1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72
73 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
75 #include <asm/mmu_context.h>
76
77 /*
78 * The default value should be high enough to not crash a system that randomly
79 * crashes its kernel from time to time, but low enough to at least not permit
80 * overflowing 32-bit refcounts or the ldsem writer count.
81 */
82 static unsigned int oops_limit = 10000;
83
84 #ifdef CONFIG_SYSCTL
85 static struct ctl_table kern_exit_table[] = {
86 {
87 .procname = "oops_limit",
88 .data = &oops_limit,
89 .maxlen = sizeof(oops_limit),
90 .mode = 0644,
91 .proc_handler = proc_douintvec,
92 },
93 { }
94 };
95
kernel_exit_sysctls_init(void)96 static __init int kernel_exit_sysctls_init(void)
97 {
98 register_sysctl_init("kernel", kern_exit_table);
99 return 0;
100 }
101 late_initcall(kernel_exit_sysctls_init);
102 #endif
103
104 static atomic_t oops_count = ATOMIC_INIT(0);
105
106 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
108 char *page)
109 {
110 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
111 }
112
113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
114
kernel_exit_sysfs_init(void)115 static __init int kernel_exit_sysfs_init(void)
116 {
117 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
118 return 0;
119 }
120 late_initcall(kernel_exit_sysfs_init);
121 #endif
122
__unhash_process(struct task_struct * p,bool group_dead)123 static void __unhash_process(struct task_struct *p, bool group_dead)
124 {
125 nr_threads--;
126 detach_pid(p, PIDTYPE_PID);
127 if (group_dead) {
128 detach_pid(p, PIDTYPE_TGID);
129 detach_pid(p, PIDTYPE_PGID);
130 detach_pid(p, PIDTYPE_SID);
131
132 list_del_rcu(&p->tasks);
133 list_del_init(&p->sibling);
134 __this_cpu_dec(process_counts);
135 }
136 list_del_rcu(&p->thread_group);
137 list_del_rcu(&p->thread_node);
138 }
139
140 /*
141 * This function expects the tasklist_lock write-locked.
142 */
__exit_signal(struct task_struct * tsk)143 static void __exit_signal(struct task_struct *tsk)
144 {
145 struct signal_struct *sig = tsk->signal;
146 bool group_dead = thread_group_leader(tsk);
147 struct sighand_struct *sighand;
148 struct tty_struct *tty;
149 u64 utime, stime;
150
151 sighand = rcu_dereference_check(tsk->sighand,
152 lockdep_tasklist_lock_is_held());
153 spin_lock(&sighand->siglock);
154
155 #ifdef CONFIG_POSIX_TIMERS
156 posix_cpu_timers_exit(tsk);
157 if (group_dead)
158 posix_cpu_timers_exit_group(tsk);
159 #endif
160
161 if (group_dead) {
162 tty = sig->tty;
163 sig->tty = NULL;
164 } else {
165 /*
166 * If there is any task waiting for the group exit
167 * then notify it:
168 */
169 if (sig->notify_count > 0 && !--sig->notify_count)
170 wake_up_process(sig->group_exec_task);
171
172 if (tsk == sig->curr_target)
173 sig->curr_target = next_thread(tsk);
174 }
175
176 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
177 sizeof(unsigned long long));
178
179 /*
180 * Accumulate here the counters for all threads as they die. We could
181 * skip the group leader because it is the last user of signal_struct,
182 * but we want to avoid the race with thread_group_cputime() which can
183 * see the empty ->thread_head list.
184 */
185 task_cputime(tsk, &utime, &stime);
186 write_seqlock(&sig->stats_lock);
187 sig->utime += utime;
188 sig->stime += stime;
189 sig->gtime += task_gtime(tsk);
190 sig->min_flt += tsk->min_flt;
191 sig->maj_flt += tsk->maj_flt;
192 sig->nvcsw += tsk->nvcsw;
193 sig->nivcsw += tsk->nivcsw;
194 sig->inblock += task_io_get_inblock(tsk);
195 sig->oublock += task_io_get_oublock(tsk);
196 task_io_accounting_add(&sig->ioac, &tsk->ioac);
197 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
198 sig->nr_threads--;
199 __unhash_process(tsk, group_dead);
200 write_sequnlock(&sig->stats_lock);
201
202 /*
203 * Do this under ->siglock, we can race with another thread
204 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
205 */
206 flush_sigqueue(&tsk->pending);
207 tsk->sighand = NULL;
208 spin_unlock(&sighand->siglock);
209
210 __cleanup_sighand(sighand);
211 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
212 if (group_dead) {
213 flush_sigqueue(&sig->shared_pending);
214 tty_kref_put(tty);
215 }
216 }
217
delayed_put_task_struct(struct rcu_head * rhp)218 static void delayed_put_task_struct(struct rcu_head *rhp)
219 {
220 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
221
222 kprobe_flush_task(tsk);
223 rethook_flush_task(tsk);
224 perf_event_delayed_put(tsk);
225 trace_sched_process_free(tsk);
226 put_task_struct(tsk);
227 }
228
put_task_struct_rcu_user(struct task_struct * task)229 void put_task_struct_rcu_user(struct task_struct *task)
230 {
231 if (refcount_dec_and_test(&task->rcu_users))
232 call_rcu(&task->rcu, delayed_put_task_struct);
233 }
234
release_thread(struct task_struct * dead_task)235 void __weak release_thread(struct task_struct *dead_task)
236 {
237 }
238
release_task(struct task_struct * p)239 void release_task(struct task_struct *p)
240 {
241 struct task_struct *leader;
242 struct pid *thread_pid;
243 int zap_leader;
244 repeat:
245 /* don't need to get the RCU readlock here - the process is dead and
246 * can't be modifying its own credentials. But shut RCU-lockdep up */
247 rcu_read_lock();
248 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
249 rcu_read_unlock();
250
251 cgroup_release(p);
252
253 write_lock_irq(&tasklist_lock);
254 ptrace_release_task(p);
255 thread_pid = get_pid(p->thread_pid);
256 __exit_signal(p);
257
258 /*
259 * If we are the last non-leader member of the thread
260 * group, and the leader is zombie, then notify the
261 * group leader's parent process. (if it wants notification.)
262 */
263 zap_leader = 0;
264 leader = p->group_leader;
265 if (leader != p && thread_group_empty(leader)
266 && leader->exit_state == EXIT_ZOMBIE) {
267 /*
268 * If we were the last child thread and the leader has
269 * exited already, and the leader's parent ignores SIGCHLD,
270 * then we are the one who should release the leader.
271 */
272 zap_leader = do_notify_parent(leader, leader->exit_signal);
273 if (zap_leader)
274 leader->exit_state = EXIT_DEAD;
275 }
276
277 write_unlock_irq(&tasklist_lock);
278 seccomp_filter_release(p);
279 proc_flush_pid(thread_pid);
280 put_pid(thread_pid);
281 release_thread(p);
282 put_task_struct_rcu_user(p);
283
284 p = leader;
285 if (unlikely(zap_leader))
286 goto repeat;
287 }
288
rcuwait_wake_up(struct rcuwait * w)289 int rcuwait_wake_up(struct rcuwait *w)
290 {
291 int ret = 0;
292 struct task_struct *task;
293
294 rcu_read_lock();
295
296 /*
297 * Order condition vs @task, such that everything prior to the load
298 * of @task is visible. This is the condition as to why the user called
299 * rcuwait_wake() in the first place. Pairs with set_current_state()
300 * barrier (A) in rcuwait_wait_event().
301 *
302 * WAIT WAKE
303 * [S] tsk = current [S] cond = true
304 * MB (A) MB (B)
305 * [L] cond [L] tsk
306 */
307 smp_mb(); /* (B) */
308
309 task = rcu_dereference(w->task);
310 if (task)
311 ret = wake_up_process(task);
312 rcu_read_unlock();
313
314 return ret;
315 }
316 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
317
318 /*
319 * Determine if a process group is "orphaned", according to the POSIX
320 * definition in 2.2.2.52. Orphaned process groups are not to be affected
321 * by terminal-generated stop signals. Newly orphaned process groups are
322 * to receive a SIGHUP and a SIGCONT.
323 *
324 * "I ask you, have you ever known what it is to be an orphan?"
325 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)326 static int will_become_orphaned_pgrp(struct pid *pgrp,
327 struct task_struct *ignored_task)
328 {
329 struct task_struct *p;
330
331 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332 if ((p == ignored_task) ||
333 (p->exit_state && thread_group_empty(p)) ||
334 is_global_init(p->real_parent))
335 continue;
336
337 if (task_pgrp(p->real_parent) != pgrp &&
338 task_session(p->real_parent) == task_session(p))
339 return 0;
340 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
341
342 return 1;
343 }
344
is_current_pgrp_orphaned(void)345 int is_current_pgrp_orphaned(void)
346 {
347 int retval;
348
349 read_lock(&tasklist_lock);
350 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
351 read_unlock(&tasklist_lock);
352
353 return retval;
354 }
355
has_stopped_jobs(struct pid * pgrp)356 static bool has_stopped_jobs(struct pid *pgrp)
357 {
358 struct task_struct *p;
359
360 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
361 if (p->signal->flags & SIGNAL_STOP_STOPPED)
362 return true;
363 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
364
365 return false;
366 }
367
368 /*
369 * Check to see if any process groups have become orphaned as
370 * a result of our exiting, and if they have any stopped jobs,
371 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
372 */
373 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
375 {
376 struct pid *pgrp = task_pgrp(tsk);
377 struct task_struct *ignored_task = tsk;
378
379 if (!parent)
380 /* exit: our father is in a different pgrp than
381 * we are and we were the only connection outside.
382 */
383 parent = tsk->real_parent;
384 else
385 /* reparent: our child is in a different pgrp than
386 * we are, and it was the only connection outside.
387 */
388 ignored_task = NULL;
389
390 if (task_pgrp(parent) != pgrp &&
391 task_session(parent) == task_session(tsk) &&
392 will_become_orphaned_pgrp(pgrp, ignored_task) &&
393 has_stopped_jobs(pgrp)) {
394 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
395 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
396 }
397 }
398
coredump_task_exit(struct task_struct * tsk)399 static void coredump_task_exit(struct task_struct *tsk)
400 {
401 struct core_state *core_state;
402
403 /*
404 * Serialize with any possible pending coredump.
405 * We must hold siglock around checking core_state
406 * and setting PF_POSTCOREDUMP. The core-inducing thread
407 * will increment ->nr_threads for each thread in the
408 * group without PF_POSTCOREDUMP set.
409 */
410 spin_lock_irq(&tsk->sighand->siglock);
411 tsk->flags |= PF_POSTCOREDUMP;
412 core_state = tsk->signal->core_state;
413 spin_unlock_irq(&tsk->sighand->siglock);
414
415 /* The vhost_worker does not particpate in coredumps */
416 if (core_state &&
417 ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
418 struct core_thread self;
419
420 self.task = current;
421 if (self.task->flags & PF_SIGNALED)
422 self.next = xchg(&core_state->dumper.next, &self);
423 else
424 self.task = NULL;
425 /*
426 * Implies mb(), the result of xchg() must be visible
427 * to core_state->dumper.
428 */
429 if (atomic_dec_and_test(&core_state->nr_threads))
430 complete(&core_state->startup);
431
432 for (;;) {
433 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
434 if (!self.task) /* see coredump_finish() */
435 break;
436 schedule();
437 }
438 __set_current_state(TASK_RUNNING);
439 }
440 }
441
442 #ifdef CONFIG_MEMCG
443 /*
444 * A task is exiting. If it owned this mm, find a new owner for the mm.
445 */
mm_update_next_owner(struct mm_struct * mm)446 void mm_update_next_owner(struct mm_struct *mm)
447 {
448 struct task_struct *c, *g, *p = current;
449
450 retry:
451 /*
452 * If the exiting or execing task is not the owner, it's
453 * someone else's problem.
454 */
455 if (mm->owner != p)
456 return;
457 /*
458 * The current owner is exiting/execing and there are no other
459 * candidates. Do not leave the mm pointing to a possibly
460 * freed task structure.
461 */
462 if (atomic_read(&mm->mm_users) <= 1) {
463 WRITE_ONCE(mm->owner, NULL);
464 return;
465 }
466
467 read_lock(&tasklist_lock);
468 /*
469 * Search in the children
470 */
471 list_for_each_entry(c, &p->children, sibling) {
472 if (c->mm == mm)
473 goto assign_new_owner;
474 }
475
476 /*
477 * Search in the siblings
478 */
479 list_for_each_entry(c, &p->real_parent->children, sibling) {
480 if (c->mm == mm)
481 goto assign_new_owner;
482 }
483
484 /*
485 * Search through everything else, we should not get here often.
486 */
487 for_each_process(g) {
488 if (atomic_read(&mm->mm_users) <= 1)
489 break;
490 if (g->flags & PF_KTHREAD)
491 continue;
492 for_each_thread(g, c) {
493 if (c->mm == mm)
494 goto assign_new_owner;
495 if (c->mm)
496 break;
497 }
498 }
499 read_unlock(&tasklist_lock);
500 /*
501 * We found no owner yet mm_users > 1: this implies that we are
502 * most likely racing with swapoff (try_to_unuse()) or /proc or
503 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
504 */
505 WRITE_ONCE(mm->owner, NULL);
506 return;
507
508 assign_new_owner:
509 BUG_ON(c == p);
510 get_task_struct(c);
511 /*
512 * The task_lock protects c->mm from changing.
513 * We always want mm->owner->mm == mm
514 */
515 task_lock(c);
516 /*
517 * Delay read_unlock() till we have the task_lock()
518 * to ensure that c does not slip away underneath us
519 */
520 read_unlock(&tasklist_lock);
521 if (c->mm != mm) {
522 task_unlock(c);
523 put_task_struct(c);
524 goto retry;
525 }
526 WRITE_ONCE(mm->owner, c);
527 lru_gen_migrate_mm(mm);
528 task_unlock(c);
529 put_task_struct(c);
530 }
531 #endif /* CONFIG_MEMCG */
532
533 /*
534 * Turn us into a lazy TLB process if we
535 * aren't already..
536 */
exit_mm(void)537 static void exit_mm(void)
538 {
539 struct mm_struct *mm = current->mm;
540
541 exit_mm_release(current, mm);
542 if (!mm)
543 return;
544 sync_mm_rss(mm);
545 mmap_read_lock(mm);
546 mmgrab_lazy_tlb(mm);
547 BUG_ON(mm != current->active_mm);
548 /* more a memory barrier than a real lock */
549 task_lock(current);
550 /*
551 * When a thread stops operating on an address space, the loop
552 * in membarrier_private_expedited() may not observe that
553 * tsk->mm, and the loop in membarrier_global_expedited() may
554 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
555 * rq->membarrier_state, so those would not issue an IPI.
556 * Membarrier requires a memory barrier after accessing
557 * user-space memory, before clearing tsk->mm or the
558 * rq->membarrier_state.
559 */
560 smp_mb__after_spinlock();
561 local_irq_disable();
562 current->mm = NULL;
563 membarrier_update_current_mm(NULL);
564 enter_lazy_tlb(mm, current);
565 local_irq_enable();
566 task_unlock(current);
567 mmap_read_unlock(mm);
568 mm_update_next_owner(mm);
569 mmput(mm);
570 if (test_thread_flag(TIF_MEMDIE))
571 exit_oom_victim();
572 }
573
find_alive_thread(struct task_struct * p)574 static struct task_struct *find_alive_thread(struct task_struct *p)
575 {
576 struct task_struct *t;
577
578 for_each_thread(p, t) {
579 if (!(t->flags & PF_EXITING))
580 return t;
581 }
582 return NULL;
583 }
584
find_child_reaper(struct task_struct * father,struct list_head * dead)585 static struct task_struct *find_child_reaper(struct task_struct *father,
586 struct list_head *dead)
587 __releases(&tasklist_lock)
588 __acquires(&tasklist_lock)
589 {
590 struct pid_namespace *pid_ns = task_active_pid_ns(father);
591 struct task_struct *reaper = pid_ns->child_reaper;
592 struct task_struct *p, *n;
593
594 if (likely(reaper != father))
595 return reaper;
596
597 reaper = find_alive_thread(father);
598 if (reaper) {
599 pid_ns->child_reaper = reaper;
600 return reaper;
601 }
602
603 write_unlock_irq(&tasklist_lock);
604
605 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
606 list_del_init(&p->ptrace_entry);
607 release_task(p);
608 }
609
610 zap_pid_ns_processes(pid_ns);
611 write_lock_irq(&tasklist_lock);
612
613 return father;
614 }
615
616 /*
617 * When we die, we re-parent all our children, and try to:
618 * 1. give them to another thread in our thread group, if such a member exists
619 * 2. give it to the first ancestor process which prctl'd itself as a
620 * child_subreaper for its children (like a service manager)
621 * 3. give it to the init process (PID 1) in our pid namespace
622 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)623 static struct task_struct *find_new_reaper(struct task_struct *father,
624 struct task_struct *child_reaper)
625 {
626 struct task_struct *thread, *reaper;
627
628 thread = find_alive_thread(father);
629 if (thread)
630 return thread;
631
632 if (father->signal->has_child_subreaper) {
633 unsigned int ns_level = task_pid(father)->level;
634 /*
635 * Find the first ->is_child_subreaper ancestor in our pid_ns.
636 * We can't check reaper != child_reaper to ensure we do not
637 * cross the namespaces, the exiting parent could be injected
638 * by setns() + fork().
639 * We check pid->level, this is slightly more efficient than
640 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
641 */
642 for (reaper = father->real_parent;
643 task_pid(reaper)->level == ns_level;
644 reaper = reaper->real_parent) {
645 if (reaper == &init_task)
646 break;
647 if (!reaper->signal->is_child_subreaper)
648 continue;
649 thread = find_alive_thread(reaper);
650 if (thread)
651 return thread;
652 }
653 }
654
655 return child_reaper;
656 }
657
658 /*
659 * Any that need to be release_task'd are put on the @dead list.
660 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)661 static void reparent_leader(struct task_struct *father, struct task_struct *p,
662 struct list_head *dead)
663 {
664 if (unlikely(p->exit_state == EXIT_DEAD))
665 return;
666
667 /* We don't want people slaying init. */
668 p->exit_signal = SIGCHLD;
669
670 /* If it has exited notify the new parent about this child's death. */
671 if (!p->ptrace &&
672 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
673 if (do_notify_parent(p, p->exit_signal)) {
674 p->exit_state = EXIT_DEAD;
675 list_add(&p->ptrace_entry, dead);
676 }
677 }
678
679 kill_orphaned_pgrp(p, father);
680 }
681
682 /*
683 * This does two things:
684 *
685 * A. Make init inherit all the child processes
686 * B. Check to see if any process groups have become orphaned
687 * as a result of our exiting, and if they have any stopped
688 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
689 */
forget_original_parent(struct task_struct * father,struct list_head * dead)690 static void forget_original_parent(struct task_struct *father,
691 struct list_head *dead)
692 {
693 struct task_struct *p, *t, *reaper;
694
695 if (unlikely(!list_empty(&father->ptraced)))
696 exit_ptrace(father, dead);
697
698 /* Can drop and reacquire tasklist_lock */
699 reaper = find_child_reaper(father, dead);
700 if (list_empty(&father->children))
701 return;
702
703 reaper = find_new_reaper(father, reaper);
704 list_for_each_entry(p, &father->children, sibling) {
705 for_each_thread(p, t) {
706 RCU_INIT_POINTER(t->real_parent, reaper);
707 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
708 if (likely(!t->ptrace))
709 t->parent = t->real_parent;
710 if (t->pdeath_signal)
711 group_send_sig_info(t->pdeath_signal,
712 SEND_SIG_NOINFO, t,
713 PIDTYPE_TGID);
714 }
715 /*
716 * If this is a threaded reparent there is no need to
717 * notify anyone anything has happened.
718 */
719 if (!same_thread_group(reaper, father))
720 reparent_leader(father, p, dead);
721 }
722 list_splice_tail_init(&father->children, &reaper->children);
723 }
724
725 /*
726 * Send signals to all our closest relatives so that they know
727 * to properly mourn us..
728 */
exit_notify(struct task_struct * tsk,int group_dead)729 static void exit_notify(struct task_struct *tsk, int group_dead)
730 {
731 bool autoreap;
732 struct task_struct *p, *n;
733 LIST_HEAD(dead);
734
735 write_lock_irq(&tasklist_lock);
736 forget_original_parent(tsk, &dead);
737
738 if (group_dead)
739 kill_orphaned_pgrp(tsk->group_leader, NULL);
740
741 tsk->exit_state = EXIT_ZOMBIE;
742 if (unlikely(tsk->ptrace)) {
743 int sig = thread_group_leader(tsk) &&
744 thread_group_empty(tsk) &&
745 !ptrace_reparented(tsk) ?
746 tsk->exit_signal : SIGCHLD;
747 autoreap = do_notify_parent(tsk, sig);
748 } else if (thread_group_leader(tsk)) {
749 autoreap = thread_group_empty(tsk) &&
750 do_notify_parent(tsk, tsk->exit_signal);
751 } else {
752 autoreap = true;
753 }
754
755 if (autoreap) {
756 tsk->exit_state = EXIT_DEAD;
757 list_add(&tsk->ptrace_entry, &dead);
758 }
759
760 /* mt-exec, de_thread() is waiting for group leader */
761 if (unlikely(tsk->signal->notify_count < 0))
762 wake_up_process(tsk->signal->group_exec_task);
763 write_unlock_irq(&tasklist_lock);
764
765 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
766 list_del_init(&p->ptrace_entry);
767 release_task(p);
768 }
769 }
770
771 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)772 static void check_stack_usage(void)
773 {
774 static DEFINE_SPINLOCK(low_water_lock);
775 static int lowest_to_date = THREAD_SIZE;
776 unsigned long free;
777
778 free = stack_not_used(current);
779
780 if (free >= lowest_to_date)
781 return;
782
783 spin_lock(&low_water_lock);
784 if (free < lowest_to_date) {
785 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
786 current->comm, task_pid_nr(current), free);
787 lowest_to_date = free;
788 }
789 spin_unlock(&low_water_lock);
790 }
791 #else
check_stack_usage(void)792 static inline void check_stack_usage(void) {}
793 #endif
794
synchronize_group_exit(struct task_struct * tsk,long code)795 static void synchronize_group_exit(struct task_struct *tsk, long code)
796 {
797 struct sighand_struct *sighand = tsk->sighand;
798 struct signal_struct *signal = tsk->signal;
799
800 spin_lock_irq(&sighand->siglock);
801 signal->quick_threads--;
802 if ((signal->quick_threads == 0) &&
803 !(signal->flags & SIGNAL_GROUP_EXIT)) {
804 signal->flags = SIGNAL_GROUP_EXIT;
805 signal->group_exit_code = code;
806 signal->group_stop_count = 0;
807 }
808 spin_unlock_irq(&sighand->siglock);
809 }
810
do_exit(long code)811 void __noreturn do_exit(long code)
812 {
813 struct task_struct *tsk = current;
814 int group_dead;
815
816 WARN_ON(irqs_disabled());
817
818 synchronize_group_exit(tsk, code);
819
820 WARN_ON(tsk->plug);
821
822 kcov_task_exit(tsk);
823 kmsan_task_exit(tsk);
824
825 coredump_task_exit(tsk);
826 ptrace_event(PTRACE_EVENT_EXIT, code);
827 user_events_exit(tsk);
828
829 io_uring_files_cancel();
830 exit_signals(tsk); /* sets PF_EXITING */
831
832 /* sync mm's RSS info before statistics gathering */
833 if (tsk->mm)
834 sync_mm_rss(tsk->mm);
835 acct_update_integrals(tsk);
836 group_dead = atomic_dec_and_test(&tsk->signal->live);
837 if (group_dead) {
838 /*
839 * If the last thread of global init has exited, panic
840 * immediately to get a useable coredump.
841 */
842 if (unlikely(is_global_init(tsk)))
843 panic("Attempted to kill init! exitcode=0x%08x\n",
844 tsk->signal->group_exit_code ?: (int)code);
845
846 #ifdef CONFIG_POSIX_TIMERS
847 hrtimer_cancel(&tsk->signal->real_timer);
848 exit_itimers(tsk);
849 #endif
850 if (tsk->mm)
851 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
852 }
853 acct_collect(code, group_dead);
854 if (group_dead)
855 tty_audit_exit();
856 audit_free(tsk);
857
858 tsk->exit_code = code;
859 taskstats_exit(tsk, group_dead);
860
861 exit_mm();
862
863 if (group_dead)
864 acct_process();
865 trace_sched_process_exit(tsk);
866
867 exit_sem(tsk);
868 exit_shm(tsk);
869 exit_files(tsk);
870 exit_fs(tsk);
871 if (group_dead)
872 disassociate_ctty(1);
873 exit_task_namespaces(tsk);
874 exit_task_work(tsk);
875 exit_thread(tsk);
876
877 /*
878 * Flush inherited counters to the parent - before the parent
879 * gets woken up by child-exit notifications.
880 *
881 * because of cgroup mode, must be called before cgroup_exit()
882 */
883 perf_event_exit_task(tsk);
884
885 sched_autogroup_exit_task(tsk);
886 cgroup_exit(tsk);
887
888 /*
889 * FIXME: do that only when needed, using sched_exit tracepoint
890 */
891 flush_ptrace_hw_breakpoint(tsk);
892
893 exit_tasks_rcu_start();
894 exit_notify(tsk, group_dead);
895 proc_exit_connector(tsk);
896 mpol_put_task_policy(tsk);
897 #ifdef CONFIG_FUTEX
898 if (unlikely(current->pi_state_cache))
899 kfree(current->pi_state_cache);
900 #endif
901 /*
902 * Make sure we are holding no locks:
903 */
904 debug_check_no_locks_held();
905
906 if (tsk->io_context)
907 exit_io_context(tsk);
908
909 if (tsk->splice_pipe)
910 free_pipe_info(tsk->splice_pipe);
911
912 if (tsk->task_frag.page)
913 put_page(tsk->task_frag.page);
914
915 exit_task_stack_account(tsk);
916
917 check_stack_usage();
918 preempt_disable();
919 if (tsk->nr_dirtied)
920 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
921 exit_rcu();
922 exit_tasks_rcu_finish();
923
924 lockdep_free_task(tsk);
925 do_task_dead();
926 }
927
make_task_dead(int signr)928 void __noreturn make_task_dead(int signr)
929 {
930 /*
931 * Take the task off the cpu after something catastrophic has
932 * happened.
933 *
934 * We can get here from a kernel oops, sometimes with preemption off.
935 * Start by checking for critical errors.
936 * Then fix up important state like USER_DS and preemption.
937 * Then do everything else.
938 */
939 struct task_struct *tsk = current;
940 unsigned int limit;
941
942 if (unlikely(in_interrupt()))
943 panic("Aiee, killing interrupt handler!");
944 if (unlikely(!tsk->pid))
945 panic("Attempted to kill the idle task!");
946
947 if (unlikely(irqs_disabled())) {
948 pr_info("note: %s[%d] exited with irqs disabled\n",
949 current->comm, task_pid_nr(current));
950 local_irq_enable();
951 }
952 if (unlikely(in_atomic())) {
953 pr_info("note: %s[%d] exited with preempt_count %d\n",
954 current->comm, task_pid_nr(current),
955 preempt_count());
956 preempt_count_set(PREEMPT_ENABLED);
957 }
958
959 /*
960 * Every time the system oopses, if the oops happens while a reference
961 * to an object was held, the reference leaks.
962 * If the oops doesn't also leak memory, repeated oopsing can cause
963 * reference counters to wrap around (if they're not using refcount_t).
964 * This means that repeated oopsing can make unexploitable-looking bugs
965 * exploitable through repeated oopsing.
966 * To make sure this can't happen, place an upper bound on how often the
967 * kernel may oops without panic().
968 */
969 limit = READ_ONCE(oops_limit);
970 if (atomic_inc_return(&oops_count) >= limit && limit)
971 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
972
973 /*
974 * We're taking recursive faults here in make_task_dead. Safest is to just
975 * leave this task alone and wait for reboot.
976 */
977 if (unlikely(tsk->flags & PF_EXITING)) {
978 pr_alert("Fixing recursive fault but reboot is needed!\n");
979 futex_exit_recursive(tsk);
980 tsk->exit_state = EXIT_DEAD;
981 refcount_inc(&tsk->rcu_users);
982 do_task_dead();
983 }
984
985 do_exit(signr);
986 }
987
SYSCALL_DEFINE1(exit,int,error_code)988 SYSCALL_DEFINE1(exit, int, error_code)
989 {
990 do_exit((error_code&0xff)<<8);
991 }
992
993 /*
994 * Take down every thread in the group. This is called by fatal signals
995 * as well as by sys_exit_group (below).
996 */
997 void __noreturn
do_group_exit(int exit_code)998 do_group_exit(int exit_code)
999 {
1000 struct signal_struct *sig = current->signal;
1001
1002 if (sig->flags & SIGNAL_GROUP_EXIT)
1003 exit_code = sig->group_exit_code;
1004 else if (sig->group_exec_task)
1005 exit_code = 0;
1006 else {
1007 struct sighand_struct *const sighand = current->sighand;
1008
1009 spin_lock_irq(&sighand->siglock);
1010 if (sig->flags & SIGNAL_GROUP_EXIT)
1011 /* Another thread got here before we took the lock. */
1012 exit_code = sig->group_exit_code;
1013 else if (sig->group_exec_task)
1014 exit_code = 0;
1015 else {
1016 sig->group_exit_code = exit_code;
1017 sig->flags = SIGNAL_GROUP_EXIT;
1018 zap_other_threads(current);
1019 }
1020 spin_unlock_irq(&sighand->siglock);
1021 }
1022
1023 do_exit(exit_code);
1024 /* NOTREACHED */
1025 }
1026
1027 /*
1028 * this kills every thread in the thread group. Note that any externally
1029 * wait4()-ing process will get the correct exit code - even if this
1030 * thread is not the thread group leader.
1031 */
SYSCALL_DEFINE1(exit_group,int,error_code)1032 SYSCALL_DEFINE1(exit_group, int, error_code)
1033 {
1034 do_group_exit((error_code & 0xff) << 8);
1035 /* NOTREACHED */
1036 return 0;
1037 }
1038
1039 struct waitid_info {
1040 pid_t pid;
1041 uid_t uid;
1042 int status;
1043 int cause;
1044 };
1045
1046 struct wait_opts {
1047 enum pid_type wo_type;
1048 int wo_flags;
1049 struct pid *wo_pid;
1050
1051 struct waitid_info *wo_info;
1052 int wo_stat;
1053 struct rusage *wo_rusage;
1054
1055 wait_queue_entry_t child_wait;
1056 int notask_error;
1057 };
1058
eligible_pid(struct wait_opts * wo,struct task_struct * p)1059 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1060 {
1061 return wo->wo_type == PIDTYPE_MAX ||
1062 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1063 }
1064
1065 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1066 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1067 {
1068 if (!eligible_pid(wo, p))
1069 return 0;
1070
1071 /*
1072 * Wait for all children (clone and not) if __WALL is set or
1073 * if it is traced by us.
1074 */
1075 if (ptrace || (wo->wo_flags & __WALL))
1076 return 1;
1077
1078 /*
1079 * Otherwise, wait for clone children *only* if __WCLONE is set;
1080 * otherwise, wait for non-clone children *only*.
1081 *
1082 * Note: a "clone" child here is one that reports to its parent
1083 * using a signal other than SIGCHLD, or a non-leader thread which
1084 * we can only see if it is traced by us.
1085 */
1086 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1087 return 0;
1088
1089 return 1;
1090 }
1091
1092 /*
1093 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1094 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1095 * the lock and this task is uninteresting. If we return nonzero, we have
1096 * released the lock and the system call should return.
1097 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1098 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1099 {
1100 int state, status;
1101 pid_t pid = task_pid_vnr(p);
1102 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1103 struct waitid_info *infop;
1104
1105 if (!likely(wo->wo_flags & WEXITED))
1106 return 0;
1107
1108 if (unlikely(wo->wo_flags & WNOWAIT)) {
1109 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1110 ? p->signal->group_exit_code : p->exit_code;
1111 get_task_struct(p);
1112 read_unlock(&tasklist_lock);
1113 sched_annotate_sleep();
1114 if (wo->wo_rusage)
1115 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1116 put_task_struct(p);
1117 goto out_info;
1118 }
1119 /*
1120 * Move the task's state to DEAD/TRACE, only one thread can do this.
1121 */
1122 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1123 EXIT_TRACE : EXIT_DEAD;
1124 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1125 return 0;
1126 /*
1127 * We own this thread, nobody else can reap it.
1128 */
1129 read_unlock(&tasklist_lock);
1130 sched_annotate_sleep();
1131
1132 /*
1133 * Check thread_group_leader() to exclude the traced sub-threads.
1134 */
1135 if (state == EXIT_DEAD && thread_group_leader(p)) {
1136 struct signal_struct *sig = p->signal;
1137 struct signal_struct *psig = current->signal;
1138 unsigned long maxrss;
1139 u64 tgutime, tgstime;
1140
1141 /*
1142 * The resource counters for the group leader are in its
1143 * own task_struct. Those for dead threads in the group
1144 * are in its signal_struct, as are those for the child
1145 * processes it has previously reaped. All these
1146 * accumulate in the parent's signal_struct c* fields.
1147 *
1148 * We don't bother to take a lock here to protect these
1149 * p->signal fields because the whole thread group is dead
1150 * and nobody can change them.
1151 *
1152 * psig->stats_lock also protects us from our sub-threads
1153 * which can reap other children at the same time. Until
1154 * we change k_getrusage()-like users to rely on this lock
1155 * we have to take ->siglock as well.
1156 *
1157 * We use thread_group_cputime_adjusted() to get times for
1158 * the thread group, which consolidates times for all threads
1159 * in the group including the group leader.
1160 */
1161 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1162 spin_lock_irq(¤t->sighand->siglock);
1163 write_seqlock(&psig->stats_lock);
1164 psig->cutime += tgutime + sig->cutime;
1165 psig->cstime += tgstime + sig->cstime;
1166 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1167 psig->cmin_flt +=
1168 p->min_flt + sig->min_flt + sig->cmin_flt;
1169 psig->cmaj_flt +=
1170 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1171 psig->cnvcsw +=
1172 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1173 psig->cnivcsw +=
1174 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1175 psig->cinblock +=
1176 task_io_get_inblock(p) +
1177 sig->inblock + sig->cinblock;
1178 psig->coublock +=
1179 task_io_get_oublock(p) +
1180 sig->oublock + sig->coublock;
1181 maxrss = max(sig->maxrss, sig->cmaxrss);
1182 if (psig->cmaxrss < maxrss)
1183 psig->cmaxrss = maxrss;
1184 task_io_accounting_add(&psig->ioac, &p->ioac);
1185 task_io_accounting_add(&psig->ioac, &sig->ioac);
1186 write_sequnlock(&psig->stats_lock);
1187 spin_unlock_irq(¤t->sighand->siglock);
1188 }
1189
1190 if (wo->wo_rusage)
1191 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1192 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1193 ? p->signal->group_exit_code : p->exit_code;
1194 wo->wo_stat = status;
1195
1196 if (state == EXIT_TRACE) {
1197 write_lock_irq(&tasklist_lock);
1198 /* We dropped tasklist, ptracer could die and untrace */
1199 ptrace_unlink(p);
1200
1201 /* If parent wants a zombie, don't release it now */
1202 state = EXIT_ZOMBIE;
1203 if (do_notify_parent(p, p->exit_signal))
1204 state = EXIT_DEAD;
1205 p->exit_state = state;
1206 write_unlock_irq(&tasklist_lock);
1207 }
1208 if (state == EXIT_DEAD)
1209 release_task(p);
1210
1211 out_info:
1212 infop = wo->wo_info;
1213 if (infop) {
1214 if ((status & 0x7f) == 0) {
1215 infop->cause = CLD_EXITED;
1216 infop->status = status >> 8;
1217 } else {
1218 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1219 infop->status = status & 0x7f;
1220 }
1221 infop->pid = pid;
1222 infop->uid = uid;
1223 }
1224
1225 return pid;
1226 }
1227
task_stopped_code(struct task_struct * p,bool ptrace)1228 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1229 {
1230 if (ptrace) {
1231 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1232 return &p->exit_code;
1233 } else {
1234 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1235 return &p->signal->group_exit_code;
1236 }
1237 return NULL;
1238 }
1239
1240 /**
1241 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1242 * @wo: wait options
1243 * @ptrace: is the wait for ptrace
1244 * @p: task to wait for
1245 *
1246 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1247 *
1248 * CONTEXT:
1249 * read_lock(&tasklist_lock), which is released if return value is
1250 * non-zero. Also, grabs and releases @p->sighand->siglock.
1251 *
1252 * RETURNS:
1253 * 0 if wait condition didn't exist and search for other wait conditions
1254 * should continue. Non-zero return, -errno on failure and @p's pid on
1255 * success, implies that tasklist_lock is released and wait condition
1256 * search should terminate.
1257 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1258 static int wait_task_stopped(struct wait_opts *wo,
1259 int ptrace, struct task_struct *p)
1260 {
1261 struct waitid_info *infop;
1262 int exit_code, *p_code, why;
1263 uid_t uid = 0; /* unneeded, required by compiler */
1264 pid_t pid;
1265
1266 /*
1267 * Traditionally we see ptrace'd stopped tasks regardless of options.
1268 */
1269 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1270 return 0;
1271
1272 if (!task_stopped_code(p, ptrace))
1273 return 0;
1274
1275 exit_code = 0;
1276 spin_lock_irq(&p->sighand->siglock);
1277
1278 p_code = task_stopped_code(p, ptrace);
1279 if (unlikely(!p_code))
1280 goto unlock_sig;
1281
1282 exit_code = *p_code;
1283 if (!exit_code)
1284 goto unlock_sig;
1285
1286 if (!unlikely(wo->wo_flags & WNOWAIT))
1287 *p_code = 0;
1288
1289 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1290 unlock_sig:
1291 spin_unlock_irq(&p->sighand->siglock);
1292 if (!exit_code)
1293 return 0;
1294
1295 /*
1296 * Now we are pretty sure this task is interesting.
1297 * Make sure it doesn't get reaped out from under us while we
1298 * give up the lock and then examine it below. We don't want to
1299 * keep holding onto the tasklist_lock while we call getrusage and
1300 * possibly take page faults for user memory.
1301 */
1302 get_task_struct(p);
1303 pid = task_pid_vnr(p);
1304 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1305 read_unlock(&tasklist_lock);
1306 sched_annotate_sleep();
1307 if (wo->wo_rusage)
1308 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1309 put_task_struct(p);
1310
1311 if (likely(!(wo->wo_flags & WNOWAIT)))
1312 wo->wo_stat = (exit_code << 8) | 0x7f;
1313
1314 infop = wo->wo_info;
1315 if (infop) {
1316 infop->cause = why;
1317 infop->status = exit_code;
1318 infop->pid = pid;
1319 infop->uid = uid;
1320 }
1321 return pid;
1322 }
1323
1324 /*
1325 * Handle do_wait work for one task in a live, non-stopped state.
1326 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1327 * the lock and this task is uninteresting. If we return nonzero, we have
1328 * released the lock and the system call should return.
1329 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1330 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1331 {
1332 struct waitid_info *infop;
1333 pid_t pid;
1334 uid_t uid;
1335
1336 if (!unlikely(wo->wo_flags & WCONTINUED))
1337 return 0;
1338
1339 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1340 return 0;
1341
1342 spin_lock_irq(&p->sighand->siglock);
1343 /* Re-check with the lock held. */
1344 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1345 spin_unlock_irq(&p->sighand->siglock);
1346 return 0;
1347 }
1348 if (!unlikely(wo->wo_flags & WNOWAIT))
1349 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1350 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1351 spin_unlock_irq(&p->sighand->siglock);
1352
1353 pid = task_pid_vnr(p);
1354 get_task_struct(p);
1355 read_unlock(&tasklist_lock);
1356 sched_annotate_sleep();
1357 if (wo->wo_rusage)
1358 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1359 put_task_struct(p);
1360
1361 infop = wo->wo_info;
1362 if (!infop) {
1363 wo->wo_stat = 0xffff;
1364 } else {
1365 infop->cause = CLD_CONTINUED;
1366 infop->pid = pid;
1367 infop->uid = uid;
1368 infop->status = SIGCONT;
1369 }
1370 return pid;
1371 }
1372
1373 /*
1374 * Consider @p for a wait by @parent.
1375 *
1376 * -ECHILD should be in ->notask_error before the first call.
1377 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1378 * Returns zero if the search for a child should continue;
1379 * then ->notask_error is 0 if @p is an eligible child,
1380 * or still -ECHILD.
1381 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1382 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1383 struct task_struct *p)
1384 {
1385 /*
1386 * We can race with wait_task_zombie() from another thread.
1387 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1388 * can't confuse the checks below.
1389 */
1390 int exit_state = READ_ONCE(p->exit_state);
1391 int ret;
1392
1393 if (unlikely(exit_state == EXIT_DEAD))
1394 return 0;
1395
1396 ret = eligible_child(wo, ptrace, p);
1397 if (!ret)
1398 return ret;
1399
1400 if (unlikely(exit_state == EXIT_TRACE)) {
1401 /*
1402 * ptrace == 0 means we are the natural parent. In this case
1403 * we should clear notask_error, debugger will notify us.
1404 */
1405 if (likely(!ptrace))
1406 wo->notask_error = 0;
1407 return 0;
1408 }
1409
1410 if (likely(!ptrace) && unlikely(p->ptrace)) {
1411 /*
1412 * If it is traced by its real parent's group, just pretend
1413 * the caller is ptrace_do_wait() and reap this child if it
1414 * is zombie.
1415 *
1416 * This also hides group stop state from real parent; otherwise
1417 * a single stop can be reported twice as group and ptrace stop.
1418 * If a ptracer wants to distinguish these two events for its
1419 * own children it should create a separate process which takes
1420 * the role of real parent.
1421 */
1422 if (!ptrace_reparented(p))
1423 ptrace = 1;
1424 }
1425
1426 /* slay zombie? */
1427 if (exit_state == EXIT_ZOMBIE) {
1428 /* we don't reap group leaders with subthreads */
1429 if (!delay_group_leader(p)) {
1430 /*
1431 * A zombie ptracee is only visible to its ptracer.
1432 * Notification and reaping will be cascaded to the
1433 * real parent when the ptracer detaches.
1434 */
1435 if (unlikely(ptrace) || likely(!p->ptrace))
1436 return wait_task_zombie(wo, p);
1437 }
1438
1439 /*
1440 * Allow access to stopped/continued state via zombie by
1441 * falling through. Clearing of notask_error is complex.
1442 *
1443 * When !@ptrace:
1444 *
1445 * If WEXITED is set, notask_error should naturally be
1446 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1447 * so, if there are live subthreads, there are events to
1448 * wait for. If all subthreads are dead, it's still safe
1449 * to clear - this function will be called again in finite
1450 * amount time once all the subthreads are released and
1451 * will then return without clearing.
1452 *
1453 * When @ptrace:
1454 *
1455 * Stopped state is per-task and thus can't change once the
1456 * target task dies. Only continued and exited can happen.
1457 * Clear notask_error if WCONTINUED | WEXITED.
1458 */
1459 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1460 wo->notask_error = 0;
1461 } else {
1462 /*
1463 * @p is alive and it's gonna stop, continue or exit, so
1464 * there always is something to wait for.
1465 */
1466 wo->notask_error = 0;
1467 }
1468
1469 /*
1470 * Wait for stopped. Depending on @ptrace, different stopped state
1471 * is used and the two don't interact with each other.
1472 */
1473 ret = wait_task_stopped(wo, ptrace, p);
1474 if (ret)
1475 return ret;
1476
1477 /*
1478 * Wait for continued. There's only one continued state and the
1479 * ptracer can consume it which can confuse the real parent. Don't
1480 * use WCONTINUED from ptracer. You don't need or want it.
1481 */
1482 return wait_task_continued(wo, p);
1483 }
1484
1485 /*
1486 * Do the work of do_wait() for one thread in the group, @tsk.
1487 *
1488 * -ECHILD should be in ->notask_error before the first call.
1489 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1490 * Returns zero if the search for a child should continue; then
1491 * ->notask_error is 0 if there were any eligible children,
1492 * or still -ECHILD.
1493 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1494 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1495 {
1496 struct task_struct *p;
1497
1498 list_for_each_entry(p, &tsk->children, sibling) {
1499 int ret = wait_consider_task(wo, 0, p);
1500
1501 if (ret)
1502 return ret;
1503 }
1504
1505 return 0;
1506 }
1507
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1508 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1509 {
1510 struct task_struct *p;
1511
1512 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1513 int ret = wait_consider_task(wo, 1, p);
1514
1515 if (ret)
1516 return ret;
1517 }
1518
1519 return 0;
1520 }
1521
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1522 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1523 int sync, void *key)
1524 {
1525 struct wait_opts *wo = container_of(wait, struct wait_opts,
1526 child_wait);
1527 struct task_struct *p = key;
1528
1529 if (!eligible_pid(wo, p))
1530 return 0;
1531
1532 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1533 return 0;
1534
1535 return default_wake_function(wait, mode, sync, key);
1536 }
1537
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1538 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1539 {
1540 __wake_up_sync_key(&parent->signal->wait_chldexit,
1541 TASK_INTERRUPTIBLE, p);
1542 }
1543
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1544 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1545 struct task_struct *target)
1546 {
1547 struct task_struct *parent =
1548 !ptrace ? target->real_parent : target->parent;
1549
1550 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1551 same_thread_group(current, parent));
1552 }
1553
1554 /*
1555 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1556 * and tracee lists to find the target task.
1557 */
do_wait_pid(struct wait_opts * wo)1558 static int do_wait_pid(struct wait_opts *wo)
1559 {
1560 bool ptrace;
1561 struct task_struct *target;
1562 int retval;
1563
1564 ptrace = false;
1565 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1566 if (target && is_effectively_child(wo, ptrace, target)) {
1567 retval = wait_consider_task(wo, ptrace, target);
1568 if (retval)
1569 return retval;
1570 }
1571
1572 ptrace = true;
1573 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1574 if (target && target->ptrace &&
1575 is_effectively_child(wo, ptrace, target)) {
1576 retval = wait_consider_task(wo, ptrace, target);
1577 if (retval)
1578 return retval;
1579 }
1580
1581 return 0;
1582 }
1583
do_wait(struct wait_opts * wo)1584 static long do_wait(struct wait_opts *wo)
1585 {
1586 int retval;
1587
1588 trace_sched_process_wait(wo->wo_pid);
1589
1590 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1591 wo->child_wait.private = current;
1592 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1593 repeat:
1594 /*
1595 * If there is nothing that can match our criteria, just get out.
1596 * We will clear ->notask_error to zero if we see any child that
1597 * might later match our criteria, even if we are not able to reap
1598 * it yet.
1599 */
1600 wo->notask_error = -ECHILD;
1601 if ((wo->wo_type < PIDTYPE_MAX) &&
1602 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1603 goto notask;
1604
1605 set_current_state(TASK_INTERRUPTIBLE);
1606 read_lock(&tasklist_lock);
1607
1608 if (wo->wo_type == PIDTYPE_PID) {
1609 retval = do_wait_pid(wo);
1610 if (retval)
1611 goto end;
1612 } else {
1613 struct task_struct *tsk = current;
1614
1615 do {
1616 retval = do_wait_thread(wo, tsk);
1617 if (retval)
1618 goto end;
1619
1620 retval = ptrace_do_wait(wo, tsk);
1621 if (retval)
1622 goto end;
1623
1624 if (wo->wo_flags & __WNOTHREAD)
1625 break;
1626 } while_each_thread(current, tsk);
1627 }
1628 read_unlock(&tasklist_lock);
1629
1630 notask:
1631 retval = wo->notask_error;
1632 if (!retval && !(wo->wo_flags & WNOHANG)) {
1633 retval = -ERESTARTSYS;
1634 if (!signal_pending(current)) {
1635 schedule();
1636 goto repeat;
1637 }
1638 }
1639 end:
1640 __set_current_state(TASK_RUNNING);
1641 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1642 return retval;
1643 }
1644
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1645 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1646 int options, struct rusage *ru)
1647 {
1648 struct wait_opts wo;
1649 struct pid *pid = NULL;
1650 enum pid_type type;
1651 long ret;
1652 unsigned int f_flags = 0;
1653
1654 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1655 __WNOTHREAD|__WCLONE|__WALL))
1656 return -EINVAL;
1657 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1658 return -EINVAL;
1659
1660 switch (which) {
1661 case P_ALL:
1662 type = PIDTYPE_MAX;
1663 break;
1664 case P_PID:
1665 type = PIDTYPE_PID;
1666 if (upid <= 0)
1667 return -EINVAL;
1668
1669 pid = find_get_pid(upid);
1670 break;
1671 case P_PGID:
1672 type = PIDTYPE_PGID;
1673 if (upid < 0)
1674 return -EINVAL;
1675
1676 if (upid)
1677 pid = find_get_pid(upid);
1678 else
1679 pid = get_task_pid(current, PIDTYPE_PGID);
1680 break;
1681 case P_PIDFD:
1682 type = PIDTYPE_PID;
1683 if (upid < 0)
1684 return -EINVAL;
1685
1686 pid = pidfd_get_pid(upid, &f_flags);
1687 if (IS_ERR(pid))
1688 return PTR_ERR(pid);
1689
1690 break;
1691 default:
1692 return -EINVAL;
1693 }
1694
1695 wo.wo_type = type;
1696 wo.wo_pid = pid;
1697 wo.wo_flags = options;
1698 wo.wo_info = infop;
1699 wo.wo_rusage = ru;
1700 if (f_flags & O_NONBLOCK)
1701 wo.wo_flags |= WNOHANG;
1702
1703 ret = do_wait(&wo);
1704 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1705 ret = -EAGAIN;
1706
1707 put_pid(pid);
1708 return ret;
1709 }
1710
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1711 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1712 infop, int, options, struct rusage __user *, ru)
1713 {
1714 struct rusage r;
1715 struct waitid_info info = {.status = 0};
1716 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1717 int signo = 0;
1718
1719 if (err > 0) {
1720 signo = SIGCHLD;
1721 err = 0;
1722 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1723 return -EFAULT;
1724 }
1725 if (!infop)
1726 return err;
1727
1728 if (!user_write_access_begin(infop, sizeof(*infop)))
1729 return -EFAULT;
1730
1731 unsafe_put_user(signo, &infop->si_signo, Efault);
1732 unsafe_put_user(0, &infop->si_errno, Efault);
1733 unsafe_put_user(info.cause, &infop->si_code, Efault);
1734 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1735 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1736 unsafe_put_user(info.status, &infop->si_status, Efault);
1737 user_write_access_end();
1738 return err;
1739 Efault:
1740 user_write_access_end();
1741 return -EFAULT;
1742 }
1743
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1744 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1745 struct rusage *ru)
1746 {
1747 struct wait_opts wo;
1748 struct pid *pid = NULL;
1749 enum pid_type type;
1750 long ret;
1751
1752 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1753 __WNOTHREAD|__WCLONE|__WALL))
1754 return -EINVAL;
1755
1756 /* -INT_MIN is not defined */
1757 if (upid == INT_MIN)
1758 return -ESRCH;
1759
1760 if (upid == -1)
1761 type = PIDTYPE_MAX;
1762 else if (upid < 0) {
1763 type = PIDTYPE_PGID;
1764 pid = find_get_pid(-upid);
1765 } else if (upid == 0) {
1766 type = PIDTYPE_PGID;
1767 pid = get_task_pid(current, PIDTYPE_PGID);
1768 } else /* upid > 0 */ {
1769 type = PIDTYPE_PID;
1770 pid = find_get_pid(upid);
1771 }
1772
1773 wo.wo_type = type;
1774 wo.wo_pid = pid;
1775 wo.wo_flags = options | WEXITED;
1776 wo.wo_info = NULL;
1777 wo.wo_stat = 0;
1778 wo.wo_rusage = ru;
1779 ret = do_wait(&wo);
1780 put_pid(pid);
1781 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1782 ret = -EFAULT;
1783
1784 return ret;
1785 }
1786
kernel_wait(pid_t pid,int * stat)1787 int kernel_wait(pid_t pid, int *stat)
1788 {
1789 struct wait_opts wo = {
1790 .wo_type = PIDTYPE_PID,
1791 .wo_pid = find_get_pid(pid),
1792 .wo_flags = WEXITED,
1793 };
1794 int ret;
1795
1796 ret = do_wait(&wo);
1797 if (ret > 0 && wo.wo_stat)
1798 *stat = wo.wo_stat;
1799 put_pid(wo.wo_pid);
1800 return ret;
1801 }
1802
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1803 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1804 int, options, struct rusage __user *, ru)
1805 {
1806 struct rusage r;
1807 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1808
1809 if (err > 0) {
1810 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1811 return -EFAULT;
1812 }
1813 return err;
1814 }
1815
1816 #ifdef __ARCH_WANT_SYS_WAITPID
1817
1818 /*
1819 * sys_waitpid() remains for compatibility. waitpid() should be
1820 * implemented by calling sys_wait4() from libc.a.
1821 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1822 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1823 {
1824 return kernel_wait4(pid, stat_addr, options, NULL);
1825 }
1826
1827 #endif
1828
1829 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1830 COMPAT_SYSCALL_DEFINE4(wait4,
1831 compat_pid_t, pid,
1832 compat_uint_t __user *, stat_addr,
1833 int, options,
1834 struct compat_rusage __user *, ru)
1835 {
1836 struct rusage r;
1837 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1838 if (err > 0) {
1839 if (ru && put_compat_rusage(&r, ru))
1840 return -EFAULT;
1841 }
1842 return err;
1843 }
1844
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1845 COMPAT_SYSCALL_DEFINE5(waitid,
1846 int, which, compat_pid_t, pid,
1847 struct compat_siginfo __user *, infop, int, options,
1848 struct compat_rusage __user *, uru)
1849 {
1850 struct rusage ru;
1851 struct waitid_info info = {.status = 0};
1852 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1853 int signo = 0;
1854 if (err > 0) {
1855 signo = SIGCHLD;
1856 err = 0;
1857 if (uru) {
1858 /* kernel_waitid() overwrites everything in ru */
1859 if (COMPAT_USE_64BIT_TIME)
1860 err = copy_to_user(uru, &ru, sizeof(ru));
1861 else
1862 err = put_compat_rusage(&ru, uru);
1863 if (err)
1864 return -EFAULT;
1865 }
1866 }
1867
1868 if (!infop)
1869 return err;
1870
1871 if (!user_write_access_begin(infop, sizeof(*infop)))
1872 return -EFAULT;
1873
1874 unsafe_put_user(signo, &infop->si_signo, Efault);
1875 unsafe_put_user(0, &infop->si_errno, Efault);
1876 unsafe_put_user(info.cause, &infop->si_code, Efault);
1877 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1878 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1879 unsafe_put_user(info.status, &infop->si_status, Efault);
1880 user_write_access_end();
1881 return err;
1882 Efault:
1883 user_write_access_end();
1884 return -EFAULT;
1885 }
1886 #endif
1887
1888 /**
1889 * thread_group_exited - check that a thread group has exited
1890 * @pid: tgid of thread group to be checked.
1891 *
1892 * Test if the thread group represented by tgid has exited (all
1893 * threads are zombies, dead or completely gone).
1894 *
1895 * Return: true if the thread group has exited. false otherwise.
1896 */
thread_group_exited(struct pid * pid)1897 bool thread_group_exited(struct pid *pid)
1898 {
1899 struct task_struct *task;
1900 bool exited;
1901
1902 rcu_read_lock();
1903 task = pid_task(pid, PIDTYPE_PID);
1904 exited = !task ||
1905 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1906 rcu_read_unlock();
1907
1908 return exited;
1909 }
1910 EXPORT_SYMBOL(thread_group_exited);
1911
1912 /*
1913 * This needs to be __function_aligned as GCC implicitly makes any
1914 * implementation of abort() cold and drops alignment specified by
1915 * -falign-functions=N.
1916 *
1917 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1918 */
abort(void)1919 __weak __function_aligned void abort(void)
1920 {
1921 BUG();
1922
1923 /* if that doesn't kill us, halt */
1924 panic("Oops failed to kill thread");
1925 }
1926 EXPORT_SYMBOL(abort);
1927