 * Do not consider detached threads that are
1179 	 * not ptraced:
1180 	 */
1181 	if (task_detached(p) && !p->ptrace)
1182 		return 0;
1183 
1184 	/* Wait for all children (clone and not) if __WALL is set;
1185 	 * otherwise, wait for clone children *only* if __WCLONE is
1186 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1187 	 * A "clone" child here is one that reports to its parent
1188 	 * using a signal other than SIGCHLD.) */
1189 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1190 	    && !(options & __WALL))
1191 		return 0;
1192 
1193 	err = security_task_wait(p);
1194 	if (likely(!err))
1195 		return 1;
1196 
1197 	if (type != PIDTYPE_PID)
1198 		return 0;
1199 	/* This child was explicitly requested, abort */
1200 	read_unlock(&tasklist_lock);
1201 	return err;
1202 }
1203 
1204 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1205 			       int why, int status,
1206 			       struct siginfo __user *infop,
1207 			       struct rusage __user *rusagep)
1208 {
1209 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1210 
1211 	put_task_struct(p);
1212 	if (!retval)
1213 		retval = put_user(SIGCHLD, &infop->si_signo);
1214 	if (!retval)
1215 		retval = put_user(0, &infop->si_errno);
1216 	if (!retval)
1217 		retval = put_user((short)why, &infop->si_code);
1218 	if (!retval)
1219 		retval = put_user(pid, &infop->si_pid);
1220 	if (!retval)
1221 		retval = put_user(uid, &infop->si_uid);
1222 	if (!retval)
1223 		retval = put_user(status, &infop->si_status);
1224 	if (!retval)
1225 		retval = pid;
1226 	return retval;
1227 }
1228 
1229 /*
1230  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1231  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1232  * the lock and this task is uninteresting.  If we return nonzero, we have
1233  * released the lock and the system call should return.
1234  */
1235 static int wait_task_zombie(struct task_struct *p, int noreap,
1236 			    struct siginfo __user *infop,
1237 			    int __user *stat_addr, struct rusage __user *ru)
1238 {
1239 	unsigned long state;
1240 	int retval, status, traced;
1241 	pid_t pid = task_pid_vnr(p);
1242 
1243 	if (unlikely(noreap)) {
1244 		uid_t uid = p->uid;
1245 		int exit_code = p->exit_code;
1246 		int why, status;
1247 
1248 		get_task_struct(p);
1249 		read_unlock(&tasklist_lock);
1250 		if ((exit_code & 0x7f) == 0) {
1251 			why = CLD_EXITED;
1252 			status = exit_code >> 8;
1253 		} else {
1254 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1255 			status = exit_code & 0x7f;
1256 		}
1257 		return wait_noreap_copyout(p, pid, uid, why,
1258 					   status, infop, ru);
1259 	}
1260 
1261 	/*
1262 	 * Try to move the task's state to DEAD
1263 	 * only one thread is allowed to do this:
1264 	 */
1265 	state = xchg(&p->exit_state, EXIT_DEAD);
1266 	if (state != EXIT_ZOMBIE) {
1267 		BUG_ON(state != EXIT_DEAD);
1268 		return 0;
1269 	}
1270 
1271 	traced = ptrace_reparented(p);
1272 
1273 	if (likely(!traced)) {
1274 		struct signal_struct *psig;
1275 		struct signal_struct *sig;
1276 
1277 		/*
1278 		 * The resource counters for the group leader are in its
1279 		 * own task_struct.  Those for dead threads in the group
1280 		 * are in its signal_struct, as are those for the child
1281 		 * processes it has previously reaped.  All these
1282 		 * accumulate in the parent's signal_struct c* fields.
1283 		 *
1284 		 * We don't bother to take a lock here to protect these
1285 		 * p->signal fields, because they are only touched by
1286 		 * __exit_signal, which runs with tasklist_lock
1287 		 * write-locked anyway, and so is excluded here.  We do
1288 		 * need to protect the access to p->parent->signal fields,
1289 		 * as other threads in the parent group can be right
1290 		 * here reaping other children at the same time.
1291 		 */
1292 		spin_lock_irq(&p->parent->sighand->siglock);
1293 		psig = p->parent->signal;
1294 		sig = p->signal;
1295 		psig->cutime =
1296 			cputime_add(psig->cutime,
1297 			cputime_add(p->utime,
1298 			cputime_add(sig->utime,
1299 				    sig->cutime)));
1300 		psig->cstime =
1301 			cputime_add(psig->cstime,
1302 			cputime_add(p->stime,
1303 			cputime_add(sig->stime,
1304 				    sig->cstime)));
1305 		psig->cgtime =
1306 			cputime_add(psig->cgtime,
1307 			cputime_add(p->gtime,
1308 			cputime_add(sig->gtime,
1309 				    sig->cgtime)));
1310 		psig->cmin_flt +=
1311 			p->min_flt + sig->min_flt + sig->cmin_flt;
1312 		psig->cmaj_flt +=
1313 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1314 		psig->cnvcsw +=
1315 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1316 		psig->cnivcsw +=
1317 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1318 		psig->cinblock +=
1319 			task_io_get_inblock(p) +
1320 			sig->inblock + sig->cinblock;
1321 		psig->coublock +=
1322 			task_io_get_oublock(p) +
1323 			sig->oublock + sig->coublock;
1324 		spin_unlock_irq(&p->parent->sighand->siglock);
1325 	}
1326 
1327 	/*
1328 	 * Now we are sure this task is interesting, and no other
1329 	 * thread can reap it because we set its state to EXIT_DEAD.
1330 	 */
1331 	read_unlock(&tasklist_lock);
1332 
1333 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1334 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1335 		? p->signal->group_exit_code : p->exit_code;
1336 	if (!retval && stat_addr)
1337 		retval = put_user(status, stat_addr);
1338 	if (!retval && infop)
1339 		retval = put_user(SIGCHLD, &infop->si_signo);
1340 	if (!retval && infop)
1341 		retval = put_user(0, &infop->si_errno);
1342 	if (!retval && infop) {
1343 		int why;
1344 
1345 		if ((status & 0x7f) == 0) {
1346 			why = CLD_EXITED;
1347 			status >>= 8;
1348 		} else {
1349 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1350 			status &= 0x7f;
1351 		}
1352 		retval = put_user((short)why, &infop->si_code);
1353 		if (!retval)
1354 			retval = put_user(status, &infop->si_status);
1355 	}
1356 	if (!retval && infop)
1357 		retval = put_user(pid, &infop->si_pid);
1358 	if (!retval && infop)
1359 		retval = put_user(p->uid, &infop->si_uid);
1360 	if (!retval)
1361 		retval = pid;
1362 
1363 	if (traced) {
1364 		write_lock_irq(&tasklist_lock);
1365 		/* We dropped tasklist, ptracer could die and untrace */
1366 		ptrace_unlink(p);
1367 		/*
1368 		 * If this is not a detached task, notify the parent.
1369 		 * If it's still not detached after that, don't release
1370 		 * it now.
1371 		 */
1372 		if (!task_detached(p)) {
1373 			do_notify_parent(p, p->exit_signal);
1374 			if (!task_detached(p)) {
1375 				p->exit_state = EXIT_ZOMBIE;
1376 				p = NULL;
1377 			}
1378 		}
1379 		write_unlock_irq(&tasklist_lock);
1380 	}
1381 	if (p != NULL)
1382 		release_task(p);
1383 
1384 	return retval;
1385 }
1386 
1387 /*
1388  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1389  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1390  * the lock and this task is uninteresting.  If we return nonzero, we have
1391  * released the lock and the system call should return.
1392  */
1393 static int wait_task_stopped(struct task_struct *p,
1394 			     int noreap, struct siginfo __user *infop,
1395 			     int __user *stat_addr, struct rusage __user *ru)
1396 {
1397 	int retval, exit_code, why;
1398 	uid_t uid = 0; /* unneeded, required by compiler */
1399 	pid_t pid;
1400 
1401 	exit_code = 0;
1402 	spin_lock_irq(&p->sighand->siglock);
1403 
1404 	if (unlikely(!task_is_stopped_or_traced(p)))
1405 		goto unlock_sig;
1406 
1407 	if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1408 		/*
1409 		 * A group stop is in progress and this is the group leader.
1410 		 * We won't report until all threads have stopped.
1411 		 */
1412 		goto unlock_sig;
1413 
1414 	exit_code = p->exit_code;
1415 	if (!exit_code)
1416 		goto unlock_sig;
1417 
1418 	if (!noreap)
1419 		p->exit_code = 0;
1420 
1421 	uid = p->uid;
1422 unlock_sig:
1423 	spin_unlock_irq(&p->sighand->siglock);
1424 	if (!exit_code)
1425 		return 0;
1426 
1427 	/*
1428 	 * Now we are pretty sure this task is interesting.
1429 	 * Make sure it doesn't get reaped out from under us while we
1430 	 * give up the lock and then examine it below.  We don't want to
1431 	 * keep holding onto the tasklist_lock while we call getrusage and
1432 	 * possibly take page faults for user memory.
1433 	 */
1434 	get_task_struct(p);
1435 	pid = task_pid_vnr(p);
1436 	why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1437 	read_unlock(&tasklist_lock);
1438 
1439 	if (unlikely(noreap))
1440 		return wait_noreap_copyout(p, pid, uid,
1441 					   why, exit_code,
1442 					   infop, ru);
1443 
1444 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1445 	if (!retval && stat_addr)
1446 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1447 	if (!retval && infop)
1448 		retval = put_user(SIGCHLD, &infop->si_signo);
1449 	if (!retval && infop)
1450 		retval = put_user(0, &infop->si_errno);
1451 	if (!retval && infop)
1452 		retval = put_user((short)why, &infop->si_code);
1453 	if (!retval && infop)
1454 		retval = put_user(exit_code, &infop->si_status);
1455 	if (!retval && infop)
1456 		retval = put_user(pid, &infop->si_pid);
1457 	if (!retval && infop)
1458 		retval = put_user(uid, &infop->si_uid);
1459 	if (!retval)
1460 		retval = pid;
1461 	put_task_struct(p);
1462 
1463 	BUG_ON(!retval);
1464 	return retval;
1465 }
1466 
1467 /*
1468  * Handle do_wait work for one task in a live, non-stopped state.
1469  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1470  * the lock and this task is uninteresting.  If we return nonzero, we have
1471  * released the lock and the system call should return.
1472  */
1473 static int wait_task_continued(struct task_struct *p, int noreap,
1474 			       struct siginfo __user *infop,
1475 			       int __user *stat_addr, struct rusage __user *ru)
1476 {
1477 	int retval;
1478 	pid_t pid;
1479 	uid_t uid;
1480 
1481 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1482 		return 0;
1483 
1484 	spin_lock_irq(&p->sighand->siglock);
1485 	/* Re-check with the lock held.  */
1486 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1487 		spin_unlock_irq(&p->sighand->siglock);
1488 		return 0;
1489 	}
1490 	if (!noreap)
1491 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1492 	spin_unlock_irq(&p->sighand->siglock);
1493 
1494 	pid = task_pid_vnr(p);
1495 	uid = p->uid;
1496 	get_task_struct(p);
1497 	read_unlock(&tasklist_lock);
1498 
1499 	if (!infop) {
1500 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1501 		put_task_struct(p);
1502 		if (!retval && stat_addr)
1503 			retval = put_user(0xffff, stat_addr);
1504 		if (!retval)
1505 			retval = pid;
1506 	} else {
1507 		retval = wait_noreap_copyout(p, pid, uid,
1508 					     CLD_CONTINUED, SIGCONT,
1509 					     infop, ru);
1510 		BUG_ON(retval == 0);
1511 	}
1512 
1513 	return retval;
1514 }
1515 
1516 static long do_wait(enum pid_type type, struct pid *pid, int options,
1517 		    struct siginfo __user *infop, int __user *stat_addr,
1518 		    struct rusage __user *ru)
1519 {
1520 	DECLARE_WAITQUEUE(wait, current);
1521 	struct task_struct *tsk;
1522 	int flag, retval;
1523 
1524 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1525 repeat:
1526 	/* If there is nothing that can match our critier just get out */
1527 	retval = -ECHILD;
1528 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1529 		goto end;
1530 
1531 	/*
1532 	 * We will set this flag if we see any child that might later
1533 	 * match our criteria, even if we are not able to reap it yet.
1534 	 */
1535 	flag = retval = 0;
1536 	current->state = TASK_INTERRUPTIBLE;
1537 	read_lock(&tasklist_lock);
1538 	tsk = current;
1539 	do {
1540 		struct task_struct *p;
1541 
1542 		list_for_each_entry(p, &tsk->children, sibling) {
1543 			int ret = eligible_child(type, pid, options, p);
1544 			if (!ret)
1545 				continue;
1546 
1547 			if (unlikely(ret < 0)) {
1548 				retval = ret;
1549 			} else if (task_is_stopped_or_traced(p)) {
1550 				/*
1551 				 * It's stopped now, so it might later
1552 				 * continue, exit, or stop again.
1553 				 */
1554 				flag = 1;
1555 				if (!(p->ptrace & PT_PTRACED) &&
1556 				    !(options & WUNTRACED))
1557 					continue;
1558 
1559 				retval = wait_task_stopped(p,
1560 						(options & WNOWAIT), infop,
1561 						stat_addr, ru);
1562 			} else if (p->exit_state == EXIT_ZOMBIE &&
1563 					!delay_group_leader(p)) {
1564 				/*
1565 				 * We don't reap group leaders with subthreads.
1566 				 */
1567 				if (!likely(options & WEXITED))
1568 					continue;
1569 				retval = wait_task_zombie(p,
1570 						(options & WNOWAIT), infop,
1571 						stat_addr, ru);
1572 			} else if (p->exit_state != EXIT_DEAD) {
1573 				/*
1574 				 * It's running now, so it might later
1575 				 * exit, stop, or stop and then continue.
1576 				 */
1577 				flag = 1;
1578 				if (!unlikely(options & WCONTINUED))
1579 					continue;
1580 				retval = wait_task_continued(p,
1581 						(options & WNOWAIT), infop,
1582 						stat_addr, ru);
1583 			}
1584 			if (retval != 0) /* tasklist_lock released */
1585 				goto end;
1586 		}
1587 		if (!flag) {
1588 			list_for_each_entry(p, &tsk->ptrace_children,
1589 								ptrace_list) {
1590 				flag = eligible_child(type, pid, options, p);
1591 				if (!flag)
1592 					continue;
1593 				if (likely(flag > 0))
1594 					break;
1595 				retval = flag;
1596 				goto end;
1597 			}
1598 		}
1599 		if (options & __WNOTHREAD)
1600 			break;
1601 		tsk = next_thread(tsk);
1602 		BUG_ON(tsk->signal != current->signal);
1603 	} while (tsk != current);
1604 	read_unlock(&tasklist_lock);
1605 
1606 	if (flag) {
1607 		if (options & WNOHANG)
1608 			goto end;
1609 		retval = -ERESTARTSYS;
1610 		if (signal_pending(current))
1611 			goto end;
1612 		schedule();
1613 		goto repeat;
1614 	}
1615 	retval = -ECHILD;
1616 end:
1617 	current->state = TASK_RUNNING;
1618 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1619 	if (infop) {
1620 		if (retval > 0)
1621 			retval = 0;
1622 		else {
1623 			/*
1624 			 * For a WNOHANG return, clear out all the fields
1625 			 * we would set so the user can easily tell the
1626 			 * difference.
1627 			 */
1628 			if (!retval)
1629 				retval = put_user(0, &infop->si_signo);
1630 			if (!retval)
1631 				retval = put_user(0, &infop->si_errno);
1632 			if (!retval)
1633 				retval = put_user(0, &infop->si_code);
1634 			if (!retval)
1635 				retval = put_user(0, &infop->si_pid);
1636 			if (!retval)
1637 				retval = put_user(0, &infop->si_uid);
1638 			if (!retval)
1639 				retval = put_user(0, &infop->si_status);
1640 		}
1641 	}
1642 	return retval;
1643 }
1644 
1645 asmlinkage long sys_waitid(int which, pid_t upid,
1646 			   struct siginfo __user *infop, int options,
1647 			   struct rusage __user *ru)
1648 {
1649 	struct pid *pid = NULL;
1650 	enum pid_type type;
1651 	long ret;
1652 
1653 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1654 		return -EINVAL;
1655 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1656 		return -EINVAL;
1657 
1658 	switch (which) {
1659 	case P_ALL:
1660 		type = PIDTYPE_MAX;
1661 		break;
1662 	case P_PID:
1663 		type = PIDTYPE_PID;
1664 		if (upid <= 0)
1665 			return -EINVAL;
1666 		break;
1667 	case P_PGID:
1668 		type = PIDTYPE_PGID;
1669 		if (upid <= 0)
1670 			return -EINVAL;
1671 		break;
1672 	default:
1673 		return -EINVAL;
1674 	}
1675 
1676 	if (type < PIDTYPE_MAX)
1677 		pid = find_get_pid(upid);
1678 	ret = do_wait(type, pid, options, infop, NULL, ru);
1679 	put_pid(pid);
1680 
1681 	/* avoid REGPARM breakage on x86: */
1682 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1683 	return ret;
1684 }
1685 
1686 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1687 			  int options, struct rusage __user *ru)
1688 {
1689 	struct pid *pid = NULL;
1690 	enum pid_type type;
1691 	long ret;
1692 
1693 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1694 			__WNOTHREAD|__WCLONE|__WALL))
1695 		return -EINVAL;
1696 
1697 	if (upid == -1)
1698 		type = PIDTYPE_MAX;
1699 	else if (upid < 0) {
1700 		type = PIDTYPE_PGID;
1701 		pid = find_get_pid(-upid);
1702 	} else if (upid == 0) {
1703 		type = PIDTYPE_PGID;
1704 		pid = get_pid(task_pgrp(current));
1705 	} else /* upid > 0 */ {
1706 		type = PIDTYPE_PID;
1707 		pid = find_get_pid(upid);
1708 	}
1709 
1710 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1711 	put_pid(pid);
1712 
1713 	/* avoid REGPARM breakage on x86: */
1714 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1715 	return ret;
1716 }
1717 
1718 #ifdef __ARCH_WANT_SYS_WAITPID
1719 
1720 /*
1721  * sys_waitpid() remains for compatibility. waitpid() should be
1722  * implemented by calling sys_wait4() from libc.a.
1723  */
1724 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1725 {
1726 	return sys_wait4(pid, stat_addr, options, NULL);
1727 }
1728 
1729 #endif
1730