1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/mm.h> 11 #include <linux/interrupt.h> 12 #include <linux/module.h> 13 #include <linux/capability.h> 14 #include <linux/completion.h> 15 #include <linux/personality.h> 16 #include <linux/tty.h> 17 #include <linux/iocontext.h> 18 #include <linux/key.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/fdtable.h> 24 #include <linux/freezer.h> 25 #include <linux/binfmts.h> 26 #include <linux/nsproxy.h> 27 #include <linux/pid_namespace.h> 28 #include <linux/ptrace.h> 29 #include <linux/profile.h> 30 #include <linux/mount.h> 31 #include <linux/proc_fs.h> 32 #include <linux/kthread.h> 33 #include <linux/mempolicy.h> 34 #include <linux/taskstats_kern.h> 35 #include <linux/delayacct.h> 36 #include <linux/cgroup.h> 37 #include <linux/syscalls.h> 38 #include <linux/signal.h> 39 #include <linux/posix-timers.h> 40 #include <linux/cn_proc.h> 41 #include <linux/mutex.h> 42 #include <linux/futex.h> 43 #include <linux/pipe_fs_i.h> 44 #include <linux/audit.h> /* for audit_free() */ 45 #include <linux/resource.h> 46 #include <linux/blkdev.h> 47 #include <linux/task_io_accounting_ops.h> 48 #include <linux/tracehook.h> 49 #include <linux/fs_struct.h> 50 #include <linux/userfaultfd_k.h> 51 #include <linux/init_task.h> 52 #include <linux/perf_event.h> 53 #include <trace/events/sched.h> 54 #include <linux/hw_breakpoint.h> 55 #include <linux/oom.h> 56 #include <linux/writeback.h> 57 #include <linux/shm.h> 58 #include <linux/kcov.h> 59 #include <linux/random.h> 60 #include <linux/rcuwait.h> 61 62 #include <linux/uaccess.h> 63 #include <asm/unistd.h> 64 #include <asm/pgtable.h> 65 #include <asm/mmu_context.h> 66 67 static void __unhash_process(struct task_struct *p, bool group_dead) 68 { 69 nr_threads--; 70 detach_pid(p, PIDTYPE_PID); 71 if (group_dead) { 72 detach_pid(p, PIDTYPE_PGID); 73 detach_pid(p, PIDTYPE_SID); 74 75 list_del_rcu(&p->tasks); 76 list_del_init(&p->sibling); 77 __this_cpu_dec(process_counts); 78 } 79 list_del_rcu(&p->thread_group); 80 list_del_rcu(&p->thread_node); 81 } 82 83 /* 84 * This function expects the tasklist_lock write-locked. 85 */ 86 static void __exit_signal(struct task_struct *tsk) 87 { 88 struct signal_struct *sig = tsk->signal; 89 bool group_dead = thread_group_leader(tsk); 90 struct sighand_struct *sighand; 91 struct tty_struct *uninitialized_var(tty); 92 u64 utime, stime; 93 94 sighand = rcu_dereference_check(tsk->sighand, 95 lockdep_tasklist_lock_is_held()); 96 spin_lock(&sighand->siglock); 97 98 #ifdef CONFIG_POSIX_TIMERS 99 posix_cpu_timers_exit(tsk); 100 if (group_dead) { 101 posix_cpu_timers_exit_group(tsk); 102 } else { 103 /* 104 * This can only happen if the caller is de_thread(). 105 * FIXME: this is the temporary hack, we should teach 106 * posix-cpu-timers to handle this case correctly. 107 */ 108 if (unlikely(has_group_leader_pid(tsk))) 109 posix_cpu_timers_exit_group(tsk); 110 } 111 #endif 112 113 if (group_dead) { 114 tty = sig->tty; 115 sig->tty = NULL; 116 } else { 117 /* 118 * If there is any task waiting for the group exit 119 * then notify it: 120 */ 121 if (sig->notify_count > 0 && !--sig->notify_count) 122 wake_up_process(sig->group_exit_task); 123 124 if (tsk == sig->curr_target) 125 sig->curr_target = next_thread(tsk); 126 } 127 128 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 129 sizeof(unsigned long long)); 130 131 /* 132 * Accumulate here the counters for all threads as they die. We could 133 * skip the group leader because it is the last user of signal_struct, 134 * but we want to avoid the race with thread_group_cputime() which can 135 * see the empty ->thread_head list. 136 */ 137 task_cputime(tsk, &utime, &stime); 138 write_seqlock(&sig->stats_lock); 139 sig->utime += utime; 140 sig->stime += stime; 141 sig->gtime += task_gtime(tsk); 142 sig->min_flt += tsk->min_flt; 143 sig->maj_flt += tsk->maj_flt; 144 sig->nvcsw += tsk->nvcsw; 145 sig->nivcsw += tsk->nivcsw; 146 sig->inblock += task_io_get_inblock(tsk); 147 sig->oublock += task_io_get_oublock(tsk); 148 task_io_accounting_add(&sig->ioac, &tsk->ioac); 149 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 150 sig->nr_threads--; 151 __unhash_process(tsk, group_dead); 152 write_sequnlock(&sig->stats_lock); 153 154 /* 155 * Do this under ->siglock, we can race with another thread 156 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 157 */ 158 flush_sigqueue(&tsk->pending); 159 tsk->sighand = NULL; 160 spin_unlock(&sighand->siglock); 161 162 __cleanup_sighand(sighand); 163 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 164 if (group_dead) { 165 flush_sigqueue(&sig->shared_pending); 166 tty_kref_put(tty); 167 } 168 } 169 170 static void delayed_put_task_struct(struct rcu_head *rhp) 171 { 172 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 173 174 perf_event_delayed_put(tsk); 175 trace_sched_process_free(tsk); 176 put_task_struct(tsk); 177 } 178 179 180 void release_task(struct task_struct *p) 181 { 182 struct task_struct *leader; 183 int zap_leader; 184 repeat: 185 /* don't need to get the RCU readlock here - the process is dead and 186 * can't be modifying its own credentials. But shut RCU-lockdep up */ 187 rcu_read_lock(); 188 atomic_dec(&__task_cred(p)->user->processes); 189 rcu_read_unlock(); 190 191 proc_flush_task(p); 192 193 write_lock_irq(&tasklist_lock); 194 ptrace_release_task(p); 195 __exit_signal(p); 196 197 /* 198 * If we are the last non-leader member of the thread 199 * group, and the leader is zombie, then notify the 200 * group leader's parent process. (if it wants notification.) 201 */ 202 zap_leader = 0; 203 leader = p->group_leader; 204 if (leader != p && thread_group_empty(leader) 205 && leader->exit_state == EXIT_ZOMBIE) { 206 /* 207 * If we were the last child thread and the leader has 208 * exited already, and the leader's parent ignores SIGCHLD, 209 * then we are the one who should release the leader. 210 */ 211 zap_leader = do_notify_parent(leader, leader->exit_signal); 212 if (zap_leader) 213 leader->exit_state = EXIT_DEAD; 214 } 215 216 write_unlock_irq(&tasklist_lock); 217 release_thread(p); 218 call_rcu(&p->rcu, delayed_put_task_struct); 219 220 p = leader; 221 if (unlikely(zap_leader)) 222 goto repeat; 223 } 224 225 /* 226 * Note that if this function returns a valid task_struct pointer (!NULL) 227 * task->usage must remain >0 for the duration of the RCU critical section. 228 */ 229 struct task_struct *task_rcu_dereference(struct task_struct **ptask) 230 { 231 struct sighand_struct *sighand; 232 struct task_struct *task; 233 234 /* 235 * We need to verify that release_task() was not called and thus 236 * delayed_put_task_struct() can't run and drop the last reference 237 * before rcu_read_unlock(). We check task->sighand != NULL, 238 * but we can read the already freed and reused memory. 239 */ 240 retry: 241 task = rcu_dereference(*ptask); 242 if (!task) 243 return NULL; 244 245 probe_kernel_address(&task->sighand, sighand); 246 247 /* 248 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task 249 * was already freed we can not miss the preceding update of this 250 * pointer. 251 */ 252 smp_rmb(); 253 if (unlikely(task != READ_ONCE(*ptask))) 254 goto retry; 255 256 /* 257 * We've re-checked that "task == *ptask", now we have two different 258 * cases: 259 * 260 * 1. This is actually the same task/task_struct. In this case 261 * sighand != NULL tells us it is still alive. 262 * 263 * 2. This is another task which got the same memory for task_struct. 264 * We can't know this of course, and we can not trust 265 * sighand != NULL. 266 * 267 * In this case we actually return a random value, but this is 268 * correct. 269 * 270 * If we return NULL - we can pretend that we actually noticed that 271 * *ptask was updated when the previous task has exited. Or pretend 272 * that probe_slab_address(&sighand) reads NULL. 273 * 274 * If we return the new task (because sighand is not NULL for any 275 * reason) - this is fine too. This (new) task can't go away before 276 * another gp pass. 277 * 278 * And note: We could even eliminate the false positive if re-read 279 * task->sighand once again to avoid the falsely NULL. But this case 280 * is very unlikely so we don't care. 281 */ 282 if (!sighand) 283 return NULL; 284 285 return task; 286 } 287 288 void rcuwait_wake_up(struct rcuwait *w) 289 { 290 struct task_struct *task; 291 292 rcu_read_lock(); 293 294 /* 295 * Order condition vs @task, such that everything prior to the load 296 * of @task is visible. This is the condition as to why the user called 297 * rcuwait_trywake() in the first place. Pairs with set_current_state() 298 * barrier (A) in rcuwait_wait_event(). 299 * 300 * WAIT WAKE 301 * [S] tsk = current [S] cond = true 302 * MB (A) MB (B) 303 * [L] cond [L] tsk 304 */ 305 smp_rmb(); /* (B) */ 306 307 /* 308 * Avoid using task_rcu_dereference() magic as long as we are careful, 309 * see comment in rcuwait_wait_event() regarding ->exit_state. 310 */ 311 task = rcu_dereference(w->task); 312 if (task) 313 wake_up_process(task); 314 rcu_read_unlock(); 315 } 316 317 struct task_struct *try_get_task_struct(struct task_struct **ptask) 318 { 319 struct task_struct *task; 320 321 rcu_read_lock(); 322 task = task_rcu_dereference(ptask); 323 if (task) 324 get_task_struct(task); 325 rcu_read_unlock(); 326 327 return task; 328 } 329 330 /* 331 * Determine if a process group is "orphaned", according to the POSIX 332 * definition in 2.2.2.52. Orphaned process groups are not to be affected 333 * by terminal-generated stop signals. Newly orphaned process groups are 334 * to receive a SIGHUP and a SIGCONT. 335 * 336 * "I ask you, have you ever known what it is to be an orphan?" 337 */ 338 static int will_become_orphaned_pgrp(struct pid *pgrp, 339 struct task_struct *ignored_task) 340 { 341 struct task_struct *p; 342 343 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 344 if ((p == ignored_task) || 345 (p->exit_state && thread_group_empty(p)) || 346 is_global_init(p->real_parent)) 347 continue; 348 349 if (task_pgrp(p->real_parent) != pgrp && 350 task_session(p->real_parent) == task_session(p)) 351 return 0; 352 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 353 354 return 1; 355 } 356 357 int is_current_pgrp_orphaned(void) 358 { 359 int retval; 360 361 read_lock(&tasklist_lock); 362 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 363 read_unlock(&tasklist_lock); 364 365 return retval; 366 } 367 368 static bool has_stopped_jobs(struct pid *pgrp) 369 { 370 struct task_struct *p; 371 372 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 373 if (p->signal->flags & SIGNAL_STOP_STOPPED) 374 return true; 375 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 376 377 return false; 378 } 379 380 /* 381 * Check to see if any process groups have become orphaned as 382 * a result of our exiting, and if they have any stopped jobs, 383 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 384 */ 385 static void 386 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 387 { 388 struct pid *pgrp = task_pgrp(tsk); 389 struct task_struct *ignored_task = tsk; 390 391 if (!parent) 392 /* exit: our father is in a different pgrp than 393 * we are and we were the only connection outside. 394 */ 395 parent = tsk->real_parent; 396 else 397 /* reparent: our child is in a different pgrp than 398 * we are, and it was the only connection outside. 399 */ 400 ignored_task = NULL; 401 402 if (task_pgrp(parent) != pgrp && 403 task_session(parent) == task_session(tsk) && 404 will_become_orphaned_pgrp(pgrp, ignored_task) && 405 has_stopped_jobs(pgrp)) { 406 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 407 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 408 } 409 } 410 411 #ifdef CONFIG_MEMCG 412 /* 413 * A task is exiting. If it owned this mm, find a new owner for the mm. 414 */ 415 void mm_update_next_owner(struct mm_struct *mm) 416 { 417 struct task_struct *c, *g, *p = current; 418 419 retry: 420 /* 421 * If the exiting or execing task is not the owner, it's 422 * someone else's problem. 423 */ 424 if (mm->owner != p) 425 return; 426 /* 427 * The current owner is exiting/execing and there are no other 428 * candidates. Do not leave the mm pointing to a possibly 429 * freed task structure. 430 */ 431 if (atomic_read(&mm->mm_users) <= 1) { 432 mm->owner = NULL; 433 return; 434 } 435 436 read_lock(&tasklist_lock); 437 /* 438 * Search in the children 439 */ 440 list_for_each_entry(c, &p->children, sibling) { 441 if (c->mm == mm) 442 goto assign_new_owner; 443 } 444 445 /* 446 * Search in the siblings 447 */ 448 list_for_each_entry(c, &p->real_parent->children, sibling) { 449 if (c->mm == mm) 450 goto assign_new_owner; 451 } 452 453 /* 454 * Search through everything else, we should not get here often. 455 */ 456 for_each_process(g) { 457 if (g->flags & PF_KTHREAD) 458 continue; 459 for_each_thread(g, c) { 460 if (c->mm == mm) 461 goto assign_new_owner; 462 if (c->mm) 463 break; 464 } 465 } 466 read_unlock(&tasklist_lock); 467 /* 468 * We found no owner yet mm_users > 1: this implies that we are 469 * most likely racing with swapoff (try_to_unuse()) or /proc or 470 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 471 */ 472 mm->owner = NULL; 473 return; 474 475 assign_new_owner: 476 BUG_ON(c == p); 477 get_task_struct(c); 478 /* 479 * The task_lock protects c->mm from changing. 480 * We always want mm->owner->mm == mm 481 */ 482 task_lock(c); 483 /* 484 * Delay read_unlock() till we have the task_lock() 485 * to ensure that c does not slip away underneath us 486 */ 487 read_unlock(&tasklist_lock); 488 if (c->mm != mm) { 489 task_unlock(c); 490 put_task_struct(c); 491 goto retry; 492 } 493 mm->owner = c; 494 task_unlock(c); 495 put_task_struct(c); 496 } 497 #endif /* CONFIG_MEMCG */ 498 499 /* 500 * Turn us into a lazy TLB process if we 501 * aren't already.. 502 */ 503 static void exit_mm(void) 504 { 505 struct mm_struct *mm = current->mm; 506 struct core_state *core_state; 507 508 mm_release(current, mm); 509 if (!mm) 510 return; 511 sync_mm_rss(mm); 512 /* 513 * Serialize with any possible pending coredump. 514 * We must hold mmap_sem around checking core_state 515 * and clearing tsk->mm. The core-inducing thread 516 * will increment ->nr_threads for each thread in the 517 * group with ->mm != NULL. 518 */ 519 down_read(&mm->mmap_sem); 520 core_state = mm->core_state; 521 if (core_state) { 522 struct core_thread self; 523 524 up_read(&mm->mmap_sem); 525 526 self.task = current; 527 self.next = xchg(&core_state->dumper.next, &self); 528 /* 529 * Implies mb(), the result of xchg() must be visible 530 * to core_state->dumper. 531 */ 532 if (atomic_dec_and_test(&core_state->nr_threads)) 533 complete(&core_state->startup); 534 535 for (;;) { 536 set_current_state(TASK_UNINTERRUPTIBLE); 537 if (!self.task) /* see coredump_finish() */ 538 break; 539 freezable_schedule(); 540 } 541 __set_current_state(TASK_RUNNING); 542 down_read(&mm->mmap_sem); 543 } 544 mmgrab(mm); 545 BUG_ON(mm != current->active_mm); 546 /* more a memory barrier than a real lock */ 547 task_lock(current); 548 current->mm = NULL; 549 up_read(&mm->mmap_sem); 550 enter_lazy_tlb(mm, current); 551 task_unlock(current); 552 mm_update_next_owner(mm); 553 userfaultfd_exit(mm); 554 mmput(mm); 555 if (test_thread_flag(TIF_MEMDIE)) 556 exit_oom_victim(); 557 } 558 559 static struct task_struct *find_alive_thread(struct task_struct *p) 560 { 561 struct task_struct *t; 562 563 for_each_thread(p, t) { 564 if (!(t->flags & PF_EXITING)) 565 return t; 566 } 567 return NULL; 568 } 569 570 static struct task_struct *find_child_reaper(struct task_struct *father) 571 __releases(&tasklist_lock) 572 __acquires(&tasklist_lock) 573 { 574 struct pid_namespace *pid_ns = task_active_pid_ns(father); 575 struct task_struct *reaper = pid_ns->child_reaper; 576 577 if (likely(reaper != father)) 578 return reaper; 579 580 reaper = find_alive_thread(father); 581 if (reaper) { 582 pid_ns->child_reaper = reaper; 583 return reaper; 584 } 585 586 write_unlock_irq(&tasklist_lock); 587 if (unlikely(pid_ns == &init_pid_ns)) { 588 panic("Attempted to kill init! exitcode=0x%08x\n", 589 father->signal->group_exit_code ?: father->exit_code); 590 } 591 zap_pid_ns_processes(pid_ns); 592 write_lock_irq(&tasklist_lock); 593 594 return father; 595 } 596 597 /* 598 * When we die, we re-parent all our children, and try to: 599 * 1. give them to another thread in our thread group, if such a member exists 600 * 2. give it to the first ancestor process which prctl'd itself as a 601 * child_subreaper for its children (like a service manager) 602 * 3. give it to the init process (PID 1) in our pid namespace 603 */ 604 static struct task_struct *find_new_reaper(struct task_struct *father, 605 struct task_struct *child_reaper) 606 { 607 struct task_struct *thread, *reaper; 608 609 thread = find_alive_thread(father); 610 if (thread) 611 return thread; 612 613 if (father->signal->has_child_subreaper) { 614 unsigned int ns_level = task_pid(father)->level; 615 /* 616 * Find the first ->is_child_subreaper ancestor in our pid_ns. 617 * We can't check reaper != child_reaper to ensure we do not 618 * cross the namespaces, the exiting parent could be injected 619 * by setns() + fork(). 620 * We check pid->level, this is slightly more efficient than 621 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 622 */ 623 for (reaper = father->real_parent; 624 task_pid(reaper)->level == ns_level; 625 reaper = reaper->real_parent) { 626 if (reaper == &init_task) 627 break; 628 if (!reaper->signal->is_child_subreaper) 629 continue; 630 thread = find_alive_thread(reaper); 631 if (thread) 632 return thread; 633 } 634 } 635 636 return child_reaper; 637 } 638 639 /* 640 * Any that need to be release_task'd are put on the @dead list. 641 */ 642 static void reparent_leader(struct task_struct *father, struct task_struct *p, 643 struct list_head *dead) 644 { 645 if (unlikely(p->exit_state == EXIT_DEAD)) 646 return; 647 648 /* We don't want people slaying init. */ 649 p->exit_signal = SIGCHLD; 650 651 /* If it has exited notify the new parent about this child's death. */ 652 if (!p->ptrace && 653 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 654 if (do_notify_parent(p, p->exit_signal)) { 655 p->exit_state = EXIT_DEAD; 656 list_add(&p->ptrace_entry, dead); 657 } 658 } 659 660 kill_orphaned_pgrp(p, father); 661 } 662 663 /* 664 * This does two things: 665 * 666 * A. Make init inherit all the child processes 667 * B. Check to see if any process groups have become orphaned 668 * as a result of our exiting, and if they have any stopped 669 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 670 */ 671 static void forget_original_parent(struct task_struct *father, 672 struct list_head *dead) 673 { 674 struct task_struct *p, *t, *reaper; 675 676 if (unlikely(!list_empty(&father->ptraced))) 677 exit_ptrace(father, dead); 678 679 /* Can drop and reacquire tasklist_lock */ 680 reaper = find_child_reaper(father); 681 if (list_empty(&father->children)) 682 return; 683 684 reaper = find_new_reaper(father, reaper); 685 list_for_each_entry(p, &father->children, sibling) { 686 for_each_thread(p, t) { 687 t->real_parent = reaper; 688 BUG_ON((!t->ptrace) != (t->parent == father)); 689 if (likely(!t->ptrace)) 690 t->parent = t->real_parent; 691 if (t->pdeath_signal) 692 group_send_sig_info(t->pdeath_signal, 693 SEND_SIG_NOINFO, t); 694 } 695 /* 696 * If this is a threaded reparent there is no need to 697 * notify anyone anything has happened. 698 */ 699 if (!same_thread_group(reaper, father)) 700 reparent_leader(father, p, dead); 701 } 702 list_splice_tail_init(&father->children, &reaper->children); 703 } 704 705 /* 706 * Send signals to all our closest relatives so that they know 707 * to properly mourn us.. 708 */ 709 static void exit_notify(struct task_struct *tsk, int group_dead) 710 { 711 bool autoreap; 712 struct task_struct *p, *n; 713 LIST_HEAD(dead); 714 715 write_lock_irq(&tasklist_lock); 716 forget_original_parent(tsk, &dead); 717 718 if (group_dead) 719 kill_orphaned_pgrp(tsk->group_leader, NULL); 720 721 if (unlikely(tsk->ptrace)) { 722 int sig = thread_group_leader(tsk) && 723 thread_group_empty(tsk) && 724 !ptrace_reparented(tsk) ? 725 tsk->exit_signal : SIGCHLD; 726 autoreap = do_notify_parent(tsk, sig); 727 } else if (thread_group_leader(tsk)) { 728 autoreap = thread_group_empty(tsk) && 729 do_notify_parent(tsk, tsk->exit_signal); 730 } else { 731 autoreap = true; 732 } 733 734 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 735 if (tsk->exit_state == EXIT_DEAD) 736 list_add(&tsk->ptrace_entry, &dead); 737 738 /* mt-exec, de_thread() is waiting for group leader */ 739 if (unlikely(tsk->signal->notify_count < 0)) 740 wake_up_process(tsk->signal->group_exit_task); 741 write_unlock_irq(&tasklist_lock); 742 743 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 744 list_del_init(&p->ptrace_entry); 745 release_task(p); 746 } 747 } 748 749 #ifdef CONFIG_DEBUG_STACK_USAGE 750 static void check_stack_usage(void) 751 { 752 static DEFINE_SPINLOCK(low_water_lock); 753 static int lowest_to_date = THREAD_SIZE; 754 unsigned long free; 755 756 free = stack_not_used(current); 757 758 if (free >= lowest_to_date) 759 return; 760 761 spin_lock(&low_water_lock); 762 if (free < lowest_to_date) { 763 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 764 current->comm, task_pid_nr(current), free); 765 lowest_to_date = free; 766 } 767 spin_unlock(&low_water_lock); 768 } 769 #else 770 static inline void check_stack_usage(void) {} 771 #endif 772 773 void __noreturn do_exit(long code) 774 { 775 struct task_struct *tsk = current; 776 int group_dead; 777 TASKS_RCU(int tasks_rcu_i); 778 779 profile_task_exit(tsk); 780 kcov_task_exit(tsk); 781 782 WARN_ON(blk_needs_flush_plug(tsk)); 783 784 if (unlikely(in_interrupt())) 785 panic("Aiee, killing interrupt handler!"); 786 if (unlikely(!tsk->pid)) 787 panic("Attempted to kill the idle task!"); 788 789 /* 790 * If do_exit is called because this processes oopsed, it's possible 791 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 792 * continuing. Amongst other possible reasons, this is to prevent 793 * mm_release()->clear_child_tid() from writing to a user-controlled 794 * kernel address. 795 */ 796 set_fs(USER_DS); 797 798 ptrace_event(PTRACE_EVENT_EXIT, code); 799 800 validate_creds_for_do_exit(tsk); 801 802 /* 803 * We're taking recursive faults here in do_exit. Safest is to just 804 * leave this task alone and wait for reboot. 805 */ 806 if (unlikely(tsk->flags & PF_EXITING)) { 807 pr_alert("Fixing recursive fault but reboot is needed!\n"); 808 /* 809 * We can do this unlocked here. The futex code uses 810 * this flag just to verify whether the pi state 811 * cleanup has been done or not. In the worst case it 812 * loops once more. We pretend that the cleanup was 813 * done as there is no way to return. Either the 814 * OWNER_DIED bit is set by now or we push the blocked 815 * task into the wait for ever nirwana as well. 816 */ 817 tsk->flags |= PF_EXITPIDONE; 818 set_current_state(TASK_UNINTERRUPTIBLE); 819 schedule(); 820 } 821 822 exit_signals(tsk); /* sets PF_EXITING */ 823 /* 824 * Ensure that all new tsk->pi_lock acquisitions must observe 825 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner(). 826 */ 827 smp_mb(); 828 /* 829 * Ensure that we must observe the pi_state in exit_mm() -> 830 * mm_release() -> exit_pi_state_list(). 831 */ 832 raw_spin_unlock_wait(&tsk->pi_lock); 833 834 if (unlikely(in_atomic())) { 835 pr_info("note: %s[%d] exited with preempt_count %d\n", 836 current->comm, task_pid_nr(current), 837 preempt_count()); 838 preempt_count_set(PREEMPT_ENABLED); 839 } 840 841 /* sync mm's RSS info before statistics gathering */ 842 if (tsk->mm) 843 sync_mm_rss(tsk->mm); 844 acct_update_integrals(tsk); 845 group_dead = atomic_dec_and_test(&tsk->signal->live); 846 if (group_dead) { 847 #ifdef CONFIG_POSIX_TIMERS 848 hrtimer_cancel(&tsk->signal->real_timer); 849 exit_itimers(tsk->signal); 850 #endif 851 if (tsk->mm) 852 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 853 } 854 acct_collect(code, group_dead); 855 if (group_dead) 856 tty_audit_exit(); 857 audit_free(tsk); 858 859 tsk->exit_code = code; 860 taskstats_exit(tsk, group_dead); 861 862 exit_mm(); 863 864 if (group_dead) 865 acct_process(); 866 trace_sched_process_exit(tsk); 867 868 exit_sem(tsk); 869 exit_shm(tsk); 870 exit_files(tsk); 871 exit_fs(tsk); 872 if (group_dead) 873 disassociate_ctty(1); 874 exit_task_namespaces(tsk); 875 exit_task_work(tsk); 876 exit_thread(tsk); 877 878 /* 879 * Flush inherited counters to the parent - before the parent 880 * gets woken up by child-exit notifications. 881 * 882 * because of cgroup mode, must be called before cgroup_exit() 883 */ 884 perf_event_exit_task(tsk); 885 886 sched_autogroup_exit_task(tsk); 887 cgroup_exit(tsk); 888 889 /* 890 * FIXME: do that only when needed, using sched_exit tracepoint 891 */ 892 flush_ptrace_hw_breakpoint(tsk); 893 894 TASKS_RCU(preempt_disable()); 895 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 896 TASKS_RCU(preempt_enable()); 897 exit_notify(tsk, group_dead); 898 proc_exit_connector(tsk); 899 mpol_put_task_policy(tsk); 900 #ifdef CONFIG_FUTEX 901 if (unlikely(current->pi_state_cache)) 902 kfree(current->pi_state_cache); 903 #endif 904 /* 905 * Make sure we are holding no locks: 906 */ 907 debug_check_no_locks_held(); 908 /* 909 * We can do this unlocked here. The futex code uses this flag 910 * just to verify whether the pi state cleanup has been done 911 * or not. In the worst case it loops once more. 912 */ 913 tsk->flags |= PF_EXITPIDONE; 914 915 if (tsk->io_context) 916 exit_io_context(tsk); 917 918 if (tsk->splice_pipe) 919 free_pipe_info(tsk->splice_pipe); 920 921 if (tsk->task_frag.page) 922 put_page(tsk->task_frag.page); 923 924 validate_creds_for_do_exit(tsk); 925 926 check_stack_usage(); 927 preempt_disable(); 928 if (tsk->nr_dirtied) 929 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 930 exit_rcu(); 931 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 932 933 do_task_dead(); 934 } 935 EXPORT_SYMBOL_GPL(do_exit); 936 937 void complete_and_exit(struct completion *comp, long code) 938 { 939 if (comp) 940 complete(comp); 941 942 do_exit(code); 943 } 944 EXPORT_SYMBOL(complete_and_exit); 945 946 SYSCALL_DEFINE1(exit, int, error_code) 947 { 948 do_exit((error_code&0xff)<<8); 949 } 950 951 /* 952 * Take down every thread in the group. This is called by fatal signals 953 * as well as by sys_exit_group (below). 954 */ 955 void 956 do_group_exit(int exit_code) 957 { 958 struct signal_struct *sig = current->signal; 959 960 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 961 962 if (signal_group_exit(sig)) 963 exit_code = sig->group_exit_code; 964 else if (!thread_group_empty(current)) { 965 struct sighand_struct *const sighand = current->sighand; 966 967 spin_lock_irq(&sighand->siglock); 968 if (signal_group_exit(sig)) 969 /* Another thread got here before we took the lock. */ 970 exit_code = sig->group_exit_code; 971 else { 972 sig->group_exit_code = exit_code; 973 sig->flags = SIGNAL_GROUP_EXIT; 974 zap_other_threads(current); 975 } 976 spin_unlock_irq(&sighand->siglock); 977 } 978 979 do_exit(exit_code); 980 /* NOTREACHED */ 981 } 982 983 /* 984 * this kills every thread in the thread group. Note that any externally 985 * wait4()-ing process will get the correct exit code - even if this 986 * thread is not the thread group leader. 987 */ 988 SYSCALL_DEFINE1(exit_group, int, error_code) 989 { 990 do_group_exit((error_code & 0xff) << 8); 991 /* NOTREACHED */ 992 return 0; 993 } 994 995 struct wait_opts { 996 enum pid_type wo_type; 997 int wo_flags; 998 struct pid *wo_pid; 999 1000 struct siginfo __user *wo_info; 1001 int __user *wo_stat; 1002 struct rusage __user *wo_rusage; 1003 1004 wait_queue_t child_wait; 1005 int notask_error; 1006 }; 1007 1008 static inline 1009 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1010 { 1011 if (type != PIDTYPE_PID) 1012 task = task->group_leader; 1013 return task->pids[type].pid; 1014 } 1015 1016 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1017 { 1018 return wo->wo_type == PIDTYPE_MAX || 1019 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1020 } 1021 1022 static int 1023 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1024 { 1025 if (!eligible_pid(wo, p)) 1026 return 0; 1027 1028 /* 1029 * Wait for all children (clone and not) if __WALL is set or 1030 * if it is traced by us. 1031 */ 1032 if (ptrace || (wo->wo_flags & __WALL)) 1033 return 1; 1034 1035 /* 1036 * Otherwise, wait for clone children *only* if __WCLONE is set; 1037 * otherwise, wait for non-clone children *only*. 1038 * 1039 * Note: a "clone" child here is one that reports to its parent 1040 * using a signal other than SIGCHLD, or a non-leader thread which 1041 * we can only see if it is traced by us. 1042 */ 1043 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1044 return 0; 1045 1046 return 1; 1047 } 1048 1049 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1050 pid_t pid, uid_t uid, int why, int status) 1051 { 1052 struct siginfo __user *infop; 1053 int retval = wo->wo_rusage 1054 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1055 1056 put_task_struct(p); 1057 infop = wo->wo_info; 1058 if (infop) { 1059 if (!retval) 1060 retval = put_user(SIGCHLD, &infop->si_signo); 1061 if (!retval) 1062 retval = put_user(0, &infop->si_errno); 1063 if (!retval) 1064 retval = put_user((short)why, &infop->si_code); 1065 if (!retval) 1066 retval = put_user(pid, &infop->si_pid); 1067 if (!retval) 1068 retval = put_user(uid, &infop->si_uid); 1069 if (!retval) 1070 retval = put_user(status, &infop->si_status); 1071 } 1072 if (!retval) 1073 retval = pid; 1074 return retval; 1075 } 1076 1077 /* 1078 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1079 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1080 * the lock and this task is uninteresting. If we return nonzero, we have 1081 * released the lock and the system call should return. 1082 */ 1083 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1084 { 1085 int state, retval, status; 1086 pid_t pid = task_pid_vnr(p); 1087 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1088 struct siginfo __user *infop; 1089 1090 if (!likely(wo->wo_flags & WEXITED)) 1091 return 0; 1092 1093 if (unlikely(wo->wo_flags & WNOWAIT)) { 1094 int exit_code = p->exit_code; 1095 int why; 1096 1097 get_task_struct(p); 1098 read_unlock(&tasklist_lock); 1099 sched_annotate_sleep(); 1100 1101 if ((exit_code & 0x7f) == 0) { 1102 why = CLD_EXITED; 1103 status = exit_code >> 8; 1104 } else { 1105 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1106 status = exit_code & 0x7f; 1107 } 1108 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1109 } 1110 /* 1111 * Move the task's state to DEAD/TRACE, only one thread can do this. 1112 */ 1113 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1114 EXIT_TRACE : EXIT_DEAD; 1115 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1116 return 0; 1117 /* 1118 * We own this thread, nobody else can reap it. 1119 */ 1120 read_unlock(&tasklist_lock); 1121 sched_annotate_sleep(); 1122 1123 /* 1124 * Check thread_group_leader() to exclude the traced sub-threads. 1125 */ 1126 if (state == EXIT_DEAD && thread_group_leader(p)) { 1127 struct signal_struct *sig = p->signal; 1128 struct signal_struct *psig = current->signal; 1129 unsigned long maxrss; 1130 u64 tgutime, tgstime; 1131 1132 /* 1133 * The resource counters for the group leader are in its 1134 * own task_struct. Those for dead threads in the group 1135 * are in its signal_struct, as are those for the child 1136 * processes it has previously reaped. All these 1137 * accumulate in the parent's signal_struct c* fields. 1138 * 1139 * We don't bother to take a lock here to protect these 1140 * p->signal fields because the whole thread group is dead 1141 * and nobody can change them. 1142 * 1143 * psig->stats_lock also protects us from our sub-theads 1144 * which can reap other children at the same time. Until 1145 * we change k_getrusage()-like users to rely on this lock 1146 * we have to take ->siglock as well. 1147 * 1148 * We use thread_group_cputime_adjusted() to get times for 1149 * the thread group, which consolidates times for all threads 1150 * in the group including the group leader. 1151 */ 1152 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1153 spin_lock_irq(¤t->sighand->siglock); 1154 write_seqlock(&psig->stats_lock); 1155 psig->cutime += tgutime + sig->cutime; 1156 psig->cstime += tgstime + sig->cstime; 1157 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1158 psig->cmin_flt += 1159 p->min_flt + sig->min_flt + sig->cmin_flt; 1160 psig->cmaj_flt += 1161 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1162 psig->cnvcsw += 1163 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1164 psig->cnivcsw += 1165 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1166 psig->cinblock += 1167 task_io_get_inblock(p) + 1168 sig->inblock + sig->cinblock; 1169 psig->coublock += 1170 task_io_get_oublock(p) + 1171 sig->oublock + sig->coublock; 1172 maxrss = max(sig->maxrss, sig->cmaxrss); 1173 if (psig->cmaxrss < maxrss) 1174 psig->cmaxrss = maxrss; 1175 task_io_accounting_add(&psig->ioac, &p->ioac); 1176 task_io_accounting_add(&psig->ioac, &sig->ioac); 1177 write_sequnlock(&psig->stats_lock); 1178 spin_unlock_irq(¤t->sighand->siglock); 1179 } 1180 1181 retval = wo->wo_rusage 1182 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1183 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1184 ? p->signal->group_exit_code : p->exit_code; 1185 if (!retval && wo->wo_stat) 1186 retval = put_user(status, wo->wo_stat); 1187 1188 infop = wo->wo_info; 1189 if (!retval && infop) 1190 retval = put_user(SIGCHLD, &infop->si_signo); 1191 if (!retval && infop) 1192 retval = put_user(0, &infop->si_errno); 1193 if (!retval && infop) { 1194 int why; 1195 1196 if ((status & 0x7f) == 0) { 1197 why = CLD_EXITED; 1198 status >>= 8; 1199 } else { 1200 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1201 status &= 0x7f; 1202 } 1203 retval = put_user((short)why, &infop->si_code); 1204 if (!retval) 1205 retval = put_user(status, &infop->si_status); 1206 } 1207 if (!retval && infop) 1208 retval = put_user(pid, &infop->si_pid); 1209 if (!retval && infop) 1210 retval = put_user(uid, &infop->si_uid); 1211 if (!retval) 1212 retval = pid; 1213 1214 if (state == EXIT_TRACE) { 1215 write_lock_irq(&tasklist_lock); 1216 /* We dropped tasklist, ptracer could die and untrace */ 1217 ptrace_unlink(p); 1218 1219 /* If parent wants a zombie, don't release it now */ 1220 state = EXIT_ZOMBIE; 1221 if (do_notify_parent(p, p->exit_signal)) 1222 state = EXIT_DEAD; 1223 p->exit_state = state; 1224 write_unlock_irq(&tasklist_lock); 1225 } 1226 if (state == EXIT_DEAD) 1227 release_task(p); 1228 1229 return retval; 1230 } 1231 1232 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1233 { 1234 if (ptrace) { 1235 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1236 return &p->exit_code; 1237 } else { 1238 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1239 return &p->signal->group_exit_code; 1240 } 1241 return NULL; 1242 } 1243 1244 /** 1245 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1246 * @wo: wait options 1247 * @ptrace: is the wait for ptrace 1248 * @p: task to wait for 1249 * 1250 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1251 * 1252 * CONTEXT: 1253 * read_lock(&tasklist_lock), which is released if return value is 1254 * non-zero. Also, grabs and releases @p->sighand->siglock. 1255 * 1256 * RETURNS: 1257 * 0 if wait condition didn't exist and search for other wait conditions 1258 * should continue. Non-zero return, -errno on failure and @p's pid on 1259 * success, implies that tasklist_lock is released and wait condition 1260 * search should terminate. 1261 */ 1262 static int wait_task_stopped(struct wait_opts *wo, 1263 int ptrace, struct task_struct *p) 1264 { 1265 struct siginfo __user *infop; 1266 int retval, exit_code, *p_code, why; 1267 uid_t uid = 0; /* unneeded, required by compiler */ 1268 pid_t pid; 1269 1270 /* 1271 * Traditionally we see ptrace'd stopped tasks regardless of options. 1272 */ 1273 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1274 return 0; 1275 1276 if (!task_stopped_code(p, ptrace)) 1277 return 0; 1278 1279 exit_code = 0; 1280 spin_lock_irq(&p->sighand->siglock); 1281 1282 p_code = task_stopped_code(p, ptrace); 1283 if (unlikely(!p_code)) 1284 goto unlock_sig; 1285 1286 exit_code = *p_code; 1287 if (!exit_code) 1288 goto unlock_sig; 1289 1290 if (!unlikely(wo->wo_flags & WNOWAIT)) 1291 *p_code = 0; 1292 1293 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1294 unlock_sig: 1295 spin_unlock_irq(&p->sighand->siglock); 1296 if (!exit_code) 1297 return 0; 1298 1299 /* 1300 * Now we are pretty sure this task is interesting. 1301 * Make sure it doesn't get reaped out from under us while we 1302 * give up the lock and then examine it below. We don't want to 1303 * keep holding onto the tasklist_lock while we call getrusage and 1304 * possibly take page faults for user memory. 1305 */ 1306 get_task_struct(p); 1307 pid = task_pid_vnr(p); 1308 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1309 read_unlock(&tasklist_lock); 1310 sched_annotate_sleep(); 1311 1312 if (unlikely(wo->wo_flags & WNOWAIT)) 1313 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1314 1315 retval = wo->wo_rusage 1316 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1317 if (!retval && wo->wo_stat) 1318 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1319 1320 infop = wo->wo_info; 1321 if (!retval && infop) 1322 retval = put_user(SIGCHLD, &infop->si_signo); 1323 if (!retval && infop) 1324 retval = put_user(0, &infop->si_errno); 1325 if (!retval && infop) 1326 retval = put_user((short)why, &infop->si_code); 1327 if (!retval && infop) 1328 retval = put_user(exit_code, &infop->si_status); 1329 if (!retval && infop) 1330 retval = put_user(pid, &infop->si_pid); 1331 if (!retval && infop) 1332 retval = put_user(uid, &infop->si_uid); 1333 if (!retval) 1334 retval = pid; 1335 put_task_struct(p); 1336 1337 BUG_ON(!retval); 1338 return retval; 1339 } 1340 1341 /* 1342 * Handle do_wait work for one task in a live, non-stopped state. 1343 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1344 * the lock and this task is uninteresting. If we return nonzero, we have 1345 * released the lock and the system call should return. 1346 */ 1347 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1348 { 1349 int retval; 1350 pid_t pid; 1351 uid_t uid; 1352 1353 if (!unlikely(wo->wo_flags & WCONTINUED)) 1354 return 0; 1355 1356 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1357 return 0; 1358 1359 spin_lock_irq(&p->sighand->siglock); 1360 /* Re-check with the lock held. */ 1361 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1362 spin_unlock_irq(&p->sighand->siglock); 1363 return 0; 1364 } 1365 if (!unlikely(wo->wo_flags & WNOWAIT)) 1366 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1367 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1368 spin_unlock_irq(&p->sighand->siglock); 1369 1370 pid = task_pid_vnr(p); 1371 get_task_struct(p); 1372 read_unlock(&tasklist_lock); 1373 sched_annotate_sleep(); 1374 1375 if (!wo->wo_info) { 1376 retval = wo->wo_rusage 1377 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1378 put_task_struct(p); 1379 if (!retval && wo->wo_stat) 1380 retval = put_user(0xffff, wo->wo_stat); 1381 if (!retval) 1382 retval = pid; 1383 } else { 1384 retval = wait_noreap_copyout(wo, p, pid, uid, 1385 CLD_CONTINUED, SIGCONT); 1386 BUG_ON(retval == 0); 1387 } 1388 1389 return retval; 1390 } 1391 1392 /* 1393 * Consider @p for a wait by @parent. 1394 * 1395 * -ECHILD should be in ->notask_error before the first call. 1396 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1397 * Returns zero if the search for a child should continue; 1398 * then ->notask_error is 0 if @p is an eligible child, 1399 * or still -ECHILD. 1400 */ 1401 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1402 struct task_struct *p) 1403 { 1404 /* 1405 * We can race with wait_task_zombie() from another thread. 1406 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1407 * can't confuse the checks below. 1408 */ 1409 int exit_state = ACCESS_ONCE(p->exit_state); 1410 int ret; 1411 1412 if (unlikely(exit_state == EXIT_DEAD)) 1413 return 0; 1414 1415 ret = eligible_child(wo, ptrace, p); 1416 if (!ret) 1417 return ret; 1418 1419 if (unlikely(exit_state == EXIT_TRACE)) { 1420 /* 1421 * ptrace == 0 means we are the natural parent. In this case 1422 * we should clear notask_error, debugger will notify us. 1423 */ 1424 if (likely(!ptrace)) 1425 wo->notask_error = 0; 1426 return 0; 1427 } 1428 1429 if (likely(!ptrace) && unlikely(p->ptrace)) { 1430 /* 1431 * If it is traced by its real parent's group, just pretend 1432 * the caller is ptrace_do_wait() and reap this child if it 1433 * is zombie. 1434 * 1435 * This also hides group stop state from real parent; otherwise 1436 * a single stop can be reported twice as group and ptrace stop. 1437 * If a ptracer wants to distinguish these two events for its 1438 * own children it should create a separate process which takes 1439 * the role of real parent. 1440 */ 1441 if (!ptrace_reparented(p)) 1442 ptrace = 1; 1443 } 1444 1445 /* slay zombie? */ 1446 if (exit_state == EXIT_ZOMBIE) { 1447 /* we don't reap group leaders with subthreads */ 1448 if (!delay_group_leader(p)) { 1449 /* 1450 * A zombie ptracee is only visible to its ptracer. 1451 * Notification and reaping will be cascaded to the 1452 * real parent when the ptracer detaches. 1453 */ 1454 if (unlikely(ptrace) || likely(!p->ptrace)) 1455 return wait_task_zombie(wo, p); 1456 } 1457 1458 /* 1459 * Allow access to stopped/continued state via zombie by 1460 * falling through. Clearing of notask_error is complex. 1461 * 1462 * When !@ptrace: 1463 * 1464 * If WEXITED is set, notask_error should naturally be 1465 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1466 * so, if there are live subthreads, there are events to 1467 * wait for. If all subthreads are dead, it's still safe 1468 * to clear - this function will be called again in finite 1469 * amount time once all the subthreads are released and 1470 * will then return without clearing. 1471 * 1472 * When @ptrace: 1473 * 1474 * Stopped state is per-task and thus can't change once the 1475 * target task dies. Only continued and exited can happen. 1476 * Clear notask_error if WCONTINUED | WEXITED. 1477 */ 1478 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1479 wo->notask_error = 0; 1480 } else { 1481 /* 1482 * @p is alive and it's gonna stop, continue or exit, so 1483 * there always is something to wait for. 1484 */ 1485 wo->notask_error = 0; 1486 } 1487 1488 /* 1489 * Wait for stopped. Depending on @ptrace, different stopped state 1490 * is used and the two don't interact with each other. 1491 */ 1492 ret = wait_task_stopped(wo, ptrace, p); 1493 if (ret) 1494 return ret; 1495 1496 /* 1497 * Wait for continued. There's only one continued state and the 1498 * ptracer can consume it which can confuse the real parent. Don't 1499 * use WCONTINUED from ptracer. You don't need or want it. 1500 */ 1501 return wait_task_continued(wo, p); 1502 } 1503 1504 /* 1505 * Do the work of do_wait() for one thread in the group, @tsk. 1506 * 1507 * -ECHILD should be in ->notask_error before the first call. 1508 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1509 * Returns zero if the search for a child should continue; then 1510 * ->notask_error is 0 if there were any eligible children, 1511 * or still -ECHILD. 1512 */ 1513 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1514 { 1515 struct task_struct *p; 1516 1517 list_for_each_entry(p, &tsk->children, sibling) { 1518 int ret = wait_consider_task(wo, 0, p); 1519 1520 if (ret) 1521 return ret; 1522 } 1523 1524 return 0; 1525 } 1526 1527 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1528 { 1529 struct task_struct *p; 1530 1531 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1532 int ret = wait_consider_task(wo, 1, p); 1533 1534 if (ret) 1535 return ret; 1536 } 1537 1538 return 0; 1539 } 1540 1541 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1542 int sync, void *key) 1543 { 1544 struct wait_opts *wo = container_of(wait, struct wait_opts, 1545 child_wait); 1546 struct task_struct *p = key; 1547 1548 if (!eligible_pid(wo, p)) 1549 return 0; 1550 1551 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1552 return 0; 1553 1554 return default_wake_function(wait, mode, sync, key); 1555 } 1556 1557 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1558 { 1559 __wake_up_sync_key(&parent->signal->wait_chldexit, 1560 TASK_INTERRUPTIBLE, 1, p); 1561 } 1562 1563 static long do_wait(struct wait_opts *wo) 1564 { 1565 struct task_struct *tsk; 1566 int retval; 1567 1568 trace_sched_process_wait(wo->wo_pid); 1569 1570 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1571 wo->child_wait.private = current; 1572 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1573 repeat: 1574 /* 1575 * If there is nothing that can match our criteria, just get out. 1576 * We will clear ->notask_error to zero if we see any child that 1577 * might later match our criteria, even if we are not able to reap 1578 * it yet. 1579 */ 1580 wo->notask_error = -ECHILD; 1581 if ((wo->wo_type < PIDTYPE_MAX) && 1582 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1583 goto notask; 1584 1585 set_current_state(TASK_INTERRUPTIBLE); 1586 read_lock(&tasklist_lock); 1587 tsk = current; 1588 do { 1589 retval = do_wait_thread(wo, tsk); 1590 if (retval) 1591 goto end; 1592 1593 retval = ptrace_do_wait(wo, tsk); 1594 if (retval) 1595 goto end; 1596 1597 if (wo->wo_flags & __WNOTHREAD) 1598 break; 1599 } while_each_thread(current, tsk); 1600 read_unlock(&tasklist_lock); 1601 1602 notask: 1603 retval = wo->notask_error; 1604 if (!retval && !(wo->wo_flags & WNOHANG)) { 1605 retval = -ERESTARTSYS; 1606 if (!signal_pending(current)) { 1607 schedule(); 1608 goto repeat; 1609 } 1610 } 1611 end: 1612 __set_current_state(TASK_RUNNING); 1613 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1614 return retval; 1615 } 1616 1617 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1618 infop, int, options, struct rusage __user *, ru) 1619 { 1620 struct wait_opts wo; 1621 struct pid *pid = NULL; 1622 enum pid_type type; 1623 long ret; 1624 1625 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1626 __WNOTHREAD|__WCLONE|__WALL)) 1627 return -EINVAL; 1628 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1629 return -EINVAL; 1630 1631 switch (which) { 1632 case P_ALL: 1633 type = PIDTYPE_MAX; 1634 break; 1635 case P_PID: 1636 type = PIDTYPE_PID; 1637 if (upid <= 0) 1638 return -EINVAL; 1639 break; 1640 case P_PGID: 1641 type = PIDTYPE_PGID; 1642 if (upid <= 0) 1643 return -EINVAL; 1644 break; 1645 default: 1646 return -EINVAL; 1647 } 1648 1649 if (type < PIDTYPE_MAX) 1650 pid = find_get_pid(upid); 1651 1652 wo.wo_type = type; 1653 wo.wo_pid = pid; 1654 wo.wo_flags = options; 1655 wo.wo_info = infop; 1656 wo.wo_stat = NULL; 1657 wo.wo_rusage = ru; 1658 ret = do_wait(&wo); 1659 1660 if (ret > 0) { 1661 ret = 0; 1662 } else if (infop) { 1663 /* 1664 * For a WNOHANG return, clear out all the fields 1665 * we would set so the user can easily tell the 1666 * difference. 1667 */ 1668 if (!ret) 1669 ret = put_user(0, &infop->si_signo); 1670 if (!ret) 1671 ret = put_user(0, &infop->si_errno); 1672 if (!ret) 1673 ret = put_user(0, &infop->si_code); 1674 if (!ret) 1675 ret = put_user(0, &infop->si_pid); 1676 if (!ret) 1677 ret = put_user(0, &infop->si_uid); 1678 if (!ret) 1679 ret = put_user(0, &infop->si_status); 1680 } 1681 1682 put_pid(pid); 1683 return ret; 1684 } 1685 1686 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1687 int, options, struct rusage __user *, ru) 1688 { 1689 struct wait_opts wo; 1690 struct pid *pid = NULL; 1691 enum pid_type type; 1692 long ret; 1693 1694 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1695 __WNOTHREAD|__WCLONE|__WALL)) 1696 return -EINVAL; 1697 1698 if (upid == -1) 1699 type = PIDTYPE_MAX; 1700 else if (upid < 0) { 1701 type = PIDTYPE_PGID; 1702 pid = find_get_pid(-upid); 1703 } else if (upid == 0) { 1704 type = PIDTYPE_PGID; 1705 pid = get_task_pid(current, PIDTYPE_PGID); 1706 } else /* upid > 0 */ { 1707 type = PIDTYPE_PID; 1708 pid = find_get_pid(upid); 1709 } 1710 1711 wo.wo_type = type; 1712 wo.wo_pid = pid; 1713 wo.wo_flags = options | WEXITED; 1714 wo.wo_info = NULL; 1715 wo.wo_stat = stat_addr; 1716 wo.wo_rusage = ru; 1717 ret = do_wait(&wo); 1718 put_pid(pid); 1719 1720 return ret; 1721 } 1722 1723 #ifdef __ARCH_WANT_SYS_WAITPID 1724 1725 /* 1726 * sys_waitpid() remains for compatibility. waitpid() should be 1727 * implemented by calling sys_wait4() from libc.a. 1728 */ 1729 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1730 { 1731 return sys_wait4(pid, stat_addr, options, NULL); 1732 } 1733 1734 #endif 1735