xref: /openbmc/linux/kernel/exit.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 
73 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
75 #include <asm/mmu_context.h>
76 
77 /*
78  * The default value should be high enough to not crash a system that randomly
79  * crashes its kernel from time to time, but low enough to at least not permit
80  * overflowing 32-bit refcounts or the ldsem writer count.
81  */
82 static unsigned int oops_limit = 10000;
83 
84 #ifdef CONFIG_SYSCTL
85 static struct ctl_table kern_exit_table[] = {
86 	{
87 		.procname       = "oops_limit",
88 		.data           = &oops_limit,
89 		.maxlen         = sizeof(oops_limit),
90 		.mode           = 0644,
91 		.proc_handler   = proc_douintvec,
92 	},
93 	{ }
94 };
95 
96 static __init int kernel_exit_sysctls_init(void)
97 {
98 	register_sysctl_init("kernel", kern_exit_table);
99 	return 0;
100 }
101 late_initcall(kernel_exit_sysctls_init);
102 #endif
103 
104 static atomic_t oops_count = ATOMIC_INIT(0);
105 
106 #ifdef CONFIG_SYSFS
107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
108 			       char *page)
109 {
110 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
111 }
112 
113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
114 
115 static __init int kernel_exit_sysfs_init(void)
116 {
117 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
118 	return 0;
119 }
120 late_initcall(kernel_exit_sysfs_init);
121 #endif
122 
123 static void __unhash_process(struct task_struct *p, bool group_dead)
124 {
125 	nr_threads--;
126 	detach_pid(p, PIDTYPE_PID);
127 	if (group_dead) {
128 		detach_pid(p, PIDTYPE_TGID);
129 		detach_pid(p, PIDTYPE_PGID);
130 		detach_pid(p, PIDTYPE_SID);
131 
132 		list_del_rcu(&p->tasks);
133 		list_del_init(&p->sibling);
134 		__this_cpu_dec(process_counts);
135 	}
136 	list_del_rcu(&p->thread_group);
137 	list_del_rcu(&p->thread_node);
138 }
139 
140 /*
141  * This function expects the tasklist_lock write-locked.
142  */
143 static void __exit_signal(struct task_struct *tsk)
144 {
145 	struct signal_struct *sig = tsk->signal;
146 	bool group_dead = thread_group_leader(tsk);
147 	struct sighand_struct *sighand;
148 	struct tty_struct *tty;
149 	u64 utime, stime;
150 
151 	sighand = rcu_dereference_check(tsk->sighand,
152 					lockdep_tasklist_lock_is_held());
153 	spin_lock(&sighand->siglock);
154 
155 #ifdef CONFIG_POSIX_TIMERS
156 	posix_cpu_timers_exit(tsk);
157 	if (group_dead)
158 		posix_cpu_timers_exit_group(tsk);
159 #endif
160 
161 	if (group_dead) {
162 		tty = sig->tty;
163 		sig->tty = NULL;
164 	} else {
165 		/*
166 		 * If there is any task waiting for the group exit
167 		 * then notify it:
168 		 */
169 		if (sig->notify_count > 0 && !--sig->notify_count)
170 			wake_up_process(sig->group_exec_task);
171 
172 		if (tsk == sig->curr_target)
173 			sig->curr_target = next_thread(tsk);
174 	}
175 
176 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
177 			      sizeof(unsigned long long));
178 
179 	/*
180 	 * Accumulate here the counters for all threads as they die. We could
181 	 * skip the group leader because it is the last user of signal_struct,
182 	 * but we want to avoid the race with thread_group_cputime() which can
183 	 * see the empty ->thread_head list.
184 	 */
185 	task_cputime(tsk, &utime, &stime);
186 	write_seqlock(&sig->stats_lock);
187 	sig->utime += utime;
188 	sig->stime += stime;
189 	sig->gtime += task_gtime(tsk);
190 	sig->min_flt += tsk->min_flt;
191 	sig->maj_flt += tsk->maj_flt;
192 	sig->nvcsw += tsk->nvcsw;
193 	sig->nivcsw += tsk->nivcsw;
194 	sig->inblock += task_io_get_inblock(tsk);
195 	sig->oublock += task_io_get_oublock(tsk);
196 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
197 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
198 	sig->nr_threads--;
199 	__unhash_process(tsk, group_dead);
200 	write_sequnlock(&sig->stats_lock);
201 
202 	/*
203 	 * Do this under ->siglock, we can race with another thread
204 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
205 	 */
206 	flush_sigqueue(&tsk->pending);
207 	tsk->sighand = NULL;
208 	spin_unlock(&sighand->siglock);
209 
210 	__cleanup_sighand(sighand);
211 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
212 	if (group_dead) {
213 		flush_sigqueue(&sig->shared_pending);
214 		tty_kref_put(tty);
215 	}
216 }
217 
218 static void delayed_put_task_struct(struct rcu_head *rhp)
219 {
220 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
221 
222 	kprobe_flush_task(tsk);
223 	rethook_flush_task(tsk);
224 	perf_event_delayed_put(tsk);
225 	trace_sched_process_free(tsk);
226 	put_task_struct(tsk);
227 }
228 
229 void put_task_struct_rcu_user(struct task_struct *task)
230 {
231 	if (refcount_dec_and_test(&task->rcu_users))
232 		call_rcu(&task->rcu, delayed_put_task_struct);
233 }
234 
235 void __weak release_thread(struct task_struct *dead_task)
236 {
237 }
238 
239 void release_task(struct task_struct *p)
240 {
241 	struct task_struct *leader;
242 	struct pid *thread_pid;
243 	int zap_leader;
244 repeat:
245 	/* don't need to get the RCU readlock here - the process is dead and
246 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
247 	rcu_read_lock();
248 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
249 	rcu_read_unlock();
250 
251 	cgroup_release(p);
252 
253 	write_lock_irq(&tasklist_lock);
254 	ptrace_release_task(p);
255 	thread_pid = get_pid(p->thread_pid);
256 	__exit_signal(p);
257 
258 	/*
259 	 * If we are the last non-leader member of the thread
260 	 * group, and the leader is zombie, then notify the
261 	 * group leader's parent process. (if it wants notification.)
262 	 */
263 	zap_leader = 0;
264 	leader = p->group_leader;
265 	if (leader != p && thread_group_empty(leader)
266 			&& leader->exit_state == EXIT_ZOMBIE) {
267 		/*
268 		 * If we were the last child thread and the leader has
269 		 * exited already, and the leader's parent ignores SIGCHLD,
270 		 * then we are the one who should release the leader.
271 		 */
272 		zap_leader = do_notify_parent(leader, leader->exit_signal);
273 		if (zap_leader)
274 			leader->exit_state = EXIT_DEAD;
275 	}
276 
277 	write_unlock_irq(&tasklist_lock);
278 	seccomp_filter_release(p);
279 	proc_flush_pid(thread_pid);
280 	put_pid(thread_pid);
281 	release_thread(p);
282 	put_task_struct_rcu_user(p);
283 
284 	p = leader;
285 	if (unlikely(zap_leader))
286 		goto repeat;
287 }
288 
289 int rcuwait_wake_up(struct rcuwait *w)
290 {
291 	int ret = 0;
292 	struct task_struct *task;
293 
294 	rcu_read_lock();
295 
296 	/*
297 	 * Order condition vs @task, such that everything prior to the load
298 	 * of @task is visible. This is the condition as to why the user called
299 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
300 	 * barrier (A) in rcuwait_wait_event().
301 	 *
302 	 *    WAIT                WAKE
303 	 *    [S] tsk = current	  [S] cond = true
304 	 *        MB (A)	      MB (B)
305 	 *    [L] cond		  [L] tsk
306 	 */
307 	smp_mb(); /* (B) */
308 
309 	task = rcu_dereference(w->task);
310 	if (task)
311 		ret = wake_up_process(task);
312 	rcu_read_unlock();
313 
314 	return ret;
315 }
316 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
317 
318 /*
319  * Determine if a process group is "orphaned", according to the POSIX
320  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
321  * by terminal-generated stop signals.  Newly orphaned process groups are
322  * to receive a SIGHUP and a SIGCONT.
323  *
324  * "I ask you, have you ever known what it is to be an orphan?"
325  */
326 static int will_become_orphaned_pgrp(struct pid *pgrp,
327 					struct task_struct *ignored_task)
328 {
329 	struct task_struct *p;
330 
331 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332 		if ((p == ignored_task) ||
333 		    (p->exit_state && thread_group_empty(p)) ||
334 		    is_global_init(p->real_parent))
335 			continue;
336 
337 		if (task_pgrp(p->real_parent) != pgrp &&
338 		    task_session(p->real_parent) == task_session(p))
339 			return 0;
340 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
341 
342 	return 1;
343 }
344 
345 int is_current_pgrp_orphaned(void)
346 {
347 	int retval;
348 
349 	read_lock(&tasklist_lock);
350 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
351 	read_unlock(&tasklist_lock);
352 
353 	return retval;
354 }
355 
356 static bool has_stopped_jobs(struct pid *pgrp)
357 {
358 	struct task_struct *p;
359 
360 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
361 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
362 			return true;
363 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
364 
365 	return false;
366 }
367 
368 /*
369  * Check to see if any process groups have become orphaned as
370  * a result of our exiting, and if they have any stopped jobs,
371  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
372  */
373 static void
374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
375 {
376 	struct pid *pgrp = task_pgrp(tsk);
377 	struct task_struct *ignored_task = tsk;
378 
379 	if (!parent)
380 		/* exit: our father is in a different pgrp than
381 		 * we are and we were the only connection outside.
382 		 */
383 		parent = tsk->real_parent;
384 	else
385 		/* reparent: our child is in a different pgrp than
386 		 * we are, and it was the only connection outside.
387 		 */
388 		ignored_task = NULL;
389 
390 	if (task_pgrp(parent) != pgrp &&
391 	    task_session(parent) == task_session(tsk) &&
392 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
393 	    has_stopped_jobs(pgrp)) {
394 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
395 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
396 	}
397 }
398 
399 static void coredump_task_exit(struct task_struct *tsk)
400 {
401 	struct core_state *core_state;
402 
403 	/*
404 	 * Serialize with any possible pending coredump.
405 	 * We must hold siglock around checking core_state
406 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
407 	 * will increment ->nr_threads for each thread in the
408 	 * group without PF_POSTCOREDUMP set.
409 	 */
410 	spin_lock_irq(&tsk->sighand->siglock);
411 	tsk->flags |= PF_POSTCOREDUMP;
412 	core_state = tsk->signal->core_state;
413 	spin_unlock_irq(&tsk->sighand->siglock);
414 
415 	/* The vhost_worker does not particpate in coredumps */
416 	if (core_state &&
417 	    ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
418 		struct core_thread self;
419 
420 		self.task = current;
421 		if (self.task->flags & PF_SIGNALED)
422 			self.next = xchg(&core_state->dumper.next, &self);
423 		else
424 			self.task = NULL;
425 		/*
426 		 * Implies mb(), the result of xchg() must be visible
427 		 * to core_state->dumper.
428 		 */
429 		if (atomic_dec_and_test(&core_state->nr_threads))
430 			complete(&core_state->startup);
431 
432 		for (;;) {
433 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
434 			if (!self.task) /* see coredump_finish() */
435 				break;
436 			schedule();
437 		}
438 		__set_current_state(TASK_RUNNING);
439 	}
440 }
441 
442 #ifdef CONFIG_MEMCG
443 /*
444  * A task is exiting.   If it owned this mm, find a new owner for the mm.
445  */
446 void mm_update_next_owner(struct mm_struct *mm)
447 {
448 	struct task_struct *c, *g, *p = current;
449 
450 retry:
451 	/*
452 	 * If the exiting or execing task is not the owner, it's
453 	 * someone else's problem.
454 	 */
455 	if (mm->owner != p)
456 		return;
457 	/*
458 	 * The current owner is exiting/execing and there are no other
459 	 * candidates.  Do not leave the mm pointing to a possibly
460 	 * freed task structure.
461 	 */
462 	if (atomic_read(&mm->mm_users) <= 1) {
463 		WRITE_ONCE(mm->owner, NULL);
464 		return;
465 	}
466 
467 	read_lock(&tasklist_lock);
468 	/*
469 	 * Search in the children
470 	 */
471 	list_for_each_entry(c, &p->children, sibling) {
472 		if (c->mm == mm)
473 			goto assign_new_owner;
474 	}
475 
476 	/*
477 	 * Search in the siblings
478 	 */
479 	list_for_each_entry(c, &p->real_parent->children, sibling) {
480 		if (c->mm == mm)
481 			goto assign_new_owner;
482 	}
483 
484 	/*
485 	 * Search through everything else, we should not get here often.
486 	 */
487 	for_each_process(g) {
488 		if (g->flags & PF_KTHREAD)
489 			continue;
490 		for_each_thread(g, c) {
491 			if (c->mm == mm)
492 				goto assign_new_owner;
493 			if (c->mm)
494 				break;
495 		}
496 	}
497 	read_unlock(&tasklist_lock);
498 	/*
499 	 * We found no owner yet mm_users > 1: this implies that we are
500 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
501 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
502 	 */
503 	WRITE_ONCE(mm->owner, NULL);
504 	return;
505 
506 assign_new_owner:
507 	BUG_ON(c == p);
508 	get_task_struct(c);
509 	/*
510 	 * The task_lock protects c->mm from changing.
511 	 * We always want mm->owner->mm == mm
512 	 */
513 	task_lock(c);
514 	/*
515 	 * Delay read_unlock() till we have the task_lock()
516 	 * to ensure that c does not slip away underneath us
517 	 */
518 	read_unlock(&tasklist_lock);
519 	if (c->mm != mm) {
520 		task_unlock(c);
521 		put_task_struct(c);
522 		goto retry;
523 	}
524 	WRITE_ONCE(mm->owner, c);
525 	lru_gen_migrate_mm(mm);
526 	task_unlock(c);
527 	put_task_struct(c);
528 }
529 #endif /* CONFIG_MEMCG */
530 
531 /*
532  * Turn us into a lazy TLB process if we
533  * aren't already..
534  */
535 static void exit_mm(void)
536 {
537 	struct mm_struct *mm = current->mm;
538 
539 	exit_mm_release(current, mm);
540 	if (!mm)
541 		return;
542 	sync_mm_rss(mm);
543 	mmap_read_lock(mm);
544 	mmgrab_lazy_tlb(mm);
545 	BUG_ON(mm != current->active_mm);
546 	/* more a memory barrier than a real lock */
547 	task_lock(current);
548 	/*
549 	 * When a thread stops operating on an address space, the loop
550 	 * in membarrier_private_expedited() may not observe that
551 	 * tsk->mm, and the loop in membarrier_global_expedited() may
552 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
553 	 * rq->membarrier_state, so those would not issue an IPI.
554 	 * Membarrier requires a memory barrier after accessing
555 	 * user-space memory, before clearing tsk->mm or the
556 	 * rq->membarrier_state.
557 	 */
558 	smp_mb__after_spinlock();
559 	local_irq_disable();
560 	current->mm = NULL;
561 	membarrier_update_current_mm(NULL);
562 	enter_lazy_tlb(mm, current);
563 	local_irq_enable();
564 	task_unlock(current);
565 	mmap_read_unlock(mm);
566 	mm_update_next_owner(mm);
567 	mmput(mm);
568 	if (test_thread_flag(TIF_MEMDIE))
569 		exit_oom_victim();
570 }
571 
572 static struct task_struct *find_alive_thread(struct task_struct *p)
573 {
574 	struct task_struct *t;
575 
576 	for_each_thread(p, t) {
577 		if (!(t->flags & PF_EXITING))
578 			return t;
579 	}
580 	return NULL;
581 }
582 
583 static struct task_struct *find_child_reaper(struct task_struct *father,
584 						struct list_head *dead)
585 	__releases(&tasklist_lock)
586 	__acquires(&tasklist_lock)
587 {
588 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
589 	struct task_struct *reaper = pid_ns->child_reaper;
590 	struct task_struct *p, *n;
591 
592 	if (likely(reaper != father))
593 		return reaper;
594 
595 	reaper = find_alive_thread(father);
596 	if (reaper) {
597 		pid_ns->child_reaper = reaper;
598 		return reaper;
599 	}
600 
601 	write_unlock_irq(&tasklist_lock);
602 
603 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
604 		list_del_init(&p->ptrace_entry);
605 		release_task(p);
606 	}
607 
608 	zap_pid_ns_processes(pid_ns);
609 	write_lock_irq(&tasklist_lock);
610 
611 	return father;
612 }
613 
614 /*
615  * When we die, we re-parent all our children, and try to:
616  * 1. give them to another thread in our thread group, if such a member exists
617  * 2. give it to the first ancestor process which prctl'd itself as a
618  *    child_subreaper for its children (like a service manager)
619  * 3. give it to the init process (PID 1) in our pid namespace
620  */
621 static struct task_struct *find_new_reaper(struct task_struct *father,
622 					   struct task_struct *child_reaper)
623 {
624 	struct task_struct *thread, *reaper;
625 
626 	thread = find_alive_thread(father);
627 	if (thread)
628 		return thread;
629 
630 	if (father->signal->has_child_subreaper) {
631 		unsigned int ns_level = task_pid(father)->level;
632 		/*
633 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
634 		 * We can't check reaper != child_reaper to ensure we do not
635 		 * cross the namespaces, the exiting parent could be injected
636 		 * by setns() + fork().
637 		 * We check pid->level, this is slightly more efficient than
638 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
639 		 */
640 		for (reaper = father->real_parent;
641 		     task_pid(reaper)->level == ns_level;
642 		     reaper = reaper->real_parent) {
643 			if (reaper == &init_task)
644 				break;
645 			if (!reaper->signal->is_child_subreaper)
646 				continue;
647 			thread = find_alive_thread(reaper);
648 			if (thread)
649 				return thread;
650 		}
651 	}
652 
653 	return child_reaper;
654 }
655 
656 /*
657 * Any that need to be release_task'd are put on the @dead list.
658  */
659 static void reparent_leader(struct task_struct *father, struct task_struct *p,
660 				struct list_head *dead)
661 {
662 	if (unlikely(p->exit_state == EXIT_DEAD))
663 		return;
664 
665 	/* We don't want people slaying init. */
666 	p->exit_signal = SIGCHLD;
667 
668 	/* If it has exited notify the new parent about this child's death. */
669 	if (!p->ptrace &&
670 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
671 		if (do_notify_parent(p, p->exit_signal)) {
672 			p->exit_state = EXIT_DEAD;
673 			list_add(&p->ptrace_entry, dead);
674 		}
675 	}
676 
677 	kill_orphaned_pgrp(p, father);
678 }
679 
680 /*
681  * This does two things:
682  *
683  * A.  Make init inherit all the child processes
684  * B.  Check to see if any process groups have become orphaned
685  *	as a result of our exiting, and if they have any stopped
686  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
687  */
688 static void forget_original_parent(struct task_struct *father,
689 					struct list_head *dead)
690 {
691 	struct task_struct *p, *t, *reaper;
692 
693 	if (unlikely(!list_empty(&father->ptraced)))
694 		exit_ptrace(father, dead);
695 
696 	/* Can drop and reacquire tasklist_lock */
697 	reaper = find_child_reaper(father, dead);
698 	if (list_empty(&father->children))
699 		return;
700 
701 	reaper = find_new_reaper(father, reaper);
702 	list_for_each_entry(p, &father->children, sibling) {
703 		for_each_thread(p, t) {
704 			RCU_INIT_POINTER(t->real_parent, reaper);
705 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
706 			if (likely(!t->ptrace))
707 				t->parent = t->real_parent;
708 			if (t->pdeath_signal)
709 				group_send_sig_info(t->pdeath_signal,
710 						    SEND_SIG_NOINFO, t,
711 						    PIDTYPE_TGID);
712 		}
713 		/*
714 		 * If this is a threaded reparent there is no need to
715 		 * notify anyone anything has happened.
716 		 */
717 		if (!same_thread_group(reaper, father))
718 			reparent_leader(father, p, dead);
719 	}
720 	list_splice_tail_init(&father->children, &reaper->children);
721 }
722 
723 /*
724  * Send signals to all our closest relatives so that they know
725  * to properly mourn us..
726  */
727 static void exit_notify(struct task_struct *tsk, int group_dead)
728 {
729 	bool autoreap;
730 	struct task_struct *p, *n;
731 	LIST_HEAD(dead);
732 
733 	write_lock_irq(&tasklist_lock);
734 	forget_original_parent(tsk, &dead);
735 
736 	if (group_dead)
737 		kill_orphaned_pgrp(tsk->group_leader, NULL);
738 
739 	tsk->exit_state = EXIT_ZOMBIE;
740 	if (unlikely(tsk->ptrace)) {
741 		int sig = thread_group_leader(tsk) &&
742 				thread_group_empty(tsk) &&
743 				!ptrace_reparented(tsk) ?
744 			tsk->exit_signal : SIGCHLD;
745 		autoreap = do_notify_parent(tsk, sig);
746 	} else if (thread_group_leader(tsk)) {
747 		autoreap = thread_group_empty(tsk) &&
748 			do_notify_parent(tsk, tsk->exit_signal);
749 	} else {
750 		autoreap = true;
751 	}
752 
753 	if (autoreap) {
754 		tsk->exit_state = EXIT_DEAD;
755 		list_add(&tsk->ptrace_entry, &dead);
756 	}
757 
758 	/* mt-exec, de_thread() is waiting for group leader */
759 	if (unlikely(tsk->signal->notify_count < 0))
760 		wake_up_process(tsk->signal->group_exec_task);
761 	write_unlock_irq(&tasklist_lock);
762 
763 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
764 		list_del_init(&p->ptrace_entry);
765 		release_task(p);
766 	}
767 }
768 
769 #ifdef CONFIG_DEBUG_STACK_USAGE
770 static void check_stack_usage(void)
771 {
772 	static DEFINE_SPINLOCK(low_water_lock);
773 	static int lowest_to_date = THREAD_SIZE;
774 	unsigned long free;
775 
776 	free = stack_not_used(current);
777 
778 	if (free >= lowest_to_date)
779 		return;
780 
781 	spin_lock(&low_water_lock);
782 	if (free < lowest_to_date) {
783 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
784 			current->comm, task_pid_nr(current), free);
785 		lowest_to_date = free;
786 	}
787 	spin_unlock(&low_water_lock);
788 }
789 #else
790 static inline void check_stack_usage(void) {}
791 #endif
792 
793 static void synchronize_group_exit(struct task_struct *tsk, long code)
794 {
795 	struct sighand_struct *sighand = tsk->sighand;
796 	struct signal_struct *signal = tsk->signal;
797 
798 	spin_lock_irq(&sighand->siglock);
799 	signal->quick_threads--;
800 	if ((signal->quick_threads == 0) &&
801 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
802 		signal->flags = SIGNAL_GROUP_EXIT;
803 		signal->group_exit_code = code;
804 		signal->group_stop_count = 0;
805 	}
806 	spin_unlock_irq(&sighand->siglock);
807 }
808 
809 void __noreturn do_exit(long code)
810 {
811 	struct task_struct *tsk = current;
812 	int group_dead;
813 
814 	WARN_ON(irqs_disabled());
815 
816 	synchronize_group_exit(tsk, code);
817 
818 	WARN_ON(tsk->plug);
819 
820 	kcov_task_exit(tsk);
821 	kmsan_task_exit(tsk);
822 
823 	coredump_task_exit(tsk);
824 	ptrace_event(PTRACE_EVENT_EXIT, code);
825 	user_events_exit(tsk);
826 
827 	io_uring_files_cancel();
828 	exit_signals(tsk);  /* sets PF_EXITING */
829 
830 	/* sync mm's RSS info before statistics gathering */
831 	if (tsk->mm)
832 		sync_mm_rss(tsk->mm);
833 	acct_update_integrals(tsk);
834 	group_dead = atomic_dec_and_test(&tsk->signal->live);
835 	if (group_dead) {
836 		/*
837 		 * If the last thread of global init has exited, panic
838 		 * immediately to get a useable coredump.
839 		 */
840 		if (unlikely(is_global_init(tsk)))
841 			panic("Attempted to kill init! exitcode=0x%08x\n",
842 				tsk->signal->group_exit_code ?: (int)code);
843 
844 #ifdef CONFIG_POSIX_TIMERS
845 		hrtimer_cancel(&tsk->signal->real_timer);
846 		exit_itimers(tsk);
847 #endif
848 		if (tsk->mm)
849 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
850 	}
851 	acct_collect(code, group_dead);
852 	if (group_dead)
853 		tty_audit_exit();
854 	audit_free(tsk);
855 
856 	tsk->exit_code = code;
857 	taskstats_exit(tsk, group_dead);
858 
859 	exit_mm();
860 
861 	if (group_dead)
862 		acct_process();
863 	trace_sched_process_exit(tsk);
864 
865 	exit_sem(tsk);
866 	exit_shm(tsk);
867 	exit_files(tsk);
868 	exit_fs(tsk);
869 	if (group_dead)
870 		disassociate_ctty(1);
871 	exit_task_namespaces(tsk);
872 	exit_task_work(tsk);
873 	exit_thread(tsk);
874 
875 	/*
876 	 * Flush inherited counters to the parent - before the parent
877 	 * gets woken up by child-exit notifications.
878 	 *
879 	 * because of cgroup mode, must be called before cgroup_exit()
880 	 */
881 	perf_event_exit_task(tsk);
882 
883 	sched_autogroup_exit_task(tsk);
884 	cgroup_exit(tsk);
885 
886 	/*
887 	 * FIXME: do that only when needed, using sched_exit tracepoint
888 	 */
889 	flush_ptrace_hw_breakpoint(tsk);
890 
891 	exit_tasks_rcu_start();
892 	exit_notify(tsk, group_dead);
893 	proc_exit_connector(tsk);
894 	mpol_put_task_policy(tsk);
895 #ifdef CONFIG_FUTEX
896 	if (unlikely(current->pi_state_cache))
897 		kfree(current->pi_state_cache);
898 #endif
899 	/*
900 	 * Make sure we are holding no locks:
901 	 */
902 	debug_check_no_locks_held();
903 
904 	if (tsk->io_context)
905 		exit_io_context(tsk);
906 
907 	if (tsk->splice_pipe)
908 		free_pipe_info(tsk->splice_pipe);
909 
910 	if (tsk->task_frag.page)
911 		put_page(tsk->task_frag.page);
912 
913 	exit_task_stack_account(tsk);
914 
915 	check_stack_usage();
916 	preempt_disable();
917 	if (tsk->nr_dirtied)
918 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
919 	exit_rcu();
920 	exit_tasks_rcu_finish();
921 
922 	lockdep_free_task(tsk);
923 	do_task_dead();
924 }
925 
926 void __noreturn make_task_dead(int signr)
927 {
928 	/*
929 	 * Take the task off the cpu after something catastrophic has
930 	 * happened.
931 	 *
932 	 * We can get here from a kernel oops, sometimes with preemption off.
933 	 * Start by checking for critical errors.
934 	 * Then fix up important state like USER_DS and preemption.
935 	 * Then do everything else.
936 	 */
937 	struct task_struct *tsk = current;
938 	unsigned int limit;
939 
940 	if (unlikely(in_interrupt()))
941 		panic("Aiee, killing interrupt handler!");
942 	if (unlikely(!tsk->pid))
943 		panic("Attempted to kill the idle task!");
944 
945 	if (unlikely(irqs_disabled())) {
946 		pr_info("note: %s[%d] exited with irqs disabled\n",
947 			current->comm, task_pid_nr(current));
948 		local_irq_enable();
949 	}
950 	if (unlikely(in_atomic())) {
951 		pr_info("note: %s[%d] exited with preempt_count %d\n",
952 			current->comm, task_pid_nr(current),
953 			preempt_count());
954 		preempt_count_set(PREEMPT_ENABLED);
955 	}
956 
957 	/*
958 	 * Every time the system oopses, if the oops happens while a reference
959 	 * to an object was held, the reference leaks.
960 	 * If the oops doesn't also leak memory, repeated oopsing can cause
961 	 * reference counters to wrap around (if they're not using refcount_t).
962 	 * This means that repeated oopsing can make unexploitable-looking bugs
963 	 * exploitable through repeated oopsing.
964 	 * To make sure this can't happen, place an upper bound on how often the
965 	 * kernel may oops without panic().
966 	 */
967 	limit = READ_ONCE(oops_limit);
968 	if (atomic_inc_return(&oops_count) >= limit && limit)
969 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
970 
971 	/*
972 	 * We're taking recursive faults here in make_task_dead. Safest is to just
973 	 * leave this task alone and wait for reboot.
974 	 */
975 	if (unlikely(tsk->flags & PF_EXITING)) {
976 		pr_alert("Fixing recursive fault but reboot is needed!\n");
977 		futex_exit_recursive(tsk);
978 		tsk->exit_state = EXIT_DEAD;
979 		refcount_inc(&tsk->rcu_users);
980 		do_task_dead();
981 	}
982 
983 	do_exit(signr);
984 }
985 
986 SYSCALL_DEFINE1(exit, int, error_code)
987 {
988 	do_exit((error_code&0xff)<<8);
989 }
990 
991 /*
992  * Take down every thread in the group.  This is called by fatal signals
993  * as well as by sys_exit_group (below).
994  */
995 void __noreturn
996 do_group_exit(int exit_code)
997 {
998 	struct signal_struct *sig = current->signal;
999 
1000 	if (sig->flags & SIGNAL_GROUP_EXIT)
1001 		exit_code = sig->group_exit_code;
1002 	else if (sig->group_exec_task)
1003 		exit_code = 0;
1004 	else {
1005 		struct sighand_struct *const sighand = current->sighand;
1006 
1007 		spin_lock_irq(&sighand->siglock);
1008 		if (sig->flags & SIGNAL_GROUP_EXIT)
1009 			/* Another thread got here before we took the lock.  */
1010 			exit_code = sig->group_exit_code;
1011 		else if (sig->group_exec_task)
1012 			exit_code = 0;
1013 		else {
1014 			sig->group_exit_code = exit_code;
1015 			sig->flags = SIGNAL_GROUP_EXIT;
1016 			zap_other_threads(current);
1017 		}
1018 		spin_unlock_irq(&sighand->siglock);
1019 	}
1020 
1021 	do_exit(exit_code);
1022 	/* NOTREACHED */
1023 }
1024 
1025 /*
1026  * this kills every thread in the thread group. Note that any externally
1027  * wait4()-ing process will get the correct exit code - even if this
1028  * thread is not the thread group leader.
1029  */
1030 SYSCALL_DEFINE1(exit_group, int, error_code)
1031 {
1032 	do_group_exit((error_code & 0xff) << 8);
1033 	/* NOTREACHED */
1034 	return 0;
1035 }
1036 
1037 struct waitid_info {
1038 	pid_t pid;
1039 	uid_t uid;
1040 	int status;
1041 	int cause;
1042 };
1043 
1044 struct wait_opts {
1045 	enum pid_type		wo_type;
1046 	int			wo_flags;
1047 	struct pid		*wo_pid;
1048 
1049 	struct waitid_info	*wo_info;
1050 	int			wo_stat;
1051 	struct rusage		*wo_rusage;
1052 
1053 	wait_queue_entry_t		child_wait;
1054 	int			notask_error;
1055 };
1056 
1057 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1058 {
1059 	return	wo->wo_type == PIDTYPE_MAX ||
1060 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1061 }
1062 
1063 static int
1064 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1065 {
1066 	if (!eligible_pid(wo, p))
1067 		return 0;
1068 
1069 	/*
1070 	 * Wait for all children (clone and not) if __WALL is set or
1071 	 * if it is traced by us.
1072 	 */
1073 	if (ptrace || (wo->wo_flags & __WALL))
1074 		return 1;
1075 
1076 	/*
1077 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1078 	 * otherwise, wait for non-clone children *only*.
1079 	 *
1080 	 * Note: a "clone" child here is one that reports to its parent
1081 	 * using a signal other than SIGCHLD, or a non-leader thread which
1082 	 * we can only see if it is traced by us.
1083 	 */
1084 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1085 		return 0;
1086 
1087 	return 1;
1088 }
1089 
1090 /*
1091  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1092  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1093  * the lock and this task is uninteresting.  If we return nonzero, we have
1094  * released the lock and the system call should return.
1095  */
1096 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1097 {
1098 	int state, status;
1099 	pid_t pid = task_pid_vnr(p);
1100 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1101 	struct waitid_info *infop;
1102 
1103 	if (!likely(wo->wo_flags & WEXITED))
1104 		return 0;
1105 
1106 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1107 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1108 			? p->signal->group_exit_code : p->exit_code;
1109 		get_task_struct(p);
1110 		read_unlock(&tasklist_lock);
1111 		sched_annotate_sleep();
1112 		if (wo->wo_rusage)
1113 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1114 		put_task_struct(p);
1115 		goto out_info;
1116 	}
1117 	/*
1118 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1119 	 */
1120 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1121 		EXIT_TRACE : EXIT_DEAD;
1122 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1123 		return 0;
1124 	/*
1125 	 * We own this thread, nobody else can reap it.
1126 	 */
1127 	read_unlock(&tasklist_lock);
1128 	sched_annotate_sleep();
1129 
1130 	/*
1131 	 * Check thread_group_leader() to exclude the traced sub-threads.
1132 	 */
1133 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1134 		struct signal_struct *sig = p->signal;
1135 		struct signal_struct *psig = current->signal;
1136 		unsigned long maxrss;
1137 		u64 tgutime, tgstime;
1138 
1139 		/*
1140 		 * The resource counters for the group leader are in its
1141 		 * own task_struct.  Those for dead threads in the group
1142 		 * are in its signal_struct, as are those for the child
1143 		 * processes it has previously reaped.  All these
1144 		 * accumulate in the parent's signal_struct c* fields.
1145 		 *
1146 		 * We don't bother to take a lock here to protect these
1147 		 * p->signal fields because the whole thread group is dead
1148 		 * and nobody can change them.
1149 		 *
1150 		 * psig->stats_lock also protects us from our sub-threads
1151 		 * which can reap other children at the same time. Until
1152 		 * we change k_getrusage()-like users to rely on this lock
1153 		 * we have to take ->siglock as well.
1154 		 *
1155 		 * We use thread_group_cputime_adjusted() to get times for
1156 		 * the thread group, which consolidates times for all threads
1157 		 * in the group including the group leader.
1158 		 */
1159 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1160 		spin_lock_irq(&current->sighand->siglock);
1161 		write_seqlock(&psig->stats_lock);
1162 		psig->cutime += tgutime + sig->cutime;
1163 		psig->cstime += tgstime + sig->cstime;
1164 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1165 		psig->cmin_flt +=
1166 			p->min_flt + sig->min_flt + sig->cmin_flt;
1167 		psig->cmaj_flt +=
1168 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1169 		psig->cnvcsw +=
1170 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1171 		psig->cnivcsw +=
1172 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1173 		psig->cinblock +=
1174 			task_io_get_inblock(p) +
1175 			sig->inblock + sig->cinblock;
1176 		psig->coublock +=
1177 			task_io_get_oublock(p) +
1178 			sig->oublock + sig->coublock;
1179 		maxrss = max(sig->maxrss, sig->cmaxrss);
1180 		if (psig->cmaxrss < maxrss)
1181 			psig->cmaxrss = maxrss;
1182 		task_io_accounting_add(&psig->ioac, &p->ioac);
1183 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1184 		write_sequnlock(&psig->stats_lock);
1185 		spin_unlock_irq(&current->sighand->siglock);
1186 	}
1187 
1188 	if (wo->wo_rusage)
1189 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1190 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1191 		? p->signal->group_exit_code : p->exit_code;
1192 	wo->wo_stat = status;
1193 
1194 	if (state == EXIT_TRACE) {
1195 		write_lock_irq(&tasklist_lock);
1196 		/* We dropped tasklist, ptracer could die and untrace */
1197 		ptrace_unlink(p);
1198 
1199 		/* If parent wants a zombie, don't release it now */
1200 		state = EXIT_ZOMBIE;
1201 		if (do_notify_parent(p, p->exit_signal))
1202 			state = EXIT_DEAD;
1203 		p->exit_state = state;
1204 		write_unlock_irq(&tasklist_lock);
1205 	}
1206 	if (state == EXIT_DEAD)
1207 		release_task(p);
1208 
1209 out_info:
1210 	infop = wo->wo_info;
1211 	if (infop) {
1212 		if ((status & 0x7f) == 0) {
1213 			infop->cause = CLD_EXITED;
1214 			infop->status = status >> 8;
1215 		} else {
1216 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1217 			infop->status = status & 0x7f;
1218 		}
1219 		infop->pid = pid;
1220 		infop->uid = uid;
1221 	}
1222 
1223 	return pid;
1224 }
1225 
1226 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1227 {
1228 	if (ptrace) {
1229 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1230 			return &p->exit_code;
1231 	} else {
1232 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1233 			return &p->signal->group_exit_code;
1234 	}
1235 	return NULL;
1236 }
1237 
1238 /**
1239  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1240  * @wo: wait options
1241  * @ptrace: is the wait for ptrace
1242  * @p: task to wait for
1243  *
1244  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1245  *
1246  * CONTEXT:
1247  * read_lock(&tasklist_lock), which is released if return value is
1248  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1249  *
1250  * RETURNS:
1251  * 0 if wait condition didn't exist and search for other wait conditions
1252  * should continue.  Non-zero return, -errno on failure and @p's pid on
1253  * success, implies that tasklist_lock is released and wait condition
1254  * search should terminate.
1255  */
1256 static int wait_task_stopped(struct wait_opts *wo,
1257 				int ptrace, struct task_struct *p)
1258 {
1259 	struct waitid_info *infop;
1260 	int exit_code, *p_code, why;
1261 	uid_t uid = 0; /* unneeded, required by compiler */
1262 	pid_t pid;
1263 
1264 	/*
1265 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1266 	 */
1267 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1268 		return 0;
1269 
1270 	if (!task_stopped_code(p, ptrace))
1271 		return 0;
1272 
1273 	exit_code = 0;
1274 	spin_lock_irq(&p->sighand->siglock);
1275 
1276 	p_code = task_stopped_code(p, ptrace);
1277 	if (unlikely(!p_code))
1278 		goto unlock_sig;
1279 
1280 	exit_code = *p_code;
1281 	if (!exit_code)
1282 		goto unlock_sig;
1283 
1284 	if (!unlikely(wo->wo_flags & WNOWAIT))
1285 		*p_code = 0;
1286 
1287 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1288 unlock_sig:
1289 	spin_unlock_irq(&p->sighand->siglock);
1290 	if (!exit_code)
1291 		return 0;
1292 
1293 	/*
1294 	 * Now we are pretty sure this task is interesting.
1295 	 * Make sure it doesn't get reaped out from under us while we
1296 	 * give up the lock and then examine it below.  We don't want to
1297 	 * keep holding onto the tasklist_lock while we call getrusage and
1298 	 * possibly take page faults for user memory.
1299 	 */
1300 	get_task_struct(p);
1301 	pid = task_pid_vnr(p);
1302 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1303 	read_unlock(&tasklist_lock);
1304 	sched_annotate_sleep();
1305 	if (wo->wo_rusage)
1306 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1307 	put_task_struct(p);
1308 
1309 	if (likely(!(wo->wo_flags & WNOWAIT)))
1310 		wo->wo_stat = (exit_code << 8) | 0x7f;
1311 
1312 	infop = wo->wo_info;
1313 	if (infop) {
1314 		infop->cause = why;
1315 		infop->status = exit_code;
1316 		infop->pid = pid;
1317 		infop->uid = uid;
1318 	}
1319 	return pid;
1320 }
1321 
1322 /*
1323  * Handle do_wait work for one task in a live, non-stopped state.
1324  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1325  * the lock and this task is uninteresting.  If we return nonzero, we have
1326  * released the lock and the system call should return.
1327  */
1328 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1329 {
1330 	struct waitid_info *infop;
1331 	pid_t pid;
1332 	uid_t uid;
1333 
1334 	if (!unlikely(wo->wo_flags & WCONTINUED))
1335 		return 0;
1336 
1337 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1338 		return 0;
1339 
1340 	spin_lock_irq(&p->sighand->siglock);
1341 	/* Re-check with the lock held.  */
1342 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1343 		spin_unlock_irq(&p->sighand->siglock);
1344 		return 0;
1345 	}
1346 	if (!unlikely(wo->wo_flags & WNOWAIT))
1347 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1348 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1349 	spin_unlock_irq(&p->sighand->siglock);
1350 
1351 	pid = task_pid_vnr(p);
1352 	get_task_struct(p);
1353 	read_unlock(&tasklist_lock);
1354 	sched_annotate_sleep();
1355 	if (wo->wo_rusage)
1356 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1357 	put_task_struct(p);
1358 
1359 	infop = wo->wo_info;
1360 	if (!infop) {
1361 		wo->wo_stat = 0xffff;
1362 	} else {
1363 		infop->cause = CLD_CONTINUED;
1364 		infop->pid = pid;
1365 		infop->uid = uid;
1366 		infop->status = SIGCONT;
1367 	}
1368 	return pid;
1369 }
1370 
1371 /*
1372  * Consider @p for a wait by @parent.
1373  *
1374  * -ECHILD should be in ->notask_error before the first call.
1375  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1376  * Returns zero if the search for a child should continue;
1377  * then ->notask_error is 0 if @p is an eligible child,
1378  * or still -ECHILD.
1379  */
1380 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1381 				struct task_struct *p)
1382 {
1383 	/*
1384 	 * We can race with wait_task_zombie() from another thread.
1385 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1386 	 * can't confuse the checks below.
1387 	 */
1388 	int exit_state = READ_ONCE(p->exit_state);
1389 	int ret;
1390 
1391 	if (unlikely(exit_state == EXIT_DEAD))
1392 		return 0;
1393 
1394 	ret = eligible_child(wo, ptrace, p);
1395 	if (!ret)
1396 		return ret;
1397 
1398 	if (unlikely(exit_state == EXIT_TRACE)) {
1399 		/*
1400 		 * ptrace == 0 means we are the natural parent. In this case
1401 		 * we should clear notask_error, debugger will notify us.
1402 		 */
1403 		if (likely(!ptrace))
1404 			wo->notask_error = 0;
1405 		return 0;
1406 	}
1407 
1408 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1409 		/*
1410 		 * If it is traced by its real parent's group, just pretend
1411 		 * the caller is ptrace_do_wait() and reap this child if it
1412 		 * is zombie.
1413 		 *
1414 		 * This also hides group stop state from real parent; otherwise
1415 		 * a single stop can be reported twice as group and ptrace stop.
1416 		 * If a ptracer wants to distinguish these two events for its
1417 		 * own children it should create a separate process which takes
1418 		 * the role of real parent.
1419 		 */
1420 		if (!ptrace_reparented(p))
1421 			ptrace = 1;
1422 	}
1423 
1424 	/* slay zombie? */
1425 	if (exit_state == EXIT_ZOMBIE) {
1426 		/* we don't reap group leaders with subthreads */
1427 		if (!delay_group_leader(p)) {
1428 			/*
1429 			 * A zombie ptracee is only visible to its ptracer.
1430 			 * Notification and reaping will be cascaded to the
1431 			 * real parent when the ptracer detaches.
1432 			 */
1433 			if (unlikely(ptrace) || likely(!p->ptrace))
1434 				return wait_task_zombie(wo, p);
1435 		}
1436 
1437 		/*
1438 		 * Allow access to stopped/continued state via zombie by
1439 		 * falling through.  Clearing of notask_error is complex.
1440 		 *
1441 		 * When !@ptrace:
1442 		 *
1443 		 * If WEXITED is set, notask_error should naturally be
1444 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1445 		 * so, if there are live subthreads, there are events to
1446 		 * wait for.  If all subthreads are dead, it's still safe
1447 		 * to clear - this function will be called again in finite
1448 		 * amount time once all the subthreads are released and
1449 		 * will then return without clearing.
1450 		 *
1451 		 * When @ptrace:
1452 		 *
1453 		 * Stopped state is per-task and thus can't change once the
1454 		 * target task dies.  Only continued and exited can happen.
1455 		 * Clear notask_error if WCONTINUED | WEXITED.
1456 		 */
1457 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1458 			wo->notask_error = 0;
1459 	} else {
1460 		/*
1461 		 * @p is alive and it's gonna stop, continue or exit, so
1462 		 * there always is something to wait for.
1463 		 */
1464 		wo->notask_error = 0;
1465 	}
1466 
1467 	/*
1468 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1469 	 * is used and the two don't interact with each other.
1470 	 */
1471 	ret = wait_task_stopped(wo, ptrace, p);
1472 	if (ret)
1473 		return ret;
1474 
1475 	/*
1476 	 * Wait for continued.  There's only one continued state and the
1477 	 * ptracer can consume it which can confuse the real parent.  Don't
1478 	 * use WCONTINUED from ptracer.  You don't need or want it.
1479 	 */
1480 	return wait_task_continued(wo, p);
1481 }
1482 
1483 /*
1484  * Do the work of do_wait() for one thread in the group, @tsk.
1485  *
1486  * -ECHILD should be in ->notask_error before the first call.
1487  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1488  * Returns zero if the search for a child should continue; then
1489  * ->notask_error is 0 if there were any eligible children,
1490  * or still -ECHILD.
1491  */
1492 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1493 {
1494 	struct task_struct *p;
1495 
1496 	list_for_each_entry(p, &tsk->children, sibling) {
1497 		int ret = wait_consider_task(wo, 0, p);
1498 
1499 		if (ret)
1500 			return ret;
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1507 {
1508 	struct task_struct *p;
1509 
1510 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1511 		int ret = wait_consider_task(wo, 1, p);
1512 
1513 		if (ret)
1514 			return ret;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1521 				int sync, void *key)
1522 {
1523 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1524 						child_wait);
1525 	struct task_struct *p = key;
1526 
1527 	if (!eligible_pid(wo, p))
1528 		return 0;
1529 
1530 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1531 		return 0;
1532 
1533 	return default_wake_function(wait, mode, sync, key);
1534 }
1535 
1536 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1537 {
1538 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1539 			   TASK_INTERRUPTIBLE, p);
1540 }
1541 
1542 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1543 				 struct task_struct *target)
1544 {
1545 	struct task_struct *parent =
1546 		!ptrace ? target->real_parent : target->parent;
1547 
1548 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1549 				     same_thread_group(current, parent));
1550 }
1551 
1552 /*
1553  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1554  * and tracee lists to find the target task.
1555  */
1556 static int do_wait_pid(struct wait_opts *wo)
1557 {
1558 	bool ptrace;
1559 	struct task_struct *target;
1560 	int retval;
1561 
1562 	ptrace = false;
1563 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1564 	if (target && is_effectively_child(wo, ptrace, target)) {
1565 		retval = wait_consider_task(wo, ptrace, target);
1566 		if (retval)
1567 			return retval;
1568 	}
1569 
1570 	ptrace = true;
1571 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1572 	if (target && target->ptrace &&
1573 	    is_effectively_child(wo, ptrace, target)) {
1574 		retval = wait_consider_task(wo, ptrace, target);
1575 		if (retval)
1576 			return retval;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 static long do_wait(struct wait_opts *wo)
1583 {
1584 	int retval;
1585 
1586 	trace_sched_process_wait(wo->wo_pid);
1587 
1588 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1589 	wo->child_wait.private = current;
1590 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1591 repeat:
1592 	/*
1593 	 * If there is nothing that can match our criteria, just get out.
1594 	 * We will clear ->notask_error to zero if we see any child that
1595 	 * might later match our criteria, even if we are not able to reap
1596 	 * it yet.
1597 	 */
1598 	wo->notask_error = -ECHILD;
1599 	if ((wo->wo_type < PIDTYPE_MAX) &&
1600 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1601 		goto notask;
1602 
1603 	set_current_state(TASK_INTERRUPTIBLE);
1604 	read_lock(&tasklist_lock);
1605 
1606 	if (wo->wo_type == PIDTYPE_PID) {
1607 		retval = do_wait_pid(wo);
1608 		if (retval)
1609 			goto end;
1610 	} else {
1611 		struct task_struct *tsk = current;
1612 
1613 		do {
1614 			retval = do_wait_thread(wo, tsk);
1615 			if (retval)
1616 				goto end;
1617 
1618 			retval = ptrace_do_wait(wo, tsk);
1619 			if (retval)
1620 				goto end;
1621 
1622 			if (wo->wo_flags & __WNOTHREAD)
1623 				break;
1624 		} while_each_thread(current, tsk);
1625 	}
1626 	read_unlock(&tasklist_lock);
1627 
1628 notask:
1629 	retval = wo->notask_error;
1630 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1631 		retval = -ERESTARTSYS;
1632 		if (!signal_pending(current)) {
1633 			schedule();
1634 			goto repeat;
1635 		}
1636 	}
1637 end:
1638 	__set_current_state(TASK_RUNNING);
1639 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1640 	return retval;
1641 }
1642 
1643 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1644 			  int options, struct rusage *ru)
1645 {
1646 	struct wait_opts wo;
1647 	struct pid *pid = NULL;
1648 	enum pid_type type;
1649 	long ret;
1650 	unsigned int f_flags = 0;
1651 
1652 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1653 			__WNOTHREAD|__WCLONE|__WALL))
1654 		return -EINVAL;
1655 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1656 		return -EINVAL;
1657 
1658 	switch (which) {
1659 	case P_ALL:
1660 		type = PIDTYPE_MAX;
1661 		break;
1662 	case P_PID:
1663 		type = PIDTYPE_PID;
1664 		if (upid <= 0)
1665 			return -EINVAL;
1666 
1667 		pid = find_get_pid(upid);
1668 		break;
1669 	case P_PGID:
1670 		type = PIDTYPE_PGID;
1671 		if (upid < 0)
1672 			return -EINVAL;
1673 
1674 		if (upid)
1675 			pid = find_get_pid(upid);
1676 		else
1677 			pid = get_task_pid(current, PIDTYPE_PGID);
1678 		break;
1679 	case P_PIDFD:
1680 		type = PIDTYPE_PID;
1681 		if (upid < 0)
1682 			return -EINVAL;
1683 
1684 		pid = pidfd_get_pid(upid, &f_flags);
1685 		if (IS_ERR(pid))
1686 			return PTR_ERR(pid);
1687 
1688 		break;
1689 	default:
1690 		return -EINVAL;
1691 	}
1692 
1693 	wo.wo_type	= type;
1694 	wo.wo_pid	= pid;
1695 	wo.wo_flags	= options;
1696 	wo.wo_info	= infop;
1697 	wo.wo_rusage	= ru;
1698 	if (f_flags & O_NONBLOCK)
1699 		wo.wo_flags |= WNOHANG;
1700 
1701 	ret = do_wait(&wo);
1702 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1703 		ret = -EAGAIN;
1704 
1705 	put_pid(pid);
1706 	return ret;
1707 }
1708 
1709 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1710 		infop, int, options, struct rusage __user *, ru)
1711 {
1712 	struct rusage r;
1713 	struct waitid_info info = {.status = 0};
1714 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1715 	int signo = 0;
1716 
1717 	if (err > 0) {
1718 		signo = SIGCHLD;
1719 		err = 0;
1720 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1721 			return -EFAULT;
1722 	}
1723 	if (!infop)
1724 		return err;
1725 
1726 	if (!user_write_access_begin(infop, sizeof(*infop)))
1727 		return -EFAULT;
1728 
1729 	unsafe_put_user(signo, &infop->si_signo, Efault);
1730 	unsafe_put_user(0, &infop->si_errno, Efault);
1731 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1732 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1733 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1734 	unsafe_put_user(info.status, &infop->si_status, Efault);
1735 	user_write_access_end();
1736 	return err;
1737 Efault:
1738 	user_write_access_end();
1739 	return -EFAULT;
1740 }
1741 
1742 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1743 		  struct rusage *ru)
1744 {
1745 	struct wait_opts wo;
1746 	struct pid *pid = NULL;
1747 	enum pid_type type;
1748 	long ret;
1749 
1750 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1751 			__WNOTHREAD|__WCLONE|__WALL))
1752 		return -EINVAL;
1753 
1754 	/* -INT_MIN is not defined */
1755 	if (upid == INT_MIN)
1756 		return -ESRCH;
1757 
1758 	if (upid == -1)
1759 		type = PIDTYPE_MAX;
1760 	else if (upid < 0) {
1761 		type = PIDTYPE_PGID;
1762 		pid = find_get_pid(-upid);
1763 	} else if (upid == 0) {
1764 		type = PIDTYPE_PGID;
1765 		pid = get_task_pid(current, PIDTYPE_PGID);
1766 	} else /* upid > 0 */ {
1767 		type = PIDTYPE_PID;
1768 		pid = find_get_pid(upid);
1769 	}
1770 
1771 	wo.wo_type	= type;
1772 	wo.wo_pid	= pid;
1773 	wo.wo_flags	= options | WEXITED;
1774 	wo.wo_info	= NULL;
1775 	wo.wo_stat	= 0;
1776 	wo.wo_rusage	= ru;
1777 	ret = do_wait(&wo);
1778 	put_pid(pid);
1779 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1780 		ret = -EFAULT;
1781 
1782 	return ret;
1783 }
1784 
1785 int kernel_wait(pid_t pid, int *stat)
1786 {
1787 	struct wait_opts wo = {
1788 		.wo_type	= PIDTYPE_PID,
1789 		.wo_pid		= find_get_pid(pid),
1790 		.wo_flags	= WEXITED,
1791 	};
1792 	int ret;
1793 
1794 	ret = do_wait(&wo);
1795 	if (ret > 0 && wo.wo_stat)
1796 		*stat = wo.wo_stat;
1797 	put_pid(wo.wo_pid);
1798 	return ret;
1799 }
1800 
1801 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1802 		int, options, struct rusage __user *, ru)
1803 {
1804 	struct rusage r;
1805 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1806 
1807 	if (err > 0) {
1808 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1809 			return -EFAULT;
1810 	}
1811 	return err;
1812 }
1813 
1814 #ifdef __ARCH_WANT_SYS_WAITPID
1815 
1816 /*
1817  * sys_waitpid() remains for compatibility. waitpid() should be
1818  * implemented by calling sys_wait4() from libc.a.
1819  */
1820 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1821 {
1822 	return kernel_wait4(pid, stat_addr, options, NULL);
1823 }
1824 
1825 #endif
1826 
1827 #ifdef CONFIG_COMPAT
1828 COMPAT_SYSCALL_DEFINE4(wait4,
1829 	compat_pid_t, pid,
1830 	compat_uint_t __user *, stat_addr,
1831 	int, options,
1832 	struct compat_rusage __user *, ru)
1833 {
1834 	struct rusage r;
1835 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1836 	if (err > 0) {
1837 		if (ru && put_compat_rusage(&r, ru))
1838 			return -EFAULT;
1839 	}
1840 	return err;
1841 }
1842 
1843 COMPAT_SYSCALL_DEFINE5(waitid,
1844 		int, which, compat_pid_t, pid,
1845 		struct compat_siginfo __user *, infop, int, options,
1846 		struct compat_rusage __user *, uru)
1847 {
1848 	struct rusage ru;
1849 	struct waitid_info info = {.status = 0};
1850 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1851 	int signo = 0;
1852 	if (err > 0) {
1853 		signo = SIGCHLD;
1854 		err = 0;
1855 		if (uru) {
1856 			/* kernel_waitid() overwrites everything in ru */
1857 			if (COMPAT_USE_64BIT_TIME)
1858 				err = copy_to_user(uru, &ru, sizeof(ru));
1859 			else
1860 				err = put_compat_rusage(&ru, uru);
1861 			if (err)
1862 				return -EFAULT;
1863 		}
1864 	}
1865 
1866 	if (!infop)
1867 		return err;
1868 
1869 	if (!user_write_access_begin(infop, sizeof(*infop)))
1870 		return -EFAULT;
1871 
1872 	unsafe_put_user(signo, &infop->si_signo, Efault);
1873 	unsafe_put_user(0, &infop->si_errno, Efault);
1874 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1875 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1876 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1877 	unsafe_put_user(info.status, &infop->si_status, Efault);
1878 	user_write_access_end();
1879 	return err;
1880 Efault:
1881 	user_write_access_end();
1882 	return -EFAULT;
1883 }
1884 #endif
1885 
1886 /**
1887  * thread_group_exited - check that a thread group has exited
1888  * @pid: tgid of thread group to be checked.
1889  *
1890  * Test if the thread group represented by tgid has exited (all
1891  * threads are zombies, dead or completely gone).
1892  *
1893  * Return: true if the thread group has exited. false otherwise.
1894  */
1895 bool thread_group_exited(struct pid *pid)
1896 {
1897 	struct task_struct *task;
1898 	bool exited;
1899 
1900 	rcu_read_lock();
1901 	task = pid_task(pid, PIDTYPE_PID);
1902 	exited = !task ||
1903 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1904 	rcu_read_unlock();
1905 
1906 	return exited;
1907 }
1908 EXPORT_SYMBOL(thread_group_exited);
1909 
1910 /*
1911  * This needs to be __function_aligned as GCC implicitly makes any
1912  * implementation of abort() cold and drops alignment specified by
1913  * -falign-functions=N.
1914  *
1915  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1916  */
1917 __weak __function_aligned void abort(void)
1918 {
1919 	BUG();
1920 
1921 	/* if that doesn't kill us, halt */
1922 	panic("Oops failed to kill thread");
1923 }
1924 EXPORT_SYMBOL(abort);
1925