xref: /openbmc/linux/kernel/events/uprobes.c (revision eb3fcf00)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>		/* anon_vma_prepare */
32 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
33 #include <linux/swap.h>		/* try_to_free_swap */
34 #include <linux/ptrace.h>	/* user_enable_single_step */
35 #include <linux/kdebug.h>	/* notifier mechanism */
36 #include "../../mm/internal.h"	/* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40 
41 #include <linux/uprobes.h>
42 
43 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
45 
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
52 
53 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
54 
55 #define UPROBES_HASH_SZ	13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59 
60 static struct percpu_rw_semaphore dup_mmap_sem;
61 
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN	0
64 
65 struct uprobe {
66 	struct rb_node		rb_node;	/* node in the rb tree */
67 	atomic_t		ref;
68 	struct rw_semaphore	register_rwsem;
69 	struct rw_semaphore	consumer_rwsem;
70 	struct list_head	pending_list;
71 	struct uprobe_consumer	*consumers;
72 	struct inode		*inode;		/* Also hold a ref to inode */
73 	loff_t			offset;
74 	unsigned long		flags;
75 
76 	/*
77 	 * The generic code assumes that it has two members of unknown type
78 	 * owned by the arch-specific code:
79 	 *
80 	 * 	insn -	copy_insn() saves the original instruction here for
81 	 *		arch_uprobe_analyze_insn().
82 	 *
83 	 *	ixol -	potentially modified instruction to execute out of
84 	 *		line, copied to xol_area by xol_get_insn_slot().
85 	 */
86 	struct arch_uprobe	arch;
87 };
88 
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99 	wait_queue_head_t 		wq;		/* if all slots are busy */
100 	atomic_t 			slot_count;	/* number of in-use slots */
101 	unsigned long 			*bitmap;	/* 0 = free slot */
102 
103 	struct vm_special_mapping	xol_mapping;
104 	struct page 			*pages[2];
105 	/*
106 	 * We keep the vma's vm_start rather than a pointer to the vma
107 	 * itself.  The probed process or a naughty kernel module could make
108 	 * the vma go away, and we must handle that reasonably gracefully.
109 	 */
110 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
111 };
112 
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *	- is_register: indicates if we are in register context.
118  *	- Return 1 if the specified virtual address is in an
119  *	  executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124 
125 	if (is_register)
126 		flags |= VM_WRITE;
127 
128 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130 
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135 
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140 
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @page:     the cowed page we are replacing by kpage
148  * @kpage:    the modified page we replace page by
149  *
150  * Returns 0 on success, -EFAULT on failure.
151  */
152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153 				struct page *page, struct page *kpage)
154 {
155 	struct mm_struct *mm = vma->vm_mm;
156 	spinlock_t *ptl;
157 	pte_t *ptep;
158 	int err;
159 	/* For mmu_notifiers */
160 	const unsigned long mmun_start = addr;
161 	const unsigned long mmun_end   = addr + PAGE_SIZE;
162 	struct mem_cgroup *memcg;
163 
164 	err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg);
165 	if (err)
166 		return err;
167 
168 	/* For try_to_free_swap() and munlock_vma_page() below */
169 	lock_page(page);
170 
171 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
172 	err = -EAGAIN;
173 	ptep = page_check_address(page, mm, addr, &ptl, 0);
174 	if (!ptep)
175 		goto unlock;
176 
177 	get_page(kpage);
178 	page_add_new_anon_rmap(kpage, vma, addr);
179 	mem_cgroup_commit_charge(kpage, memcg, false);
180 	lru_cache_add_active_or_unevictable(kpage, vma);
181 
182 	if (!PageAnon(page)) {
183 		dec_mm_counter(mm, MM_FILEPAGES);
184 		inc_mm_counter(mm, MM_ANONPAGES);
185 	}
186 
187 	flush_cache_page(vma, addr, pte_pfn(*ptep));
188 	ptep_clear_flush_notify(vma, addr, ptep);
189 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
190 
191 	page_remove_rmap(page);
192 	if (!page_mapped(page))
193 		try_to_free_swap(page);
194 	pte_unmap_unlock(ptep, ptl);
195 
196 	if (vma->vm_flags & VM_LOCKED)
197 		munlock_vma_page(page);
198 	put_page(page);
199 
200 	err = 0;
201  unlock:
202 	mem_cgroup_cancel_charge(kpage, memcg);
203 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
204 	unlock_page(page);
205 	return err;
206 }
207 
208 /**
209  * is_swbp_insn - check if instruction is breakpoint instruction.
210  * @insn: instruction to be checked.
211  * Default implementation of is_swbp_insn
212  * Returns true if @insn is a breakpoint instruction.
213  */
214 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
215 {
216 	return *insn == UPROBE_SWBP_INSN;
217 }
218 
219 /**
220  * is_trap_insn - check if instruction is breakpoint instruction.
221  * @insn: instruction to be checked.
222  * Default implementation of is_trap_insn
223  * Returns true if @insn is a breakpoint instruction.
224  *
225  * This function is needed for the case where an architecture has multiple
226  * trap instructions (like powerpc).
227  */
228 bool __weak is_trap_insn(uprobe_opcode_t *insn)
229 {
230 	return is_swbp_insn(insn);
231 }
232 
233 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
234 {
235 	void *kaddr = kmap_atomic(page);
236 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
237 	kunmap_atomic(kaddr);
238 }
239 
240 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
241 {
242 	void *kaddr = kmap_atomic(page);
243 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
244 	kunmap_atomic(kaddr);
245 }
246 
247 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
248 {
249 	uprobe_opcode_t old_opcode;
250 	bool is_swbp;
251 
252 	/*
253 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
254 	 * We do not check if it is any other 'trap variant' which could
255 	 * be conditional trap instruction such as the one powerpc supports.
256 	 *
257 	 * The logic is that we do not care if the underlying instruction
258 	 * is a trap variant; uprobes always wins over any other (gdb)
259 	 * breakpoint.
260 	 */
261 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
262 	is_swbp = is_swbp_insn(&old_opcode);
263 
264 	if (is_swbp_insn(new_opcode)) {
265 		if (is_swbp)		/* register: already installed? */
266 			return 0;
267 	} else {
268 		if (!is_swbp)		/* unregister: was it changed by us? */
269 			return 0;
270 	}
271 
272 	return 1;
273 }
274 
275 /*
276  * NOTE:
277  * Expect the breakpoint instruction to be the smallest size instruction for
278  * the architecture. If an arch has variable length instruction and the
279  * breakpoint instruction is not of the smallest length instruction
280  * supported by that architecture then we need to modify is_trap_at_addr and
281  * uprobe_write_opcode accordingly. This would never be a problem for archs
282  * that have fixed length instructions.
283  *
284  * uprobe_write_opcode - write the opcode at a given virtual address.
285  * @mm: the probed process address space.
286  * @vaddr: the virtual address to store the opcode.
287  * @opcode: opcode to be written at @vaddr.
288  *
289  * Called with mm->mmap_sem held for write.
290  * Return 0 (success) or a negative errno.
291  */
292 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
293 			uprobe_opcode_t opcode)
294 {
295 	struct page *old_page, *new_page;
296 	struct vm_area_struct *vma;
297 	int ret;
298 
299 retry:
300 	/* Read the page with vaddr into memory */
301 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
302 	if (ret <= 0)
303 		return ret;
304 
305 	ret = verify_opcode(old_page, vaddr, &opcode);
306 	if (ret <= 0)
307 		goto put_old;
308 
309 	ret = anon_vma_prepare(vma);
310 	if (ret)
311 		goto put_old;
312 
313 	ret = -ENOMEM;
314 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
315 	if (!new_page)
316 		goto put_old;
317 
318 	__SetPageUptodate(new_page);
319 	copy_highpage(new_page, old_page);
320 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
321 
322 	ret = __replace_page(vma, vaddr, old_page, new_page);
323 	page_cache_release(new_page);
324 put_old:
325 	put_page(old_page);
326 
327 	if (unlikely(ret == -EAGAIN))
328 		goto retry;
329 	return ret;
330 }
331 
332 /**
333  * set_swbp - store breakpoint at a given address.
334  * @auprobe: arch specific probepoint information.
335  * @mm: the probed process address space.
336  * @vaddr: the virtual address to insert the opcode.
337  *
338  * For mm @mm, store the breakpoint instruction at @vaddr.
339  * Return 0 (success) or a negative errno.
340  */
341 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
342 {
343 	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
344 }
345 
346 /**
347  * set_orig_insn - Restore the original instruction.
348  * @mm: the probed process address space.
349  * @auprobe: arch specific probepoint information.
350  * @vaddr: the virtual address to insert the opcode.
351  *
352  * For mm @mm, restore the original opcode (opcode) at @vaddr.
353  * Return 0 (success) or a negative errno.
354  */
355 int __weak
356 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
357 {
358 	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
359 }
360 
361 static struct uprobe *get_uprobe(struct uprobe *uprobe)
362 {
363 	atomic_inc(&uprobe->ref);
364 	return uprobe;
365 }
366 
367 static void put_uprobe(struct uprobe *uprobe)
368 {
369 	if (atomic_dec_and_test(&uprobe->ref))
370 		kfree(uprobe);
371 }
372 
373 static int match_uprobe(struct uprobe *l, struct uprobe *r)
374 {
375 	if (l->inode < r->inode)
376 		return -1;
377 
378 	if (l->inode > r->inode)
379 		return 1;
380 
381 	if (l->offset < r->offset)
382 		return -1;
383 
384 	if (l->offset > r->offset)
385 		return 1;
386 
387 	return 0;
388 }
389 
390 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
391 {
392 	struct uprobe u = { .inode = inode, .offset = offset };
393 	struct rb_node *n = uprobes_tree.rb_node;
394 	struct uprobe *uprobe;
395 	int match;
396 
397 	while (n) {
398 		uprobe = rb_entry(n, struct uprobe, rb_node);
399 		match = match_uprobe(&u, uprobe);
400 		if (!match)
401 			return get_uprobe(uprobe);
402 
403 		if (match < 0)
404 			n = n->rb_left;
405 		else
406 			n = n->rb_right;
407 	}
408 	return NULL;
409 }
410 
411 /*
412  * Find a uprobe corresponding to a given inode:offset
413  * Acquires uprobes_treelock
414  */
415 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
416 {
417 	struct uprobe *uprobe;
418 
419 	spin_lock(&uprobes_treelock);
420 	uprobe = __find_uprobe(inode, offset);
421 	spin_unlock(&uprobes_treelock);
422 
423 	return uprobe;
424 }
425 
426 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
427 {
428 	struct rb_node **p = &uprobes_tree.rb_node;
429 	struct rb_node *parent = NULL;
430 	struct uprobe *u;
431 	int match;
432 
433 	while (*p) {
434 		parent = *p;
435 		u = rb_entry(parent, struct uprobe, rb_node);
436 		match = match_uprobe(uprobe, u);
437 		if (!match)
438 			return get_uprobe(u);
439 
440 		if (match < 0)
441 			p = &parent->rb_left;
442 		else
443 			p = &parent->rb_right;
444 
445 	}
446 
447 	u = NULL;
448 	rb_link_node(&uprobe->rb_node, parent, p);
449 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
450 	/* get access + creation ref */
451 	atomic_set(&uprobe->ref, 2);
452 
453 	return u;
454 }
455 
456 /*
457  * Acquire uprobes_treelock.
458  * Matching uprobe already exists in rbtree;
459  *	increment (access refcount) and return the matching uprobe.
460  *
461  * No matching uprobe; insert the uprobe in rb_tree;
462  *	get a double refcount (access + creation) and return NULL.
463  */
464 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
465 {
466 	struct uprobe *u;
467 
468 	spin_lock(&uprobes_treelock);
469 	u = __insert_uprobe(uprobe);
470 	spin_unlock(&uprobes_treelock);
471 
472 	return u;
473 }
474 
475 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
476 {
477 	struct uprobe *uprobe, *cur_uprobe;
478 
479 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
480 	if (!uprobe)
481 		return NULL;
482 
483 	uprobe->inode = igrab(inode);
484 	uprobe->offset = offset;
485 	init_rwsem(&uprobe->register_rwsem);
486 	init_rwsem(&uprobe->consumer_rwsem);
487 
488 	/* add to uprobes_tree, sorted on inode:offset */
489 	cur_uprobe = insert_uprobe(uprobe);
490 	/* a uprobe exists for this inode:offset combination */
491 	if (cur_uprobe) {
492 		kfree(uprobe);
493 		uprobe = cur_uprobe;
494 		iput(inode);
495 	}
496 
497 	return uprobe;
498 }
499 
500 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
501 {
502 	down_write(&uprobe->consumer_rwsem);
503 	uc->next = uprobe->consumers;
504 	uprobe->consumers = uc;
505 	up_write(&uprobe->consumer_rwsem);
506 }
507 
508 /*
509  * For uprobe @uprobe, delete the consumer @uc.
510  * Return true if the @uc is deleted successfully
511  * or return false.
512  */
513 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
514 {
515 	struct uprobe_consumer **con;
516 	bool ret = false;
517 
518 	down_write(&uprobe->consumer_rwsem);
519 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
520 		if (*con == uc) {
521 			*con = uc->next;
522 			ret = true;
523 			break;
524 		}
525 	}
526 	up_write(&uprobe->consumer_rwsem);
527 
528 	return ret;
529 }
530 
531 static int __copy_insn(struct address_space *mapping, struct file *filp,
532 			void *insn, int nbytes, loff_t offset)
533 {
534 	struct page *page;
535 	/*
536 	 * Ensure that the page that has the original instruction is populated
537 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
538 	 * see uprobe_register().
539 	 */
540 	if (mapping->a_ops->readpage)
541 		page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
542 	else
543 		page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
544 	if (IS_ERR(page))
545 		return PTR_ERR(page);
546 
547 	copy_from_page(page, offset, insn, nbytes);
548 	page_cache_release(page);
549 
550 	return 0;
551 }
552 
553 static int copy_insn(struct uprobe *uprobe, struct file *filp)
554 {
555 	struct address_space *mapping = uprobe->inode->i_mapping;
556 	loff_t offs = uprobe->offset;
557 	void *insn = &uprobe->arch.insn;
558 	int size = sizeof(uprobe->arch.insn);
559 	int len, err = -EIO;
560 
561 	/* Copy only available bytes, -EIO if nothing was read */
562 	do {
563 		if (offs >= i_size_read(uprobe->inode))
564 			break;
565 
566 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
567 		err = __copy_insn(mapping, filp, insn, len, offs);
568 		if (err)
569 			break;
570 
571 		insn += len;
572 		offs += len;
573 		size -= len;
574 	} while (size);
575 
576 	return err;
577 }
578 
579 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
580 				struct mm_struct *mm, unsigned long vaddr)
581 {
582 	int ret = 0;
583 
584 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
585 		return ret;
586 
587 	/* TODO: move this into _register, until then we abuse this sem. */
588 	down_write(&uprobe->consumer_rwsem);
589 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
590 		goto out;
591 
592 	ret = copy_insn(uprobe, file);
593 	if (ret)
594 		goto out;
595 
596 	ret = -ENOTSUPP;
597 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
598 		goto out;
599 
600 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
601 	if (ret)
602 		goto out;
603 
604 	/* uprobe_write_opcode() assumes we don't cross page boundary */
605 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
606 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
607 
608 	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
609 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
610 
611  out:
612 	up_write(&uprobe->consumer_rwsem);
613 
614 	return ret;
615 }
616 
617 static inline bool consumer_filter(struct uprobe_consumer *uc,
618 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
619 {
620 	return !uc->filter || uc->filter(uc, ctx, mm);
621 }
622 
623 static bool filter_chain(struct uprobe *uprobe,
624 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
625 {
626 	struct uprobe_consumer *uc;
627 	bool ret = false;
628 
629 	down_read(&uprobe->consumer_rwsem);
630 	for (uc = uprobe->consumers; uc; uc = uc->next) {
631 		ret = consumer_filter(uc, ctx, mm);
632 		if (ret)
633 			break;
634 	}
635 	up_read(&uprobe->consumer_rwsem);
636 
637 	return ret;
638 }
639 
640 static int
641 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
642 			struct vm_area_struct *vma, unsigned long vaddr)
643 {
644 	bool first_uprobe;
645 	int ret;
646 
647 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
648 	if (ret)
649 		return ret;
650 
651 	/*
652 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
653 	 * the task can hit this breakpoint right after __replace_page().
654 	 */
655 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
656 	if (first_uprobe)
657 		set_bit(MMF_HAS_UPROBES, &mm->flags);
658 
659 	ret = set_swbp(&uprobe->arch, mm, vaddr);
660 	if (!ret)
661 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
662 	else if (first_uprobe)
663 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
664 
665 	return ret;
666 }
667 
668 static int
669 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
670 {
671 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
672 	return set_orig_insn(&uprobe->arch, mm, vaddr);
673 }
674 
675 static inline bool uprobe_is_active(struct uprobe *uprobe)
676 {
677 	return !RB_EMPTY_NODE(&uprobe->rb_node);
678 }
679 /*
680  * There could be threads that have already hit the breakpoint. They
681  * will recheck the current insn and restart if find_uprobe() fails.
682  * See find_active_uprobe().
683  */
684 static void delete_uprobe(struct uprobe *uprobe)
685 {
686 	if (WARN_ON(!uprobe_is_active(uprobe)))
687 		return;
688 
689 	spin_lock(&uprobes_treelock);
690 	rb_erase(&uprobe->rb_node, &uprobes_tree);
691 	spin_unlock(&uprobes_treelock);
692 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
693 	iput(uprobe->inode);
694 	put_uprobe(uprobe);
695 }
696 
697 struct map_info {
698 	struct map_info *next;
699 	struct mm_struct *mm;
700 	unsigned long vaddr;
701 };
702 
703 static inline struct map_info *free_map_info(struct map_info *info)
704 {
705 	struct map_info *next = info->next;
706 	kfree(info);
707 	return next;
708 }
709 
710 static struct map_info *
711 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
712 {
713 	unsigned long pgoff = offset >> PAGE_SHIFT;
714 	struct vm_area_struct *vma;
715 	struct map_info *curr = NULL;
716 	struct map_info *prev = NULL;
717 	struct map_info *info;
718 	int more = 0;
719 
720  again:
721 	i_mmap_lock_read(mapping);
722 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
723 		if (!valid_vma(vma, is_register))
724 			continue;
725 
726 		if (!prev && !more) {
727 			/*
728 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
729 			 * reclaim. This is optimistic, no harm done if it fails.
730 			 */
731 			prev = kmalloc(sizeof(struct map_info),
732 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
733 			if (prev)
734 				prev->next = NULL;
735 		}
736 		if (!prev) {
737 			more++;
738 			continue;
739 		}
740 
741 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
742 			continue;
743 
744 		info = prev;
745 		prev = prev->next;
746 		info->next = curr;
747 		curr = info;
748 
749 		info->mm = vma->vm_mm;
750 		info->vaddr = offset_to_vaddr(vma, offset);
751 	}
752 	i_mmap_unlock_read(mapping);
753 
754 	if (!more)
755 		goto out;
756 
757 	prev = curr;
758 	while (curr) {
759 		mmput(curr->mm);
760 		curr = curr->next;
761 	}
762 
763 	do {
764 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
765 		if (!info) {
766 			curr = ERR_PTR(-ENOMEM);
767 			goto out;
768 		}
769 		info->next = prev;
770 		prev = info;
771 	} while (--more);
772 
773 	goto again;
774  out:
775 	while (prev)
776 		prev = free_map_info(prev);
777 	return curr;
778 }
779 
780 static int
781 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
782 {
783 	bool is_register = !!new;
784 	struct map_info *info;
785 	int err = 0;
786 
787 	percpu_down_write(&dup_mmap_sem);
788 	info = build_map_info(uprobe->inode->i_mapping,
789 					uprobe->offset, is_register);
790 	if (IS_ERR(info)) {
791 		err = PTR_ERR(info);
792 		goto out;
793 	}
794 
795 	while (info) {
796 		struct mm_struct *mm = info->mm;
797 		struct vm_area_struct *vma;
798 
799 		if (err && is_register)
800 			goto free;
801 
802 		down_write(&mm->mmap_sem);
803 		vma = find_vma(mm, info->vaddr);
804 		if (!vma || !valid_vma(vma, is_register) ||
805 		    file_inode(vma->vm_file) != uprobe->inode)
806 			goto unlock;
807 
808 		if (vma->vm_start > info->vaddr ||
809 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
810 			goto unlock;
811 
812 		if (is_register) {
813 			/* consult only the "caller", new consumer. */
814 			if (consumer_filter(new,
815 					UPROBE_FILTER_REGISTER, mm))
816 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
817 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
818 			if (!filter_chain(uprobe,
819 					UPROBE_FILTER_UNREGISTER, mm))
820 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
821 		}
822 
823  unlock:
824 		up_write(&mm->mmap_sem);
825  free:
826 		mmput(mm);
827 		info = free_map_info(info);
828 	}
829  out:
830 	percpu_up_write(&dup_mmap_sem);
831 	return err;
832 }
833 
834 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
835 {
836 	consumer_add(uprobe, uc);
837 	return register_for_each_vma(uprobe, uc);
838 }
839 
840 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
841 {
842 	int err;
843 
844 	if (WARN_ON(!consumer_del(uprobe, uc)))
845 		return;
846 
847 	err = register_for_each_vma(uprobe, NULL);
848 	/* TODO : cant unregister? schedule a worker thread */
849 	if (!uprobe->consumers && !err)
850 		delete_uprobe(uprobe);
851 }
852 
853 /*
854  * uprobe_register - register a probe
855  * @inode: the file in which the probe has to be placed.
856  * @offset: offset from the start of the file.
857  * @uc: information on howto handle the probe..
858  *
859  * Apart from the access refcount, uprobe_register() takes a creation
860  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
861  * inserted into the rbtree (i.e first consumer for a @inode:@offset
862  * tuple).  Creation refcount stops uprobe_unregister from freeing the
863  * @uprobe even before the register operation is complete. Creation
864  * refcount is released when the last @uc for the @uprobe
865  * unregisters.
866  *
867  * Return errno if it cannot successully install probes
868  * else return 0 (success)
869  */
870 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
871 {
872 	struct uprobe *uprobe;
873 	int ret;
874 
875 	/* Uprobe must have at least one set consumer */
876 	if (!uc->handler && !uc->ret_handler)
877 		return -EINVAL;
878 
879 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
880 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
881 		return -EIO;
882 	/* Racy, just to catch the obvious mistakes */
883 	if (offset > i_size_read(inode))
884 		return -EINVAL;
885 
886  retry:
887 	uprobe = alloc_uprobe(inode, offset);
888 	if (!uprobe)
889 		return -ENOMEM;
890 	/*
891 	 * We can race with uprobe_unregister()->delete_uprobe().
892 	 * Check uprobe_is_active() and retry if it is false.
893 	 */
894 	down_write(&uprobe->register_rwsem);
895 	ret = -EAGAIN;
896 	if (likely(uprobe_is_active(uprobe))) {
897 		ret = __uprobe_register(uprobe, uc);
898 		if (ret)
899 			__uprobe_unregister(uprobe, uc);
900 	}
901 	up_write(&uprobe->register_rwsem);
902 	put_uprobe(uprobe);
903 
904 	if (unlikely(ret == -EAGAIN))
905 		goto retry;
906 	return ret;
907 }
908 EXPORT_SYMBOL_GPL(uprobe_register);
909 
910 /*
911  * uprobe_apply - unregister a already registered probe.
912  * @inode: the file in which the probe has to be removed.
913  * @offset: offset from the start of the file.
914  * @uc: consumer which wants to add more or remove some breakpoints
915  * @add: add or remove the breakpoints
916  */
917 int uprobe_apply(struct inode *inode, loff_t offset,
918 			struct uprobe_consumer *uc, bool add)
919 {
920 	struct uprobe *uprobe;
921 	struct uprobe_consumer *con;
922 	int ret = -ENOENT;
923 
924 	uprobe = find_uprobe(inode, offset);
925 	if (WARN_ON(!uprobe))
926 		return ret;
927 
928 	down_write(&uprobe->register_rwsem);
929 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
930 		;
931 	if (con)
932 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
933 	up_write(&uprobe->register_rwsem);
934 	put_uprobe(uprobe);
935 
936 	return ret;
937 }
938 
939 /*
940  * uprobe_unregister - unregister a already registered probe.
941  * @inode: the file in which the probe has to be removed.
942  * @offset: offset from the start of the file.
943  * @uc: identify which probe if multiple probes are colocated.
944  */
945 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
946 {
947 	struct uprobe *uprobe;
948 
949 	uprobe = find_uprobe(inode, offset);
950 	if (WARN_ON(!uprobe))
951 		return;
952 
953 	down_write(&uprobe->register_rwsem);
954 	__uprobe_unregister(uprobe, uc);
955 	up_write(&uprobe->register_rwsem);
956 	put_uprobe(uprobe);
957 }
958 EXPORT_SYMBOL_GPL(uprobe_unregister);
959 
960 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
961 {
962 	struct vm_area_struct *vma;
963 	int err = 0;
964 
965 	down_read(&mm->mmap_sem);
966 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
967 		unsigned long vaddr;
968 		loff_t offset;
969 
970 		if (!valid_vma(vma, false) ||
971 		    file_inode(vma->vm_file) != uprobe->inode)
972 			continue;
973 
974 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
975 		if (uprobe->offset <  offset ||
976 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
977 			continue;
978 
979 		vaddr = offset_to_vaddr(vma, uprobe->offset);
980 		err |= remove_breakpoint(uprobe, mm, vaddr);
981 	}
982 	up_read(&mm->mmap_sem);
983 
984 	return err;
985 }
986 
987 static struct rb_node *
988 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
989 {
990 	struct rb_node *n = uprobes_tree.rb_node;
991 
992 	while (n) {
993 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
994 
995 		if (inode < u->inode) {
996 			n = n->rb_left;
997 		} else if (inode > u->inode) {
998 			n = n->rb_right;
999 		} else {
1000 			if (max < u->offset)
1001 				n = n->rb_left;
1002 			else if (min > u->offset)
1003 				n = n->rb_right;
1004 			else
1005 				break;
1006 		}
1007 	}
1008 
1009 	return n;
1010 }
1011 
1012 /*
1013  * For a given range in vma, build a list of probes that need to be inserted.
1014  */
1015 static void build_probe_list(struct inode *inode,
1016 				struct vm_area_struct *vma,
1017 				unsigned long start, unsigned long end,
1018 				struct list_head *head)
1019 {
1020 	loff_t min, max;
1021 	struct rb_node *n, *t;
1022 	struct uprobe *u;
1023 
1024 	INIT_LIST_HEAD(head);
1025 	min = vaddr_to_offset(vma, start);
1026 	max = min + (end - start) - 1;
1027 
1028 	spin_lock(&uprobes_treelock);
1029 	n = find_node_in_range(inode, min, max);
1030 	if (n) {
1031 		for (t = n; t; t = rb_prev(t)) {
1032 			u = rb_entry(t, struct uprobe, rb_node);
1033 			if (u->inode != inode || u->offset < min)
1034 				break;
1035 			list_add(&u->pending_list, head);
1036 			get_uprobe(u);
1037 		}
1038 		for (t = n; (t = rb_next(t)); ) {
1039 			u = rb_entry(t, struct uprobe, rb_node);
1040 			if (u->inode != inode || u->offset > max)
1041 				break;
1042 			list_add(&u->pending_list, head);
1043 			get_uprobe(u);
1044 		}
1045 	}
1046 	spin_unlock(&uprobes_treelock);
1047 }
1048 
1049 /*
1050  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1051  *
1052  * Currently we ignore all errors and always return 0, the callers
1053  * can't handle the failure anyway.
1054  */
1055 int uprobe_mmap(struct vm_area_struct *vma)
1056 {
1057 	struct list_head tmp_list;
1058 	struct uprobe *uprobe, *u;
1059 	struct inode *inode;
1060 
1061 	if (no_uprobe_events() || !valid_vma(vma, true))
1062 		return 0;
1063 
1064 	inode = file_inode(vma->vm_file);
1065 	if (!inode)
1066 		return 0;
1067 
1068 	mutex_lock(uprobes_mmap_hash(inode));
1069 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1070 	/*
1071 	 * We can race with uprobe_unregister(), this uprobe can be already
1072 	 * removed. But in this case filter_chain() must return false, all
1073 	 * consumers have gone away.
1074 	 */
1075 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1076 		if (!fatal_signal_pending(current) &&
1077 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1078 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1079 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1080 		}
1081 		put_uprobe(uprobe);
1082 	}
1083 	mutex_unlock(uprobes_mmap_hash(inode));
1084 
1085 	return 0;
1086 }
1087 
1088 static bool
1089 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1090 {
1091 	loff_t min, max;
1092 	struct inode *inode;
1093 	struct rb_node *n;
1094 
1095 	inode = file_inode(vma->vm_file);
1096 
1097 	min = vaddr_to_offset(vma, start);
1098 	max = min + (end - start) - 1;
1099 
1100 	spin_lock(&uprobes_treelock);
1101 	n = find_node_in_range(inode, min, max);
1102 	spin_unlock(&uprobes_treelock);
1103 
1104 	return !!n;
1105 }
1106 
1107 /*
1108  * Called in context of a munmap of a vma.
1109  */
1110 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1111 {
1112 	if (no_uprobe_events() || !valid_vma(vma, false))
1113 		return;
1114 
1115 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1116 		return;
1117 
1118 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1119 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1120 		return;
1121 
1122 	if (vma_has_uprobes(vma, start, end))
1123 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1124 }
1125 
1126 /* Slot allocation for XOL */
1127 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1128 {
1129 	struct vm_area_struct *vma;
1130 	int ret;
1131 
1132 	down_write(&mm->mmap_sem);
1133 	if (mm->uprobes_state.xol_area) {
1134 		ret = -EALREADY;
1135 		goto fail;
1136 	}
1137 
1138 	if (!area->vaddr) {
1139 		/* Try to map as high as possible, this is only a hint. */
1140 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1141 						PAGE_SIZE, 0, 0);
1142 		if (area->vaddr & ~PAGE_MASK) {
1143 			ret = area->vaddr;
1144 			goto fail;
1145 		}
1146 	}
1147 
1148 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1149 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1150 				&area->xol_mapping);
1151 	if (IS_ERR(vma)) {
1152 		ret = PTR_ERR(vma);
1153 		goto fail;
1154 	}
1155 
1156 	ret = 0;
1157 	smp_wmb();	/* pairs with get_xol_area() */
1158 	mm->uprobes_state.xol_area = area;
1159  fail:
1160 	up_write(&mm->mmap_sem);
1161 
1162 	return ret;
1163 }
1164 
1165 static struct xol_area *__create_xol_area(unsigned long vaddr)
1166 {
1167 	struct mm_struct *mm = current->mm;
1168 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1169 	struct xol_area *area;
1170 
1171 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1172 	if (unlikely(!area))
1173 		goto out;
1174 
1175 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1176 	if (!area->bitmap)
1177 		goto free_area;
1178 
1179 	area->xol_mapping.name = "[uprobes]";
1180 	area->xol_mapping.pages = area->pages;
1181 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1182 	if (!area->pages[0])
1183 		goto free_bitmap;
1184 	area->pages[1] = NULL;
1185 
1186 	area->vaddr = vaddr;
1187 	init_waitqueue_head(&area->wq);
1188 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1189 	set_bit(0, area->bitmap);
1190 	atomic_set(&area->slot_count, 1);
1191 	copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1192 
1193 	if (!xol_add_vma(mm, area))
1194 		return area;
1195 
1196 	__free_page(area->pages[0]);
1197  free_bitmap:
1198 	kfree(area->bitmap);
1199  free_area:
1200 	kfree(area);
1201  out:
1202 	return NULL;
1203 }
1204 
1205 /*
1206  * get_xol_area - Allocate process's xol_area if necessary.
1207  * This area will be used for storing instructions for execution out of line.
1208  *
1209  * Returns the allocated area or NULL.
1210  */
1211 static struct xol_area *get_xol_area(void)
1212 {
1213 	struct mm_struct *mm = current->mm;
1214 	struct xol_area *area;
1215 
1216 	if (!mm->uprobes_state.xol_area)
1217 		__create_xol_area(0);
1218 
1219 	area = mm->uprobes_state.xol_area;
1220 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1221 	return area;
1222 }
1223 
1224 /*
1225  * uprobe_clear_state - Free the area allocated for slots.
1226  */
1227 void uprobe_clear_state(struct mm_struct *mm)
1228 {
1229 	struct xol_area *area = mm->uprobes_state.xol_area;
1230 
1231 	if (!area)
1232 		return;
1233 
1234 	put_page(area->pages[0]);
1235 	kfree(area->bitmap);
1236 	kfree(area);
1237 }
1238 
1239 void uprobe_start_dup_mmap(void)
1240 {
1241 	percpu_down_read(&dup_mmap_sem);
1242 }
1243 
1244 void uprobe_end_dup_mmap(void)
1245 {
1246 	percpu_up_read(&dup_mmap_sem);
1247 }
1248 
1249 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1250 {
1251 	newmm->uprobes_state.xol_area = NULL;
1252 
1253 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1254 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1255 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1256 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1257 	}
1258 }
1259 
1260 /*
1261  *  - search for a free slot.
1262  */
1263 static unsigned long xol_take_insn_slot(struct xol_area *area)
1264 {
1265 	unsigned long slot_addr;
1266 	int slot_nr;
1267 
1268 	do {
1269 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1270 		if (slot_nr < UINSNS_PER_PAGE) {
1271 			if (!test_and_set_bit(slot_nr, area->bitmap))
1272 				break;
1273 
1274 			slot_nr = UINSNS_PER_PAGE;
1275 			continue;
1276 		}
1277 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1278 	} while (slot_nr >= UINSNS_PER_PAGE);
1279 
1280 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1281 	atomic_inc(&area->slot_count);
1282 
1283 	return slot_addr;
1284 }
1285 
1286 /*
1287  * xol_get_insn_slot - allocate a slot for xol.
1288  * Returns the allocated slot address or 0.
1289  */
1290 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1291 {
1292 	struct xol_area *area;
1293 	unsigned long xol_vaddr;
1294 
1295 	area = get_xol_area();
1296 	if (!area)
1297 		return 0;
1298 
1299 	xol_vaddr = xol_take_insn_slot(area);
1300 	if (unlikely(!xol_vaddr))
1301 		return 0;
1302 
1303 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1304 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1305 
1306 	return xol_vaddr;
1307 }
1308 
1309 /*
1310  * xol_free_insn_slot - If slot was earlier allocated by
1311  * @xol_get_insn_slot(), make the slot available for
1312  * subsequent requests.
1313  */
1314 static void xol_free_insn_slot(struct task_struct *tsk)
1315 {
1316 	struct xol_area *area;
1317 	unsigned long vma_end;
1318 	unsigned long slot_addr;
1319 
1320 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1321 		return;
1322 
1323 	slot_addr = tsk->utask->xol_vaddr;
1324 	if (unlikely(!slot_addr))
1325 		return;
1326 
1327 	area = tsk->mm->uprobes_state.xol_area;
1328 	vma_end = area->vaddr + PAGE_SIZE;
1329 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1330 		unsigned long offset;
1331 		int slot_nr;
1332 
1333 		offset = slot_addr - area->vaddr;
1334 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1335 		if (slot_nr >= UINSNS_PER_PAGE)
1336 			return;
1337 
1338 		clear_bit(slot_nr, area->bitmap);
1339 		atomic_dec(&area->slot_count);
1340 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1341 		if (waitqueue_active(&area->wq))
1342 			wake_up(&area->wq);
1343 
1344 		tsk->utask->xol_vaddr = 0;
1345 	}
1346 }
1347 
1348 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1349 				  void *src, unsigned long len)
1350 {
1351 	/* Initialize the slot */
1352 	copy_to_page(page, vaddr, src, len);
1353 
1354 	/*
1355 	 * We probably need flush_icache_user_range() but it needs vma.
1356 	 * This should work on most of architectures by default. If
1357 	 * architecture needs to do something different it can define
1358 	 * its own version of the function.
1359 	 */
1360 	flush_dcache_page(page);
1361 }
1362 
1363 /**
1364  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1365  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1366  * instruction.
1367  * Return the address of the breakpoint instruction.
1368  */
1369 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1370 {
1371 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1372 }
1373 
1374 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1375 {
1376 	struct uprobe_task *utask = current->utask;
1377 
1378 	if (unlikely(utask && utask->active_uprobe))
1379 		return utask->vaddr;
1380 
1381 	return instruction_pointer(regs);
1382 }
1383 
1384 static struct return_instance *free_ret_instance(struct return_instance *ri)
1385 {
1386 	struct return_instance *next = ri->next;
1387 	put_uprobe(ri->uprobe);
1388 	kfree(ri);
1389 	return next;
1390 }
1391 
1392 /*
1393  * Called with no locks held.
1394  * Called in context of a exiting or a exec-ing thread.
1395  */
1396 void uprobe_free_utask(struct task_struct *t)
1397 {
1398 	struct uprobe_task *utask = t->utask;
1399 	struct return_instance *ri;
1400 
1401 	if (!utask)
1402 		return;
1403 
1404 	if (utask->active_uprobe)
1405 		put_uprobe(utask->active_uprobe);
1406 
1407 	ri = utask->return_instances;
1408 	while (ri)
1409 		ri = free_ret_instance(ri);
1410 
1411 	xol_free_insn_slot(t);
1412 	kfree(utask);
1413 	t->utask = NULL;
1414 }
1415 
1416 /*
1417  * Allocate a uprobe_task object for the task if if necessary.
1418  * Called when the thread hits a breakpoint.
1419  *
1420  * Returns:
1421  * - pointer to new uprobe_task on success
1422  * - NULL otherwise
1423  */
1424 static struct uprobe_task *get_utask(void)
1425 {
1426 	if (!current->utask)
1427 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1428 	return current->utask;
1429 }
1430 
1431 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1432 {
1433 	struct uprobe_task *n_utask;
1434 	struct return_instance **p, *o, *n;
1435 
1436 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1437 	if (!n_utask)
1438 		return -ENOMEM;
1439 	t->utask = n_utask;
1440 
1441 	p = &n_utask->return_instances;
1442 	for (o = o_utask->return_instances; o; o = o->next) {
1443 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1444 		if (!n)
1445 			return -ENOMEM;
1446 
1447 		*n = *o;
1448 		get_uprobe(n->uprobe);
1449 		n->next = NULL;
1450 
1451 		*p = n;
1452 		p = &n->next;
1453 		n_utask->depth++;
1454 	}
1455 
1456 	return 0;
1457 }
1458 
1459 static void uprobe_warn(struct task_struct *t, const char *msg)
1460 {
1461 	pr_warn("uprobe: %s:%d failed to %s\n",
1462 			current->comm, current->pid, msg);
1463 }
1464 
1465 static void dup_xol_work(struct callback_head *work)
1466 {
1467 	if (current->flags & PF_EXITING)
1468 		return;
1469 
1470 	if (!__create_xol_area(current->utask->dup_xol_addr))
1471 		uprobe_warn(current, "dup xol area");
1472 }
1473 
1474 /*
1475  * Called in context of a new clone/fork from copy_process.
1476  */
1477 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1478 {
1479 	struct uprobe_task *utask = current->utask;
1480 	struct mm_struct *mm = current->mm;
1481 	struct xol_area *area;
1482 
1483 	t->utask = NULL;
1484 
1485 	if (!utask || !utask->return_instances)
1486 		return;
1487 
1488 	if (mm == t->mm && !(flags & CLONE_VFORK))
1489 		return;
1490 
1491 	if (dup_utask(t, utask))
1492 		return uprobe_warn(t, "dup ret instances");
1493 
1494 	/* The task can fork() after dup_xol_work() fails */
1495 	area = mm->uprobes_state.xol_area;
1496 	if (!area)
1497 		return uprobe_warn(t, "dup xol area");
1498 
1499 	if (mm == t->mm)
1500 		return;
1501 
1502 	t->utask->dup_xol_addr = area->vaddr;
1503 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1504 	task_work_add(t, &t->utask->dup_xol_work, true);
1505 }
1506 
1507 /*
1508  * Current area->vaddr notion assume the trampoline address is always
1509  * equal area->vaddr.
1510  *
1511  * Returns -1 in case the xol_area is not allocated.
1512  */
1513 static unsigned long get_trampoline_vaddr(void)
1514 {
1515 	struct xol_area *area;
1516 	unsigned long trampoline_vaddr = -1;
1517 
1518 	area = current->mm->uprobes_state.xol_area;
1519 	smp_read_barrier_depends();
1520 	if (area)
1521 		trampoline_vaddr = area->vaddr;
1522 
1523 	return trampoline_vaddr;
1524 }
1525 
1526 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1527 					struct pt_regs *regs)
1528 {
1529 	struct return_instance *ri = utask->return_instances;
1530 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1531 
1532 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1533 		ri = free_ret_instance(ri);
1534 		utask->depth--;
1535 	}
1536 	utask->return_instances = ri;
1537 }
1538 
1539 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1540 {
1541 	struct return_instance *ri;
1542 	struct uprobe_task *utask;
1543 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1544 	bool chained;
1545 
1546 	if (!get_xol_area())
1547 		return;
1548 
1549 	utask = get_utask();
1550 	if (!utask)
1551 		return;
1552 
1553 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1554 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1555 				" nestedness limit pid/tgid=%d/%d\n",
1556 				current->pid, current->tgid);
1557 		return;
1558 	}
1559 
1560 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1561 	if (!ri)
1562 		return;
1563 
1564 	trampoline_vaddr = get_trampoline_vaddr();
1565 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1566 	if (orig_ret_vaddr == -1)
1567 		goto fail;
1568 
1569 	/* drop the entries invalidated by longjmp() */
1570 	chained = (orig_ret_vaddr == trampoline_vaddr);
1571 	cleanup_return_instances(utask, chained, regs);
1572 
1573 	/*
1574 	 * We don't want to keep trampoline address in stack, rather keep the
1575 	 * original return address of first caller thru all the consequent
1576 	 * instances. This also makes breakpoint unwrapping easier.
1577 	 */
1578 	if (chained) {
1579 		if (!utask->return_instances) {
1580 			/*
1581 			 * This situation is not possible. Likely we have an
1582 			 * attack from user-space.
1583 			 */
1584 			uprobe_warn(current, "handle tail call");
1585 			goto fail;
1586 		}
1587 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1588 	}
1589 
1590 	ri->uprobe = get_uprobe(uprobe);
1591 	ri->func = instruction_pointer(regs);
1592 	ri->stack = user_stack_pointer(regs);
1593 	ri->orig_ret_vaddr = orig_ret_vaddr;
1594 	ri->chained = chained;
1595 
1596 	utask->depth++;
1597 	ri->next = utask->return_instances;
1598 	utask->return_instances = ri;
1599 
1600 	return;
1601  fail:
1602 	kfree(ri);
1603 }
1604 
1605 /* Prepare to single-step probed instruction out of line. */
1606 static int
1607 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1608 {
1609 	struct uprobe_task *utask;
1610 	unsigned long xol_vaddr;
1611 	int err;
1612 
1613 	utask = get_utask();
1614 	if (!utask)
1615 		return -ENOMEM;
1616 
1617 	xol_vaddr = xol_get_insn_slot(uprobe);
1618 	if (!xol_vaddr)
1619 		return -ENOMEM;
1620 
1621 	utask->xol_vaddr = xol_vaddr;
1622 	utask->vaddr = bp_vaddr;
1623 
1624 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1625 	if (unlikely(err)) {
1626 		xol_free_insn_slot(current);
1627 		return err;
1628 	}
1629 
1630 	utask->active_uprobe = uprobe;
1631 	utask->state = UTASK_SSTEP;
1632 	return 0;
1633 }
1634 
1635 /*
1636  * If we are singlestepping, then ensure this thread is not connected to
1637  * non-fatal signals until completion of singlestep.  When xol insn itself
1638  * triggers the signal,  restart the original insn even if the task is
1639  * already SIGKILL'ed (since coredump should report the correct ip).  This
1640  * is even more important if the task has a handler for SIGSEGV/etc, The
1641  * _same_ instruction should be repeated again after return from the signal
1642  * handler, and SSTEP can never finish in this case.
1643  */
1644 bool uprobe_deny_signal(void)
1645 {
1646 	struct task_struct *t = current;
1647 	struct uprobe_task *utask = t->utask;
1648 
1649 	if (likely(!utask || !utask->active_uprobe))
1650 		return false;
1651 
1652 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1653 
1654 	if (signal_pending(t)) {
1655 		spin_lock_irq(&t->sighand->siglock);
1656 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1657 		spin_unlock_irq(&t->sighand->siglock);
1658 
1659 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1660 			utask->state = UTASK_SSTEP_TRAPPED;
1661 			set_tsk_thread_flag(t, TIF_UPROBE);
1662 		}
1663 	}
1664 
1665 	return true;
1666 }
1667 
1668 static void mmf_recalc_uprobes(struct mm_struct *mm)
1669 {
1670 	struct vm_area_struct *vma;
1671 
1672 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1673 		if (!valid_vma(vma, false))
1674 			continue;
1675 		/*
1676 		 * This is not strictly accurate, we can race with
1677 		 * uprobe_unregister() and see the already removed
1678 		 * uprobe if delete_uprobe() was not yet called.
1679 		 * Or this uprobe can be filtered out.
1680 		 */
1681 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1682 			return;
1683 	}
1684 
1685 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1686 }
1687 
1688 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1689 {
1690 	struct page *page;
1691 	uprobe_opcode_t opcode;
1692 	int result;
1693 
1694 	pagefault_disable();
1695 	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1696 							sizeof(opcode));
1697 	pagefault_enable();
1698 
1699 	if (likely(result == 0))
1700 		goto out;
1701 
1702 	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1703 	if (result < 0)
1704 		return result;
1705 
1706 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1707 	put_page(page);
1708  out:
1709 	/* This needs to return true for any variant of the trap insn */
1710 	return is_trap_insn(&opcode);
1711 }
1712 
1713 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1714 {
1715 	struct mm_struct *mm = current->mm;
1716 	struct uprobe *uprobe = NULL;
1717 	struct vm_area_struct *vma;
1718 
1719 	down_read(&mm->mmap_sem);
1720 	vma = find_vma(mm, bp_vaddr);
1721 	if (vma && vma->vm_start <= bp_vaddr) {
1722 		if (valid_vma(vma, false)) {
1723 			struct inode *inode = file_inode(vma->vm_file);
1724 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1725 
1726 			uprobe = find_uprobe(inode, offset);
1727 		}
1728 
1729 		if (!uprobe)
1730 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1731 	} else {
1732 		*is_swbp = -EFAULT;
1733 	}
1734 
1735 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1736 		mmf_recalc_uprobes(mm);
1737 	up_read(&mm->mmap_sem);
1738 
1739 	return uprobe;
1740 }
1741 
1742 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1743 {
1744 	struct uprobe_consumer *uc;
1745 	int remove = UPROBE_HANDLER_REMOVE;
1746 	bool need_prep = false; /* prepare return uprobe, when needed */
1747 
1748 	down_read(&uprobe->register_rwsem);
1749 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1750 		int rc = 0;
1751 
1752 		if (uc->handler) {
1753 			rc = uc->handler(uc, regs);
1754 			WARN(rc & ~UPROBE_HANDLER_MASK,
1755 				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1756 		}
1757 
1758 		if (uc->ret_handler)
1759 			need_prep = true;
1760 
1761 		remove &= rc;
1762 	}
1763 
1764 	if (need_prep && !remove)
1765 		prepare_uretprobe(uprobe, regs); /* put bp at return */
1766 
1767 	if (remove && uprobe->consumers) {
1768 		WARN_ON(!uprobe_is_active(uprobe));
1769 		unapply_uprobe(uprobe, current->mm);
1770 	}
1771 	up_read(&uprobe->register_rwsem);
1772 }
1773 
1774 static void
1775 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1776 {
1777 	struct uprobe *uprobe = ri->uprobe;
1778 	struct uprobe_consumer *uc;
1779 
1780 	down_read(&uprobe->register_rwsem);
1781 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1782 		if (uc->ret_handler)
1783 			uc->ret_handler(uc, ri->func, regs);
1784 	}
1785 	up_read(&uprobe->register_rwsem);
1786 }
1787 
1788 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1789 {
1790 	bool chained;
1791 
1792 	do {
1793 		chained = ri->chained;
1794 		ri = ri->next;	/* can't be NULL if chained */
1795 	} while (chained);
1796 
1797 	return ri;
1798 }
1799 
1800 static void handle_trampoline(struct pt_regs *regs)
1801 {
1802 	struct uprobe_task *utask;
1803 	struct return_instance *ri, *next;
1804 	bool valid;
1805 
1806 	utask = current->utask;
1807 	if (!utask)
1808 		goto sigill;
1809 
1810 	ri = utask->return_instances;
1811 	if (!ri)
1812 		goto sigill;
1813 
1814 	do {
1815 		/*
1816 		 * We should throw out the frames invalidated by longjmp().
1817 		 * If this chain is valid, then the next one should be alive
1818 		 * or NULL; the latter case means that nobody but ri->func
1819 		 * could hit this trampoline on return. TODO: sigaltstack().
1820 		 */
1821 		next = find_next_ret_chain(ri);
1822 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1823 
1824 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
1825 		do {
1826 			if (valid)
1827 				handle_uretprobe_chain(ri, regs);
1828 			ri = free_ret_instance(ri);
1829 			utask->depth--;
1830 		} while (ri != next);
1831 	} while (!valid);
1832 
1833 	utask->return_instances = ri;
1834 	return;
1835 
1836  sigill:
1837 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1838 	force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1839 
1840 }
1841 
1842 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1843 {
1844 	return false;
1845 }
1846 
1847 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1848 					struct pt_regs *regs)
1849 {
1850 	return true;
1851 }
1852 
1853 /*
1854  * Run handler and ask thread to singlestep.
1855  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1856  */
1857 static void handle_swbp(struct pt_regs *regs)
1858 {
1859 	struct uprobe *uprobe;
1860 	unsigned long bp_vaddr;
1861 	int uninitialized_var(is_swbp);
1862 
1863 	bp_vaddr = uprobe_get_swbp_addr(regs);
1864 	if (bp_vaddr == get_trampoline_vaddr())
1865 		return handle_trampoline(regs);
1866 
1867 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1868 	if (!uprobe) {
1869 		if (is_swbp > 0) {
1870 			/* No matching uprobe; signal SIGTRAP. */
1871 			send_sig(SIGTRAP, current, 0);
1872 		} else {
1873 			/*
1874 			 * Either we raced with uprobe_unregister() or we can't
1875 			 * access this memory. The latter is only possible if
1876 			 * another thread plays with our ->mm. In both cases
1877 			 * we can simply restart. If this vma was unmapped we
1878 			 * can pretend this insn was not executed yet and get
1879 			 * the (correct) SIGSEGV after restart.
1880 			 */
1881 			instruction_pointer_set(regs, bp_vaddr);
1882 		}
1883 		return;
1884 	}
1885 
1886 	/* change it in advance for ->handler() and restart */
1887 	instruction_pointer_set(regs, bp_vaddr);
1888 
1889 	/*
1890 	 * TODO: move copy_insn/etc into _register and remove this hack.
1891 	 * After we hit the bp, _unregister + _register can install the
1892 	 * new and not-yet-analyzed uprobe at the same address, restart.
1893 	 */
1894 	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1895 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1896 		goto out;
1897 
1898 	/* Tracing handlers use ->utask to communicate with fetch methods */
1899 	if (!get_utask())
1900 		goto out;
1901 
1902 	if (arch_uprobe_ignore(&uprobe->arch, regs))
1903 		goto out;
1904 
1905 	handler_chain(uprobe, regs);
1906 
1907 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1908 		goto out;
1909 
1910 	if (!pre_ssout(uprobe, regs, bp_vaddr))
1911 		return;
1912 
1913 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1914 out:
1915 	put_uprobe(uprobe);
1916 }
1917 
1918 /*
1919  * Perform required fix-ups and disable singlestep.
1920  * Allow pending signals to take effect.
1921  */
1922 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1923 {
1924 	struct uprobe *uprobe;
1925 	int err = 0;
1926 
1927 	uprobe = utask->active_uprobe;
1928 	if (utask->state == UTASK_SSTEP_ACK)
1929 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1930 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1931 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1932 	else
1933 		WARN_ON_ONCE(1);
1934 
1935 	put_uprobe(uprobe);
1936 	utask->active_uprobe = NULL;
1937 	utask->state = UTASK_RUNNING;
1938 	xol_free_insn_slot(current);
1939 
1940 	spin_lock_irq(&current->sighand->siglock);
1941 	recalc_sigpending(); /* see uprobe_deny_signal() */
1942 	spin_unlock_irq(&current->sighand->siglock);
1943 
1944 	if (unlikely(err)) {
1945 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1946 		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1947 	}
1948 }
1949 
1950 /*
1951  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1952  * allows the thread to return from interrupt. After that handle_swbp()
1953  * sets utask->active_uprobe.
1954  *
1955  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1956  * and allows the thread to return from interrupt.
1957  *
1958  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1959  * uprobe_notify_resume().
1960  */
1961 void uprobe_notify_resume(struct pt_regs *regs)
1962 {
1963 	struct uprobe_task *utask;
1964 
1965 	clear_thread_flag(TIF_UPROBE);
1966 
1967 	utask = current->utask;
1968 	if (utask && utask->active_uprobe)
1969 		handle_singlestep(utask, regs);
1970 	else
1971 		handle_swbp(regs);
1972 }
1973 
1974 /*
1975  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1976  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1977  */
1978 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1979 {
1980 	if (!current->mm)
1981 		return 0;
1982 
1983 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1984 	    (!current->utask || !current->utask->return_instances))
1985 		return 0;
1986 
1987 	set_thread_flag(TIF_UPROBE);
1988 	return 1;
1989 }
1990 
1991 /*
1992  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1993  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1994  */
1995 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1996 {
1997 	struct uprobe_task *utask = current->utask;
1998 
1999 	if (!current->mm || !utask || !utask->active_uprobe)
2000 		/* task is currently not uprobed */
2001 		return 0;
2002 
2003 	utask->state = UTASK_SSTEP_ACK;
2004 	set_thread_flag(TIF_UPROBE);
2005 	return 1;
2006 }
2007 
2008 static struct notifier_block uprobe_exception_nb = {
2009 	.notifier_call		= arch_uprobe_exception_notify,
2010 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2011 };
2012 
2013 static int __init init_uprobes(void)
2014 {
2015 	int i;
2016 
2017 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2018 		mutex_init(&uprobes_mmap_mutex[i]);
2019 
2020 	if (percpu_init_rwsem(&dup_mmap_sem))
2021 		return -ENOMEM;
2022 
2023 	return register_die_notifier(&uprobe_exception_nb);
2024 }
2025 __initcall(init_uprobes);
2026