xref: /openbmc/linux/kernel/exit.c (revision 174cd4b1)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/capability.h>
14 #include <linux/completion.h>
15 #include <linux/personality.h>
16 #include <linux/tty.h>
17 #include <linux/iocontext.h>
18 #include <linux/key.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/freezer.h>
25 #include <linux/binfmts.h>
26 #include <linux/nsproxy.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/ptrace.h>
29 #include <linux/profile.h>
30 #include <linux/mount.h>
31 #include <linux/proc_fs.h>
32 #include <linux/kthread.h>
33 #include <linux/mempolicy.h>
34 #include <linux/taskstats_kern.h>
35 #include <linux/delayacct.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/userfaultfd_k.h>
51 #include <linux/init_task.h>
52 #include <linux/perf_event.h>
53 #include <trace/events/sched.h>
54 #include <linux/hw_breakpoint.h>
55 #include <linux/oom.h>
56 #include <linux/writeback.h>
57 #include <linux/shm.h>
58 #include <linux/kcov.h>
59 #include <linux/random.h>
60 #include <linux/rcuwait.h>
61 
62 #include <linux/uaccess.h>
63 #include <asm/unistd.h>
64 #include <asm/pgtable.h>
65 #include <asm/mmu_context.h>
66 
67 static void __unhash_process(struct task_struct *p, bool group_dead)
68 {
69 	nr_threads--;
70 	detach_pid(p, PIDTYPE_PID);
71 	if (group_dead) {
72 		detach_pid(p, PIDTYPE_PGID);
73 		detach_pid(p, PIDTYPE_SID);
74 
75 		list_del_rcu(&p->tasks);
76 		list_del_init(&p->sibling);
77 		__this_cpu_dec(process_counts);
78 	}
79 	list_del_rcu(&p->thread_group);
80 	list_del_rcu(&p->thread_node);
81 }
82 
83 /*
84  * This function expects the tasklist_lock write-locked.
85  */
86 static void __exit_signal(struct task_struct *tsk)
87 {
88 	struct signal_struct *sig = tsk->signal;
89 	bool group_dead = thread_group_leader(tsk);
90 	struct sighand_struct *sighand;
91 	struct tty_struct *uninitialized_var(tty);
92 	u64 utime, stime;
93 
94 	sighand = rcu_dereference_check(tsk->sighand,
95 					lockdep_tasklist_lock_is_held());
96 	spin_lock(&sighand->siglock);
97 
98 #ifdef CONFIG_POSIX_TIMERS
99 	posix_cpu_timers_exit(tsk);
100 	if (group_dead) {
101 		posix_cpu_timers_exit_group(tsk);
102 	} else {
103 		/*
104 		 * This can only happen if the caller is de_thread().
105 		 * FIXME: this is the temporary hack, we should teach
106 		 * posix-cpu-timers to handle this case correctly.
107 		 */
108 		if (unlikely(has_group_leader_pid(tsk)))
109 			posix_cpu_timers_exit_group(tsk);
110 	}
111 #endif
112 
113 	if (group_dead) {
114 		tty = sig->tty;
115 		sig->tty = NULL;
116 	} else {
117 		/*
118 		 * If there is any task waiting for the group exit
119 		 * then notify it:
120 		 */
121 		if (sig->notify_count > 0 && !--sig->notify_count)
122 			wake_up_process(sig->group_exit_task);
123 
124 		if (tsk == sig->curr_target)
125 			sig->curr_target = next_thread(tsk);
126 	}
127 
128 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
129 			      sizeof(unsigned long long));
130 
131 	/*
132 	 * Accumulate here the counters for all threads as they die. We could
133 	 * skip the group leader because it is the last user of signal_struct,
134 	 * but we want to avoid the race with thread_group_cputime() which can
135 	 * see the empty ->thread_head list.
136 	 */
137 	task_cputime(tsk, &utime, &stime);
138 	write_seqlock(&sig->stats_lock);
139 	sig->utime += utime;
140 	sig->stime += stime;
141 	sig->gtime += task_gtime(tsk);
142 	sig->min_flt += tsk->min_flt;
143 	sig->maj_flt += tsk->maj_flt;
144 	sig->nvcsw += tsk->nvcsw;
145 	sig->nivcsw += tsk->nivcsw;
146 	sig->inblock += task_io_get_inblock(tsk);
147 	sig->oublock += task_io_get_oublock(tsk);
148 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
149 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
150 	sig->nr_threads--;
151 	__unhash_process(tsk, group_dead);
152 	write_sequnlock(&sig->stats_lock);
153 
154 	/*
155 	 * Do this under ->siglock, we can race with another thread
156 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
157 	 */
158 	flush_sigqueue(&tsk->pending);
159 	tsk->sighand = NULL;
160 	spin_unlock(&sighand->siglock);
161 
162 	__cleanup_sighand(sighand);
163 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
164 	if (group_dead) {
165 		flush_sigqueue(&sig->shared_pending);
166 		tty_kref_put(tty);
167 	}
168 }
169 
170 static void delayed_put_task_struct(struct rcu_head *rhp)
171 {
172 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
173 
174 	perf_event_delayed_put(tsk);
175 	trace_sched_process_free(tsk);
176 	put_task_struct(tsk);
177 }
178 
179 
180 void release_task(struct task_struct *p)
181 {
182 	struct task_struct *leader;
183 	int zap_leader;
184 repeat:
185 	/* don't need to get the RCU readlock here - the process is dead and
186 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
187 	rcu_read_lock();
188 	atomic_dec(&__task_cred(p)->user->processes);
189 	rcu_read_unlock();
190 
191 	proc_flush_task(p);
192 
193 	write_lock_irq(&tasklist_lock);
194 	ptrace_release_task(p);
195 	__exit_signal(p);
196 
197 	/*
198 	 * If we are the last non-leader member of the thread
199 	 * group, and the leader is zombie, then notify the
200 	 * group leader's parent process. (if it wants notification.)
201 	 */
202 	zap_leader = 0;
203 	leader = p->group_leader;
204 	if (leader != p && thread_group_empty(leader)
205 			&& leader->exit_state == EXIT_ZOMBIE) {
206 		/*
207 		 * If we were the last child thread and the leader has
208 		 * exited already, and the leader's parent ignores SIGCHLD,
209 		 * then we are the one who should release the leader.
210 		 */
211 		zap_leader = do_notify_parent(leader, leader->exit_signal);
212 		if (zap_leader)
213 			leader->exit_state = EXIT_DEAD;
214 	}
215 
216 	write_unlock_irq(&tasklist_lock);
217 	release_thread(p);
218 	call_rcu(&p->rcu, delayed_put_task_struct);
219 
220 	p = leader;
221 	if (unlikely(zap_leader))
222 		goto repeat;
223 }
224 
225 /*
226  * Note that if this function returns a valid task_struct pointer (!NULL)
227  * task->usage must remain >0 for the duration of the RCU critical section.
228  */
229 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
230 {
231 	struct sighand_struct *sighand;
232 	struct task_struct *task;
233 
234 	/*
235 	 * We need to verify that release_task() was not called and thus
236 	 * delayed_put_task_struct() can't run and drop the last reference
237 	 * before rcu_read_unlock(). We check task->sighand != NULL,
238 	 * but we can read the already freed and reused memory.
239 	 */
240 retry:
241 	task = rcu_dereference(*ptask);
242 	if (!task)
243 		return NULL;
244 
245 	probe_kernel_address(&task->sighand, sighand);
246 
247 	/*
248 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
249 	 * was already freed we can not miss the preceding update of this
250 	 * pointer.
251 	 */
252 	smp_rmb();
253 	if (unlikely(task != READ_ONCE(*ptask)))
254 		goto retry;
255 
256 	/*
257 	 * We've re-checked that "task == *ptask", now we have two different
258 	 * cases:
259 	 *
260 	 * 1. This is actually the same task/task_struct. In this case
261 	 *    sighand != NULL tells us it is still alive.
262 	 *
263 	 * 2. This is another task which got the same memory for task_struct.
264 	 *    We can't know this of course, and we can not trust
265 	 *    sighand != NULL.
266 	 *
267 	 *    In this case we actually return a random value, but this is
268 	 *    correct.
269 	 *
270 	 *    If we return NULL - we can pretend that we actually noticed that
271 	 *    *ptask was updated when the previous task has exited. Or pretend
272 	 *    that probe_slab_address(&sighand) reads NULL.
273 	 *
274 	 *    If we return the new task (because sighand is not NULL for any
275 	 *    reason) - this is fine too. This (new) task can't go away before
276 	 *    another gp pass.
277 	 *
278 	 *    And note: We could even eliminate the false positive if re-read
279 	 *    task->sighand once again to avoid the falsely NULL. But this case
280 	 *    is very unlikely so we don't care.
281 	 */
282 	if (!sighand)
283 		return NULL;
284 
285 	return task;
286 }
287 
288 void rcuwait_wake_up(struct rcuwait *w)
289 {
290 	struct task_struct *task;
291 
292 	rcu_read_lock();
293 
294 	/*
295 	 * Order condition vs @task, such that everything prior to the load
296 	 * of @task is visible. This is the condition as to why the user called
297 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
298 	 * barrier (A) in rcuwait_wait_event().
299 	 *
300 	 *    WAIT                WAKE
301 	 *    [S] tsk = current	  [S] cond = true
302 	 *        MB (A)	      MB (B)
303 	 *    [L] cond		  [L] tsk
304 	 */
305 	smp_rmb(); /* (B) */
306 
307 	/*
308 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
309 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
310 	 */
311 	task = rcu_dereference(w->task);
312 	if (task)
313 		wake_up_process(task);
314 	rcu_read_unlock();
315 }
316 
317 struct task_struct *try_get_task_struct(struct task_struct **ptask)
318 {
319 	struct task_struct *task;
320 
321 	rcu_read_lock();
322 	task = task_rcu_dereference(ptask);
323 	if (task)
324 		get_task_struct(task);
325 	rcu_read_unlock();
326 
327 	return task;
328 }
329 
330 /*
331  * Determine if a process group is "orphaned", according to the POSIX
332  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
333  * by terminal-generated stop signals.  Newly orphaned process groups are
334  * to receive a SIGHUP and a SIGCONT.
335  *
336  * "I ask you, have you ever known what it is to be an orphan?"
337  */
338 static int will_become_orphaned_pgrp(struct pid *pgrp,
339 					struct task_struct *ignored_task)
340 {
341 	struct task_struct *p;
342 
343 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
344 		if ((p == ignored_task) ||
345 		    (p->exit_state && thread_group_empty(p)) ||
346 		    is_global_init(p->real_parent))
347 			continue;
348 
349 		if (task_pgrp(p->real_parent) != pgrp &&
350 		    task_session(p->real_parent) == task_session(p))
351 			return 0;
352 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
353 
354 	return 1;
355 }
356 
357 int is_current_pgrp_orphaned(void)
358 {
359 	int retval;
360 
361 	read_lock(&tasklist_lock);
362 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
363 	read_unlock(&tasklist_lock);
364 
365 	return retval;
366 }
367 
368 static bool has_stopped_jobs(struct pid *pgrp)
369 {
370 	struct task_struct *p;
371 
372 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
373 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
374 			return true;
375 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
376 
377 	return false;
378 }
379 
380 /*
381  * Check to see if any process groups have become orphaned as
382  * a result of our exiting, and if they have any stopped jobs,
383  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
384  */
385 static void
386 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
387 {
388 	struct pid *pgrp = task_pgrp(tsk);
389 	struct task_struct *ignored_task = tsk;
390 
391 	if (!parent)
392 		/* exit: our father is in a different pgrp than
393 		 * we are and we were the only connection outside.
394 		 */
395 		parent = tsk->real_parent;
396 	else
397 		/* reparent: our child is in a different pgrp than
398 		 * we are, and it was the only connection outside.
399 		 */
400 		ignored_task = NULL;
401 
402 	if (task_pgrp(parent) != pgrp &&
403 	    task_session(parent) == task_session(tsk) &&
404 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
405 	    has_stopped_jobs(pgrp)) {
406 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
407 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
408 	}
409 }
410 
411 #ifdef CONFIG_MEMCG
412 /*
413  * A task is exiting.   If it owned this mm, find a new owner for the mm.
414  */
415 void mm_update_next_owner(struct mm_struct *mm)
416 {
417 	struct task_struct *c, *g, *p = current;
418 
419 retry:
420 	/*
421 	 * If the exiting or execing task is not the owner, it's
422 	 * someone else's problem.
423 	 */
424 	if (mm->owner != p)
425 		return;
426 	/*
427 	 * The current owner is exiting/execing and there are no other
428 	 * candidates.  Do not leave the mm pointing to a possibly
429 	 * freed task structure.
430 	 */
431 	if (atomic_read(&mm->mm_users) <= 1) {
432 		mm->owner = NULL;
433 		return;
434 	}
435 
436 	read_lock(&tasklist_lock);
437 	/*
438 	 * Search in the children
439 	 */
440 	list_for_each_entry(c, &p->children, sibling) {
441 		if (c->mm == mm)
442 			goto assign_new_owner;
443 	}
444 
445 	/*
446 	 * Search in the siblings
447 	 */
448 	list_for_each_entry(c, &p->real_parent->children, sibling) {
449 		if (c->mm == mm)
450 			goto assign_new_owner;
451 	}
452 
453 	/*
454 	 * Search through everything else, we should not get here often.
455 	 */
456 	for_each_process(g) {
457 		if (g->flags & PF_KTHREAD)
458 			continue;
459 		for_each_thread(g, c) {
460 			if (c->mm == mm)
461 				goto assign_new_owner;
462 			if (c->mm)
463 				break;
464 		}
465 	}
466 	read_unlock(&tasklist_lock);
467 	/*
468 	 * We found no owner yet mm_users > 1: this implies that we are
469 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
470 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
471 	 */
472 	mm->owner = NULL;
473 	return;
474 
475 assign_new_owner:
476 	BUG_ON(c == p);
477 	get_task_struct(c);
478 	/*
479 	 * The task_lock protects c->mm from changing.
480 	 * We always want mm->owner->mm == mm
481 	 */
482 	task_lock(c);
483 	/*
484 	 * Delay read_unlock() till we have the task_lock()
485 	 * to ensure that c does not slip away underneath us
486 	 */
487 	read_unlock(&tasklist_lock);
488 	if (c->mm != mm) {
489 		task_unlock(c);
490 		put_task_struct(c);
491 		goto retry;
492 	}
493 	mm->owner = c;
494 	task_unlock(c);
495 	put_task_struct(c);
496 }
497 #endif /* CONFIG_MEMCG */
498 
499 /*
500  * Turn us into a lazy TLB process if we
501  * aren't already..
502  */
503 static void exit_mm(void)
504 {
505 	struct mm_struct *mm = current->mm;
506 	struct core_state *core_state;
507 
508 	mm_release(current, mm);
509 	if (!mm)
510 		return;
511 	sync_mm_rss(mm);
512 	/*
513 	 * Serialize with any possible pending coredump.
514 	 * We must hold mmap_sem around checking core_state
515 	 * and clearing tsk->mm.  The core-inducing thread
516 	 * will increment ->nr_threads for each thread in the
517 	 * group with ->mm != NULL.
518 	 */
519 	down_read(&mm->mmap_sem);
520 	core_state = mm->core_state;
521 	if (core_state) {
522 		struct core_thread self;
523 
524 		up_read(&mm->mmap_sem);
525 
526 		self.task = current;
527 		self.next = xchg(&core_state->dumper.next, &self);
528 		/*
529 		 * Implies mb(), the result of xchg() must be visible
530 		 * to core_state->dumper.
531 		 */
532 		if (atomic_dec_and_test(&core_state->nr_threads))
533 			complete(&core_state->startup);
534 
535 		for (;;) {
536 			set_current_state(TASK_UNINTERRUPTIBLE);
537 			if (!self.task) /* see coredump_finish() */
538 				break;
539 			freezable_schedule();
540 		}
541 		__set_current_state(TASK_RUNNING);
542 		down_read(&mm->mmap_sem);
543 	}
544 	mmgrab(mm);
545 	BUG_ON(mm != current->active_mm);
546 	/* more a memory barrier than a real lock */
547 	task_lock(current);
548 	current->mm = NULL;
549 	up_read(&mm->mmap_sem);
550 	enter_lazy_tlb(mm, current);
551 	task_unlock(current);
552 	mm_update_next_owner(mm);
553 	userfaultfd_exit(mm);
554 	mmput(mm);
555 	if (test_thread_flag(TIF_MEMDIE))
556 		exit_oom_victim();
557 }
558 
559 static struct task_struct *find_alive_thread(struct task_struct *p)
560 {
561 	struct task_struct *t;
562 
563 	for_each_thread(p, t) {
564 		if (!(t->flags & PF_EXITING))
565 			return t;
566 	}
567 	return NULL;
568 }
569 
570 static struct task_struct *find_child_reaper(struct task_struct *father)
571 	__releases(&tasklist_lock)
572 	__acquires(&tasklist_lock)
573 {
574 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
575 	struct task_struct *reaper = pid_ns->child_reaper;
576 
577 	if (likely(reaper != father))
578 		return reaper;
579 
580 	reaper = find_alive_thread(father);
581 	if (reaper) {
582 		pid_ns->child_reaper = reaper;
583 		return reaper;
584 	}
585 
586 	write_unlock_irq(&tasklist_lock);
587 	if (unlikely(pid_ns == &init_pid_ns)) {
588 		panic("Attempted to kill init! exitcode=0x%08x\n",
589 			father->signal->group_exit_code ?: father->exit_code);
590 	}
591 	zap_pid_ns_processes(pid_ns);
592 	write_lock_irq(&tasklist_lock);
593 
594 	return father;
595 }
596 
597 /*
598  * When we die, we re-parent all our children, and try to:
599  * 1. give them to another thread in our thread group, if such a member exists
600  * 2. give it to the first ancestor process which prctl'd itself as a
601  *    child_subreaper for its children (like a service manager)
602  * 3. give it to the init process (PID 1) in our pid namespace
603  */
604 static struct task_struct *find_new_reaper(struct task_struct *father,
605 					   struct task_struct *child_reaper)
606 {
607 	struct task_struct *thread, *reaper;
608 
609 	thread = find_alive_thread(father);
610 	if (thread)
611 		return thread;
612 
613 	if (father->signal->has_child_subreaper) {
614 		unsigned int ns_level = task_pid(father)->level;
615 		/*
616 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
617 		 * We can't check reaper != child_reaper to ensure we do not
618 		 * cross the namespaces, the exiting parent could be injected
619 		 * by setns() + fork().
620 		 * We check pid->level, this is slightly more efficient than
621 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
622 		 */
623 		for (reaper = father->real_parent;
624 		     task_pid(reaper)->level == ns_level;
625 		     reaper = reaper->real_parent) {
626 			if (reaper == &init_task)
627 				break;
628 			if (!reaper->signal->is_child_subreaper)
629 				continue;
630 			thread = find_alive_thread(reaper);
631 			if (thread)
632 				return thread;
633 		}
634 	}
635 
636 	return child_reaper;
637 }
638 
639 /*
640 * Any that need to be release_task'd are put on the @dead list.
641  */
642 static void reparent_leader(struct task_struct *father, struct task_struct *p,
643 				struct list_head *dead)
644 {
645 	if (unlikely(p->exit_state == EXIT_DEAD))
646 		return;
647 
648 	/* We don't want people slaying init. */
649 	p->exit_signal = SIGCHLD;
650 
651 	/* If it has exited notify the new parent about this child's death. */
652 	if (!p->ptrace &&
653 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
654 		if (do_notify_parent(p, p->exit_signal)) {
655 			p->exit_state = EXIT_DEAD;
656 			list_add(&p->ptrace_entry, dead);
657 		}
658 	}
659 
660 	kill_orphaned_pgrp(p, father);
661 }
662 
663 /*
664  * This does two things:
665  *
666  * A.  Make init inherit all the child processes
667  * B.  Check to see if any process groups have become orphaned
668  *	as a result of our exiting, and if they have any stopped
669  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
670  */
671 static void forget_original_parent(struct task_struct *father,
672 					struct list_head *dead)
673 {
674 	struct task_struct *p, *t, *reaper;
675 
676 	if (unlikely(!list_empty(&father->ptraced)))
677 		exit_ptrace(father, dead);
678 
679 	/* Can drop and reacquire tasklist_lock */
680 	reaper = find_child_reaper(father);
681 	if (list_empty(&father->children))
682 		return;
683 
684 	reaper = find_new_reaper(father, reaper);
685 	list_for_each_entry(p, &father->children, sibling) {
686 		for_each_thread(p, t) {
687 			t->real_parent = reaper;
688 			BUG_ON((!t->ptrace) != (t->parent == father));
689 			if (likely(!t->ptrace))
690 				t->parent = t->real_parent;
691 			if (t->pdeath_signal)
692 				group_send_sig_info(t->pdeath_signal,
693 						    SEND_SIG_NOINFO, t);
694 		}
695 		/*
696 		 * If this is a threaded reparent there is no need to
697 		 * notify anyone anything has happened.
698 		 */
699 		if (!same_thread_group(reaper, father))
700 			reparent_leader(father, p, dead);
701 	}
702 	list_splice_tail_init(&father->children, &reaper->children);
703 }
704 
705 /*
706  * Send signals to all our closest relatives so that they know
707  * to properly mourn us..
708  */
709 static void exit_notify(struct task_struct *tsk, int group_dead)
710 {
711 	bool autoreap;
712 	struct task_struct *p, *n;
713 	LIST_HEAD(dead);
714 
715 	write_lock_irq(&tasklist_lock);
716 	forget_original_parent(tsk, &dead);
717 
718 	if (group_dead)
719 		kill_orphaned_pgrp(tsk->group_leader, NULL);
720 
721 	if (unlikely(tsk->ptrace)) {
722 		int sig = thread_group_leader(tsk) &&
723 				thread_group_empty(tsk) &&
724 				!ptrace_reparented(tsk) ?
725 			tsk->exit_signal : SIGCHLD;
726 		autoreap = do_notify_parent(tsk, sig);
727 	} else if (thread_group_leader(tsk)) {
728 		autoreap = thread_group_empty(tsk) &&
729 			do_notify_parent(tsk, tsk->exit_signal);
730 	} else {
731 		autoreap = true;
732 	}
733 
734 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
735 	if (tsk->exit_state == EXIT_DEAD)
736 		list_add(&tsk->ptrace_entry, &dead);
737 
738 	/* mt-exec, de_thread() is waiting for group leader */
739 	if (unlikely(tsk->signal->notify_count < 0))
740 		wake_up_process(tsk->signal->group_exit_task);
741 	write_unlock_irq(&tasklist_lock);
742 
743 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
744 		list_del_init(&p->ptrace_entry);
745 		release_task(p);
746 	}
747 }
748 
749 #ifdef CONFIG_DEBUG_STACK_USAGE
750 static void check_stack_usage(void)
751 {
752 	static DEFINE_SPINLOCK(low_water_lock);
753 	static int lowest_to_date = THREAD_SIZE;
754 	unsigned long free;
755 
756 	free = stack_not_used(current);
757 
758 	if (free >= lowest_to_date)
759 		return;
760 
761 	spin_lock(&low_water_lock);
762 	if (free < lowest_to_date) {
763 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
764 			current->comm, task_pid_nr(current), free);
765 		lowest_to_date = free;
766 	}
767 	spin_unlock(&low_water_lock);
768 }
769 #else
770 static inline void check_stack_usage(void) {}
771 #endif
772 
773 void __noreturn do_exit(long code)
774 {
775 	struct task_struct *tsk = current;
776 	int group_dead;
777 	TASKS_RCU(int tasks_rcu_i);
778 
779 	profile_task_exit(tsk);
780 	kcov_task_exit(tsk);
781 
782 	WARN_ON(blk_needs_flush_plug(tsk));
783 
784 	if (unlikely(in_interrupt()))
785 		panic("Aiee, killing interrupt handler!");
786 	if (unlikely(!tsk->pid))
787 		panic("Attempted to kill the idle task!");
788 
789 	/*
790 	 * If do_exit is called because this processes oopsed, it's possible
791 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
792 	 * continuing. Amongst other possible reasons, this is to prevent
793 	 * mm_release()->clear_child_tid() from writing to a user-controlled
794 	 * kernel address.
795 	 */
796 	set_fs(USER_DS);
797 
798 	ptrace_event(PTRACE_EVENT_EXIT, code);
799 
800 	validate_creds_for_do_exit(tsk);
801 
802 	/*
803 	 * We're taking recursive faults here in do_exit. Safest is to just
804 	 * leave this task alone and wait for reboot.
805 	 */
806 	if (unlikely(tsk->flags & PF_EXITING)) {
807 		pr_alert("Fixing recursive fault but reboot is needed!\n");
808 		/*
809 		 * We can do this unlocked here. The futex code uses
810 		 * this flag just to verify whether the pi state
811 		 * cleanup has been done or not. In the worst case it
812 		 * loops once more. We pretend that the cleanup was
813 		 * done as there is no way to return. Either the
814 		 * OWNER_DIED bit is set by now or we push the blocked
815 		 * task into the wait for ever nirwana as well.
816 		 */
817 		tsk->flags |= PF_EXITPIDONE;
818 		set_current_state(TASK_UNINTERRUPTIBLE);
819 		schedule();
820 	}
821 
822 	exit_signals(tsk);  /* sets PF_EXITING */
823 	/*
824 	 * Ensure that all new tsk->pi_lock acquisitions must observe
825 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
826 	 */
827 	smp_mb();
828 	/*
829 	 * Ensure that we must observe the pi_state in exit_mm() ->
830 	 * mm_release() -> exit_pi_state_list().
831 	 */
832 	raw_spin_unlock_wait(&tsk->pi_lock);
833 
834 	if (unlikely(in_atomic())) {
835 		pr_info("note: %s[%d] exited with preempt_count %d\n",
836 			current->comm, task_pid_nr(current),
837 			preempt_count());
838 		preempt_count_set(PREEMPT_ENABLED);
839 	}
840 
841 	/* sync mm's RSS info before statistics gathering */
842 	if (tsk->mm)
843 		sync_mm_rss(tsk->mm);
844 	acct_update_integrals(tsk);
845 	group_dead = atomic_dec_and_test(&tsk->signal->live);
846 	if (group_dead) {
847 #ifdef CONFIG_POSIX_TIMERS
848 		hrtimer_cancel(&tsk->signal->real_timer);
849 		exit_itimers(tsk->signal);
850 #endif
851 		if (tsk->mm)
852 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
853 	}
854 	acct_collect(code, group_dead);
855 	if (group_dead)
856 		tty_audit_exit();
857 	audit_free(tsk);
858 
859 	tsk->exit_code = code;
860 	taskstats_exit(tsk, group_dead);
861 
862 	exit_mm();
863 
864 	if (group_dead)
865 		acct_process();
866 	trace_sched_process_exit(tsk);
867 
868 	exit_sem(tsk);
869 	exit_shm(tsk);
870 	exit_files(tsk);
871 	exit_fs(tsk);
872 	if (group_dead)
873 		disassociate_ctty(1);
874 	exit_task_namespaces(tsk);
875 	exit_task_work(tsk);
876 	exit_thread(tsk);
877 
878 	/*
879 	 * Flush inherited counters to the parent - before the parent
880 	 * gets woken up by child-exit notifications.
881 	 *
882 	 * because of cgroup mode, must be called before cgroup_exit()
883 	 */
884 	perf_event_exit_task(tsk);
885 
886 	sched_autogroup_exit_task(tsk);
887 	cgroup_exit(tsk);
888 
889 	/*
890 	 * FIXME: do that only when needed, using sched_exit tracepoint
891 	 */
892 	flush_ptrace_hw_breakpoint(tsk);
893 
894 	TASKS_RCU(preempt_disable());
895 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
896 	TASKS_RCU(preempt_enable());
897 	exit_notify(tsk, group_dead);
898 	proc_exit_connector(tsk);
899 	mpol_put_task_policy(tsk);
900 #ifdef CONFIG_FUTEX
901 	if (unlikely(current->pi_state_cache))
902 		kfree(current->pi_state_cache);
903 #endif
904 	/*
905 	 * Make sure we are holding no locks:
906 	 */
907 	debug_check_no_locks_held();
908 	/*
909 	 * We can do this unlocked here. The futex code uses this flag
910 	 * just to verify whether the pi state cleanup has been done
911 	 * or not. In the worst case it loops once more.
912 	 */
913 	tsk->flags |= PF_EXITPIDONE;
914 
915 	if (tsk->io_context)
916 		exit_io_context(tsk);
917 
918 	if (tsk->splice_pipe)
919 		free_pipe_info(tsk->splice_pipe);
920 
921 	if (tsk->task_frag.page)
922 		put_page(tsk->task_frag.page);
923 
924 	validate_creds_for_do_exit(tsk);
925 
926 	check_stack_usage();
927 	preempt_disable();
928 	if (tsk->nr_dirtied)
929 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
930 	exit_rcu();
931 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
932 
933 	do_task_dead();
934 }
935 EXPORT_SYMBOL_GPL(do_exit);
936 
937 void complete_and_exit(struct completion *comp, long code)
938 {
939 	if (comp)
940 		complete(comp);
941 
942 	do_exit(code);
943 }
944 EXPORT_SYMBOL(complete_and_exit);
945 
946 SYSCALL_DEFINE1(exit, int, error_code)
947 {
948 	do_exit((error_code&0xff)<<8);
949 }
950 
951 /*
952  * Take down every thread in the group.  This is called by fatal signals
953  * as well as by sys_exit_group (below).
954  */
955 void
956 do_group_exit(int exit_code)
957 {
958 	struct signal_struct *sig = current->signal;
959 
960 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
961 
962 	if (signal_group_exit(sig))
963 		exit_code = sig->group_exit_code;
964 	else if (!thread_group_empty(current)) {
965 		struct sighand_struct *const sighand = current->sighand;
966 
967 		spin_lock_irq(&sighand->siglock);
968 		if (signal_group_exit(sig))
969 			/* Another thread got here before we took the lock.  */
970 			exit_code = sig->group_exit_code;
971 		else {
972 			sig->group_exit_code = exit_code;
973 			sig->flags = SIGNAL_GROUP_EXIT;
974 			zap_other_threads(current);
975 		}
976 		spin_unlock_irq(&sighand->siglock);
977 	}
978 
979 	do_exit(exit_code);
980 	/* NOTREACHED */
981 }
982 
983 /*
984  * this kills every thread in the thread group. Note that any externally
985  * wait4()-ing process will get the correct exit code - even if this
986  * thread is not the thread group leader.
987  */
988 SYSCALL_DEFINE1(exit_group, int, error_code)
989 {
990 	do_group_exit((error_code & 0xff) << 8);
991 	/* NOTREACHED */
992 	return 0;
993 }
994 
995 struct wait_opts {
996 	enum pid_type		wo_type;
997 	int			wo_flags;
998 	struct pid		*wo_pid;
999 
1000 	struct siginfo __user	*wo_info;
1001 	int __user		*wo_stat;
1002 	struct rusage __user	*wo_rusage;
1003 
1004 	wait_queue_t		child_wait;
1005 	int			notask_error;
1006 };
1007 
1008 static inline
1009 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1010 {
1011 	if (type != PIDTYPE_PID)
1012 		task = task->group_leader;
1013 	return task->pids[type].pid;
1014 }
1015 
1016 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1017 {
1018 	return	wo->wo_type == PIDTYPE_MAX ||
1019 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1020 }
1021 
1022 static int
1023 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1024 {
1025 	if (!eligible_pid(wo, p))
1026 		return 0;
1027 
1028 	/*
1029 	 * Wait for all children (clone and not) if __WALL is set or
1030 	 * if it is traced by us.
1031 	 */
1032 	if (ptrace || (wo->wo_flags & __WALL))
1033 		return 1;
1034 
1035 	/*
1036 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1037 	 * otherwise, wait for non-clone children *only*.
1038 	 *
1039 	 * Note: a "clone" child here is one that reports to its parent
1040 	 * using a signal other than SIGCHLD, or a non-leader thread which
1041 	 * we can only see if it is traced by us.
1042 	 */
1043 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1044 		return 0;
1045 
1046 	return 1;
1047 }
1048 
1049 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1050 				pid_t pid, uid_t uid, int why, int status)
1051 {
1052 	struct siginfo __user *infop;
1053 	int retval = wo->wo_rusage
1054 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1055 
1056 	put_task_struct(p);
1057 	infop = wo->wo_info;
1058 	if (infop) {
1059 		if (!retval)
1060 			retval = put_user(SIGCHLD, &infop->si_signo);
1061 		if (!retval)
1062 			retval = put_user(0, &infop->si_errno);
1063 		if (!retval)
1064 			retval = put_user((short)why, &infop->si_code);
1065 		if (!retval)
1066 			retval = put_user(pid, &infop->si_pid);
1067 		if (!retval)
1068 			retval = put_user(uid, &infop->si_uid);
1069 		if (!retval)
1070 			retval = put_user(status, &infop->si_status);
1071 	}
1072 	if (!retval)
1073 		retval = pid;
1074 	return retval;
1075 }
1076 
1077 /*
1078  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1079  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1080  * the lock and this task is uninteresting.  If we return nonzero, we have
1081  * released the lock and the system call should return.
1082  */
1083 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1084 {
1085 	int state, retval, status;
1086 	pid_t pid = task_pid_vnr(p);
1087 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1088 	struct siginfo __user *infop;
1089 
1090 	if (!likely(wo->wo_flags & WEXITED))
1091 		return 0;
1092 
1093 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1094 		int exit_code = p->exit_code;
1095 		int why;
1096 
1097 		get_task_struct(p);
1098 		read_unlock(&tasklist_lock);
1099 		sched_annotate_sleep();
1100 
1101 		if ((exit_code & 0x7f) == 0) {
1102 			why = CLD_EXITED;
1103 			status = exit_code >> 8;
1104 		} else {
1105 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1106 			status = exit_code & 0x7f;
1107 		}
1108 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1109 	}
1110 	/*
1111 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1112 	 */
1113 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1114 		EXIT_TRACE : EXIT_DEAD;
1115 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1116 		return 0;
1117 	/*
1118 	 * We own this thread, nobody else can reap it.
1119 	 */
1120 	read_unlock(&tasklist_lock);
1121 	sched_annotate_sleep();
1122 
1123 	/*
1124 	 * Check thread_group_leader() to exclude the traced sub-threads.
1125 	 */
1126 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1127 		struct signal_struct *sig = p->signal;
1128 		struct signal_struct *psig = current->signal;
1129 		unsigned long maxrss;
1130 		u64 tgutime, tgstime;
1131 
1132 		/*
1133 		 * The resource counters for the group leader are in its
1134 		 * own task_struct.  Those for dead threads in the group
1135 		 * are in its signal_struct, as are those for the child
1136 		 * processes it has previously reaped.  All these
1137 		 * accumulate in the parent's signal_struct c* fields.
1138 		 *
1139 		 * We don't bother to take a lock here to protect these
1140 		 * p->signal fields because the whole thread group is dead
1141 		 * and nobody can change them.
1142 		 *
1143 		 * psig->stats_lock also protects us from our sub-theads
1144 		 * which can reap other children at the same time. Until
1145 		 * we change k_getrusage()-like users to rely on this lock
1146 		 * we have to take ->siglock as well.
1147 		 *
1148 		 * We use thread_group_cputime_adjusted() to get times for
1149 		 * the thread group, which consolidates times for all threads
1150 		 * in the group including the group leader.
1151 		 */
1152 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1153 		spin_lock_irq(&current->sighand->siglock);
1154 		write_seqlock(&psig->stats_lock);
1155 		psig->cutime += tgutime + sig->cutime;
1156 		psig->cstime += tgstime + sig->cstime;
1157 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1158 		psig->cmin_flt +=
1159 			p->min_flt + sig->min_flt + sig->cmin_flt;
1160 		psig->cmaj_flt +=
1161 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1162 		psig->cnvcsw +=
1163 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1164 		psig->cnivcsw +=
1165 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1166 		psig->cinblock +=
1167 			task_io_get_inblock(p) +
1168 			sig->inblock + sig->cinblock;
1169 		psig->coublock +=
1170 			task_io_get_oublock(p) +
1171 			sig->oublock + sig->coublock;
1172 		maxrss = max(sig->maxrss, sig->cmaxrss);
1173 		if (psig->cmaxrss < maxrss)
1174 			psig->cmaxrss = maxrss;
1175 		task_io_accounting_add(&psig->ioac, &p->ioac);
1176 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1177 		write_sequnlock(&psig->stats_lock);
1178 		spin_unlock_irq(&current->sighand->siglock);
1179 	}
1180 
1181 	retval = wo->wo_rusage
1182 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1183 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1184 		? p->signal->group_exit_code : p->exit_code;
1185 	if (!retval && wo->wo_stat)
1186 		retval = put_user(status, wo->wo_stat);
1187 
1188 	infop = wo->wo_info;
1189 	if (!retval && infop)
1190 		retval = put_user(SIGCHLD, &infop->si_signo);
1191 	if (!retval && infop)
1192 		retval = put_user(0, &infop->si_errno);
1193 	if (!retval && infop) {
1194 		int why;
1195 
1196 		if ((status & 0x7f) == 0) {
1197 			why = CLD_EXITED;
1198 			status >>= 8;
1199 		} else {
1200 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1201 			status &= 0x7f;
1202 		}
1203 		retval = put_user((short)why, &infop->si_code);
1204 		if (!retval)
1205 			retval = put_user(status, &infop->si_status);
1206 	}
1207 	if (!retval && infop)
1208 		retval = put_user(pid, &infop->si_pid);
1209 	if (!retval && infop)
1210 		retval = put_user(uid, &infop->si_uid);
1211 	if (!retval)
1212 		retval = pid;
1213 
1214 	if (state == EXIT_TRACE) {
1215 		write_lock_irq(&tasklist_lock);
1216 		/* We dropped tasklist, ptracer could die and untrace */
1217 		ptrace_unlink(p);
1218 
1219 		/* If parent wants a zombie, don't release it now */
1220 		state = EXIT_ZOMBIE;
1221 		if (do_notify_parent(p, p->exit_signal))
1222 			state = EXIT_DEAD;
1223 		p->exit_state = state;
1224 		write_unlock_irq(&tasklist_lock);
1225 	}
1226 	if (state == EXIT_DEAD)
1227 		release_task(p);
1228 
1229 	return retval;
1230 }
1231 
1232 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1233 {
1234 	if (ptrace) {
1235 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1236 			return &p->exit_code;
1237 	} else {
1238 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1239 			return &p->signal->group_exit_code;
1240 	}
1241 	return NULL;
1242 }
1243 
1244 /**
1245  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1246  * @wo: wait options
1247  * @ptrace: is the wait for ptrace
1248  * @p: task to wait for
1249  *
1250  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1251  *
1252  * CONTEXT:
1253  * read_lock(&tasklist_lock), which is released if return value is
1254  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1255  *
1256  * RETURNS:
1257  * 0 if wait condition didn't exist and search for other wait conditions
1258  * should continue.  Non-zero return, -errno on failure and @p's pid on
1259  * success, implies that tasklist_lock is released and wait condition
1260  * search should terminate.
1261  */
1262 static int wait_task_stopped(struct wait_opts *wo,
1263 				int ptrace, struct task_struct *p)
1264 {
1265 	struct siginfo __user *infop;
1266 	int retval, exit_code, *p_code, why;
1267 	uid_t uid = 0; /* unneeded, required by compiler */
1268 	pid_t pid;
1269 
1270 	/*
1271 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1272 	 */
1273 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1274 		return 0;
1275 
1276 	if (!task_stopped_code(p, ptrace))
1277 		return 0;
1278 
1279 	exit_code = 0;
1280 	spin_lock_irq(&p->sighand->siglock);
1281 
1282 	p_code = task_stopped_code(p, ptrace);
1283 	if (unlikely(!p_code))
1284 		goto unlock_sig;
1285 
1286 	exit_code = *p_code;
1287 	if (!exit_code)
1288 		goto unlock_sig;
1289 
1290 	if (!unlikely(wo->wo_flags & WNOWAIT))
1291 		*p_code = 0;
1292 
1293 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1294 unlock_sig:
1295 	spin_unlock_irq(&p->sighand->siglock);
1296 	if (!exit_code)
1297 		return 0;
1298 
1299 	/*
1300 	 * Now we are pretty sure this task is interesting.
1301 	 * Make sure it doesn't get reaped out from under us while we
1302 	 * give up the lock and then examine it below.  We don't want to
1303 	 * keep holding onto the tasklist_lock while we call getrusage and
1304 	 * possibly take page faults for user memory.
1305 	 */
1306 	get_task_struct(p);
1307 	pid = task_pid_vnr(p);
1308 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1309 	read_unlock(&tasklist_lock);
1310 	sched_annotate_sleep();
1311 
1312 	if (unlikely(wo->wo_flags & WNOWAIT))
1313 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1314 
1315 	retval = wo->wo_rusage
1316 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1317 	if (!retval && wo->wo_stat)
1318 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1319 
1320 	infop = wo->wo_info;
1321 	if (!retval && infop)
1322 		retval = put_user(SIGCHLD, &infop->si_signo);
1323 	if (!retval && infop)
1324 		retval = put_user(0, &infop->si_errno);
1325 	if (!retval && infop)
1326 		retval = put_user((short)why, &infop->si_code);
1327 	if (!retval && infop)
1328 		retval = put_user(exit_code, &infop->si_status);
1329 	if (!retval && infop)
1330 		retval = put_user(pid, &infop->si_pid);
1331 	if (!retval && infop)
1332 		retval = put_user(uid, &infop->si_uid);
1333 	if (!retval)
1334 		retval = pid;
1335 	put_task_struct(p);
1336 
1337 	BUG_ON(!retval);
1338 	return retval;
1339 }
1340 
1341 /*
1342  * Handle do_wait work for one task in a live, non-stopped state.
1343  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1344  * the lock and this task is uninteresting.  If we return nonzero, we have
1345  * released the lock and the system call should return.
1346  */
1347 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1348 {
1349 	int retval;
1350 	pid_t pid;
1351 	uid_t uid;
1352 
1353 	if (!unlikely(wo->wo_flags & WCONTINUED))
1354 		return 0;
1355 
1356 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1357 		return 0;
1358 
1359 	spin_lock_irq(&p->sighand->siglock);
1360 	/* Re-check with the lock held.  */
1361 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1362 		spin_unlock_irq(&p->sighand->siglock);
1363 		return 0;
1364 	}
1365 	if (!unlikely(wo->wo_flags & WNOWAIT))
1366 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1367 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1368 	spin_unlock_irq(&p->sighand->siglock);
1369 
1370 	pid = task_pid_vnr(p);
1371 	get_task_struct(p);
1372 	read_unlock(&tasklist_lock);
1373 	sched_annotate_sleep();
1374 
1375 	if (!wo->wo_info) {
1376 		retval = wo->wo_rusage
1377 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1378 		put_task_struct(p);
1379 		if (!retval && wo->wo_stat)
1380 			retval = put_user(0xffff, wo->wo_stat);
1381 		if (!retval)
1382 			retval = pid;
1383 	} else {
1384 		retval = wait_noreap_copyout(wo, p, pid, uid,
1385 					     CLD_CONTINUED, SIGCONT);
1386 		BUG_ON(retval == 0);
1387 	}
1388 
1389 	return retval;
1390 }
1391 
1392 /*
1393  * Consider @p for a wait by @parent.
1394  *
1395  * -ECHILD should be in ->notask_error before the first call.
1396  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1397  * Returns zero if the search for a child should continue;
1398  * then ->notask_error is 0 if @p is an eligible child,
1399  * or still -ECHILD.
1400  */
1401 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1402 				struct task_struct *p)
1403 {
1404 	/*
1405 	 * We can race with wait_task_zombie() from another thread.
1406 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1407 	 * can't confuse the checks below.
1408 	 */
1409 	int exit_state = ACCESS_ONCE(p->exit_state);
1410 	int ret;
1411 
1412 	if (unlikely(exit_state == EXIT_DEAD))
1413 		return 0;
1414 
1415 	ret = eligible_child(wo, ptrace, p);
1416 	if (!ret)
1417 		return ret;
1418 
1419 	if (unlikely(exit_state == EXIT_TRACE)) {
1420 		/*
1421 		 * ptrace == 0 means we are the natural parent. In this case
1422 		 * we should clear notask_error, debugger will notify us.
1423 		 */
1424 		if (likely(!ptrace))
1425 			wo->notask_error = 0;
1426 		return 0;
1427 	}
1428 
1429 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1430 		/*
1431 		 * If it is traced by its real parent's group, just pretend
1432 		 * the caller is ptrace_do_wait() and reap this child if it
1433 		 * is zombie.
1434 		 *
1435 		 * This also hides group stop state from real parent; otherwise
1436 		 * a single stop can be reported twice as group and ptrace stop.
1437 		 * If a ptracer wants to distinguish these two events for its
1438 		 * own children it should create a separate process which takes
1439 		 * the role of real parent.
1440 		 */
1441 		if (!ptrace_reparented(p))
1442 			ptrace = 1;
1443 	}
1444 
1445 	/* slay zombie? */
1446 	if (exit_state == EXIT_ZOMBIE) {
1447 		/* we don't reap group leaders with subthreads */
1448 		if (!delay_group_leader(p)) {
1449 			/*
1450 			 * A zombie ptracee is only visible to its ptracer.
1451 			 * Notification and reaping will be cascaded to the
1452 			 * real parent when the ptracer detaches.
1453 			 */
1454 			if (unlikely(ptrace) || likely(!p->ptrace))
1455 				return wait_task_zombie(wo, p);
1456 		}
1457 
1458 		/*
1459 		 * Allow access to stopped/continued state via zombie by
1460 		 * falling through.  Clearing of notask_error is complex.
1461 		 *
1462 		 * When !@ptrace:
1463 		 *
1464 		 * If WEXITED is set, notask_error should naturally be
1465 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1466 		 * so, if there are live subthreads, there are events to
1467 		 * wait for.  If all subthreads are dead, it's still safe
1468 		 * to clear - this function will be called again in finite
1469 		 * amount time once all the subthreads are released and
1470 		 * will then return without clearing.
1471 		 *
1472 		 * When @ptrace:
1473 		 *
1474 		 * Stopped state is per-task and thus can't change once the
1475 		 * target task dies.  Only continued and exited can happen.
1476 		 * Clear notask_error if WCONTINUED | WEXITED.
1477 		 */
1478 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1479 			wo->notask_error = 0;
1480 	} else {
1481 		/*
1482 		 * @p is alive and it's gonna stop, continue or exit, so
1483 		 * there always is something to wait for.
1484 		 */
1485 		wo->notask_error = 0;
1486 	}
1487 
1488 	/*
1489 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1490 	 * is used and the two don't interact with each other.
1491 	 */
1492 	ret = wait_task_stopped(wo, ptrace, p);
1493 	if (ret)
1494 		return ret;
1495 
1496 	/*
1497 	 * Wait for continued.  There's only one continued state and the
1498 	 * ptracer can consume it which can confuse the real parent.  Don't
1499 	 * use WCONTINUED from ptracer.  You don't need or want it.
1500 	 */
1501 	return wait_task_continued(wo, p);
1502 }
1503 
1504 /*
1505  * Do the work of do_wait() for one thread in the group, @tsk.
1506  *
1507  * -ECHILD should be in ->notask_error before the first call.
1508  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1509  * Returns zero if the search for a child should continue; then
1510  * ->notask_error is 0 if there were any eligible children,
1511  * or still -ECHILD.
1512  */
1513 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1514 {
1515 	struct task_struct *p;
1516 
1517 	list_for_each_entry(p, &tsk->children, sibling) {
1518 		int ret = wait_consider_task(wo, 0, p);
1519 
1520 		if (ret)
1521 			return ret;
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1528 {
1529 	struct task_struct *p;
1530 
1531 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1532 		int ret = wait_consider_task(wo, 1, p);
1533 
1534 		if (ret)
1535 			return ret;
1536 	}
1537 
1538 	return 0;
1539 }
1540 
1541 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1542 				int sync, void *key)
1543 {
1544 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1545 						child_wait);
1546 	struct task_struct *p = key;
1547 
1548 	if (!eligible_pid(wo, p))
1549 		return 0;
1550 
1551 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1552 		return 0;
1553 
1554 	return default_wake_function(wait, mode, sync, key);
1555 }
1556 
1557 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1558 {
1559 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1560 				TASK_INTERRUPTIBLE, 1, p);
1561 }
1562 
1563 static long do_wait(struct wait_opts *wo)
1564 {
1565 	struct task_struct *tsk;
1566 	int retval;
1567 
1568 	trace_sched_process_wait(wo->wo_pid);
1569 
1570 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1571 	wo->child_wait.private = current;
1572 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1573 repeat:
1574 	/*
1575 	 * If there is nothing that can match our criteria, just get out.
1576 	 * We will clear ->notask_error to zero if we see any child that
1577 	 * might later match our criteria, even if we are not able to reap
1578 	 * it yet.
1579 	 */
1580 	wo->notask_error = -ECHILD;
1581 	if ((wo->wo_type < PIDTYPE_MAX) &&
1582 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1583 		goto notask;
1584 
1585 	set_current_state(TASK_INTERRUPTIBLE);
1586 	read_lock(&tasklist_lock);
1587 	tsk = current;
1588 	do {
1589 		retval = do_wait_thread(wo, tsk);
1590 		if (retval)
1591 			goto end;
1592 
1593 		retval = ptrace_do_wait(wo, tsk);
1594 		if (retval)
1595 			goto end;
1596 
1597 		if (wo->wo_flags & __WNOTHREAD)
1598 			break;
1599 	} while_each_thread(current, tsk);
1600 	read_unlock(&tasklist_lock);
1601 
1602 notask:
1603 	retval = wo->notask_error;
1604 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1605 		retval = -ERESTARTSYS;
1606 		if (!signal_pending(current)) {
1607 			schedule();
1608 			goto repeat;
1609 		}
1610 	}
1611 end:
1612 	__set_current_state(TASK_RUNNING);
1613 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1614 	return retval;
1615 }
1616 
1617 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1618 		infop, int, options, struct rusage __user *, ru)
1619 {
1620 	struct wait_opts wo;
1621 	struct pid *pid = NULL;
1622 	enum pid_type type;
1623 	long ret;
1624 
1625 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1626 			__WNOTHREAD|__WCLONE|__WALL))
1627 		return -EINVAL;
1628 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1629 		return -EINVAL;
1630 
1631 	switch (which) {
1632 	case P_ALL:
1633 		type = PIDTYPE_MAX;
1634 		break;
1635 	case P_PID:
1636 		type = PIDTYPE_PID;
1637 		if (upid <= 0)
1638 			return -EINVAL;
1639 		break;
1640 	case P_PGID:
1641 		type = PIDTYPE_PGID;
1642 		if (upid <= 0)
1643 			return -EINVAL;
1644 		break;
1645 	default:
1646 		return -EINVAL;
1647 	}
1648 
1649 	if (type < PIDTYPE_MAX)
1650 		pid = find_get_pid(upid);
1651 
1652 	wo.wo_type	= type;
1653 	wo.wo_pid	= pid;
1654 	wo.wo_flags	= options;
1655 	wo.wo_info	= infop;
1656 	wo.wo_stat	= NULL;
1657 	wo.wo_rusage	= ru;
1658 	ret = do_wait(&wo);
1659 
1660 	if (ret > 0) {
1661 		ret = 0;
1662 	} else if (infop) {
1663 		/*
1664 		 * For a WNOHANG return, clear out all the fields
1665 		 * we would set so the user can easily tell the
1666 		 * difference.
1667 		 */
1668 		if (!ret)
1669 			ret = put_user(0, &infop->si_signo);
1670 		if (!ret)
1671 			ret = put_user(0, &infop->si_errno);
1672 		if (!ret)
1673 			ret = put_user(0, &infop->si_code);
1674 		if (!ret)
1675 			ret = put_user(0, &infop->si_pid);
1676 		if (!ret)
1677 			ret = put_user(0, &infop->si_uid);
1678 		if (!ret)
1679 			ret = put_user(0, &infop->si_status);
1680 	}
1681 
1682 	put_pid(pid);
1683 	return ret;
1684 }
1685 
1686 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1687 		int, options, struct rusage __user *, ru)
1688 {
1689 	struct wait_opts wo;
1690 	struct pid *pid = NULL;
1691 	enum pid_type type;
1692 	long ret;
1693 
1694 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1695 			__WNOTHREAD|__WCLONE|__WALL))
1696 		return -EINVAL;
1697 
1698 	if (upid == -1)
1699 		type = PIDTYPE_MAX;
1700 	else if (upid < 0) {
1701 		type = PIDTYPE_PGID;
1702 		pid = find_get_pid(-upid);
1703 	} else if (upid == 0) {
1704 		type = PIDTYPE_PGID;
1705 		pid = get_task_pid(current, PIDTYPE_PGID);
1706 	} else /* upid > 0 */ {
1707 		type = PIDTYPE_PID;
1708 		pid = find_get_pid(upid);
1709 	}
1710 
1711 	wo.wo_type	= type;
1712 	wo.wo_pid	= pid;
1713 	wo.wo_flags	= options | WEXITED;
1714 	wo.wo_info	= NULL;
1715 	wo.wo_stat	= stat_addr;
1716 	wo.wo_rusage	= ru;
1717 	ret = do_wait(&wo);
1718 	put_pid(pid);
1719 
1720 	return ret;
1721 }
1722 
1723 #ifdef __ARCH_WANT_SYS_WAITPID
1724 
1725 /*
1726  * sys_waitpid() remains for compatibility. waitpid() should be
1727  * implemented by calling sys_wait4() from libc.a.
1728  */
1729 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1730 {
1731 	return sys_wait4(pid, stat_addr, options, NULL);
1732 }
1733 
1734 #endif
1735