1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/export.h> 31 #include <linux/rmap.h> /* anon_vma_prepare */ 32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 33 #include <linux/swap.h> /* try_to_free_swap */ 34 #include <linux/ptrace.h> /* user_enable_single_step */ 35 #include <linux/kdebug.h> /* notifier mechanism */ 36 #include "../../mm/internal.h" /* munlock_vma_page */ 37 #include <linux/percpu-rwsem.h> 38 #include <linux/task_work.h> 39 #include <linux/shmem_fs.h> 40 41 #include <linux/uprobes.h> 42 43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 45 46 static struct rb_root uprobes_tree = RB_ROOT; 47 /* 48 * allows us to skip the uprobe_mmap if there are no uprobe events active 49 * at this time. Probably a fine grained per inode count is better? 50 */ 51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 52 53 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 54 55 #define UPROBES_HASH_SZ 13 56 /* serialize uprobe->pending_list */ 57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 59 60 static struct percpu_rw_semaphore dup_mmap_sem; 61 62 /* Have a copy of original instruction */ 63 #define UPROBE_COPY_INSN 0 64 65 struct uprobe { 66 struct rb_node rb_node; /* node in the rb tree */ 67 atomic_t ref; 68 struct rw_semaphore register_rwsem; 69 struct rw_semaphore consumer_rwsem; 70 struct list_head pending_list; 71 struct uprobe_consumer *consumers; 72 struct inode *inode; /* Also hold a ref to inode */ 73 loff_t offset; 74 unsigned long flags; 75 76 /* 77 * The generic code assumes that it has two members of unknown type 78 * owned by the arch-specific code: 79 * 80 * insn - copy_insn() saves the original instruction here for 81 * arch_uprobe_analyze_insn(). 82 * 83 * ixol - potentially modified instruction to execute out of 84 * line, copied to xol_area by xol_get_insn_slot(). 85 */ 86 struct arch_uprobe arch; 87 }; 88 89 /* 90 * Execute out of line area: anonymous executable mapping installed 91 * by the probed task to execute the copy of the original instruction 92 * mangled by set_swbp(). 93 * 94 * On a breakpoint hit, thread contests for a slot. It frees the 95 * slot after singlestep. Currently a fixed number of slots are 96 * allocated. 97 */ 98 struct xol_area { 99 wait_queue_head_t wq; /* if all slots are busy */ 100 atomic_t slot_count; /* number of in-use slots */ 101 unsigned long *bitmap; /* 0 = free slot */ 102 103 struct vm_special_mapping xol_mapping; 104 struct page *pages[2]; 105 /* 106 * We keep the vma's vm_start rather than a pointer to the vma 107 * itself. The probed process or a naughty kernel module could make 108 * the vma go away, and we must handle that reasonably gracefully. 109 */ 110 unsigned long vaddr; /* Page(s) of instruction slots */ 111 }; 112 113 /* 114 * valid_vma: Verify if the specified vma is an executable vma 115 * Relax restrictions while unregistering: vm_flags might have 116 * changed after breakpoint was inserted. 117 * - is_register: indicates if we are in register context. 118 * - Return 1 if the specified virtual address is in an 119 * executable vma. 120 */ 121 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 122 { 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 124 125 if (is_register) 126 flags |= VM_WRITE; 127 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 129 } 130 131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 132 { 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 134 } 135 136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 137 { 138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 139 } 140 141 /** 142 * __replace_page - replace page in vma by new page. 143 * based on replace_page in mm/ksm.c 144 * 145 * @vma: vma that holds the pte pointing to page 146 * @addr: address the old @page is mapped at 147 * @page: the cowed page we are replacing by kpage 148 * @kpage: the modified page we replace page by 149 * 150 * Returns 0 on success, -EFAULT on failure. 151 */ 152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 153 struct page *page, struct page *kpage) 154 { 155 struct mm_struct *mm = vma->vm_mm; 156 spinlock_t *ptl; 157 pte_t *ptep; 158 int err; 159 /* For mmu_notifiers */ 160 const unsigned long mmun_start = addr; 161 const unsigned long mmun_end = addr + PAGE_SIZE; 162 struct mem_cgroup *memcg; 163 164 err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg); 165 if (err) 166 return err; 167 168 /* For try_to_free_swap() and munlock_vma_page() below */ 169 lock_page(page); 170 171 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 172 err = -EAGAIN; 173 ptep = page_check_address(page, mm, addr, &ptl, 0); 174 if (!ptep) 175 goto unlock; 176 177 get_page(kpage); 178 page_add_new_anon_rmap(kpage, vma, addr); 179 mem_cgroup_commit_charge(kpage, memcg, false); 180 lru_cache_add_active_or_unevictable(kpage, vma); 181 182 if (!PageAnon(page)) { 183 dec_mm_counter(mm, MM_FILEPAGES); 184 inc_mm_counter(mm, MM_ANONPAGES); 185 } 186 187 flush_cache_page(vma, addr, pte_pfn(*ptep)); 188 ptep_clear_flush_notify(vma, addr, ptep); 189 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 190 191 page_remove_rmap(page); 192 if (!page_mapped(page)) 193 try_to_free_swap(page); 194 pte_unmap_unlock(ptep, ptl); 195 196 if (vma->vm_flags & VM_LOCKED) 197 munlock_vma_page(page); 198 put_page(page); 199 200 err = 0; 201 unlock: 202 mem_cgroup_cancel_charge(kpage, memcg); 203 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 204 unlock_page(page); 205 return err; 206 } 207 208 /** 209 * is_swbp_insn - check if instruction is breakpoint instruction. 210 * @insn: instruction to be checked. 211 * Default implementation of is_swbp_insn 212 * Returns true if @insn is a breakpoint instruction. 213 */ 214 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 215 { 216 return *insn == UPROBE_SWBP_INSN; 217 } 218 219 /** 220 * is_trap_insn - check if instruction is breakpoint instruction. 221 * @insn: instruction to be checked. 222 * Default implementation of is_trap_insn 223 * Returns true if @insn is a breakpoint instruction. 224 * 225 * This function is needed for the case where an architecture has multiple 226 * trap instructions (like powerpc). 227 */ 228 bool __weak is_trap_insn(uprobe_opcode_t *insn) 229 { 230 return is_swbp_insn(insn); 231 } 232 233 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 234 { 235 void *kaddr = kmap_atomic(page); 236 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 237 kunmap_atomic(kaddr); 238 } 239 240 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 241 { 242 void *kaddr = kmap_atomic(page); 243 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 244 kunmap_atomic(kaddr); 245 } 246 247 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 248 { 249 uprobe_opcode_t old_opcode; 250 bool is_swbp; 251 252 /* 253 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 254 * We do not check if it is any other 'trap variant' which could 255 * be conditional trap instruction such as the one powerpc supports. 256 * 257 * The logic is that we do not care if the underlying instruction 258 * is a trap variant; uprobes always wins over any other (gdb) 259 * breakpoint. 260 */ 261 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 262 is_swbp = is_swbp_insn(&old_opcode); 263 264 if (is_swbp_insn(new_opcode)) { 265 if (is_swbp) /* register: already installed? */ 266 return 0; 267 } else { 268 if (!is_swbp) /* unregister: was it changed by us? */ 269 return 0; 270 } 271 272 return 1; 273 } 274 275 /* 276 * NOTE: 277 * Expect the breakpoint instruction to be the smallest size instruction for 278 * the architecture. If an arch has variable length instruction and the 279 * breakpoint instruction is not of the smallest length instruction 280 * supported by that architecture then we need to modify is_trap_at_addr and 281 * uprobe_write_opcode accordingly. This would never be a problem for archs 282 * that have fixed length instructions. 283 * 284 * uprobe_write_opcode - write the opcode at a given virtual address. 285 * @mm: the probed process address space. 286 * @vaddr: the virtual address to store the opcode. 287 * @opcode: opcode to be written at @vaddr. 288 * 289 * Called with mm->mmap_sem held for write. 290 * Return 0 (success) or a negative errno. 291 */ 292 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, 293 uprobe_opcode_t opcode) 294 { 295 struct page *old_page, *new_page; 296 struct vm_area_struct *vma; 297 int ret; 298 299 retry: 300 /* Read the page with vaddr into memory */ 301 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma); 302 if (ret <= 0) 303 return ret; 304 305 ret = verify_opcode(old_page, vaddr, &opcode); 306 if (ret <= 0) 307 goto put_old; 308 309 ret = anon_vma_prepare(vma); 310 if (ret) 311 goto put_old; 312 313 ret = -ENOMEM; 314 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 315 if (!new_page) 316 goto put_old; 317 318 __SetPageUptodate(new_page); 319 copy_highpage(new_page, old_page); 320 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 321 322 ret = __replace_page(vma, vaddr, old_page, new_page); 323 page_cache_release(new_page); 324 put_old: 325 put_page(old_page); 326 327 if (unlikely(ret == -EAGAIN)) 328 goto retry; 329 return ret; 330 } 331 332 /** 333 * set_swbp - store breakpoint at a given address. 334 * @auprobe: arch specific probepoint information. 335 * @mm: the probed process address space. 336 * @vaddr: the virtual address to insert the opcode. 337 * 338 * For mm @mm, store the breakpoint instruction at @vaddr. 339 * Return 0 (success) or a negative errno. 340 */ 341 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 342 { 343 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN); 344 } 345 346 /** 347 * set_orig_insn - Restore the original instruction. 348 * @mm: the probed process address space. 349 * @auprobe: arch specific probepoint information. 350 * @vaddr: the virtual address to insert the opcode. 351 * 352 * For mm @mm, restore the original opcode (opcode) at @vaddr. 353 * Return 0 (success) or a negative errno. 354 */ 355 int __weak 356 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 357 { 358 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn); 359 } 360 361 static struct uprobe *get_uprobe(struct uprobe *uprobe) 362 { 363 atomic_inc(&uprobe->ref); 364 return uprobe; 365 } 366 367 static void put_uprobe(struct uprobe *uprobe) 368 { 369 if (atomic_dec_and_test(&uprobe->ref)) 370 kfree(uprobe); 371 } 372 373 static int match_uprobe(struct uprobe *l, struct uprobe *r) 374 { 375 if (l->inode < r->inode) 376 return -1; 377 378 if (l->inode > r->inode) 379 return 1; 380 381 if (l->offset < r->offset) 382 return -1; 383 384 if (l->offset > r->offset) 385 return 1; 386 387 return 0; 388 } 389 390 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 391 { 392 struct uprobe u = { .inode = inode, .offset = offset }; 393 struct rb_node *n = uprobes_tree.rb_node; 394 struct uprobe *uprobe; 395 int match; 396 397 while (n) { 398 uprobe = rb_entry(n, struct uprobe, rb_node); 399 match = match_uprobe(&u, uprobe); 400 if (!match) 401 return get_uprobe(uprobe); 402 403 if (match < 0) 404 n = n->rb_left; 405 else 406 n = n->rb_right; 407 } 408 return NULL; 409 } 410 411 /* 412 * Find a uprobe corresponding to a given inode:offset 413 * Acquires uprobes_treelock 414 */ 415 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 416 { 417 struct uprobe *uprobe; 418 419 spin_lock(&uprobes_treelock); 420 uprobe = __find_uprobe(inode, offset); 421 spin_unlock(&uprobes_treelock); 422 423 return uprobe; 424 } 425 426 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 427 { 428 struct rb_node **p = &uprobes_tree.rb_node; 429 struct rb_node *parent = NULL; 430 struct uprobe *u; 431 int match; 432 433 while (*p) { 434 parent = *p; 435 u = rb_entry(parent, struct uprobe, rb_node); 436 match = match_uprobe(uprobe, u); 437 if (!match) 438 return get_uprobe(u); 439 440 if (match < 0) 441 p = &parent->rb_left; 442 else 443 p = &parent->rb_right; 444 445 } 446 447 u = NULL; 448 rb_link_node(&uprobe->rb_node, parent, p); 449 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 450 /* get access + creation ref */ 451 atomic_set(&uprobe->ref, 2); 452 453 return u; 454 } 455 456 /* 457 * Acquire uprobes_treelock. 458 * Matching uprobe already exists in rbtree; 459 * increment (access refcount) and return the matching uprobe. 460 * 461 * No matching uprobe; insert the uprobe in rb_tree; 462 * get a double refcount (access + creation) and return NULL. 463 */ 464 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 465 { 466 struct uprobe *u; 467 468 spin_lock(&uprobes_treelock); 469 u = __insert_uprobe(uprobe); 470 spin_unlock(&uprobes_treelock); 471 472 return u; 473 } 474 475 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 476 { 477 struct uprobe *uprobe, *cur_uprobe; 478 479 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 480 if (!uprobe) 481 return NULL; 482 483 uprobe->inode = igrab(inode); 484 uprobe->offset = offset; 485 init_rwsem(&uprobe->register_rwsem); 486 init_rwsem(&uprobe->consumer_rwsem); 487 488 /* add to uprobes_tree, sorted on inode:offset */ 489 cur_uprobe = insert_uprobe(uprobe); 490 /* a uprobe exists for this inode:offset combination */ 491 if (cur_uprobe) { 492 kfree(uprobe); 493 uprobe = cur_uprobe; 494 iput(inode); 495 } 496 497 return uprobe; 498 } 499 500 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 501 { 502 down_write(&uprobe->consumer_rwsem); 503 uc->next = uprobe->consumers; 504 uprobe->consumers = uc; 505 up_write(&uprobe->consumer_rwsem); 506 } 507 508 /* 509 * For uprobe @uprobe, delete the consumer @uc. 510 * Return true if the @uc is deleted successfully 511 * or return false. 512 */ 513 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 514 { 515 struct uprobe_consumer **con; 516 bool ret = false; 517 518 down_write(&uprobe->consumer_rwsem); 519 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 520 if (*con == uc) { 521 *con = uc->next; 522 ret = true; 523 break; 524 } 525 } 526 up_write(&uprobe->consumer_rwsem); 527 528 return ret; 529 } 530 531 static int __copy_insn(struct address_space *mapping, struct file *filp, 532 void *insn, int nbytes, loff_t offset) 533 { 534 struct page *page; 535 /* 536 * Ensure that the page that has the original instruction is populated 537 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 538 * see uprobe_register(). 539 */ 540 if (mapping->a_ops->readpage) 541 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp); 542 else 543 page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT); 544 if (IS_ERR(page)) 545 return PTR_ERR(page); 546 547 copy_from_page(page, offset, insn, nbytes); 548 page_cache_release(page); 549 550 return 0; 551 } 552 553 static int copy_insn(struct uprobe *uprobe, struct file *filp) 554 { 555 struct address_space *mapping = uprobe->inode->i_mapping; 556 loff_t offs = uprobe->offset; 557 void *insn = &uprobe->arch.insn; 558 int size = sizeof(uprobe->arch.insn); 559 int len, err = -EIO; 560 561 /* Copy only available bytes, -EIO if nothing was read */ 562 do { 563 if (offs >= i_size_read(uprobe->inode)) 564 break; 565 566 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 567 err = __copy_insn(mapping, filp, insn, len, offs); 568 if (err) 569 break; 570 571 insn += len; 572 offs += len; 573 size -= len; 574 } while (size); 575 576 return err; 577 } 578 579 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 580 struct mm_struct *mm, unsigned long vaddr) 581 { 582 int ret = 0; 583 584 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 585 return ret; 586 587 /* TODO: move this into _register, until then we abuse this sem. */ 588 down_write(&uprobe->consumer_rwsem); 589 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 590 goto out; 591 592 ret = copy_insn(uprobe, file); 593 if (ret) 594 goto out; 595 596 ret = -ENOTSUPP; 597 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 598 goto out; 599 600 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 601 if (ret) 602 goto out; 603 604 /* uprobe_write_opcode() assumes we don't cross page boundary */ 605 BUG_ON((uprobe->offset & ~PAGE_MASK) + 606 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 607 608 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */ 609 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 610 611 out: 612 up_write(&uprobe->consumer_rwsem); 613 614 return ret; 615 } 616 617 static inline bool consumer_filter(struct uprobe_consumer *uc, 618 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 619 { 620 return !uc->filter || uc->filter(uc, ctx, mm); 621 } 622 623 static bool filter_chain(struct uprobe *uprobe, 624 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 625 { 626 struct uprobe_consumer *uc; 627 bool ret = false; 628 629 down_read(&uprobe->consumer_rwsem); 630 for (uc = uprobe->consumers; uc; uc = uc->next) { 631 ret = consumer_filter(uc, ctx, mm); 632 if (ret) 633 break; 634 } 635 up_read(&uprobe->consumer_rwsem); 636 637 return ret; 638 } 639 640 static int 641 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 642 struct vm_area_struct *vma, unsigned long vaddr) 643 { 644 bool first_uprobe; 645 int ret; 646 647 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 648 if (ret) 649 return ret; 650 651 /* 652 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 653 * the task can hit this breakpoint right after __replace_page(). 654 */ 655 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 656 if (first_uprobe) 657 set_bit(MMF_HAS_UPROBES, &mm->flags); 658 659 ret = set_swbp(&uprobe->arch, mm, vaddr); 660 if (!ret) 661 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 662 else if (first_uprobe) 663 clear_bit(MMF_HAS_UPROBES, &mm->flags); 664 665 return ret; 666 } 667 668 static int 669 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 670 { 671 set_bit(MMF_RECALC_UPROBES, &mm->flags); 672 return set_orig_insn(&uprobe->arch, mm, vaddr); 673 } 674 675 static inline bool uprobe_is_active(struct uprobe *uprobe) 676 { 677 return !RB_EMPTY_NODE(&uprobe->rb_node); 678 } 679 /* 680 * There could be threads that have already hit the breakpoint. They 681 * will recheck the current insn and restart if find_uprobe() fails. 682 * See find_active_uprobe(). 683 */ 684 static void delete_uprobe(struct uprobe *uprobe) 685 { 686 if (WARN_ON(!uprobe_is_active(uprobe))) 687 return; 688 689 spin_lock(&uprobes_treelock); 690 rb_erase(&uprobe->rb_node, &uprobes_tree); 691 spin_unlock(&uprobes_treelock); 692 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 693 iput(uprobe->inode); 694 put_uprobe(uprobe); 695 } 696 697 struct map_info { 698 struct map_info *next; 699 struct mm_struct *mm; 700 unsigned long vaddr; 701 }; 702 703 static inline struct map_info *free_map_info(struct map_info *info) 704 { 705 struct map_info *next = info->next; 706 kfree(info); 707 return next; 708 } 709 710 static struct map_info * 711 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 712 { 713 unsigned long pgoff = offset >> PAGE_SHIFT; 714 struct vm_area_struct *vma; 715 struct map_info *curr = NULL; 716 struct map_info *prev = NULL; 717 struct map_info *info; 718 int more = 0; 719 720 again: 721 i_mmap_lock_read(mapping); 722 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 723 if (!valid_vma(vma, is_register)) 724 continue; 725 726 if (!prev && !more) { 727 /* 728 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 729 * reclaim. This is optimistic, no harm done if it fails. 730 */ 731 prev = kmalloc(sizeof(struct map_info), 732 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 733 if (prev) 734 prev->next = NULL; 735 } 736 if (!prev) { 737 more++; 738 continue; 739 } 740 741 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 742 continue; 743 744 info = prev; 745 prev = prev->next; 746 info->next = curr; 747 curr = info; 748 749 info->mm = vma->vm_mm; 750 info->vaddr = offset_to_vaddr(vma, offset); 751 } 752 i_mmap_unlock_read(mapping); 753 754 if (!more) 755 goto out; 756 757 prev = curr; 758 while (curr) { 759 mmput(curr->mm); 760 curr = curr->next; 761 } 762 763 do { 764 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 765 if (!info) { 766 curr = ERR_PTR(-ENOMEM); 767 goto out; 768 } 769 info->next = prev; 770 prev = info; 771 } while (--more); 772 773 goto again; 774 out: 775 while (prev) 776 prev = free_map_info(prev); 777 return curr; 778 } 779 780 static int 781 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 782 { 783 bool is_register = !!new; 784 struct map_info *info; 785 int err = 0; 786 787 percpu_down_write(&dup_mmap_sem); 788 info = build_map_info(uprobe->inode->i_mapping, 789 uprobe->offset, is_register); 790 if (IS_ERR(info)) { 791 err = PTR_ERR(info); 792 goto out; 793 } 794 795 while (info) { 796 struct mm_struct *mm = info->mm; 797 struct vm_area_struct *vma; 798 799 if (err && is_register) 800 goto free; 801 802 down_write(&mm->mmap_sem); 803 vma = find_vma(mm, info->vaddr); 804 if (!vma || !valid_vma(vma, is_register) || 805 file_inode(vma->vm_file) != uprobe->inode) 806 goto unlock; 807 808 if (vma->vm_start > info->vaddr || 809 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 810 goto unlock; 811 812 if (is_register) { 813 /* consult only the "caller", new consumer. */ 814 if (consumer_filter(new, 815 UPROBE_FILTER_REGISTER, mm)) 816 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 817 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 818 if (!filter_chain(uprobe, 819 UPROBE_FILTER_UNREGISTER, mm)) 820 err |= remove_breakpoint(uprobe, mm, info->vaddr); 821 } 822 823 unlock: 824 up_write(&mm->mmap_sem); 825 free: 826 mmput(mm); 827 info = free_map_info(info); 828 } 829 out: 830 percpu_up_write(&dup_mmap_sem); 831 return err; 832 } 833 834 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc) 835 { 836 consumer_add(uprobe, uc); 837 return register_for_each_vma(uprobe, uc); 838 } 839 840 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 841 { 842 int err; 843 844 if (WARN_ON(!consumer_del(uprobe, uc))) 845 return; 846 847 err = register_for_each_vma(uprobe, NULL); 848 /* TODO : cant unregister? schedule a worker thread */ 849 if (!uprobe->consumers && !err) 850 delete_uprobe(uprobe); 851 } 852 853 /* 854 * uprobe_register - register a probe 855 * @inode: the file in which the probe has to be placed. 856 * @offset: offset from the start of the file. 857 * @uc: information on howto handle the probe.. 858 * 859 * Apart from the access refcount, uprobe_register() takes a creation 860 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 861 * inserted into the rbtree (i.e first consumer for a @inode:@offset 862 * tuple). Creation refcount stops uprobe_unregister from freeing the 863 * @uprobe even before the register operation is complete. Creation 864 * refcount is released when the last @uc for the @uprobe 865 * unregisters. 866 * 867 * Return errno if it cannot successully install probes 868 * else return 0 (success) 869 */ 870 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 871 { 872 struct uprobe *uprobe; 873 int ret; 874 875 /* Uprobe must have at least one set consumer */ 876 if (!uc->handler && !uc->ret_handler) 877 return -EINVAL; 878 879 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 880 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 881 return -EIO; 882 /* Racy, just to catch the obvious mistakes */ 883 if (offset > i_size_read(inode)) 884 return -EINVAL; 885 886 retry: 887 uprobe = alloc_uprobe(inode, offset); 888 if (!uprobe) 889 return -ENOMEM; 890 /* 891 * We can race with uprobe_unregister()->delete_uprobe(). 892 * Check uprobe_is_active() and retry if it is false. 893 */ 894 down_write(&uprobe->register_rwsem); 895 ret = -EAGAIN; 896 if (likely(uprobe_is_active(uprobe))) { 897 ret = __uprobe_register(uprobe, uc); 898 if (ret) 899 __uprobe_unregister(uprobe, uc); 900 } 901 up_write(&uprobe->register_rwsem); 902 put_uprobe(uprobe); 903 904 if (unlikely(ret == -EAGAIN)) 905 goto retry; 906 return ret; 907 } 908 EXPORT_SYMBOL_GPL(uprobe_register); 909 910 /* 911 * uprobe_apply - unregister a already registered probe. 912 * @inode: the file in which the probe has to be removed. 913 * @offset: offset from the start of the file. 914 * @uc: consumer which wants to add more or remove some breakpoints 915 * @add: add or remove the breakpoints 916 */ 917 int uprobe_apply(struct inode *inode, loff_t offset, 918 struct uprobe_consumer *uc, bool add) 919 { 920 struct uprobe *uprobe; 921 struct uprobe_consumer *con; 922 int ret = -ENOENT; 923 924 uprobe = find_uprobe(inode, offset); 925 if (WARN_ON(!uprobe)) 926 return ret; 927 928 down_write(&uprobe->register_rwsem); 929 for (con = uprobe->consumers; con && con != uc ; con = con->next) 930 ; 931 if (con) 932 ret = register_for_each_vma(uprobe, add ? uc : NULL); 933 up_write(&uprobe->register_rwsem); 934 put_uprobe(uprobe); 935 936 return ret; 937 } 938 939 /* 940 * uprobe_unregister - unregister a already registered probe. 941 * @inode: the file in which the probe has to be removed. 942 * @offset: offset from the start of the file. 943 * @uc: identify which probe if multiple probes are colocated. 944 */ 945 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 946 { 947 struct uprobe *uprobe; 948 949 uprobe = find_uprobe(inode, offset); 950 if (WARN_ON(!uprobe)) 951 return; 952 953 down_write(&uprobe->register_rwsem); 954 __uprobe_unregister(uprobe, uc); 955 up_write(&uprobe->register_rwsem); 956 put_uprobe(uprobe); 957 } 958 EXPORT_SYMBOL_GPL(uprobe_unregister); 959 960 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 961 { 962 struct vm_area_struct *vma; 963 int err = 0; 964 965 down_read(&mm->mmap_sem); 966 for (vma = mm->mmap; vma; vma = vma->vm_next) { 967 unsigned long vaddr; 968 loff_t offset; 969 970 if (!valid_vma(vma, false) || 971 file_inode(vma->vm_file) != uprobe->inode) 972 continue; 973 974 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 975 if (uprobe->offset < offset || 976 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 977 continue; 978 979 vaddr = offset_to_vaddr(vma, uprobe->offset); 980 err |= remove_breakpoint(uprobe, mm, vaddr); 981 } 982 up_read(&mm->mmap_sem); 983 984 return err; 985 } 986 987 static struct rb_node * 988 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 989 { 990 struct rb_node *n = uprobes_tree.rb_node; 991 992 while (n) { 993 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 994 995 if (inode < u->inode) { 996 n = n->rb_left; 997 } else if (inode > u->inode) { 998 n = n->rb_right; 999 } else { 1000 if (max < u->offset) 1001 n = n->rb_left; 1002 else if (min > u->offset) 1003 n = n->rb_right; 1004 else 1005 break; 1006 } 1007 } 1008 1009 return n; 1010 } 1011 1012 /* 1013 * For a given range in vma, build a list of probes that need to be inserted. 1014 */ 1015 static void build_probe_list(struct inode *inode, 1016 struct vm_area_struct *vma, 1017 unsigned long start, unsigned long end, 1018 struct list_head *head) 1019 { 1020 loff_t min, max; 1021 struct rb_node *n, *t; 1022 struct uprobe *u; 1023 1024 INIT_LIST_HEAD(head); 1025 min = vaddr_to_offset(vma, start); 1026 max = min + (end - start) - 1; 1027 1028 spin_lock(&uprobes_treelock); 1029 n = find_node_in_range(inode, min, max); 1030 if (n) { 1031 for (t = n; t; t = rb_prev(t)) { 1032 u = rb_entry(t, struct uprobe, rb_node); 1033 if (u->inode != inode || u->offset < min) 1034 break; 1035 list_add(&u->pending_list, head); 1036 get_uprobe(u); 1037 } 1038 for (t = n; (t = rb_next(t)); ) { 1039 u = rb_entry(t, struct uprobe, rb_node); 1040 if (u->inode != inode || u->offset > max) 1041 break; 1042 list_add(&u->pending_list, head); 1043 get_uprobe(u); 1044 } 1045 } 1046 spin_unlock(&uprobes_treelock); 1047 } 1048 1049 /* 1050 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1051 * 1052 * Currently we ignore all errors and always return 0, the callers 1053 * can't handle the failure anyway. 1054 */ 1055 int uprobe_mmap(struct vm_area_struct *vma) 1056 { 1057 struct list_head tmp_list; 1058 struct uprobe *uprobe, *u; 1059 struct inode *inode; 1060 1061 if (no_uprobe_events() || !valid_vma(vma, true)) 1062 return 0; 1063 1064 inode = file_inode(vma->vm_file); 1065 if (!inode) 1066 return 0; 1067 1068 mutex_lock(uprobes_mmap_hash(inode)); 1069 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1070 /* 1071 * We can race with uprobe_unregister(), this uprobe can be already 1072 * removed. But in this case filter_chain() must return false, all 1073 * consumers have gone away. 1074 */ 1075 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1076 if (!fatal_signal_pending(current) && 1077 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1078 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1079 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1080 } 1081 put_uprobe(uprobe); 1082 } 1083 mutex_unlock(uprobes_mmap_hash(inode)); 1084 1085 return 0; 1086 } 1087 1088 static bool 1089 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1090 { 1091 loff_t min, max; 1092 struct inode *inode; 1093 struct rb_node *n; 1094 1095 inode = file_inode(vma->vm_file); 1096 1097 min = vaddr_to_offset(vma, start); 1098 max = min + (end - start) - 1; 1099 1100 spin_lock(&uprobes_treelock); 1101 n = find_node_in_range(inode, min, max); 1102 spin_unlock(&uprobes_treelock); 1103 1104 return !!n; 1105 } 1106 1107 /* 1108 * Called in context of a munmap of a vma. 1109 */ 1110 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1111 { 1112 if (no_uprobe_events() || !valid_vma(vma, false)) 1113 return; 1114 1115 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1116 return; 1117 1118 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1119 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1120 return; 1121 1122 if (vma_has_uprobes(vma, start, end)) 1123 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1124 } 1125 1126 /* Slot allocation for XOL */ 1127 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1128 { 1129 struct vm_area_struct *vma; 1130 int ret; 1131 1132 down_write(&mm->mmap_sem); 1133 if (mm->uprobes_state.xol_area) { 1134 ret = -EALREADY; 1135 goto fail; 1136 } 1137 1138 if (!area->vaddr) { 1139 /* Try to map as high as possible, this is only a hint. */ 1140 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1141 PAGE_SIZE, 0, 0); 1142 if (area->vaddr & ~PAGE_MASK) { 1143 ret = area->vaddr; 1144 goto fail; 1145 } 1146 } 1147 1148 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1149 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1150 &area->xol_mapping); 1151 if (IS_ERR(vma)) { 1152 ret = PTR_ERR(vma); 1153 goto fail; 1154 } 1155 1156 ret = 0; 1157 smp_wmb(); /* pairs with get_xol_area() */ 1158 mm->uprobes_state.xol_area = area; 1159 fail: 1160 up_write(&mm->mmap_sem); 1161 1162 return ret; 1163 } 1164 1165 static struct xol_area *__create_xol_area(unsigned long vaddr) 1166 { 1167 struct mm_struct *mm = current->mm; 1168 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1169 struct xol_area *area; 1170 1171 area = kmalloc(sizeof(*area), GFP_KERNEL); 1172 if (unlikely(!area)) 1173 goto out; 1174 1175 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1176 if (!area->bitmap) 1177 goto free_area; 1178 1179 area->xol_mapping.name = "[uprobes]"; 1180 area->xol_mapping.pages = area->pages; 1181 area->pages[0] = alloc_page(GFP_HIGHUSER); 1182 if (!area->pages[0]) 1183 goto free_bitmap; 1184 area->pages[1] = NULL; 1185 1186 area->vaddr = vaddr; 1187 init_waitqueue_head(&area->wq); 1188 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1189 set_bit(0, area->bitmap); 1190 atomic_set(&area->slot_count, 1); 1191 copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1192 1193 if (!xol_add_vma(mm, area)) 1194 return area; 1195 1196 __free_page(area->pages[0]); 1197 free_bitmap: 1198 kfree(area->bitmap); 1199 free_area: 1200 kfree(area); 1201 out: 1202 return NULL; 1203 } 1204 1205 /* 1206 * get_xol_area - Allocate process's xol_area if necessary. 1207 * This area will be used for storing instructions for execution out of line. 1208 * 1209 * Returns the allocated area or NULL. 1210 */ 1211 static struct xol_area *get_xol_area(void) 1212 { 1213 struct mm_struct *mm = current->mm; 1214 struct xol_area *area; 1215 1216 if (!mm->uprobes_state.xol_area) 1217 __create_xol_area(0); 1218 1219 area = mm->uprobes_state.xol_area; 1220 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1221 return area; 1222 } 1223 1224 /* 1225 * uprobe_clear_state - Free the area allocated for slots. 1226 */ 1227 void uprobe_clear_state(struct mm_struct *mm) 1228 { 1229 struct xol_area *area = mm->uprobes_state.xol_area; 1230 1231 if (!area) 1232 return; 1233 1234 put_page(area->pages[0]); 1235 kfree(area->bitmap); 1236 kfree(area); 1237 } 1238 1239 void uprobe_start_dup_mmap(void) 1240 { 1241 percpu_down_read(&dup_mmap_sem); 1242 } 1243 1244 void uprobe_end_dup_mmap(void) 1245 { 1246 percpu_up_read(&dup_mmap_sem); 1247 } 1248 1249 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1250 { 1251 newmm->uprobes_state.xol_area = NULL; 1252 1253 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1254 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1255 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1256 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1257 } 1258 } 1259 1260 /* 1261 * - search for a free slot. 1262 */ 1263 static unsigned long xol_take_insn_slot(struct xol_area *area) 1264 { 1265 unsigned long slot_addr; 1266 int slot_nr; 1267 1268 do { 1269 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1270 if (slot_nr < UINSNS_PER_PAGE) { 1271 if (!test_and_set_bit(slot_nr, area->bitmap)) 1272 break; 1273 1274 slot_nr = UINSNS_PER_PAGE; 1275 continue; 1276 } 1277 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1278 } while (slot_nr >= UINSNS_PER_PAGE); 1279 1280 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1281 atomic_inc(&area->slot_count); 1282 1283 return slot_addr; 1284 } 1285 1286 /* 1287 * xol_get_insn_slot - allocate a slot for xol. 1288 * Returns the allocated slot address or 0. 1289 */ 1290 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1291 { 1292 struct xol_area *area; 1293 unsigned long xol_vaddr; 1294 1295 area = get_xol_area(); 1296 if (!area) 1297 return 0; 1298 1299 xol_vaddr = xol_take_insn_slot(area); 1300 if (unlikely(!xol_vaddr)) 1301 return 0; 1302 1303 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1304 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1305 1306 return xol_vaddr; 1307 } 1308 1309 /* 1310 * xol_free_insn_slot - If slot was earlier allocated by 1311 * @xol_get_insn_slot(), make the slot available for 1312 * subsequent requests. 1313 */ 1314 static void xol_free_insn_slot(struct task_struct *tsk) 1315 { 1316 struct xol_area *area; 1317 unsigned long vma_end; 1318 unsigned long slot_addr; 1319 1320 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1321 return; 1322 1323 slot_addr = tsk->utask->xol_vaddr; 1324 if (unlikely(!slot_addr)) 1325 return; 1326 1327 area = tsk->mm->uprobes_state.xol_area; 1328 vma_end = area->vaddr + PAGE_SIZE; 1329 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1330 unsigned long offset; 1331 int slot_nr; 1332 1333 offset = slot_addr - area->vaddr; 1334 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1335 if (slot_nr >= UINSNS_PER_PAGE) 1336 return; 1337 1338 clear_bit(slot_nr, area->bitmap); 1339 atomic_dec(&area->slot_count); 1340 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1341 if (waitqueue_active(&area->wq)) 1342 wake_up(&area->wq); 1343 1344 tsk->utask->xol_vaddr = 0; 1345 } 1346 } 1347 1348 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1349 void *src, unsigned long len) 1350 { 1351 /* Initialize the slot */ 1352 copy_to_page(page, vaddr, src, len); 1353 1354 /* 1355 * We probably need flush_icache_user_range() but it needs vma. 1356 * This should work on most of architectures by default. If 1357 * architecture needs to do something different it can define 1358 * its own version of the function. 1359 */ 1360 flush_dcache_page(page); 1361 } 1362 1363 /** 1364 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1365 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1366 * instruction. 1367 * Return the address of the breakpoint instruction. 1368 */ 1369 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1370 { 1371 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1372 } 1373 1374 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1375 { 1376 struct uprobe_task *utask = current->utask; 1377 1378 if (unlikely(utask && utask->active_uprobe)) 1379 return utask->vaddr; 1380 1381 return instruction_pointer(regs); 1382 } 1383 1384 static struct return_instance *free_ret_instance(struct return_instance *ri) 1385 { 1386 struct return_instance *next = ri->next; 1387 put_uprobe(ri->uprobe); 1388 kfree(ri); 1389 return next; 1390 } 1391 1392 /* 1393 * Called with no locks held. 1394 * Called in context of a exiting or a exec-ing thread. 1395 */ 1396 void uprobe_free_utask(struct task_struct *t) 1397 { 1398 struct uprobe_task *utask = t->utask; 1399 struct return_instance *ri; 1400 1401 if (!utask) 1402 return; 1403 1404 if (utask->active_uprobe) 1405 put_uprobe(utask->active_uprobe); 1406 1407 ri = utask->return_instances; 1408 while (ri) 1409 ri = free_ret_instance(ri); 1410 1411 xol_free_insn_slot(t); 1412 kfree(utask); 1413 t->utask = NULL; 1414 } 1415 1416 /* 1417 * Allocate a uprobe_task object for the task if if necessary. 1418 * Called when the thread hits a breakpoint. 1419 * 1420 * Returns: 1421 * - pointer to new uprobe_task on success 1422 * - NULL otherwise 1423 */ 1424 static struct uprobe_task *get_utask(void) 1425 { 1426 if (!current->utask) 1427 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1428 return current->utask; 1429 } 1430 1431 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1432 { 1433 struct uprobe_task *n_utask; 1434 struct return_instance **p, *o, *n; 1435 1436 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1437 if (!n_utask) 1438 return -ENOMEM; 1439 t->utask = n_utask; 1440 1441 p = &n_utask->return_instances; 1442 for (o = o_utask->return_instances; o; o = o->next) { 1443 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1444 if (!n) 1445 return -ENOMEM; 1446 1447 *n = *o; 1448 get_uprobe(n->uprobe); 1449 n->next = NULL; 1450 1451 *p = n; 1452 p = &n->next; 1453 n_utask->depth++; 1454 } 1455 1456 return 0; 1457 } 1458 1459 static void uprobe_warn(struct task_struct *t, const char *msg) 1460 { 1461 pr_warn("uprobe: %s:%d failed to %s\n", 1462 current->comm, current->pid, msg); 1463 } 1464 1465 static void dup_xol_work(struct callback_head *work) 1466 { 1467 if (current->flags & PF_EXITING) 1468 return; 1469 1470 if (!__create_xol_area(current->utask->dup_xol_addr)) 1471 uprobe_warn(current, "dup xol area"); 1472 } 1473 1474 /* 1475 * Called in context of a new clone/fork from copy_process. 1476 */ 1477 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1478 { 1479 struct uprobe_task *utask = current->utask; 1480 struct mm_struct *mm = current->mm; 1481 struct xol_area *area; 1482 1483 t->utask = NULL; 1484 1485 if (!utask || !utask->return_instances) 1486 return; 1487 1488 if (mm == t->mm && !(flags & CLONE_VFORK)) 1489 return; 1490 1491 if (dup_utask(t, utask)) 1492 return uprobe_warn(t, "dup ret instances"); 1493 1494 /* The task can fork() after dup_xol_work() fails */ 1495 area = mm->uprobes_state.xol_area; 1496 if (!area) 1497 return uprobe_warn(t, "dup xol area"); 1498 1499 if (mm == t->mm) 1500 return; 1501 1502 t->utask->dup_xol_addr = area->vaddr; 1503 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1504 task_work_add(t, &t->utask->dup_xol_work, true); 1505 } 1506 1507 /* 1508 * Current area->vaddr notion assume the trampoline address is always 1509 * equal area->vaddr. 1510 * 1511 * Returns -1 in case the xol_area is not allocated. 1512 */ 1513 static unsigned long get_trampoline_vaddr(void) 1514 { 1515 struct xol_area *area; 1516 unsigned long trampoline_vaddr = -1; 1517 1518 area = current->mm->uprobes_state.xol_area; 1519 smp_read_barrier_depends(); 1520 if (area) 1521 trampoline_vaddr = area->vaddr; 1522 1523 return trampoline_vaddr; 1524 } 1525 1526 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1527 struct pt_regs *regs) 1528 { 1529 struct return_instance *ri = utask->return_instances; 1530 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1531 1532 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1533 ri = free_ret_instance(ri); 1534 utask->depth--; 1535 } 1536 utask->return_instances = ri; 1537 } 1538 1539 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1540 { 1541 struct return_instance *ri; 1542 struct uprobe_task *utask; 1543 unsigned long orig_ret_vaddr, trampoline_vaddr; 1544 bool chained; 1545 1546 if (!get_xol_area()) 1547 return; 1548 1549 utask = get_utask(); 1550 if (!utask) 1551 return; 1552 1553 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1554 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1555 " nestedness limit pid/tgid=%d/%d\n", 1556 current->pid, current->tgid); 1557 return; 1558 } 1559 1560 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1561 if (!ri) 1562 return; 1563 1564 trampoline_vaddr = get_trampoline_vaddr(); 1565 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1566 if (orig_ret_vaddr == -1) 1567 goto fail; 1568 1569 /* drop the entries invalidated by longjmp() */ 1570 chained = (orig_ret_vaddr == trampoline_vaddr); 1571 cleanup_return_instances(utask, chained, regs); 1572 1573 /* 1574 * We don't want to keep trampoline address in stack, rather keep the 1575 * original return address of first caller thru all the consequent 1576 * instances. This also makes breakpoint unwrapping easier. 1577 */ 1578 if (chained) { 1579 if (!utask->return_instances) { 1580 /* 1581 * This situation is not possible. Likely we have an 1582 * attack from user-space. 1583 */ 1584 uprobe_warn(current, "handle tail call"); 1585 goto fail; 1586 } 1587 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1588 } 1589 1590 ri->uprobe = get_uprobe(uprobe); 1591 ri->func = instruction_pointer(regs); 1592 ri->stack = user_stack_pointer(regs); 1593 ri->orig_ret_vaddr = orig_ret_vaddr; 1594 ri->chained = chained; 1595 1596 utask->depth++; 1597 ri->next = utask->return_instances; 1598 utask->return_instances = ri; 1599 1600 return; 1601 fail: 1602 kfree(ri); 1603 } 1604 1605 /* Prepare to single-step probed instruction out of line. */ 1606 static int 1607 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1608 { 1609 struct uprobe_task *utask; 1610 unsigned long xol_vaddr; 1611 int err; 1612 1613 utask = get_utask(); 1614 if (!utask) 1615 return -ENOMEM; 1616 1617 xol_vaddr = xol_get_insn_slot(uprobe); 1618 if (!xol_vaddr) 1619 return -ENOMEM; 1620 1621 utask->xol_vaddr = xol_vaddr; 1622 utask->vaddr = bp_vaddr; 1623 1624 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1625 if (unlikely(err)) { 1626 xol_free_insn_slot(current); 1627 return err; 1628 } 1629 1630 utask->active_uprobe = uprobe; 1631 utask->state = UTASK_SSTEP; 1632 return 0; 1633 } 1634 1635 /* 1636 * If we are singlestepping, then ensure this thread is not connected to 1637 * non-fatal signals until completion of singlestep. When xol insn itself 1638 * triggers the signal, restart the original insn even if the task is 1639 * already SIGKILL'ed (since coredump should report the correct ip). This 1640 * is even more important if the task has a handler for SIGSEGV/etc, The 1641 * _same_ instruction should be repeated again after return from the signal 1642 * handler, and SSTEP can never finish in this case. 1643 */ 1644 bool uprobe_deny_signal(void) 1645 { 1646 struct task_struct *t = current; 1647 struct uprobe_task *utask = t->utask; 1648 1649 if (likely(!utask || !utask->active_uprobe)) 1650 return false; 1651 1652 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1653 1654 if (signal_pending(t)) { 1655 spin_lock_irq(&t->sighand->siglock); 1656 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1657 spin_unlock_irq(&t->sighand->siglock); 1658 1659 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1660 utask->state = UTASK_SSTEP_TRAPPED; 1661 set_tsk_thread_flag(t, TIF_UPROBE); 1662 } 1663 } 1664 1665 return true; 1666 } 1667 1668 static void mmf_recalc_uprobes(struct mm_struct *mm) 1669 { 1670 struct vm_area_struct *vma; 1671 1672 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1673 if (!valid_vma(vma, false)) 1674 continue; 1675 /* 1676 * This is not strictly accurate, we can race with 1677 * uprobe_unregister() and see the already removed 1678 * uprobe if delete_uprobe() was not yet called. 1679 * Or this uprobe can be filtered out. 1680 */ 1681 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1682 return; 1683 } 1684 1685 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1686 } 1687 1688 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 1689 { 1690 struct page *page; 1691 uprobe_opcode_t opcode; 1692 int result; 1693 1694 pagefault_disable(); 1695 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr, 1696 sizeof(opcode)); 1697 pagefault_enable(); 1698 1699 if (likely(result == 0)) 1700 goto out; 1701 1702 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL); 1703 if (result < 0) 1704 return result; 1705 1706 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 1707 put_page(page); 1708 out: 1709 /* This needs to return true for any variant of the trap insn */ 1710 return is_trap_insn(&opcode); 1711 } 1712 1713 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1714 { 1715 struct mm_struct *mm = current->mm; 1716 struct uprobe *uprobe = NULL; 1717 struct vm_area_struct *vma; 1718 1719 down_read(&mm->mmap_sem); 1720 vma = find_vma(mm, bp_vaddr); 1721 if (vma && vma->vm_start <= bp_vaddr) { 1722 if (valid_vma(vma, false)) { 1723 struct inode *inode = file_inode(vma->vm_file); 1724 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1725 1726 uprobe = find_uprobe(inode, offset); 1727 } 1728 1729 if (!uprobe) 1730 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 1731 } else { 1732 *is_swbp = -EFAULT; 1733 } 1734 1735 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1736 mmf_recalc_uprobes(mm); 1737 up_read(&mm->mmap_sem); 1738 1739 return uprobe; 1740 } 1741 1742 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 1743 { 1744 struct uprobe_consumer *uc; 1745 int remove = UPROBE_HANDLER_REMOVE; 1746 bool need_prep = false; /* prepare return uprobe, when needed */ 1747 1748 down_read(&uprobe->register_rwsem); 1749 for (uc = uprobe->consumers; uc; uc = uc->next) { 1750 int rc = 0; 1751 1752 if (uc->handler) { 1753 rc = uc->handler(uc, regs); 1754 WARN(rc & ~UPROBE_HANDLER_MASK, 1755 "bad rc=0x%x from %pf()\n", rc, uc->handler); 1756 } 1757 1758 if (uc->ret_handler) 1759 need_prep = true; 1760 1761 remove &= rc; 1762 } 1763 1764 if (need_prep && !remove) 1765 prepare_uretprobe(uprobe, regs); /* put bp at return */ 1766 1767 if (remove && uprobe->consumers) { 1768 WARN_ON(!uprobe_is_active(uprobe)); 1769 unapply_uprobe(uprobe, current->mm); 1770 } 1771 up_read(&uprobe->register_rwsem); 1772 } 1773 1774 static void 1775 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 1776 { 1777 struct uprobe *uprobe = ri->uprobe; 1778 struct uprobe_consumer *uc; 1779 1780 down_read(&uprobe->register_rwsem); 1781 for (uc = uprobe->consumers; uc; uc = uc->next) { 1782 if (uc->ret_handler) 1783 uc->ret_handler(uc, ri->func, regs); 1784 } 1785 up_read(&uprobe->register_rwsem); 1786 } 1787 1788 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 1789 { 1790 bool chained; 1791 1792 do { 1793 chained = ri->chained; 1794 ri = ri->next; /* can't be NULL if chained */ 1795 } while (chained); 1796 1797 return ri; 1798 } 1799 1800 static void handle_trampoline(struct pt_regs *regs) 1801 { 1802 struct uprobe_task *utask; 1803 struct return_instance *ri, *next; 1804 bool valid; 1805 1806 utask = current->utask; 1807 if (!utask) 1808 goto sigill; 1809 1810 ri = utask->return_instances; 1811 if (!ri) 1812 goto sigill; 1813 1814 do { 1815 /* 1816 * We should throw out the frames invalidated by longjmp(). 1817 * If this chain is valid, then the next one should be alive 1818 * or NULL; the latter case means that nobody but ri->func 1819 * could hit this trampoline on return. TODO: sigaltstack(). 1820 */ 1821 next = find_next_ret_chain(ri); 1822 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 1823 1824 instruction_pointer_set(regs, ri->orig_ret_vaddr); 1825 do { 1826 if (valid) 1827 handle_uretprobe_chain(ri, regs); 1828 ri = free_ret_instance(ri); 1829 utask->depth--; 1830 } while (ri != next); 1831 } while (!valid); 1832 1833 utask->return_instances = ri; 1834 return; 1835 1836 sigill: 1837 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 1838 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1839 1840 } 1841 1842 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 1843 { 1844 return false; 1845 } 1846 1847 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 1848 struct pt_regs *regs) 1849 { 1850 return true; 1851 } 1852 1853 /* 1854 * Run handler and ask thread to singlestep. 1855 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1856 */ 1857 static void handle_swbp(struct pt_regs *regs) 1858 { 1859 struct uprobe *uprobe; 1860 unsigned long bp_vaddr; 1861 int uninitialized_var(is_swbp); 1862 1863 bp_vaddr = uprobe_get_swbp_addr(regs); 1864 if (bp_vaddr == get_trampoline_vaddr()) 1865 return handle_trampoline(regs); 1866 1867 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1868 if (!uprobe) { 1869 if (is_swbp > 0) { 1870 /* No matching uprobe; signal SIGTRAP. */ 1871 send_sig(SIGTRAP, current, 0); 1872 } else { 1873 /* 1874 * Either we raced with uprobe_unregister() or we can't 1875 * access this memory. The latter is only possible if 1876 * another thread plays with our ->mm. In both cases 1877 * we can simply restart. If this vma was unmapped we 1878 * can pretend this insn was not executed yet and get 1879 * the (correct) SIGSEGV after restart. 1880 */ 1881 instruction_pointer_set(regs, bp_vaddr); 1882 } 1883 return; 1884 } 1885 1886 /* change it in advance for ->handler() and restart */ 1887 instruction_pointer_set(regs, bp_vaddr); 1888 1889 /* 1890 * TODO: move copy_insn/etc into _register and remove this hack. 1891 * After we hit the bp, _unregister + _register can install the 1892 * new and not-yet-analyzed uprobe at the same address, restart. 1893 */ 1894 smp_rmb(); /* pairs with wmb() in install_breakpoint() */ 1895 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 1896 goto out; 1897 1898 /* Tracing handlers use ->utask to communicate with fetch methods */ 1899 if (!get_utask()) 1900 goto out; 1901 1902 if (arch_uprobe_ignore(&uprobe->arch, regs)) 1903 goto out; 1904 1905 handler_chain(uprobe, regs); 1906 1907 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1908 goto out; 1909 1910 if (!pre_ssout(uprobe, regs, bp_vaddr)) 1911 return; 1912 1913 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 1914 out: 1915 put_uprobe(uprobe); 1916 } 1917 1918 /* 1919 * Perform required fix-ups and disable singlestep. 1920 * Allow pending signals to take effect. 1921 */ 1922 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1923 { 1924 struct uprobe *uprobe; 1925 int err = 0; 1926 1927 uprobe = utask->active_uprobe; 1928 if (utask->state == UTASK_SSTEP_ACK) 1929 err = arch_uprobe_post_xol(&uprobe->arch, regs); 1930 else if (utask->state == UTASK_SSTEP_TRAPPED) 1931 arch_uprobe_abort_xol(&uprobe->arch, regs); 1932 else 1933 WARN_ON_ONCE(1); 1934 1935 put_uprobe(uprobe); 1936 utask->active_uprobe = NULL; 1937 utask->state = UTASK_RUNNING; 1938 xol_free_insn_slot(current); 1939 1940 spin_lock_irq(¤t->sighand->siglock); 1941 recalc_sigpending(); /* see uprobe_deny_signal() */ 1942 spin_unlock_irq(¤t->sighand->siglock); 1943 1944 if (unlikely(err)) { 1945 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 1946 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1947 } 1948 } 1949 1950 /* 1951 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 1952 * allows the thread to return from interrupt. After that handle_swbp() 1953 * sets utask->active_uprobe. 1954 * 1955 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 1956 * and allows the thread to return from interrupt. 1957 * 1958 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1959 * uprobe_notify_resume(). 1960 */ 1961 void uprobe_notify_resume(struct pt_regs *regs) 1962 { 1963 struct uprobe_task *utask; 1964 1965 clear_thread_flag(TIF_UPROBE); 1966 1967 utask = current->utask; 1968 if (utask && utask->active_uprobe) 1969 handle_singlestep(utask, regs); 1970 else 1971 handle_swbp(regs); 1972 } 1973 1974 /* 1975 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1976 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1977 */ 1978 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1979 { 1980 if (!current->mm) 1981 return 0; 1982 1983 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 1984 (!current->utask || !current->utask->return_instances)) 1985 return 0; 1986 1987 set_thread_flag(TIF_UPROBE); 1988 return 1; 1989 } 1990 1991 /* 1992 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 1993 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 1994 */ 1995 int uprobe_post_sstep_notifier(struct pt_regs *regs) 1996 { 1997 struct uprobe_task *utask = current->utask; 1998 1999 if (!current->mm || !utask || !utask->active_uprobe) 2000 /* task is currently not uprobed */ 2001 return 0; 2002 2003 utask->state = UTASK_SSTEP_ACK; 2004 set_thread_flag(TIF_UPROBE); 2005 return 1; 2006 } 2007 2008 static struct notifier_block uprobe_exception_nb = { 2009 .notifier_call = arch_uprobe_exception_notify, 2010 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2011 }; 2012 2013 static int __init init_uprobes(void) 2014 { 2015 int i; 2016 2017 for (i = 0; i < UPROBES_HASH_SZ; i++) 2018 mutex_init(&uprobes_mmap_mutex[i]); 2019 2020 if (percpu_init_rwsem(&dup_mmap_sem)) 2021 return -ENOMEM; 2022 2023 return register_die_notifier(&uprobe_exception_nb); 2024 } 2025 __initcall(init_uprobes); 2026