xref: /openbmc/linux/kernel/exit.c (revision 0d456bad)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct * tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 }
78 
79 /*
80  * This function expects the tasklist_lock write-locked.
81  */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 	struct signal_struct *sig = tsk->signal;
85 	bool group_dead = thread_group_leader(tsk);
86 	struct sighand_struct *sighand;
87 	struct tty_struct *uninitialized_var(tty);
88 
89 	sighand = rcu_dereference_check(tsk->sighand,
90 					lockdep_tasklist_lock_is_held());
91 	spin_lock(&sighand->siglock);
92 
93 	posix_cpu_timers_exit(tsk);
94 	if (group_dead) {
95 		posix_cpu_timers_exit_group(tsk);
96 		tty = sig->tty;
97 		sig->tty = NULL;
98 	} else {
99 		/*
100 		 * This can only happen if the caller is de_thread().
101 		 * FIXME: this is the temporary hack, we should teach
102 		 * posix-cpu-timers to handle this case correctly.
103 		 */
104 		if (unlikely(has_group_leader_pid(tsk)))
105 			posix_cpu_timers_exit_group(tsk);
106 
107 		/*
108 		 * If there is any task waiting for the group exit
109 		 * then notify it:
110 		 */
111 		if (sig->notify_count > 0 && !--sig->notify_count)
112 			wake_up_process(sig->group_exit_task);
113 
114 		if (tsk == sig->curr_target)
115 			sig->curr_target = next_thread(tsk);
116 		/*
117 		 * Accumulate here the counters for all threads but the
118 		 * group leader as they die, so they can be added into
119 		 * the process-wide totals when those are taken.
120 		 * The group leader stays around as a zombie as long
121 		 * as there are other threads.  When it gets reaped,
122 		 * the exit.c code will add its counts into these totals.
123 		 * We won't ever get here for the group leader, since it
124 		 * will have been the last reference on the signal_struct.
125 		 */
126 		sig->utime += tsk->utime;
127 		sig->stime += tsk->stime;
128 		sig->gtime += tsk->gtime;
129 		sig->min_flt += tsk->min_flt;
130 		sig->maj_flt += tsk->maj_flt;
131 		sig->nvcsw += tsk->nvcsw;
132 		sig->nivcsw += tsk->nivcsw;
133 		sig->inblock += task_io_get_inblock(tsk);
134 		sig->oublock += task_io_get_oublock(tsk);
135 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
136 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137 	}
138 
139 	sig->nr_threads--;
140 	__unhash_process(tsk, group_dead);
141 
142 	/*
143 	 * Do this under ->siglock, we can race with another thread
144 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 	 */
146 	flush_sigqueue(&tsk->pending);
147 	tsk->sighand = NULL;
148 	spin_unlock(&sighand->siglock);
149 
150 	__cleanup_sighand(sighand);
151 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
152 	if (group_dead) {
153 		flush_sigqueue(&sig->shared_pending);
154 		tty_kref_put(tty);
155 	}
156 }
157 
158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 
162 	perf_event_delayed_put(tsk);
163 	trace_sched_process_free(tsk);
164 	put_task_struct(tsk);
165 }
166 
167 
168 void release_task(struct task_struct * p)
169 {
170 	struct task_struct *leader;
171 	int zap_leader;
172 repeat:
173 	/* don't need to get the RCU readlock here - the process is dead and
174 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 	rcu_read_lock();
176 	atomic_dec(&__task_cred(p)->user->processes);
177 	rcu_read_unlock();
178 
179 	proc_flush_task(p);
180 
181 	write_lock_irq(&tasklist_lock);
182 	ptrace_release_task(p);
183 	__exit_signal(p);
184 
185 	/*
186 	 * If we are the last non-leader member of the thread
187 	 * group, and the leader is zombie, then notify the
188 	 * group leader's parent process. (if it wants notification.)
189 	 */
190 	zap_leader = 0;
191 	leader = p->group_leader;
192 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 		/*
194 		 * If we were the last child thread and the leader has
195 		 * exited already, and the leader's parent ignores SIGCHLD,
196 		 * then we are the one who should release the leader.
197 		 */
198 		zap_leader = do_notify_parent(leader, leader->exit_signal);
199 		if (zap_leader)
200 			leader->exit_state = EXIT_DEAD;
201 	}
202 
203 	write_unlock_irq(&tasklist_lock);
204 	release_thread(p);
205 	call_rcu(&p->rcu, delayed_put_task_struct);
206 
207 	p = leader;
208 	if (unlikely(zap_leader))
209 		goto repeat;
210 }
211 
212 /*
213  * This checks not only the pgrp, but falls back on the pid if no
214  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
215  * without this...
216  *
217  * The caller must hold rcu lock or the tasklist lock.
218  */
219 struct pid *session_of_pgrp(struct pid *pgrp)
220 {
221 	struct task_struct *p;
222 	struct pid *sid = NULL;
223 
224 	p = pid_task(pgrp, PIDTYPE_PGID);
225 	if (p == NULL)
226 		p = pid_task(pgrp, PIDTYPE_PID);
227 	if (p != NULL)
228 		sid = task_session(p);
229 
230 	return sid;
231 }
232 
233 /*
234  * Determine if a process group is "orphaned", according to the POSIX
235  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
236  * by terminal-generated stop signals.  Newly orphaned process groups are
237  * to receive a SIGHUP and a SIGCONT.
238  *
239  * "I ask you, have you ever known what it is to be an orphan?"
240  */
241 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
242 {
243 	struct task_struct *p;
244 
245 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
246 		if ((p == ignored_task) ||
247 		    (p->exit_state && thread_group_empty(p)) ||
248 		    is_global_init(p->real_parent))
249 			continue;
250 
251 		if (task_pgrp(p->real_parent) != pgrp &&
252 		    task_session(p->real_parent) == task_session(p))
253 			return 0;
254 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255 
256 	return 1;
257 }
258 
259 int is_current_pgrp_orphaned(void)
260 {
261 	int retval;
262 
263 	read_lock(&tasklist_lock);
264 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
265 	read_unlock(&tasklist_lock);
266 
267 	return retval;
268 }
269 
270 static bool has_stopped_jobs(struct pid *pgrp)
271 {
272 	struct task_struct *p;
273 
274 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
276 			return true;
277 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
278 
279 	return false;
280 }
281 
282 /*
283  * Check to see if any process groups have become orphaned as
284  * a result of our exiting, and if they have any stopped jobs,
285  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
286  */
287 static void
288 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
289 {
290 	struct pid *pgrp = task_pgrp(tsk);
291 	struct task_struct *ignored_task = tsk;
292 
293 	if (!parent)
294 		 /* exit: our father is in a different pgrp than
295 		  * we are and we were the only connection outside.
296 		  */
297 		parent = tsk->real_parent;
298 	else
299 		/* reparent: our child is in a different pgrp than
300 		 * we are, and it was the only connection outside.
301 		 */
302 		ignored_task = NULL;
303 
304 	if (task_pgrp(parent) != pgrp &&
305 	    task_session(parent) == task_session(tsk) &&
306 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
307 	    has_stopped_jobs(pgrp)) {
308 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
309 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
310 	}
311 }
312 
313 void __set_special_pids(struct pid *pid)
314 {
315 	struct task_struct *curr = current->group_leader;
316 
317 	if (task_session(curr) != pid)
318 		change_pid(curr, PIDTYPE_SID, pid);
319 
320 	if (task_pgrp(curr) != pid)
321 		change_pid(curr, PIDTYPE_PGID, pid);
322 }
323 
324 /*
325  * Let kernel threads use this to say that they allow a certain signal.
326  * Must not be used if kthread was cloned with CLONE_SIGHAND.
327  */
328 int allow_signal(int sig)
329 {
330 	if (!valid_signal(sig) || sig < 1)
331 		return -EINVAL;
332 
333 	spin_lock_irq(&current->sighand->siglock);
334 	/* This is only needed for daemonize()'ed kthreads */
335 	sigdelset(&current->blocked, sig);
336 	/*
337 	 * Kernel threads handle their own signals. Let the signal code
338 	 * know it'll be handled, so that they don't get converted to
339 	 * SIGKILL or just silently dropped.
340 	 */
341 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
342 	recalc_sigpending();
343 	spin_unlock_irq(&current->sighand->siglock);
344 	return 0;
345 }
346 
347 EXPORT_SYMBOL(allow_signal);
348 
349 int disallow_signal(int sig)
350 {
351 	if (!valid_signal(sig) || sig < 1)
352 		return -EINVAL;
353 
354 	spin_lock_irq(&current->sighand->siglock);
355 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
356 	recalc_sigpending();
357 	spin_unlock_irq(&current->sighand->siglock);
358 	return 0;
359 }
360 
361 EXPORT_SYMBOL(disallow_signal);
362 
363 #ifdef CONFIG_MM_OWNER
364 /*
365  * A task is exiting.   If it owned this mm, find a new owner for the mm.
366  */
367 void mm_update_next_owner(struct mm_struct *mm)
368 {
369 	struct task_struct *c, *g, *p = current;
370 
371 retry:
372 	/*
373 	 * If the exiting or execing task is not the owner, it's
374 	 * someone else's problem.
375 	 */
376 	if (mm->owner != p)
377 		return;
378 	/*
379 	 * The current owner is exiting/execing and there are no other
380 	 * candidates.  Do not leave the mm pointing to a possibly
381 	 * freed task structure.
382 	 */
383 	if (atomic_read(&mm->mm_users) <= 1) {
384 		mm->owner = NULL;
385 		return;
386 	}
387 
388 	read_lock(&tasklist_lock);
389 	/*
390 	 * Search in the children
391 	 */
392 	list_for_each_entry(c, &p->children, sibling) {
393 		if (c->mm == mm)
394 			goto assign_new_owner;
395 	}
396 
397 	/*
398 	 * Search in the siblings
399 	 */
400 	list_for_each_entry(c, &p->real_parent->children, sibling) {
401 		if (c->mm == mm)
402 			goto assign_new_owner;
403 	}
404 
405 	/*
406 	 * Search through everything else. We should not get
407 	 * here often
408 	 */
409 	do_each_thread(g, c) {
410 		if (c->mm == mm)
411 			goto assign_new_owner;
412 	} while_each_thread(g, c);
413 
414 	read_unlock(&tasklist_lock);
415 	/*
416 	 * We found no owner yet mm_users > 1: this implies that we are
417 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
418 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
419 	 */
420 	mm->owner = NULL;
421 	return;
422 
423 assign_new_owner:
424 	BUG_ON(c == p);
425 	get_task_struct(c);
426 	/*
427 	 * The task_lock protects c->mm from changing.
428 	 * We always want mm->owner->mm == mm
429 	 */
430 	task_lock(c);
431 	/*
432 	 * Delay read_unlock() till we have the task_lock()
433 	 * to ensure that c does not slip away underneath us
434 	 */
435 	read_unlock(&tasklist_lock);
436 	if (c->mm != mm) {
437 		task_unlock(c);
438 		put_task_struct(c);
439 		goto retry;
440 	}
441 	mm->owner = c;
442 	task_unlock(c);
443 	put_task_struct(c);
444 }
445 #endif /* CONFIG_MM_OWNER */
446 
447 /*
448  * Turn us into a lazy TLB process if we
449  * aren't already..
450  */
451 static void exit_mm(struct task_struct * tsk)
452 {
453 	struct mm_struct *mm = tsk->mm;
454 	struct core_state *core_state;
455 
456 	mm_release(tsk, mm);
457 	if (!mm)
458 		return;
459 	sync_mm_rss(mm);
460 	/*
461 	 * Serialize with any possible pending coredump.
462 	 * We must hold mmap_sem around checking core_state
463 	 * and clearing tsk->mm.  The core-inducing thread
464 	 * will increment ->nr_threads for each thread in the
465 	 * group with ->mm != NULL.
466 	 */
467 	down_read(&mm->mmap_sem);
468 	core_state = mm->core_state;
469 	if (core_state) {
470 		struct core_thread self;
471 		up_read(&mm->mmap_sem);
472 
473 		self.task = tsk;
474 		self.next = xchg(&core_state->dumper.next, &self);
475 		/*
476 		 * Implies mb(), the result of xchg() must be visible
477 		 * to core_state->dumper.
478 		 */
479 		if (atomic_dec_and_test(&core_state->nr_threads))
480 			complete(&core_state->startup);
481 
482 		for (;;) {
483 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
484 			if (!self.task) /* see coredump_finish() */
485 				break;
486 			schedule();
487 		}
488 		__set_task_state(tsk, TASK_RUNNING);
489 		down_read(&mm->mmap_sem);
490 	}
491 	atomic_inc(&mm->mm_count);
492 	BUG_ON(mm != tsk->active_mm);
493 	/* more a memory barrier than a real lock */
494 	task_lock(tsk);
495 	tsk->mm = NULL;
496 	up_read(&mm->mmap_sem);
497 	enter_lazy_tlb(mm, current);
498 	task_unlock(tsk);
499 	mm_update_next_owner(mm);
500 	mmput(mm);
501 }
502 
503 /*
504  * When we die, we re-parent all our children, and try to:
505  * 1. give them to another thread in our thread group, if such a member exists
506  * 2. give it to the first ancestor process which prctl'd itself as a
507  *    child_subreaper for its children (like a service manager)
508  * 3. give it to the init process (PID 1) in our pid namespace
509  */
510 static struct task_struct *find_new_reaper(struct task_struct *father)
511 	__releases(&tasklist_lock)
512 	__acquires(&tasklist_lock)
513 {
514 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
515 	struct task_struct *thread;
516 
517 	thread = father;
518 	while_each_thread(father, thread) {
519 		if (thread->flags & PF_EXITING)
520 			continue;
521 		if (unlikely(pid_ns->child_reaper == father))
522 			pid_ns->child_reaper = thread;
523 		return thread;
524 	}
525 
526 	if (unlikely(pid_ns->child_reaper == father)) {
527 		write_unlock_irq(&tasklist_lock);
528 		if (unlikely(pid_ns == &init_pid_ns)) {
529 			panic("Attempted to kill init! exitcode=0x%08x\n",
530 				father->signal->group_exit_code ?:
531 					father->exit_code);
532 		}
533 
534 		zap_pid_ns_processes(pid_ns);
535 		write_lock_irq(&tasklist_lock);
536 	} else if (father->signal->has_child_subreaper) {
537 		struct task_struct *reaper;
538 
539 		/*
540 		 * Find the first ancestor marked as child_subreaper.
541 		 * Note that the code below checks same_thread_group(reaper,
542 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
543 		 * PID namespace. However we still need the check above, see
544 		 * http://marc.info/?l=linux-kernel&m=131385460420380
545 		 */
546 		for (reaper = father->real_parent;
547 		     reaper != &init_task;
548 		     reaper = reaper->real_parent) {
549 			if (same_thread_group(reaper, pid_ns->child_reaper))
550 				break;
551 			if (!reaper->signal->is_child_subreaper)
552 				continue;
553 			thread = reaper;
554 			do {
555 				if (!(thread->flags & PF_EXITING))
556 					return reaper;
557 			} while_each_thread(reaper, thread);
558 		}
559 	}
560 
561 	return pid_ns->child_reaper;
562 }
563 
564 /*
565 * Any that need to be release_task'd are put on the @dead list.
566  */
567 static void reparent_leader(struct task_struct *father, struct task_struct *p,
568 				struct list_head *dead)
569 {
570 	list_move_tail(&p->sibling, &p->real_parent->children);
571 
572 	if (p->exit_state == EXIT_DEAD)
573 		return;
574 	/*
575 	 * If this is a threaded reparent there is no need to
576 	 * notify anyone anything has happened.
577 	 */
578 	if (same_thread_group(p->real_parent, father))
579 		return;
580 
581 	/* We don't want people slaying init.  */
582 	p->exit_signal = SIGCHLD;
583 
584 	/* If it has exited notify the new parent about this child's death. */
585 	if (!p->ptrace &&
586 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
587 		if (do_notify_parent(p, p->exit_signal)) {
588 			p->exit_state = EXIT_DEAD;
589 			list_move_tail(&p->sibling, dead);
590 		}
591 	}
592 
593 	kill_orphaned_pgrp(p, father);
594 }
595 
596 static void forget_original_parent(struct task_struct *father)
597 {
598 	struct task_struct *p, *n, *reaper;
599 	LIST_HEAD(dead_children);
600 
601 	write_lock_irq(&tasklist_lock);
602 	/*
603 	 * Note that exit_ptrace() and find_new_reaper() might
604 	 * drop tasklist_lock and reacquire it.
605 	 */
606 	exit_ptrace(father);
607 	reaper = find_new_reaper(father);
608 
609 	list_for_each_entry_safe(p, n, &father->children, sibling) {
610 		struct task_struct *t = p;
611 		do {
612 			t->real_parent = reaper;
613 			if (t->parent == father) {
614 				BUG_ON(t->ptrace);
615 				t->parent = t->real_parent;
616 			}
617 			if (t->pdeath_signal)
618 				group_send_sig_info(t->pdeath_signal,
619 						    SEND_SIG_NOINFO, t);
620 		} while_each_thread(p, t);
621 		reparent_leader(father, p, &dead_children);
622 	}
623 	write_unlock_irq(&tasklist_lock);
624 
625 	BUG_ON(!list_empty(&father->children));
626 
627 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
628 		list_del_init(&p->sibling);
629 		release_task(p);
630 	}
631 }
632 
633 /*
634  * Send signals to all our closest relatives so that they know
635  * to properly mourn us..
636  */
637 static void exit_notify(struct task_struct *tsk, int group_dead)
638 {
639 	bool autoreap;
640 
641 	/*
642 	 * This does two things:
643 	 *
644   	 * A.  Make init inherit all the child processes
645 	 * B.  Check to see if any process groups have become orphaned
646 	 *	as a result of our exiting, and if they have any stopped
647 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
648 	 */
649 	forget_original_parent(tsk);
650 	exit_task_namespaces(tsk);
651 
652 	write_lock_irq(&tasklist_lock);
653 	if (group_dead)
654 		kill_orphaned_pgrp(tsk->group_leader, NULL);
655 
656 	if (unlikely(tsk->ptrace)) {
657 		int sig = thread_group_leader(tsk) &&
658 				thread_group_empty(tsk) &&
659 				!ptrace_reparented(tsk) ?
660 			tsk->exit_signal : SIGCHLD;
661 		autoreap = do_notify_parent(tsk, sig);
662 	} else if (thread_group_leader(tsk)) {
663 		autoreap = thread_group_empty(tsk) &&
664 			do_notify_parent(tsk, tsk->exit_signal);
665 	} else {
666 		autoreap = true;
667 	}
668 
669 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
670 
671 	/* mt-exec, de_thread() is waiting for group leader */
672 	if (unlikely(tsk->signal->notify_count < 0))
673 		wake_up_process(tsk->signal->group_exit_task);
674 	write_unlock_irq(&tasklist_lock);
675 
676 	/* If the process is dead, release it - nobody will wait for it */
677 	if (autoreap)
678 		release_task(tsk);
679 }
680 
681 #ifdef CONFIG_DEBUG_STACK_USAGE
682 static void check_stack_usage(void)
683 {
684 	static DEFINE_SPINLOCK(low_water_lock);
685 	static int lowest_to_date = THREAD_SIZE;
686 	unsigned long free;
687 
688 	free = stack_not_used(current);
689 
690 	if (free >= lowest_to_date)
691 		return;
692 
693 	spin_lock(&low_water_lock);
694 	if (free < lowest_to_date) {
695 		printk(KERN_WARNING "%s (%d) used greatest stack depth: "
696 				"%lu bytes left\n",
697 				current->comm, task_pid_nr(current), free);
698 		lowest_to_date = free;
699 	}
700 	spin_unlock(&low_water_lock);
701 }
702 #else
703 static inline void check_stack_usage(void) {}
704 #endif
705 
706 void do_exit(long code)
707 {
708 	struct task_struct *tsk = current;
709 	int group_dead;
710 
711 	profile_task_exit(tsk);
712 
713 	WARN_ON(blk_needs_flush_plug(tsk));
714 
715 	if (unlikely(in_interrupt()))
716 		panic("Aiee, killing interrupt handler!");
717 	if (unlikely(!tsk->pid))
718 		panic("Attempted to kill the idle task!");
719 
720 	/*
721 	 * If do_exit is called because this processes oopsed, it's possible
722 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
723 	 * continuing. Amongst other possible reasons, this is to prevent
724 	 * mm_release()->clear_child_tid() from writing to a user-controlled
725 	 * kernel address.
726 	 */
727 	set_fs(USER_DS);
728 
729 	ptrace_event(PTRACE_EVENT_EXIT, code);
730 
731 	validate_creds_for_do_exit(tsk);
732 
733 	/*
734 	 * We're taking recursive faults here in do_exit. Safest is to just
735 	 * leave this task alone and wait for reboot.
736 	 */
737 	if (unlikely(tsk->flags & PF_EXITING)) {
738 		printk(KERN_ALERT
739 			"Fixing recursive fault but reboot is needed!\n");
740 		/*
741 		 * We can do this unlocked here. The futex code uses
742 		 * this flag just to verify whether the pi state
743 		 * cleanup has been done or not. In the worst case it
744 		 * loops once more. We pretend that the cleanup was
745 		 * done as there is no way to return. Either the
746 		 * OWNER_DIED bit is set by now or we push the blocked
747 		 * task into the wait for ever nirwana as well.
748 		 */
749 		tsk->flags |= PF_EXITPIDONE;
750 		set_current_state(TASK_UNINTERRUPTIBLE);
751 		schedule();
752 	}
753 
754 	exit_signals(tsk);  /* sets PF_EXITING */
755 	/*
756 	 * tsk->flags are checked in the futex code to protect against
757 	 * an exiting task cleaning up the robust pi futexes.
758 	 */
759 	smp_mb();
760 	raw_spin_unlock_wait(&tsk->pi_lock);
761 
762 	if (unlikely(in_atomic()))
763 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
764 				current->comm, task_pid_nr(current),
765 				preempt_count());
766 
767 	acct_update_integrals(tsk);
768 	/* sync mm's RSS info before statistics gathering */
769 	if (tsk->mm)
770 		sync_mm_rss(tsk->mm);
771 	group_dead = atomic_dec_and_test(&tsk->signal->live);
772 	if (group_dead) {
773 		hrtimer_cancel(&tsk->signal->real_timer);
774 		exit_itimers(tsk->signal);
775 		if (tsk->mm)
776 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
777 	}
778 	acct_collect(code, group_dead);
779 	if (group_dead)
780 		tty_audit_exit();
781 	audit_free(tsk);
782 
783 	tsk->exit_code = code;
784 	taskstats_exit(tsk, group_dead);
785 
786 	exit_mm(tsk);
787 
788 	if (group_dead)
789 		acct_process();
790 	trace_sched_process_exit(tsk);
791 
792 	exit_sem(tsk);
793 	exit_shm(tsk);
794 	exit_files(tsk);
795 	exit_fs(tsk);
796 	exit_task_work(tsk);
797 	check_stack_usage();
798 	exit_thread();
799 
800 	/*
801 	 * Flush inherited counters to the parent - before the parent
802 	 * gets woken up by child-exit notifications.
803 	 *
804 	 * because of cgroup mode, must be called before cgroup_exit()
805 	 */
806 	perf_event_exit_task(tsk);
807 
808 	cgroup_exit(tsk, 1);
809 
810 	if (group_dead)
811 		disassociate_ctty(1);
812 
813 	module_put(task_thread_info(tsk)->exec_domain->module);
814 
815 	proc_exit_connector(tsk);
816 
817 	/*
818 	 * FIXME: do that only when needed, using sched_exit tracepoint
819 	 */
820 	ptrace_put_breakpoints(tsk);
821 
822 	exit_notify(tsk, group_dead);
823 #ifdef CONFIG_NUMA
824 	task_lock(tsk);
825 	mpol_put(tsk->mempolicy);
826 	tsk->mempolicy = NULL;
827 	task_unlock(tsk);
828 #endif
829 #ifdef CONFIG_FUTEX
830 	if (unlikely(current->pi_state_cache))
831 		kfree(current->pi_state_cache);
832 #endif
833 	/*
834 	 * Make sure we are holding no locks:
835 	 */
836 	debug_check_no_locks_held(tsk);
837 	/*
838 	 * We can do this unlocked here. The futex code uses this flag
839 	 * just to verify whether the pi state cleanup has been done
840 	 * or not. In the worst case it loops once more.
841 	 */
842 	tsk->flags |= PF_EXITPIDONE;
843 
844 	if (tsk->io_context)
845 		exit_io_context(tsk);
846 
847 	if (tsk->splice_pipe)
848 		__free_pipe_info(tsk->splice_pipe);
849 
850 	if (tsk->task_frag.page)
851 		put_page(tsk->task_frag.page);
852 
853 	validate_creds_for_do_exit(tsk);
854 
855 	preempt_disable();
856 	if (tsk->nr_dirtied)
857 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
858 	exit_rcu();
859 
860 	/*
861 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
862 	 * when the following two conditions become true.
863 	 *   - There is race condition of mmap_sem (It is acquired by
864 	 *     exit_mm()), and
865 	 *   - SMI occurs before setting TASK_RUNINNG.
866 	 *     (or hypervisor of virtual machine switches to other guest)
867 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
868 	 *
869 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
870 	 * is held by try_to_wake_up()
871 	 */
872 	smp_mb();
873 	raw_spin_unlock_wait(&tsk->pi_lock);
874 
875 	/* causes final put_task_struct in finish_task_switch(). */
876 	tsk->state = TASK_DEAD;
877 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
878 	schedule();
879 	BUG();
880 	/* Avoid "noreturn function does return".  */
881 	for (;;)
882 		cpu_relax();	/* For when BUG is null */
883 }
884 
885 EXPORT_SYMBOL_GPL(do_exit);
886 
887 void complete_and_exit(struct completion *comp, long code)
888 {
889 	if (comp)
890 		complete(comp);
891 
892 	do_exit(code);
893 }
894 
895 EXPORT_SYMBOL(complete_and_exit);
896 
897 SYSCALL_DEFINE1(exit, int, error_code)
898 {
899 	do_exit((error_code&0xff)<<8);
900 }
901 
902 /*
903  * Take down every thread in the group.  This is called by fatal signals
904  * as well as by sys_exit_group (below).
905  */
906 void
907 do_group_exit(int exit_code)
908 {
909 	struct signal_struct *sig = current->signal;
910 
911 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
912 
913 	if (signal_group_exit(sig))
914 		exit_code = sig->group_exit_code;
915 	else if (!thread_group_empty(current)) {
916 		struct sighand_struct *const sighand = current->sighand;
917 		spin_lock_irq(&sighand->siglock);
918 		if (signal_group_exit(sig))
919 			/* Another thread got here before we took the lock.  */
920 			exit_code = sig->group_exit_code;
921 		else {
922 			sig->group_exit_code = exit_code;
923 			sig->flags = SIGNAL_GROUP_EXIT;
924 			zap_other_threads(current);
925 		}
926 		spin_unlock_irq(&sighand->siglock);
927 	}
928 
929 	do_exit(exit_code);
930 	/* NOTREACHED */
931 }
932 
933 /*
934  * this kills every thread in the thread group. Note that any externally
935  * wait4()-ing process will get the correct exit code - even if this
936  * thread is not the thread group leader.
937  */
938 SYSCALL_DEFINE1(exit_group, int, error_code)
939 {
940 	do_group_exit((error_code & 0xff) << 8);
941 	/* NOTREACHED */
942 	return 0;
943 }
944 
945 struct wait_opts {
946 	enum pid_type		wo_type;
947 	int			wo_flags;
948 	struct pid		*wo_pid;
949 
950 	struct siginfo __user	*wo_info;
951 	int __user		*wo_stat;
952 	struct rusage __user	*wo_rusage;
953 
954 	wait_queue_t		child_wait;
955 	int			notask_error;
956 };
957 
958 static inline
959 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
960 {
961 	if (type != PIDTYPE_PID)
962 		task = task->group_leader;
963 	return task->pids[type].pid;
964 }
965 
966 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
967 {
968 	return	wo->wo_type == PIDTYPE_MAX ||
969 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
970 }
971 
972 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
973 {
974 	if (!eligible_pid(wo, p))
975 		return 0;
976 	/* Wait for all children (clone and not) if __WALL is set;
977 	 * otherwise, wait for clone children *only* if __WCLONE is
978 	 * set; otherwise, wait for non-clone children *only*.  (Note:
979 	 * A "clone" child here is one that reports to its parent
980 	 * using a signal other than SIGCHLD.) */
981 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
982 	    && !(wo->wo_flags & __WALL))
983 		return 0;
984 
985 	return 1;
986 }
987 
988 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
989 				pid_t pid, uid_t uid, int why, int status)
990 {
991 	struct siginfo __user *infop;
992 	int retval = wo->wo_rusage
993 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
994 
995 	put_task_struct(p);
996 	infop = wo->wo_info;
997 	if (infop) {
998 		if (!retval)
999 			retval = put_user(SIGCHLD, &infop->si_signo);
1000 		if (!retval)
1001 			retval = put_user(0, &infop->si_errno);
1002 		if (!retval)
1003 			retval = put_user((short)why, &infop->si_code);
1004 		if (!retval)
1005 			retval = put_user(pid, &infop->si_pid);
1006 		if (!retval)
1007 			retval = put_user(uid, &infop->si_uid);
1008 		if (!retval)
1009 			retval = put_user(status, &infop->si_status);
1010 	}
1011 	if (!retval)
1012 		retval = pid;
1013 	return retval;
1014 }
1015 
1016 /*
1017  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1018  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1019  * the lock and this task is uninteresting.  If we return nonzero, we have
1020  * released the lock and the system call should return.
1021  */
1022 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1023 {
1024 	unsigned long state;
1025 	int retval, status, traced;
1026 	pid_t pid = task_pid_vnr(p);
1027 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1028 	struct siginfo __user *infop;
1029 
1030 	if (!likely(wo->wo_flags & WEXITED))
1031 		return 0;
1032 
1033 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1034 		int exit_code = p->exit_code;
1035 		int why;
1036 
1037 		get_task_struct(p);
1038 		read_unlock(&tasklist_lock);
1039 		if ((exit_code & 0x7f) == 0) {
1040 			why = CLD_EXITED;
1041 			status = exit_code >> 8;
1042 		} else {
1043 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1044 			status = exit_code & 0x7f;
1045 		}
1046 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1047 	}
1048 
1049 	/*
1050 	 * Try to move the task's state to DEAD
1051 	 * only one thread is allowed to do this:
1052 	 */
1053 	state = xchg(&p->exit_state, EXIT_DEAD);
1054 	if (state != EXIT_ZOMBIE) {
1055 		BUG_ON(state != EXIT_DEAD);
1056 		return 0;
1057 	}
1058 
1059 	traced = ptrace_reparented(p);
1060 	/*
1061 	 * It can be ptraced but not reparented, check
1062 	 * thread_group_leader() to filter out sub-threads.
1063 	 */
1064 	if (likely(!traced) && thread_group_leader(p)) {
1065 		struct signal_struct *psig;
1066 		struct signal_struct *sig;
1067 		unsigned long maxrss;
1068 		cputime_t tgutime, tgstime;
1069 
1070 		/*
1071 		 * The resource counters for the group leader are in its
1072 		 * own task_struct.  Those for dead threads in the group
1073 		 * are in its signal_struct, as are those for the child
1074 		 * processes it has previously reaped.  All these
1075 		 * accumulate in the parent's signal_struct c* fields.
1076 		 *
1077 		 * We don't bother to take a lock here to protect these
1078 		 * p->signal fields, because they are only touched by
1079 		 * __exit_signal, which runs with tasklist_lock
1080 		 * write-locked anyway, and so is excluded here.  We do
1081 		 * need to protect the access to parent->signal fields,
1082 		 * as other threads in the parent group can be right
1083 		 * here reaping other children at the same time.
1084 		 *
1085 		 * We use thread_group_cputime_adjusted() to get times for the thread
1086 		 * group, which consolidates times for all threads in the
1087 		 * group including the group leader.
1088 		 */
1089 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1090 		spin_lock_irq(&p->real_parent->sighand->siglock);
1091 		psig = p->real_parent->signal;
1092 		sig = p->signal;
1093 		psig->cutime += tgutime + sig->cutime;
1094 		psig->cstime += tgstime + sig->cstime;
1095 		psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1096 		psig->cmin_flt +=
1097 			p->min_flt + sig->min_flt + sig->cmin_flt;
1098 		psig->cmaj_flt +=
1099 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1100 		psig->cnvcsw +=
1101 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1102 		psig->cnivcsw +=
1103 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1104 		psig->cinblock +=
1105 			task_io_get_inblock(p) +
1106 			sig->inblock + sig->cinblock;
1107 		psig->coublock +=
1108 			task_io_get_oublock(p) +
1109 			sig->oublock + sig->coublock;
1110 		maxrss = max(sig->maxrss, sig->cmaxrss);
1111 		if (psig->cmaxrss < maxrss)
1112 			psig->cmaxrss = maxrss;
1113 		task_io_accounting_add(&psig->ioac, &p->ioac);
1114 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1115 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1116 	}
1117 
1118 	/*
1119 	 * Now we are sure this task is interesting, and no other
1120 	 * thread can reap it because we set its state to EXIT_DEAD.
1121 	 */
1122 	read_unlock(&tasklist_lock);
1123 
1124 	retval = wo->wo_rusage
1125 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1126 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1127 		? p->signal->group_exit_code : p->exit_code;
1128 	if (!retval && wo->wo_stat)
1129 		retval = put_user(status, wo->wo_stat);
1130 
1131 	infop = wo->wo_info;
1132 	if (!retval && infop)
1133 		retval = put_user(SIGCHLD, &infop->si_signo);
1134 	if (!retval && infop)
1135 		retval = put_user(0, &infop->si_errno);
1136 	if (!retval && infop) {
1137 		int why;
1138 
1139 		if ((status & 0x7f) == 0) {
1140 			why = CLD_EXITED;
1141 			status >>= 8;
1142 		} else {
1143 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1144 			status &= 0x7f;
1145 		}
1146 		retval = put_user((short)why, &infop->si_code);
1147 		if (!retval)
1148 			retval = put_user(status, &infop->si_status);
1149 	}
1150 	if (!retval && infop)
1151 		retval = put_user(pid, &infop->si_pid);
1152 	if (!retval && infop)
1153 		retval = put_user(uid, &infop->si_uid);
1154 	if (!retval)
1155 		retval = pid;
1156 
1157 	if (traced) {
1158 		write_lock_irq(&tasklist_lock);
1159 		/* We dropped tasklist, ptracer could die and untrace */
1160 		ptrace_unlink(p);
1161 		/*
1162 		 * If this is not a sub-thread, notify the parent.
1163 		 * If parent wants a zombie, don't release it now.
1164 		 */
1165 		if (thread_group_leader(p) &&
1166 		    !do_notify_parent(p, p->exit_signal)) {
1167 			p->exit_state = EXIT_ZOMBIE;
1168 			p = NULL;
1169 		}
1170 		write_unlock_irq(&tasklist_lock);
1171 	}
1172 	if (p != NULL)
1173 		release_task(p);
1174 
1175 	return retval;
1176 }
1177 
1178 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1179 {
1180 	if (ptrace) {
1181 		if (task_is_stopped_or_traced(p) &&
1182 		    !(p->jobctl & JOBCTL_LISTENING))
1183 			return &p->exit_code;
1184 	} else {
1185 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1186 			return &p->signal->group_exit_code;
1187 	}
1188 	return NULL;
1189 }
1190 
1191 /**
1192  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1193  * @wo: wait options
1194  * @ptrace: is the wait for ptrace
1195  * @p: task to wait for
1196  *
1197  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1198  *
1199  * CONTEXT:
1200  * read_lock(&tasklist_lock), which is released if return value is
1201  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1202  *
1203  * RETURNS:
1204  * 0 if wait condition didn't exist and search for other wait conditions
1205  * should continue.  Non-zero return, -errno on failure and @p's pid on
1206  * success, implies that tasklist_lock is released and wait condition
1207  * search should terminate.
1208  */
1209 static int wait_task_stopped(struct wait_opts *wo,
1210 				int ptrace, struct task_struct *p)
1211 {
1212 	struct siginfo __user *infop;
1213 	int retval, exit_code, *p_code, why;
1214 	uid_t uid = 0; /* unneeded, required by compiler */
1215 	pid_t pid;
1216 
1217 	/*
1218 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1219 	 */
1220 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1221 		return 0;
1222 
1223 	if (!task_stopped_code(p, ptrace))
1224 		return 0;
1225 
1226 	exit_code = 0;
1227 	spin_lock_irq(&p->sighand->siglock);
1228 
1229 	p_code = task_stopped_code(p, ptrace);
1230 	if (unlikely(!p_code))
1231 		goto unlock_sig;
1232 
1233 	exit_code = *p_code;
1234 	if (!exit_code)
1235 		goto unlock_sig;
1236 
1237 	if (!unlikely(wo->wo_flags & WNOWAIT))
1238 		*p_code = 0;
1239 
1240 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1241 unlock_sig:
1242 	spin_unlock_irq(&p->sighand->siglock);
1243 	if (!exit_code)
1244 		return 0;
1245 
1246 	/*
1247 	 * Now we are pretty sure this task is interesting.
1248 	 * Make sure it doesn't get reaped out from under us while we
1249 	 * give up the lock and then examine it below.  We don't want to
1250 	 * keep holding onto the tasklist_lock while we call getrusage and
1251 	 * possibly take page faults for user memory.
1252 	 */
1253 	get_task_struct(p);
1254 	pid = task_pid_vnr(p);
1255 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1256 	read_unlock(&tasklist_lock);
1257 
1258 	if (unlikely(wo->wo_flags & WNOWAIT))
1259 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1260 
1261 	retval = wo->wo_rusage
1262 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1263 	if (!retval && wo->wo_stat)
1264 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1265 
1266 	infop = wo->wo_info;
1267 	if (!retval && infop)
1268 		retval = put_user(SIGCHLD, &infop->si_signo);
1269 	if (!retval && infop)
1270 		retval = put_user(0, &infop->si_errno);
1271 	if (!retval && infop)
1272 		retval = put_user((short)why, &infop->si_code);
1273 	if (!retval && infop)
1274 		retval = put_user(exit_code, &infop->si_status);
1275 	if (!retval && infop)
1276 		retval = put_user(pid, &infop->si_pid);
1277 	if (!retval && infop)
1278 		retval = put_user(uid, &infop->si_uid);
1279 	if (!retval)
1280 		retval = pid;
1281 	put_task_struct(p);
1282 
1283 	BUG_ON(!retval);
1284 	return retval;
1285 }
1286 
1287 /*
1288  * Handle do_wait work for one task in a live, non-stopped state.
1289  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1290  * the lock and this task is uninteresting.  If we return nonzero, we have
1291  * released the lock and the system call should return.
1292  */
1293 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1294 {
1295 	int retval;
1296 	pid_t pid;
1297 	uid_t uid;
1298 
1299 	if (!unlikely(wo->wo_flags & WCONTINUED))
1300 		return 0;
1301 
1302 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1303 		return 0;
1304 
1305 	spin_lock_irq(&p->sighand->siglock);
1306 	/* Re-check with the lock held.  */
1307 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1308 		spin_unlock_irq(&p->sighand->siglock);
1309 		return 0;
1310 	}
1311 	if (!unlikely(wo->wo_flags & WNOWAIT))
1312 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1313 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1314 	spin_unlock_irq(&p->sighand->siglock);
1315 
1316 	pid = task_pid_vnr(p);
1317 	get_task_struct(p);
1318 	read_unlock(&tasklist_lock);
1319 
1320 	if (!wo->wo_info) {
1321 		retval = wo->wo_rusage
1322 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1323 		put_task_struct(p);
1324 		if (!retval && wo->wo_stat)
1325 			retval = put_user(0xffff, wo->wo_stat);
1326 		if (!retval)
1327 			retval = pid;
1328 	} else {
1329 		retval = wait_noreap_copyout(wo, p, pid, uid,
1330 					     CLD_CONTINUED, SIGCONT);
1331 		BUG_ON(retval == 0);
1332 	}
1333 
1334 	return retval;
1335 }
1336 
1337 /*
1338  * Consider @p for a wait by @parent.
1339  *
1340  * -ECHILD should be in ->notask_error before the first call.
1341  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1342  * Returns zero if the search for a child should continue;
1343  * then ->notask_error is 0 if @p is an eligible child,
1344  * or another error from security_task_wait(), or still -ECHILD.
1345  */
1346 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1347 				struct task_struct *p)
1348 {
1349 	int ret = eligible_child(wo, p);
1350 	if (!ret)
1351 		return ret;
1352 
1353 	ret = security_task_wait(p);
1354 	if (unlikely(ret < 0)) {
1355 		/*
1356 		 * If we have not yet seen any eligible child,
1357 		 * then let this error code replace -ECHILD.
1358 		 * A permission error will give the user a clue
1359 		 * to look for security policy problems, rather
1360 		 * than for mysterious wait bugs.
1361 		 */
1362 		if (wo->notask_error)
1363 			wo->notask_error = ret;
1364 		return 0;
1365 	}
1366 
1367 	/* dead body doesn't have much to contribute */
1368 	if (unlikely(p->exit_state == EXIT_DEAD)) {
1369 		/*
1370 		 * But do not ignore this task until the tracer does
1371 		 * wait_task_zombie()->do_notify_parent().
1372 		 */
1373 		if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1374 			wo->notask_error = 0;
1375 		return 0;
1376 	}
1377 
1378 	/* slay zombie? */
1379 	if (p->exit_state == EXIT_ZOMBIE) {
1380 		/*
1381 		 * A zombie ptracee is only visible to its ptracer.
1382 		 * Notification and reaping will be cascaded to the real
1383 		 * parent when the ptracer detaches.
1384 		 */
1385 		if (likely(!ptrace) && unlikely(p->ptrace)) {
1386 			/* it will become visible, clear notask_error */
1387 			wo->notask_error = 0;
1388 			return 0;
1389 		}
1390 
1391 		/* we don't reap group leaders with subthreads */
1392 		if (!delay_group_leader(p))
1393 			return wait_task_zombie(wo, p);
1394 
1395 		/*
1396 		 * Allow access to stopped/continued state via zombie by
1397 		 * falling through.  Clearing of notask_error is complex.
1398 		 *
1399 		 * When !@ptrace:
1400 		 *
1401 		 * If WEXITED is set, notask_error should naturally be
1402 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1403 		 * so, if there are live subthreads, there are events to
1404 		 * wait for.  If all subthreads are dead, it's still safe
1405 		 * to clear - this function will be called again in finite
1406 		 * amount time once all the subthreads are released and
1407 		 * will then return without clearing.
1408 		 *
1409 		 * When @ptrace:
1410 		 *
1411 		 * Stopped state is per-task and thus can't change once the
1412 		 * target task dies.  Only continued and exited can happen.
1413 		 * Clear notask_error if WCONTINUED | WEXITED.
1414 		 */
1415 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1416 			wo->notask_error = 0;
1417 	} else {
1418 		/*
1419 		 * If @p is ptraced by a task in its real parent's group,
1420 		 * hide group stop/continued state when looking at @p as
1421 		 * the real parent; otherwise, a single stop can be
1422 		 * reported twice as group and ptrace stops.
1423 		 *
1424 		 * If a ptracer wants to distinguish the two events for its
1425 		 * own children, it should create a separate process which
1426 		 * takes the role of real parent.
1427 		 */
1428 		if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1429 			return 0;
1430 
1431 		/*
1432 		 * @p is alive and it's gonna stop, continue or exit, so
1433 		 * there always is something to wait for.
1434 		 */
1435 		wo->notask_error = 0;
1436 	}
1437 
1438 	/*
1439 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1440 	 * is used and the two don't interact with each other.
1441 	 */
1442 	ret = wait_task_stopped(wo, ptrace, p);
1443 	if (ret)
1444 		return ret;
1445 
1446 	/*
1447 	 * Wait for continued.  There's only one continued state and the
1448 	 * ptracer can consume it which can confuse the real parent.  Don't
1449 	 * use WCONTINUED from ptracer.  You don't need or want it.
1450 	 */
1451 	return wait_task_continued(wo, p);
1452 }
1453 
1454 /*
1455  * Do the work of do_wait() for one thread in the group, @tsk.
1456  *
1457  * -ECHILD should be in ->notask_error before the first call.
1458  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1459  * Returns zero if the search for a child should continue; then
1460  * ->notask_error is 0 if there were any eligible children,
1461  * or another error from security_task_wait(), or still -ECHILD.
1462  */
1463 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1464 {
1465 	struct task_struct *p;
1466 
1467 	list_for_each_entry(p, &tsk->children, sibling) {
1468 		int ret = wait_consider_task(wo, 0, p);
1469 		if (ret)
1470 			return ret;
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1477 {
1478 	struct task_struct *p;
1479 
1480 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1481 		int ret = wait_consider_task(wo, 1, p);
1482 		if (ret)
1483 			return ret;
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1490 				int sync, void *key)
1491 {
1492 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1493 						child_wait);
1494 	struct task_struct *p = key;
1495 
1496 	if (!eligible_pid(wo, p))
1497 		return 0;
1498 
1499 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1500 		return 0;
1501 
1502 	return default_wake_function(wait, mode, sync, key);
1503 }
1504 
1505 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1506 {
1507 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1508 				TASK_INTERRUPTIBLE, 1, p);
1509 }
1510 
1511 static long do_wait(struct wait_opts *wo)
1512 {
1513 	struct task_struct *tsk;
1514 	int retval;
1515 
1516 	trace_sched_process_wait(wo->wo_pid);
1517 
1518 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1519 	wo->child_wait.private = current;
1520 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1521 repeat:
1522 	/*
1523 	 * If there is nothing that can match our critiera just get out.
1524 	 * We will clear ->notask_error to zero if we see any child that
1525 	 * might later match our criteria, even if we are not able to reap
1526 	 * it yet.
1527 	 */
1528 	wo->notask_error = -ECHILD;
1529 	if ((wo->wo_type < PIDTYPE_MAX) &&
1530 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1531 		goto notask;
1532 
1533 	set_current_state(TASK_INTERRUPTIBLE);
1534 	read_lock(&tasklist_lock);
1535 	tsk = current;
1536 	do {
1537 		retval = do_wait_thread(wo, tsk);
1538 		if (retval)
1539 			goto end;
1540 
1541 		retval = ptrace_do_wait(wo, tsk);
1542 		if (retval)
1543 			goto end;
1544 
1545 		if (wo->wo_flags & __WNOTHREAD)
1546 			break;
1547 	} while_each_thread(current, tsk);
1548 	read_unlock(&tasklist_lock);
1549 
1550 notask:
1551 	retval = wo->notask_error;
1552 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1553 		retval = -ERESTARTSYS;
1554 		if (!signal_pending(current)) {
1555 			schedule();
1556 			goto repeat;
1557 		}
1558 	}
1559 end:
1560 	__set_current_state(TASK_RUNNING);
1561 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1562 	return retval;
1563 }
1564 
1565 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1566 		infop, int, options, struct rusage __user *, ru)
1567 {
1568 	struct wait_opts wo;
1569 	struct pid *pid = NULL;
1570 	enum pid_type type;
1571 	long ret;
1572 
1573 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1574 		return -EINVAL;
1575 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1576 		return -EINVAL;
1577 
1578 	switch (which) {
1579 	case P_ALL:
1580 		type = PIDTYPE_MAX;
1581 		break;
1582 	case P_PID:
1583 		type = PIDTYPE_PID;
1584 		if (upid <= 0)
1585 			return -EINVAL;
1586 		break;
1587 	case P_PGID:
1588 		type = PIDTYPE_PGID;
1589 		if (upid <= 0)
1590 			return -EINVAL;
1591 		break;
1592 	default:
1593 		return -EINVAL;
1594 	}
1595 
1596 	if (type < PIDTYPE_MAX)
1597 		pid = find_get_pid(upid);
1598 
1599 	wo.wo_type	= type;
1600 	wo.wo_pid	= pid;
1601 	wo.wo_flags	= options;
1602 	wo.wo_info	= infop;
1603 	wo.wo_stat	= NULL;
1604 	wo.wo_rusage	= ru;
1605 	ret = do_wait(&wo);
1606 
1607 	if (ret > 0) {
1608 		ret = 0;
1609 	} else if (infop) {
1610 		/*
1611 		 * For a WNOHANG return, clear out all the fields
1612 		 * we would set so the user can easily tell the
1613 		 * difference.
1614 		 */
1615 		if (!ret)
1616 			ret = put_user(0, &infop->si_signo);
1617 		if (!ret)
1618 			ret = put_user(0, &infop->si_errno);
1619 		if (!ret)
1620 			ret = put_user(0, &infop->si_code);
1621 		if (!ret)
1622 			ret = put_user(0, &infop->si_pid);
1623 		if (!ret)
1624 			ret = put_user(0, &infop->si_uid);
1625 		if (!ret)
1626 			ret = put_user(0, &infop->si_status);
1627 	}
1628 
1629 	put_pid(pid);
1630 
1631 	/* avoid REGPARM breakage on x86: */
1632 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1633 	return ret;
1634 }
1635 
1636 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1637 		int, options, struct rusage __user *, ru)
1638 {
1639 	struct wait_opts wo;
1640 	struct pid *pid = NULL;
1641 	enum pid_type type;
1642 	long ret;
1643 
1644 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1645 			__WNOTHREAD|__WCLONE|__WALL))
1646 		return -EINVAL;
1647 
1648 	if (upid == -1)
1649 		type = PIDTYPE_MAX;
1650 	else if (upid < 0) {
1651 		type = PIDTYPE_PGID;
1652 		pid = find_get_pid(-upid);
1653 	} else if (upid == 0) {
1654 		type = PIDTYPE_PGID;
1655 		pid = get_task_pid(current, PIDTYPE_PGID);
1656 	} else /* upid > 0 */ {
1657 		type = PIDTYPE_PID;
1658 		pid = find_get_pid(upid);
1659 	}
1660 
1661 	wo.wo_type	= type;
1662 	wo.wo_pid	= pid;
1663 	wo.wo_flags	= options | WEXITED;
1664 	wo.wo_info	= NULL;
1665 	wo.wo_stat	= stat_addr;
1666 	wo.wo_rusage	= ru;
1667 	ret = do_wait(&wo);
1668 	put_pid(pid);
1669 
1670 	/* avoid REGPARM breakage on x86: */
1671 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1672 	return ret;
1673 }
1674 
1675 #ifdef __ARCH_WANT_SYS_WAITPID
1676 
1677 /*
1678  * sys_waitpid() remains for compatibility. waitpid() should be
1679  * implemented by calling sys_wait4() from libc.a.
1680  */
1681 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1682 {
1683 	return sys_wait4(pid, stat_addr, options, NULL);
1684 }
1685 
1686 #endif
1687