1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/export.h> 31 #include <linux/rmap.h> /* anon_vma_prepare */ 32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 33 #include <linux/swap.h> /* try_to_free_swap */ 34 #include <linux/ptrace.h> /* user_enable_single_step */ 35 #include <linux/kdebug.h> /* notifier mechanism */ 36 #include "../../mm/internal.h" /* munlock_vma_page */ 37 #include <linux/percpu-rwsem.h> 38 39 #include <linux/uprobes.h> 40 41 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 42 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 43 44 static struct rb_root uprobes_tree = RB_ROOT; 45 /* 46 * allows us to skip the uprobe_mmap if there are no uprobe events active 47 * at this time. Probably a fine grained per inode count is better? 48 */ 49 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 50 51 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 52 53 #define UPROBES_HASH_SZ 13 54 /* serialize uprobe->pending_list */ 55 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 56 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 57 58 static struct percpu_rw_semaphore dup_mmap_sem; 59 60 /* Have a copy of original instruction */ 61 #define UPROBE_COPY_INSN 0 62 /* Can skip singlestep */ 63 #define UPROBE_SKIP_SSTEP 1 64 65 struct uprobe { 66 struct rb_node rb_node; /* node in the rb tree */ 67 atomic_t ref; 68 struct rw_semaphore register_rwsem; 69 struct rw_semaphore consumer_rwsem; 70 struct list_head pending_list; 71 struct uprobe_consumer *consumers; 72 struct inode *inode; /* Also hold a ref to inode */ 73 loff_t offset; 74 unsigned long flags; 75 struct arch_uprobe arch; 76 }; 77 78 struct return_instance { 79 struct uprobe *uprobe; 80 unsigned long func; 81 unsigned long orig_ret_vaddr; /* original return address */ 82 bool chained; /* true, if instance is nested */ 83 84 struct return_instance *next; /* keep as stack */ 85 }; 86 87 /* 88 * valid_vma: Verify if the specified vma is an executable vma 89 * Relax restrictions while unregistering: vm_flags might have 90 * changed after breakpoint was inserted. 91 * - is_register: indicates if we are in register context. 92 * - Return 1 if the specified virtual address is in an 93 * executable vma. 94 */ 95 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 96 { 97 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED; 98 99 if (is_register) 100 flags |= VM_WRITE; 101 102 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 103 } 104 105 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 106 { 107 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 108 } 109 110 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 111 { 112 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 113 } 114 115 /** 116 * __replace_page - replace page in vma by new page. 117 * based on replace_page in mm/ksm.c 118 * 119 * @vma: vma that holds the pte pointing to page 120 * @addr: address the old @page is mapped at 121 * @page: the cowed page we are replacing by kpage 122 * @kpage: the modified page we replace page by 123 * 124 * Returns 0 on success, -EFAULT on failure. 125 */ 126 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 127 struct page *page, struct page *kpage) 128 { 129 struct mm_struct *mm = vma->vm_mm; 130 spinlock_t *ptl; 131 pte_t *ptep; 132 int err; 133 /* For mmu_notifiers */ 134 const unsigned long mmun_start = addr; 135 const unsigned long mmun_end = addr + PAGE_SIZE; 136 137 /* For try_to_free_swap() and munlock_vma_page() below */ 138 lock_page(page); 139 140 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 141 err = -EAGAIN; 142 ptep = page_check_address(page, mm, addr, &ptl, 0); 143 if (!ptep) 144 goto unlock; 145 146 get_page(kpage); 147 page_add_new_anon_rmap(kpage, vma, addr); 148 149 if (!PageAnon(page)) { 150 dec_mm_counter(mm, MM_FILEPAGES); 151 inc_mm_counter(mm, MM_ANONPAGES); 152 } 153 154 flush_cache_page(vma, addr, pte_pfn(*ptep)); 155 ptep_clear_flush(vma, addr, ptep); 156 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 157 158 page_remove_rmap(page); 159 if (!page_mapped(page)) 160 try_to_free_swap(page); 161 pte_unmap_unlock(ptep, ptl); 162 163 if (vma->vm_flags & VM_LOCKED) 164 munlock_vma_page(page); 165 put_page(page); 166 167 err = 0; 168 unlock: 169 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 170 unlock_page(page); 171 return err; 172 } 173 174 /** 175 * is_swbp_insn - check if instruction is breakpoint instruction. 176 * @insn: instruction to be checked. 177 * Default implementation of is_swbp_insn 178 * Returns true if @insn is a breakpoint instruction. 179 */ 180 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 181 { 182 return *insn == UPROBE_SWBP_INSN; 183 } 184 185 /** 186 * is_trap_insn - check if instruction is breakpoint instruction. 187 * @insn: instruction to be checked. 188 * Default implementation of is_trap_insn 189 * Returns true if @insn is a breakpoint instruction. 190 * 191 * This function is needed for the case where an architecture has multiple 192 * trap instructions (like powerpc). 193 */ 194 bool __weak is_trap_insn(uprobe_opcode_t *insn) 195 { 196 return is_swbp_insn(insn); 197 } 198 199 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 200 { 201 void *kaddr = kmap_atomic(page); 202 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 203 kunmap_atomic(kaddr); 204 } 205 206 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 207 { 208 void *kaddr = kmap_atomic(page); 209 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 210 kunmap_atomic(kaddr); 211 } 212 213 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 214 { 215 uprobe_opcode_t old_opcode; 216 bool is_swbp; 217 218 /* 219 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 220 * We do not check if it is any other 'trap variant' which could 221 * be conditional trap instruction such as the one powerpc supports. 222 * 223 * The logic is that we do not care if the underlying instruction 224 * is a trap variant; uprobes always wins over any other (gdb) 225 * breakpoint. 226 */ 227 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 228 is_swbp = is_swbp_insn(&old_opcode); 229 230 if (is_swbp_insn(new_opcode)) { 231 if (is_swbp) /* register: already installed? */ 232 return 0; 233 } else { 234 if (!is_swbp) /* unregister: was it changed by us? */ 235 return 0; 236 } 237 238 return 1; 239 } 240 241 /* 242 * NOTE: 243 * Expect the breakpoint instruction to be the smallest size instruction for 244 * the architecture. If an arch has variable length instruction and the 245 * breakpoint instruction is not of the smallest length instruction 246 * supported by that architecture then we need to modify is_trap_at_addr and 247 * write_opcode accordingly. This would never be a problem for archs that 248 * have fixed length instructions. 249 */ 250 251 /* 252 * write_opcode - write the opcode at a given virtual address. 253 * @mm: the probed process address space. 254 * @vaddr: the virtual address to store the opcode. 255 * @opcode: opcode to be written at @vaddr. 256 * 257 * Called with mm->mmap_sem held (for read and with a reference to 258 * mm). 259 * 260 * For mm @mm, write the opcode at @vaddr. 261 * Return 0 (success) or a negative errno. 262 */ 263 static int write_opcode(struct mm_struct *mm, unsigned long vaddr, 264 uprobe_opcode_t opcode) 265 { 266 struct page *old_page, *new_page; 267 struct vm_area_struct *vma; 268 int ret; 269 270 retry: 271 /* Read the page with vaddr into memory */ 272 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma); 273 if (ret <= 0) 274 return ret; 275 276 ret = verify_opcode(old_page, vaddr, &opcode); 277 if (ret <= 0) 278 goto put_old; 279 280 ret = -ENOMEM; 281 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 282 if (!new_page) 283 goto put_old; 284 285 __SetPageUptodate(new_page); 286 287 copy_highpage(new_page, old_page); 288 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 289 290 ret = anon_vma_prepare(vma); 291 if (ret) 292 goto put_new; 293 294 ret = __replace_page(vma, vaddr, old_page, new_page); 295 296 put_new: 297 page_cache_release(new_page); 298 put_old: 299 put_page(old_page); 300 301 if (unlikely(ret == -EAGAIN)) 302 goto retry; 303 return ret; 304 } 305 306 /** 307 * set_swbp - store breakpoint at a given address. 308 * @auprobe: arch specific probepoint information. 309 * @mm: the probed process address space. 310 * @vaddr: the virtual address to insert the opcode. 311 * 312 * For mm @mm, store the breakpoint instruction at @vaddr. 313 * Return 0 (success) or a negative errno. 314 */ 315 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 316 { 317 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN); 318 } 319 320 /** 321 * set_orig_insn - Restore the original instruction. 322 * @mm: the probed process address space. 323 * @auprobe: arch specific probepoint information. 324 * @vaddr: the virtual address to insert the opcode. 325 * 326 * For mm @mm, restore the original opcode (opcode) at @vaddr. 327 * Return 0 (success) or a negative errno. 328 */ 329 int __weak 330 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 331 { 332 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn); 333 } 334 335 static int match_uprobe(struct uprobe *l, struct uprobe *r) 336 { 337 if (l->inode < r->inode) 338 return -1; 339 340 if (l->inode > r->inode) 341 return 1; 342 343 if (l->offset < r->offset) 344 return -1; 345 346 if (l->offset > r->offset) 347 return 1; 348 349 return 0; 350 } 351 352 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 353 { 354 struct uprobe u = { .inode = inode, .offset = offset }; 355 struct rb_node *n = uprobes_tree.rb_node; 356 struct uprobe *uprobe; 357 int match; 358 359 while (n) { 360 uprobe = rb_entry(n, struct uprobe, rb_node); 361 match = match_uprobe(&u, uprobe); 362 if (!match) { 363 atomic_inc(&uprobe->ref); 364 return uprobe; 365 } 366 367 if (match < 0) 368 n = n->rb_left; 369 else 370 n = n->rb_right; 371 } 372 return NULL; 373 } 374 375 /* 376 * Find a uprobe corresponding to a given inode:offset 377 * Acquires uprobes_treelock 378 */ 379 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 380 { 381 struct uprobe *uprobe; 382 383 spin_lock(&uprobes_treelock); 384 uprobe = __find_uprobe(inode, offset); 385 spin_unlock(&uprobes_treelock); 386 387 return uprobe; 388 } 389 390 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 391 { 392 struct rb_node **p = &uprobes_tree.rb_node; 393 struct rb_node *parent = NULL; 394 struct uprobe *u; 395 int match; 396 397 while (*p) { 398 parent = *p; 399 u = rb_entry(parent, struct uprobe, rb_node); 400 match = match_uprobe(uprobe, u); 401 if (!match) { 402 atomic_inc(&u->ref); 403 return u; 404 } 405 406 if (match < 0) 407 p = &parent->rb_left; 408 else 409 p = &parent->rb_right; 410 411 } 412 413 u = NULL; 414 rb_link_node(&uprobe->rb_node, parent, p); 415 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 416 /* get access + creation ref */ 417 atomic_set(&uprobe->ref, 2); 418 419 return u; 420 } 421 422 /* 423 * Acquire uprobes_treelock. 424 * Matching uprobe already exists in rbtree; 425 * increment (access refcount) and return the matching uprobe. 426 * 427 * No matching uprobe; insert the uprobe in rb_tree; 428 * get a double refcount (access + creation) and return NULL. 429 */ 430 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 431 { 432 struct uprobe *u; 433 434 spin_lock(&uprobes_treelock); 435 u = __insert_uprobe(uprobe); 436 spin_unlock(&uprobes_treelock); 437 438 return u; 439 } 440 441 static void put_uprobe(struct uprobe *uprobe) 442 { 443 if (atomic_dec_and_test(&uprobe->ref)) 444 kfree(uprobe); 445 } 446 447 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 448 { 449 struct uprobe *uprobe, *cur_uprobe; 450 451 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 452 if (!uprobe) 453 return NULL; 454 455 uprobe->inode = igrab(inode); 456 uprobe->offset = offset; 457 init_rwsem(&uprobe->register_rwsem); 458 init_rwsem(&uprobe->consumer_rwsem); 459 /* For now assume that the instruction need not be single-stepped */ 460 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags); 461 462 /* add to uprobes_tree, sorted on inode:offset */ 463 cur_uprobe = insert_uprobe(uprobe); 464 465 /* a uprobe exists for this inode:offset combination */ 466 if (cur_uprobe) { 467 kfree(uprobe); 468 uprobe = cur_uprobe; 469 iput(inode); 470 } 471 472 return uprobe; 473 } 474 475 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 476 { 477 down_write(&uprobe->consumer_rwsem); 478 uc->next = uprobe->consumers; 479 uprobe->consumers = uc; 480 up_write(&uprobe->consumer_rwsem); 481 } 482 483 /* 484 * For uprobe @uprobe, delete the consumer @uc. 485 * Return true if the @uc is deleted successfully 486 * or return false. 487 */ 488 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 489 { 490 struct uprobe_consumer **con; 491 bool ret = false; 492 493 down_write(&uprobe->consumer_rwsem); 494 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 495 if (*con == uc) { 496 *con = uc->next; 497 ret = true; 498 break; 499 } 500 } 501 up_write(&uprobe->consumer_rwsem); 502 503 return ret; 504 } 505 506 static int 507 __copy_insn(struct address_space *mapping, struct file *filp, char *insn, 508 unsigned long nbytes, loff_t offset) 509 { 510 struct page *page; 511 512 if (!mapping->a_ops->readpage) 513 return -EIO; 514 /* 515 * Ensure that the page that has the original instruction is 516 * populated and in page-cache. 517 */ 518 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp); 519 if (IS_ERR(page)) 520 return PTR_ERR(page); 521 522 copy_from_page(page, offset, insn, nbytes); 523 page_cache_release(page); 524 525 return 0; 526 } 527 528 static int copy_insn(struct uprobe *uprobe, struct file *filp) 529 { 530 struct address_space *mapping; 531 unsigned long nbytes; 532 int bytes; 533 534 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK); 535 mapping = uprobe->inode->i_mapping; 536 537 /* Instruction at end of binary; copy only available bytes */ 538 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size) 539 bytes = uprobe->inode->i_size - uprobe->offset; 540 else 541 bytes = MAX_UINSN_BYTES; 542 543 /* Instruction at the page-boundary; copy bytes in second page */ 544 if (nbytes < bytes) { 545 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes, 546 bytes - nbytes, uprobe->offset + nbytes); 547 if (err) 548 return err; 549 bytes = nbytes; 550 } 551 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset); 552 } 553 554 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 555 struct mm_struct *mm, unsigned long vaddr) 556 { 557 int ret = 0; 558 559 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 560 return ret; 561 562 /* TODO: move this into _register, until then we abuse this sem. */ 563 down_write(&uprobe->consumer_rwsem); 564 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 565 goto out; 566 567 ret = copy_insn(uprobe, file); 568 if (ret) 569 goto out; 570 571 ret = -ENOTSUPP; 572 if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn)) 573 goto out; 574 575 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 576 if (ret) 577 goto out; 578 579 /* write_opcode() assumes we don't cross page boundary */ 580 BUG_ON((uprobe->offset & ~PAGE_MASK) + 581 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 582 583 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */ 584 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 585 586 out: 587 up_write(&uprobe->consumer_rwsem); 588 589 return ret; 590 } 591 592 static inline bool consumer_filter(struct uprobe_consumer *uc, 593 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 594 { 595 return !uc->filter || uc->filter(uc, ctx, mm); 596 } 597 598 static bool filter_chain(struct uprobe *uprobe, 599 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 600 { 601 struct uprobe_consumer *uc; 602 bool ret = false; 603 604 down_read(&uprobe->consumer_rwsem); 605 for (uc = uprobe->consumers; uc; uc = uc->next) { 606 ret = consumer_filter(uc, ctx, mm); 607 if (ret) 608 break; 609 } 610 up_read(&uprobe->consumer_rwsem); 611 612 return ret; 613 } 614 615 static int 616 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 617 struct vm_area_struct *vma, unsigned long vaddr) 618 { 619 bool first_uprobe; 620 int ret; 621 622 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 623 if (ret) 624 return ret; 625 626 /* 627 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 628 * the task can hit this breakpoint right after __replace_page(). 629 */ 630 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 631 if (first_uprobe) 632 set_bit(MMF_HAS_UPROBES, &mm->flags); 633 634 ret = set_swbp(&uprobe->arch, mm, vaddr); 635 if (!ret) 636 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 637 else if (first_uprobe) 638 clear_bit(MMF_HAS_UPROBES, &mm->flags); 639 640 return ret; 641 } 642 643 static int 644 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 645 { 646 set_bit(MMF_RECALC_UPROBES, &mm->flags); 647 return set_orig_insn(&uprobe->arch, mm, vaddr); 648 } 649 650 static inline bool uprobe_is_active(struct uprobe *uprobe) 651 { 652 return !RB_EMPTY_NODE(&uprobe->rb_node); 653 } 654 /* 655 * There could be threads that have already hit the breakpoint. They 656 * will recheck the current insn and restart if find_uprobe() fails. 657 * See find_active_uprobe(). 658 */ 659 static void delete_uprobe(struct uprobe *uprobe) 660 { 661 if (WARN_ON(!uprobe_is_active(uprobe))) 662 return; 663 664 spin_lock(&uprobes_treelock); 665 rb_erase(&uprobe->rb_node, &uprobes_tree); 666 spin_unlock(&uprobes_treelock); 667 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 668 iput(uprobe->inode); 669 put_uprobe(uprobe); 670 } 671 672 struct map_info { 673 struct map_info *next; 674 struct mm_struct *mm; 675 unsigned long vaddr; 676 }; 677 678 static inline struct map_info *free_map_info(struct map_info *info) 679 { 680 struct map_info *next = info->next; 681 kfree(info); 682 return next; 683 } 684 685 static struct map_info * 686 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 687 { 688 unsigned long pgoff = offset >> PAGE_SHIFT; 689 struct vm_area_struct *vma; 690 struct map_info *curr = NULL; 691 struct map_info *prev = NULL; 692 struct map_info *info; 693 int more = 0; 694 695 again: 696 mutex_lock(&mapping->i_mmap_mutex); 697 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 698 if (!valid_vma(vma, is_register)) 699 continue; 700 701 if (!prev && !more) { 702 /* 703 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through 704 * reclaim. This is optimistic, no harm done if it fails. 705 */ 706 prev = kmalloc(sizeof(struct map_info), 707 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 708 if (prev) 709 prev->next = NULL; 710 } 711 if (!prev) { 712 more++; 713 continue; 714 } 715 716 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 717 continue; 718 719 info = prev; 720 prev = prev->next; 721 info->next = curr; 722 curr = info; 723 724 info->mm = vma->vm_mm; 725 info->vaddr = offset_to_vaddr(vma, offset); 726 } 727 mutex_unlock(&mapping->i_mmap_mutex); 728 729 if (!more) 730 goto out; 731 732 prev = curr; 733 while (curr) { 734 mmput(curr->mm); 735 curr = curr->next; 736 } 737 738 do { 739 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 740 if (!info) { 741 curr = ERR_PTR(-ENOMEM); 742 goto out; 743 } 744 info->next = prev; 745 prev = info; 746 } while (--more); 747 748 goto again; 749 out: 750 while (prev) 751 prev = free_map_info(prev); 752 return curr; 753 } 754 755 static int 756 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 757 { 758 bool is_register = !!new; 759 struct map_info *info; 760 int err = 0; 761 762 percpu_down_write(&dup_mmap_sem); 763 info = build_map_info(uprobe->inode->i_mapping, 764 uprobe->offset, is_register); 765 if (IS_ERR(info)) { 766 err = PTR_ERR(info); 767 goto out; 768 } 769 770 while (info) { 771 struct mm_struct *mm = info->mm; 772 struct vm_area_struct *vma; 773 774 if (err && is_register) 775 goto free; 776 777 down_write(&mm->mmap_sem); 778 vma = find_vma(mm, info->vaddr); 779 if (!vma || !valid_vma(vma, is_register) || 780 file_inode(vma->vm_file) != uprobe->inode) 781 goto unlock; 782 783 if (vma->vm_start > info->vaddr || 784 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 785 goto unlock; 786 787 if (is_register) { 788 /* consult only the "caller", new consumer. */ 789 if (consumer_filter(new, 790 UPROBE_FILTER_REGISTER, mm)) 791 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 792 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 793 if (!filter_chain(uprobe, 794 UPROBE_FILTER_UNREGISTER, mm)) 795 err |= remove_breakpoint(uprobe, mm, info->vaddr); 796 } 797 798 unlock: 799 up_write(&mm->mmap_sem); 800 free: 801 mmput(mm); 802 info = free_map_info(info); 803 } 804 out: 805 percpu_up_write(&dup_mmap_sem); 806 return err; 807 } 808 809 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc) 810 { 811 consumer_add(uprobe, uc); 812 return register_for_each_vma(uprobe, uc); 813 } 814 815 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 816 { 817 int err; 818 819 if (!consumer_del(uprobe, uc)) /* WARN? */ 820 return; 821 822 err = register_for_each_vma(uprobe, NULL); 823 /* TODO : cant unregister? schedule a worker thread */ 824 if (!uprobe->consumers && !err) 825 delete_uprobe(uprobe); 826 } 827 828 /* 829 * uprobe_register - register a probe 830 * @inode: the file in which the probe has to be placed. 831 * @offset: offset from the start of the file. 832 * @uc: information on howto handle the probe.. 833 * 834 * Apart from the access refcount, uprobe_register() takes a creation 835 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 836 * inserted into the rbtree (i.e first consumer for a @inode:@offset 837 * tuple). Creation refcount stops uprobe_unregister from freeing the 838 * @uprobe even before the register operation is complete. Creation 839 * refcount is released when the last @uc for the @uprobe 840 * unregisters. 841 * 842 * Return errno if it cannot successully install probes 843 * else return 0 (success) 844 */ 845 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 846 { 847 struct uprobe *uprobe; 848 int ret; 849 850 /* Uprobe must have at least one set consumer */ 851 if (!uc->handler && !uc->ret_handler) 852 return -EINVAL; 853 854 /* Racy, just to catch the obvious mistakes */ 855 if (offset > i_size_read(inode)) 856 return -EINVAL; 857 858 retry: 859 uprobe = alloc_uprobe(inode, offset); 860 if (!uprobe) 861 return -ENOMEM; 862 /* 863 * We can race with uprobe_unregister()->delete_uprobe(). 864 * Check uprobe_is_active() and retry if it is false. 865 */ 866 down_write(&uprobe->register_rwsem); 867 ret = -EAGAIN; 868 if (likely(uprobe_is_active(uprobe))) { 869 ret = __uprobe_register(uprobe, uc); 870 if (ret) 871 __uprobe_unregister(uprobe, uc); 872 } 873 up_write(&uprobe->register_rwsem); 874 put_uprobe(uprobe); 875 876 if (unlikely(ret == -EAGAIN)) 877 goto retry; 878 return ret; 879 } 880 EXPORT_SYMBOL_GPL(uprobe_register); 881 882 /* 883 * uprobe_apply - unregister a already registered probe. 884 * @inode: the file in which the probe has to be removed. 885 * @offset: offset from the start of the file. 886 * @uc: consumer which wants to add more or remove some breakpoints 887 * @add: add or remove the breakpoints 888 */ 889 int uprobe_apply(struct inode *inode, loff_t offset, 890 struct uprobe_consumer *uc, bool add) 891 { 892 struct uprobe *uprobe; 893 struct uprobe_consumer *con; 894 int ret = -ENOENT; 895 896 uprobe = find_uprobe(inode, offset); 897 if (!uprobe) 898 return ret; 899 900 down_write(&uprobe->register_rwsem); 901 for (con = uprobe->consumers; con && con != uc ; con = con->next) 902 ; 903 if (con) 904 ret = register_for_each_vma(uprobe, add ? uc : NULL); 905 up_write(&uprobe->register_rwsem); 906 put_uprobe(uprobe); 907 908 return ret; 909 } 910 911 /* 912 * uprobe_unregister - unregister a already registered probe. 913 * @inode: the file in which the probe has to be removed. 914 * @offset: offset from the start of the file. 915 * @uc: identify which probe if multiple probes are colocated. 916 */ 917 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 918 { 919 struct uprobe *uprobe; 920 921 uprobe = find_uprobe(inode, offset); 922 if (!uprobe) 923 return; 924 925 down_write(&uprobe->register_rwsem); 926 __uprobe_unregister(uprobe, uc); 927 up_write(&uprobe->register_rwsem); 928 put_uprobe(uprobe); 929 } 930 EXPORT_SYMBOL_GPL(uprobe_unregister); 931 932 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 933 { 934 struct vm_area_struct *vma; 935 int err = 0; 936 937 down_read(&mm->mmap_sem); 938 for (vma = mm->mmap; vma; vma = vma->vm_next) { 939 unsigned long vaddr; 940 loff_t offset; 941 942 if (!valid_vma(vma, false) || 943 file_inode(vma->vm_file) != uprobe->inode) 944 continue; 945 946 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 947 if (uprobe->offset < offset || 948 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 949 continue; 950 951 vaddr = offset_to_vaddr(vma, uprobe->offset); 952 err |= remove_breakpoint(uprobe, mm, vaddr); 953 } 954 up_read(&mm->mmap_sem); 955 956 return err; 957 } 958 959 static struct rb_node * 960 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 961 { 962 struct rb_node *n = uprobes_tree.rb_node; 963 964 while (n) { 965 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 966 967 if (inode < u->inode) { 968 n = n->rb_left; 969 } else if (inode > u->inode) { 970 n = n->rb_right; 971 } else { 972 if (max < u->offset) 973 n = n->rb_left; 974 else if (min > u->offset) 975 n = n->rb_right; 976 else 977 break; 978 } 979 } 980 981 return n; 982 } 983 984 /* 985 * For a given range in vma, build a list of probes that need to be inserted. 986 */ 987 static void build_probe_list(struct inode *inode, 988 struct vm_area_struct *vma, 989 unsigned long start, unsigned long end, 990 struct list_head *head) 991 { 992 loff_t min, max; 993 struct rb_node *n, *t; 994 struct uprobe *u; 995 996 INIT_LIST_HEAD(head); 997 min = vaddr_to_offset(vma, start); 998 max = min + (end - start) - 1; 999 1000 spin_lock(&uprobes_treelock); 1001 n = find_node_in_range(inode, min, max); 1002 if (n) { 1003 for (t = n; t; t = rb_prev(t)) { 1004 u = rb_entry(t, struct uprobe, rb_node); 1005 if (u->inode != inode || u->offset < min) 1006 break; 1007 list_add(&u->pending_list, head); 1008 atomic_inc(&u->ref); 1009 } 1010 for (t = n; (t = rb_next(t)); ) { 1011 u = rb_entry(t, struct uprobe, rb_node); 1012 if (u->inode != inode || u->offset > max) 1013 break; 1014 list_add(&u->pending_list, head); 1015 atomic_inc(&u->ref); 1016 } 1017 } 1018 spin_unlock(&uprobes_treelock); 1019 } 1020 1021 /* 1022 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1023 * 1024 * Currently we ignore all errors and always return 0, the callers 1025 * can't handle the failure anyway. 1026 */ 1027 int uprobe_mmap(struct vm_area_struct *vma) 1028 { 1029 struct list_head tmp_list; 1030 struct uprobe *uprobe, *u; 1031 struct inode *inode; 1032 1033 if (no_uprobe_events() || !valid_vma(vma, true)) 1034 return 0; 1035 1036 inode = file_inode(vma->vm_file); 1037 if (!inode) 1038 return 0; 1039 1040 mutex_lock(uprobes_mmap_hash(inode)); 1041 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1042 /* 1043 * We can race with uprobe_unregister(), this uprobe can be already 1044 * removed. But in this case filter_chain() must return false, all 1045 * consumers have gone away. 1046 */ 1047 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1048 if (!fatal_signal_pending(current) && 1049 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1050 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1051 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1052 } 1053 put_uprobe(uprobe); 1054 } 1055 mutex_unlock(uprobes_mmap_hash(inode)); 1056 1057 return 0; 1058 } 1059 1060 static bool 1061 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1062 { 1063 loff_t min, max; 1064 struct inode *inode; 1065 struct rb_node *n; 1066 1067 inode = file_inode(vma->vm_file); 1068 1069 min = vaddr_to_offset(vma, start); 1070 max = min + (end - start) - 1; 1071 1072 spin_lock(&uprobes_treelock); 1073 n = find_node_in_range(inode, min, max); 1074 spin_unlock(&uprobes_treelock); 1075 1076 return !!n; 1077 } 1078 1079 /* 1080 * Called in context of a munmap of a vma. 1081 */ 1082 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1083 { 1084 if (no_uprobe_events() || !valid_vma(vma, false)) 1085 return; 1086 1087 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1088 return; 1089 1090 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1091 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1092 return; 1093 1094 if (vma_has_uprobes(vma, start, end)) 1095 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1096 } 1097 1098 /* Slot allocation for XOL */ 1099 static int xol_add_vma(struct xol_area *area) 1100 { 1101 struct mm_struct *mm = current->mm; 1102 int ret = -EALREADY; 1103 1104 down_write(&mm->mmap_sem); 1105 if (mm->uprobes_state.xol_area) 1106 goto fail; 1107 1108 ret = -ENOMEM; 1109 /* Try to map as high as possible, this is only a hint. */ 1110 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0); 1111 if (area->vaddr & ~PAGE_MASK) { 1112 ret = area->vaddr; 1113 goto fail; 1114 } 1115 1116 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1117 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page); 1118 if (ret) 1119 goto fail; 1120 1121 smp_wmb(); /* pairs with get_xol_area() */ 1122 mm->uprobes_state.xol_area = area; 1123 ret = 0; 1124 fail: 1125 up_write(&mm->mmap_sem); 1126 1127 return ret; 1128 } 1129 1130 /* 1131 * get_xol_area - Allocate process's xol_area if necessary. 1132 * This area will be used for storing instructions for execution out of line. 1133 * 1134 * Returns the allocated area or NULL. 1135 */ 1136 static struct xol_area *get_xol_area(void) 1137 { 1138 struct mm_struct *mm = current->mm; 1139 struct xol_area *area; 1140 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1141 1142 area = mm->uprobes_state.xol_area; 1143 if (area) 1144 goto ret; 1145 1146 area = kzalloc(sizeof(*area), GFP_KERNEL); 1147 if (unlikely(!area)) 1148 goto out; 1149 1150 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1151 if (!area->bitmap) 1152 goto free_area; 1153 1154 area->page = alloc_page(GFP_HIGHUSER); 1155 if (!area->page) 1156 goto free_bitmap; 1157 1158 /* allocate first slot of task's xol_area for the return probes */ 1159 set_bit(0, area->bitmap); 1160 copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE); 1161 atomic_set(&area->slot_count, 1); 1162 init_waitqueue_head(&area->wq); 1163 1164 if (!xol_add_vma(area)) 1165 return area; 1166 1167 __free_page(area->page); 1168 free_bitmap: 1169 kfree(area->bitmap); 1170 free_area: 1171 kfree(area); 1172 out: 1173 area = mm->uprobes_state.xol_area; 1174 ret: 1175 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1176 return area; 1177 } 1178 1179 /* 1180 * uprobe_clear_state - Free the area allocated for slots. 1181 */ 1182 void uprobe_clear_state(struct mm_struct *mm) 1183 { 1184 struct xol_area *area = mm->uprobes_state.xol_area; 1185 1186 if (!area) 1187 return; 1188 1189 put_page(area->page); 1190 kfree(area->bitmap); 1191 kfree(area); 1192 } 1193 1194 void uprobe_start_dup_mmap(void) 1195 { 1196 percpu_down_read(&dup_mmap_sem); 1197 } 1198 1199 void uprobe_end_dup_mmap(void) 1200 { 1201 percpu_up_read(&dup_mmap_sem); 1202 } 1203 1204 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1205 { 1206 newmm->uprobes_state.xol_area = NULL; 1207 1208 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1209 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1210 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1211 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1212 } 1213 } 1214 1215 /* 1216 * - search for a free slot. 1217 */ 1218 static unsigned long xol_take_insn_slot(struct xol_area *area) 1219 { 1220 unsigned long slot_addr; 1221 int slot_nr; 1222 1223 do { 1224 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1225 if (slot_nr < UINSNS_PER_PAGE) { 1226 if (!test_and_set_bit(slot_nr, area->bitmap)) 1227 break; 1228 1229 slot_nr = UINSNS_PER_PAGE; 1230 continue; 1231 } 1232 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1233 } while (slot_nr >= UINSNS_PER_PAGE); 1234 1235 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1236 atomic_inc(&area->slot_count); 1237 1238 return slot_addr; 1239 } 1240 1241 /* 1242 * xol_get_insn_slot - allocate a slot for xol. 1243 * Returns the allocated slot address or 0. 1244 */ 1245 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1246 { 1247 struct xol_area *area; 1248 unsigned long xol_vaddr; 1249 1250 area = get_xol_area(); 1251 if (!area) 1252 return 0; 1253 1254 xol_vaddr = xol_take_insn_slot(area); 1255 if (unlikely(!xol_vaddr)) 1256 return 0; 1257 1258 /* Initialize the slot */ 1259 copy_to_page(area->page, xol_vaddr, uprobe->arch.insn, MAX_UINSN_BYTES); 1260 /* 1261 * We probably need flush_icache_user_range() but it needs vma. 1262 * This should work on supported architectures too. 1263 */ 1264 flush_dcache_page(area->page); 1265 1266 return xol_vaddr; 1267 } 1268 1269 /* 1270 * xol_free_insn_slot - If slot was earlier allocated by 1271 * @xol_get_insn_slot(), make the slot available for 1272 * subsequent requests. 1273 */ 1274 static void xol_free_insn_slot(struct task_struct *tsk) 1275 { 1276 struct xol_area *area; 1277 unsigned long vma_end; 1278 unsigned long slot_addr; 1279 1280 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1281 return; 1282 1283 slot_addr = tsk->utask->xol_vaddr; 1284 if (unlikely(!slot_addr)) 1285 return; 1286 1287 area = tsk->mm->uprobes_state.xol_area; 1288 vma_end = area->vaddr + PAGE_SIZE; 1289 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1290 unsigned long offset; 1291 int slot_nr; 1292 1293 offset = slot_addr - area->vaddr; 1294 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1295 if (slot_nr >= UINSNS_PER_PAGE) 1296 return; 1297 1298 clear_bit(slot_nr, area->bitmap); 1299 atomic_dec(&area->slot_count); 1300 if (waitqueue_active(&area->wq)) 1301 wake_up(&area->wq); 1302 1303 tsk->utask->xol_vaddr = 0; 1304 } 1305 } 1306 1307 /** 1308 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1309 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1310 * instruction. 1311 * Return the address of the breakpoint instruction. 1312 */ 1313 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1314 { 1315 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1316 } 1317 1318 /* 1319 * Called with no locks held. 1320 * Called in context of a exiting or a exec-ing thread. 1321 */ 1322 void uprobe_free_utask(struct task_struct *t) 1323 { 1324 struct uprobe_task *utask = t->utask; 1325 struct return_instance *ri, *tmp; 1326 1327 if (!utask) 1328 return; 1329 1330 if (utask->active_uprobe) 1331 put_uprobe(utask->active_uprobe); 1332 1333 ri = utask->return_instances; 1334 while (ri) { 1335 tmp = ri; 1336 ri = ri->next; 1337 1338 put_uprobe(tmp->uprobe); 1339 kfree(tmp); 1340 } 1341 1342 xol_free_insn_slot(t); 1343 kfree(utask); 1344 t->utask = NULL; 1345 } 1346 1347 /* 1348 * Called in context of a new clone/fork from copy_process. 1349 */ 1350 void uprobe_copy_process(struct task_struct *t) 1351 { 1352 t->utask = NULL; 1353 } 1354 1355 /* 1356 * Allocate a uprobe_task object for the task if if necessary. 1357 * Called when the thread hits a breakpoint. 1358 * 1359 * Returns: 1360 * - pointer to new uprobe_task on success 1361 * - NULL otherwise 1362 */ 1363 static struct uprobe_task *get_utask(void) 1364 { 1365 if (!current->utask) 1366 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1367 return current->utask; 1368 } 1369 1370 /* 1371 * Current area->vaddr notion assume the trampoline address is always 1372 * equal area->vaddr. 1373 * 1374 * Returns -1 in case the xol_area is not allocated. 1375 */ 1376 static unsigned long get_trampoline_vaddr(void) 1377 { 1378 struct xol_area *area; 1379 unsigned long trampoline_vaddr = -1; 1380 1381 area = current->mm->uprobes_state.xol_area; 1382 smp_read_barrier_depends(); 1383 if (area) 1384 trampoline_vaddr = area->vaddr; 1385 1386 return trampoline_vaddr; 1387 } 1388 1389 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1390 { 1391 struct return_instance *ri; 1392 struct uprobe_task *utask; 1393 unsigned long orig_ret_vaddr, trampoline_vaddr; 1394 bool chained = false; 1395 1396 if (!get_xol_area()) 1397 return; 1398 1399 utask = get_utask(); 1400 if (!utask) 1401 return; 1402 1403 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1404 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1405 " nestedness limit pid/tgid=%d/%d\n", 1406 current->pid, current->tgid); 1407 return; 1408 } 1409 1410 ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL); 1411 if (!ri) 1412 goto fail; 1413 1414 trampoline_vaddr = get_trampoline_vaddr(); 1415 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1416 if (orig_ret_vaddr == -1) 1417 goto fail; 1418 1419 /* 1420 * We don't want to keep trampoline address in stack, rather keep the 1421 * original return address of first caller thru all the consequent 1422 * instances. This also makes breakpoint unwrapping easier. 1423 */ 1424 if (orig_ret_vaddr == trampoline_vaddr) { 1425 if (!utask->return_instances) { 1426 /* 1427 * This situation is not possible. Likely we have an 1428 * attack from user-space. 1429 */ 1430 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n", 1431 current->pid, current->tgid); 1432 goto fail; 1433 } 1434 1435 chained = true; 1436 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1437 } 1438 1439 atomic_inc(&uprobe->ref); 1440 ri->uprobe = uprobe; 1441 ri->func = instruction_pointer(regs); 1442 ri->orig_ret_vaddr = orig_ret_vaddr; 1443 ri->chained = chained; 1444 1445 utask->depth++; 1446 1447 /* add instance to the stack */ 1448 ri->next = utask->return_instances; 1449 utask->return_instances = ri; 1450 1451 return; 1452 1453 fail: 1454 kfree(ri); 1455 } 1456 1457 /* Prepare to single-step probed instruction out of line. */ 1458 static int 1459 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1460 { 1461 struct uprobe_task *utask; 1462 unsigned long xol_vaddr; 1463 int err; 1464 1465 utask = get_utask(); 1466 if (!utask) 1467 return -ENOMEM; 1468 1469 xol_vaddr = xol_get_insn_slot(uprobe); 1470 if (!xol_vaddr) 1471 return -ENOMEM; 1472 1473 utask->xol_vaddr = xol_vaddr; 1474 utask->vaddr = bp_vaddr; 1475 1476 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1477 if (unlikely(err)) { 1478 xol_free_insn_slot(current); 1479 return err; 1480 } 1481 1482 utask->active_uprobe = uprobe; 1483 utask->state = UTASK_SSTEP; 1484 return 0; 1485 } 1486 1487 /* 1488 * If we are singlestepping, then ensure this thread is not connected to 1489 * non-fatal signals until completion of singlestep. When xol insn itself 1490 * triggers the signal, restart the original insn even if the task is 1491 * already SIGKILL'ed (since coredump should report the correct ip). This 1492 * is even more important if the task has a handler for SIGSEGV/etc, The 1493 * _same_ instruction should be repeated again after return from the signal 1494 * handler, and SSTEP can never finish in this case. 1495 */ 1496 bool uprobe_deny_signal(void) 1497 { 1498 struct task_struct *t = current; 1499 struct uprobe_task *utask = t->utask; 1500 1501 if (likely(!utask || !utask->active_uprobe)) 1502 return false; 1503 1504 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1505 1506 if (signal_pending(t)) { 1507 spin_lock_irq(&t->sighand->siglock); 1508 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1509 spin_unlock_irq(&t->sighand->siglock); 1510 1511 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1512 utask->state = UTASK_SSTEP_TRAPPED; 1513 set_tsk_thread_flag(t, TIF_UPROBE); 1514 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1515 } 1516 } 1517 1518 return true; 1519 } 1520 1521 /* 1522 * Avoid singlestepping the original instruction if the original instruction 1523 * is a NOP or can be emulated. 1524 */ 1525 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs) 1526 { 1527 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) { 1528 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1529 return true; 1530 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags); 1531 } 1532 return false; 1533 } 1534 1535 static void mmf_recalc_uprobes(struct mm_struct *mm) 1536 { 1537 struct vm_area_struct *vma; 1538 1539 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1540 if (!valid_vma(vma, false)) 1541 continue; 1542 /* 1543 * This is not strictly accurate, we can race with 1544 * uprobe_unregister() and see the already removed 1545 * uprobe if delete_uprobe() was not yet called. 1546 * Or this uprobe can be filtered out. 1547 */ 1548 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1549 return; 1550 } 1551 1552 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1553 } 1554 1555 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 1556 { 1557 struct page *page; 1558 uprobe_opcode_t opcode; 1559 int result; 1560 1561 pagefault_disable(); 1562 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr, 1563 sizeof(opcode)); 1564 pagefault_enable(); 1565 1566 if (likely(result == 0)) 1567 goto out; 1568 1569 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL); 1570 if (result < 0) 1571 return result; 1572 1573 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 1574 put_page(page); 1575 out: 1576 /* This needs to return true for any variant of the trap insn */ 1577 return is_trap_insn(&opcode); 1578 } 1579 1580 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1581 { 1582 struct mm_struct *mm = current->mm; 1583 struct uprobe *uprobe = NULL; 1584 struct vm_area_struct *vma; 1585 1586 down_read(&mm->mmap_sem); 1587 vma = find_vma(mm, bp_vaddr); 1588 if (vma && vma->vm_start <= bp_vaddr) { 1589 if (valid_vma(vma, false)) { 1590 struct inode *inode = file_inode(vma->vm_file); 1591 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1592 1593 uprobe = find_uprobe(inode, offset); 1594 } 1595 1596 if (!uprobe) 1597 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 1598 } else { 1599 *is_swbp = -EFAULT; 1600 } 1601 1602 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1603 mmf_recalc_uprobes(mm); 1604 up_read(&mm->mmap_sem); 1605 1606 return uprobe; 1607 } 1608 1609 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 1610 { 1611 struct uprobe_consumer *uc; 1612 int remove = UPROBE_HANDLER_REMOVE; 1613 bool need_prep = false; /* prepare return uprobe, when needed */ 1614 1615 down_read(&uprobe->register_rwsem); 1616 for (uc = uprobe->consumers; uc; uc = uc->next) { 1617 int rc = 0; 1618 1619 if (uc->handler) { 1620 rc = uc->handler(uc, regs); 1621 WARN(rc & ~UPROBE_HANDLER_MASK, 1622 "bad rc=0x%x from %pf()\n", rc, uc->handler); 1623 } 1624 1625 if (uc->ret_handler) 1626 need_prep = true; 1627 1628 remove &= rc; 1629 } 1630 1631 if (need_prep && !remove) 1632 prepare_uretprobe(uprobe, regs); /* put bp at return */ 1633 1634 if (remove && uprobe->consumers) { 1635 WARN_ON(!uprobe_is_active(uprobe)); 1636 unapply_uprobe(uprobe, current->mm); 1637 } 1638 up_read(&uprobe->register_rwsem); 1639 } 1640 1641 static void 1642 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 1643 { 1644 struct uprobe *uprobe = ri->uprobe; 1645 struct uprobe_consumer *uc; 1646 1647 down_read(&uprobe->register_rwsem); 1648 for (uc = uprobe->consumers; uc; uc = uc->next) { 1649 if (uc->ret_handler) 1650 uc->ret_handler(uc, ri->func, regs); 1651 } 1652 up_read(&uprobe->register_rwsem); 1653 } 1654 1655 static bool handle_trampoline(struct pt_regs *regs) 1656 { 1657 struct uprobe_task *utask; 1658 struct return_instance *ri, *tmp; 1659 bool chained; 1660 1661 utask = current->utask; 1662 if (!utask) 1663 return false; 1664 1665 ri = utask->return_instances; 1666 if (!ri) 1667 return false; 1668 1669 /* 1670 * TODO: we should throw out return_instance's invalidated by 1671 * longjmp(), currently we assume that the probed function always 1672 * returns. 1673 */ 1674 instruction_pointer_set(regs, ri->orig_ret_vaddr); 1675 1676 for (;;) { 1677 handle_uretprobe_chain(ri, regs); 1678 1679 chained = ri->chained; 1680 put_uprobe(ri->uprobe); 1681 1682 tmp = ri; 1683 ri = ri->next; 1684 kfree(tmp); 1685 utask->depth--; 1686 1687 if (!chained) 1688 break; 1689 BUG_ON(!ri); 1690 } 1691 1692 utask->return_instances = ri; 1693 1694 return true; 1695 } 1696 1697 /* 1698 * Run handler and ask thread to singlestep. 1699 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1700 */ 1701 static void handle_swbp(struct pt_regs *regs) 1702 { 1703 struct uprobe *uprobe; 1704 unsigned long bp_vaddr; 1705 int uninitialized_var(is_swbp); 1706 1707 bp_vaddr = uprobe_get_swbp_addr(regs); 1708 if (bp_vaddr == get_trampoline_vaddr()) { 1709 if (handle_trampoline(regs)) 1710 return; 1711 1712 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n", 1713 current->pid, current->tgid); 1714 } 1715 1716 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1717 if (!uprobe) { 1718 if (is_swbp > 0) { 1719 /* No matching uprobe; signal SIGTRAP. */ 1720 send_sig(SIGTRAP, current, 0); 1721 } else { 1722 /* 1723 * Either we raced with uprobe_unregister() or we can't 1724 * access this memory. The latter is only possible if 1725 * another thread plays with our ->mm. In both cases 1726 * we can simply restart. If this vma was unmapped we 1727 * can pretend this insn was not executed yet and get 1728 * the (correct) SIGSEGV after restart. 1729 */ 1730 instruction_pointer_set(regs, bp_vaddr); 1731 } 1732 return; 1733 } 1734 1735 /* change it in advance for ->handler() and restart */ 1736 instruction_pointer_set(regs, bp_vaddr); 1737 1738 /* 1739 * TODO: move copy_insn/etc into _register and remove this hack. 1740 * After we hit the bp, _unregister + _register can install the 1741 * new and not-yet-analyzed uprobe at the same address, restart. 1742 */ 1743 smp_rmb(); /* pairs with wmb() in install_breakpoint() */ 1744 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 1745 goto out; 1746 1747 handler_chain(uprobe, regs); 1748 if (can_skip_sstep(uprobe, regs)) 1749 goto out; 1750 1751 if (!pre_ssout(uprobe, regs, bp_vaddr)) 1752 return; 1753 1754 /* can_skip_sstep() succeeded, or restart if can't singlestep */ 1755 out: 1756 put_uprobe(uprobe); 1757 } 1758 1759 /* 1760 * Perform required fix-ups and disable singlestep. 1761 * Allow pending signals to take effect. 1762 */ 1763 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1764 { 1765 struct uprobe *uprobe; 1766 1767 uprobe = utask->active_uprobe; 1768 if (utask->state == UTASK_SSTEP_ACK) 1769 arch_uprobe_post_xol(&uprobe->arch, regs); 1770 else if (utask->state == UTASK_SSTEP_TRAPPED) 1771 arch_uprobe_abort_xol(&uprobe->arch, regs); 1772 else 1773 WARN_ON_ONCE(1); 1774 1775 put_uprobe(uprobe); 1776 utask->active_uprobe = NULL; 1777 utask->state = UTASK_RUNNING; 1778 xol_free_insn_slot(current); 1779 1780 spin_lock_irq(¤t->sighand->siglock); 1781 recalc_sigpending(); /* see uprobe_deny_signal() */ 1782 spin_unlock_irq(¤t->sighand->siglock); 1783 } 1784 1785 /* 1786 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 1787 * allows the thread to return from interrupt. After that handle_swbp() 1788 * sets utask->active_uprobe. 1789 * 1790 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 1791 * and allows the thread to return from interrupt. 1792 * 1793 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1794 * uprobe_notify_resume(). 1795 */ 1796 void uprobe_notify_resume(struct pt_regs *regs) 1797 { 1798 struct uprobe_task *utask; 1799 1800 clear_thread_flag(TIF_UPROBE); 1801 1802 utask = current->utask; 1803 if (utask && utask->active_uprobe) 1804 handle_singlestep(utask, regs); 1805 else 1806 handle_swbp(regs); 1807 } 1808 1809 /* 1810 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1811 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1812 */ 1813 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1814 { 1815 if (!current->mm) 1816 return 0; 1817 1818 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 1819 (!current->utask || !current->utask->return_instances)) 1820 return 0; 1821 1822 set_thread_flag(TIF_UPROBE); 1823 return 1; 1824 } 1825 1826 /* 1827 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 1828 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 1829 */ 1830 int uprobe_post_sstep_notifier(struct pt_regs *regs) 1831 { 1832 struct uprobe_task *utask = current->utask; 1833 1834 if (!current->mm || !utask || !utask->active_uprobe) 1835 /* task is currently not uprobed */ 1836 return 0; 1837 1838 utask->state = UTASK_SSTEP_ACK; 1839 set_thread_flag(TIF_UPROBE); 1840 return 1; 1841 } 1842 1843 static struct notifier_block uprobe_exception_nb = { 1844 .notifier_call = arch_uprobe_exception_notify, 1845 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 1846 }; 1847 1848 static int __init init_uprobes(void) 1849 { 1850 int i; 1851 1852 for (i = 0; i < UPROBES_HASH_SZ; i++) 1853 mutex_init(&uprobes_mmap_mutex[i]); 1854 1855 if (percpu_init_rwsem(&dup_mmap_sem)) 1856 return -ENOMEM; 1857 1858 return register_die_notifier(&uprobe_exception_nb); 1859 } 1860 module_init(init_uprobes); 1861 1862 static void __exit exit_uprobes(void) 1863 { 1864 } 1865 module_exit(exit_uprobes); 1866