xref: /openbmc/linux/kernel/events/uprobes.c (revision e620a1e0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* try_to_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include "../../mm/internal.h"	/* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30 
31 #include <linux/uprobes.h>
32 
33 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
35 
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
42 
43 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
44 
45 #define UPROBES_HASH_SZ	13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49 
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51 
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN	0
54 
55 struct uprobe {
56 	struct rb_node		rb_node;	/* node in the rb tree */
57 	refcount_t		ref;
58 	struct rw_semaphore	register_rwsem;
59 	struct rw_semaphore	consumer_rwsem;
60 	struct list_head	pending_list;
61 	struct uprobe_consumer	*consumers;
62 	struct inode		*inode;		/* Also hold a ref to inode */
63 	loff_t			offset;
64 	loff_t			ref_ctr_offset;
65 	unsigned long		flags;
66 
67 	/*
68 	 * The generic code assumes that it has two members of unknown type
69 	 * owned by the arch-specific code:
70 	 *
71 	 * 	insn -	copy_insn() saves the original instruction here for
72 	 *		arch_uprobe_analyze_insn().
73 	 *
74 	 *	ixol -	potentially modified instruction to execute out of
75 	 *		line, copied to xol_area by xol_get_insn_slot().
76 	 */
77 	struct arch_uprobe	arch;
78 };
79 
80 struct delayed_uprobe {
81 	struct list_head list;
82 	struct uprobe *uprobe;
83 	struct mm_struct *mm;
84 };
85 
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88 
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99 	wait_queue_head_t 		wq;		/* if all slots are busy */
100 	atomic_t 			slot_count;	/* number of in-use slots */
101 	unsigned long 			*bitmap;	/* 0 = free slot */
102 
103 	struct vm_special_mapping	xol_mapping;
104 	struct page 			*pages[2];
105 	/*
106 	 * We keep the vma's vm_start rather than a pointer to the vma
107 	 * itself.  The probed process or a naughty kernel module could make
108 	 * the vma go away, and we must handle that reasonably gracefully.
109 	 */
110 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
111 };
112 
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *	- is_register: indicates if we are in register context.
118  *	- Return 1 if the specified virtual address is in an
119  *	  executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124 
125 	if (is_register)
126 		flags |= VM_WRITE;
127 
128 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130 
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135 
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140 
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 				struct page *old_page, struct page *new_page)
156 {
157 	struct mm_struct *mm = vma->vm_mm;
158 	struct page_vma_mapped_walk pvmw = {
159 		.page = compound_head(old_page),
160 		.vma = vma,
161 		.address = addr,
162 	};
163 	int err;
164 	struct mmu_notifier_range range;
165 	struct mem_cgroup *memcg;
166 
167 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
168 				addr + PAGE_SIZE);
169 
170 	if (new_page) {
171 		err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
172 					    &memcg, false);
173 		if (err)
174 			return err;
175 	}
176 
177 	/* For try_to_free_swap() and munlock_vma_page() below */
178 	lock_page(old_page);
179 
180 	mmu_notifier_invalidate_range_start(&range);
181 	err = -EAGAIN;
182 	if (!page_vma_mapped_walk(&pvmw)) {
183 		if (new_page)
184 			mem_cgroup_cancel_charge(new_page, memcg, false);
185 		goto unlock;
186 	}
187 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
188 
189 	if (new_page) {
190 		get_page(new_page);
191 		page_add_new_anon_rmap(new_page, vma, addr, false);
192 		mem_cgroup_commit_charge(new_page, memcg, false, false);
193 		lru_cache_add_active_or_unevictable(new_page, vma);
194 	} else
195 		/* no new page, just dec_mm_counter for old_page */
196 		dec_mm_counter(mm, MM_ANONPAGES);
197 
198 	if (!PageAnon(old_page)) {
199 		dec_mm_counter(mm, mm_counter_file(old_page));
200 		inc_mm_counter(mm, MM_ANONPAGES);
201 	}
202 
203 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
204 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
205 	if (new_page)
206 		set_pte_at_notify(mm, addr, pvmw.pte,
207 				  mk_pte(new_page, vma->vm_page_prot));
208 
209 	page_remove_rmap(old_page, false);
210 	if (!page_mapped(old_page))
211 		try_to_free_swap(old_page);
212 	page_vma_mapped_walk_done(&pvmw);
213 
214 	if (vma->vm_flags & VM_LOCKED)
215 		munlock_vma_page(old_page);
216 	put_page(old_page);
217 
218 	err = 0;
219  unlock:
220 	mmu_notifier_invalidate_range_end(&range);
221 	unlock_page(old_page);
222 	return err;
223 }
224 
225 /**
226  * is_swbp_insn - check if instruction is breakpoint instruction.
227  * @insn: instruction to be checked.
228  * Default implementation of is_swbp_insn
229  * Returns true if @insn is a breakpoint instruction.
230  */
231 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
232 {
233 	return *insn == UPROBE_SWBP_INSN;
234 }
235 
236 /**
237  * is_trap_insn - check if instruction is breakpoint instruction.
238  * @insn: instruction to be checked.
239  * Default implementation of is_trap_insn
240  * Returns true if @insn is a breakpoint instruction.
241  *
242  * This function is needed for the case where an architecture has multiple
243  * trap instructions (like powerpc).
244  */
245 bool __weak is_trap_insn(uprobe_opcode_t *insn)
246 {
247 	return is_swbp_insn(insn);
248 }
249 
250 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
251 {
252 	void *kaddr = kmap_atomic(page);
253 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
254 	kunmap_atomic(kaddr);
255 }
256 
257 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
258 {
259 	void *kaddr = kmap_atomic(page);
260 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
261 	kunmap_atomic(kaddr);
262 }
263 
264 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
265 {
266 	uprobe_opcode_t old_opcode;
267 	bool is_swbp;
268 
269 	/*
270 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
271 	 * We do not check if it is any other 'trap variant' which could
272 	 * be conditional trap instruction such as the one powerpc supports.
273 	 *
274 	 * The logic is that we do not care if the underlying instruction
275 	 * is a trap variant; uprobes always wins over any other (gdb)
276 	 * breakpoint.
277 	 */
278 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
279 	is_swbp = is_swbp_insn(&old_opcode);
280 
281 	if (is_swbp_insn(new_opcode)) {
282 		if (is_swbp)		/* register: already installed? */
283 			return 0;
284 	} else {
285 		if (!is_swbp)		/* unregister: was it changed by us? */
286 			return 0;
287 	}
288 
289 	return 1;
290 }
291 
292 static struct delayed_uprobe *
293 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
294 {
295 	struct delayed_uprobe *du;
296 
297 	list_for_each_entry(du, &delayed_uprobe_list, list)
298 		if (du->uprobe == uprobe && du->mm == mm)
299 			return du;
300 	return NULL;
301 }
302 
303 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
304 {
305 	struct delayed_uprobe *du;
306 
307 	if (delayed_uprobe_check(uprobe, mm))
308 		return 0;
309 
310 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
311 	if (!du)
312 		return -ENOMEM;
313 
314 	du->uprobe = uprobe;
315 	du->mm = mm;
316 	list_add(&du->list, &delayed_uprobe_list);
317 	return 0;
318 }
319 
320 static void delayed_uprobe_delete(struct delayed_uprobe *du)
321 {
322 	if (WARN_ON(!du))
323 		return;
324 	list_del(&du->list);
325 	kfree(du);
326 }
327 
328 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
329 {
330 	struct list_head *pos, *q;
331 	struct delayed_uprobe *du;
332 
333 	if (!uprobe && !mm)
334 		return;
335 
336 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
337 		du = list_entry(pos, struct delayed_uprobe, list);
338 
339 		if (uprobe && du->uprobe != uprobe)
340 			continue;
341 		if (mm && du->mm != mm)
342 			continue;
343 
344 		delayed_uprobe_delete(du);
345 	}
346 }
347 
348 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
349 			      struct vm_area_struct *vma)
350 {
351 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
352 
353 	return uprobe->ref_ctr_offset &&
354 		vma->vm_file &&
355 		file_inode(vma->vm_file) == uprobe->inode &&
356 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
357 		vma->vm_start <= vaddr &&
358 		vma->vm_end > vaddr;
359 }
360 
361 static struct vm_area_struct *
362 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
363 {
364 	struct vm_area_struct *tmp;
365 
366 	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
367 		if (valid_ref_ctr_vma(uprobe, tmp))
368 			return tmp;
369 
370 	return NULL;
371 }
372 
373 static int
374 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
375 {
376 	void *kaddr;
377 	struct page *page;
378 	struct vm_area_struct *vma;
379 	int ret;
380 	short *ptr;
381 
382 	if (!vaddr || !d)
383 		return -EINVAL;
384 
385 	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
386 			FOLL_WRITE, &page, &vma, NULL);
387 	if (unlikely(ret <= 0)) {
388 		/*
389 		 * We are asking for 1 page. If get_user_pages_remote() fails,
390 		 * it may return 0, in that case we have to return error.
391 		 */
392 		return ret == 0 ? -EBUSY : ret;
393 	}
394 
395 	kaddr = kmap_atomic(page);
396 	ptr = kaddr + (vaddr & ~PAGE_MASK);
397 
398 	if (unlikely(*ptr + d < 0)) {
399 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
400 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
401 		ret = -EINVAL;
402 		goto out;
403 	}
404 
405 	*ptr += d;
406 	ret = 0;
407 out:
408 	kunmap_atomic(kaddr);
409 	put_page(page);
410 	return ret;
411 }
412 
413 static void update_ref_ctr_warn(struct uprobe *uprobe,
414 				struct mm_struct *mm, short d)
415 {
416 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
417 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
418 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
419 		(unsigned long long) uprobe->offset,
420 		(unsigned long long) uprobe->ref_ctr_offset, mm);
421 }
422 
423 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
424 			  short d)
425 {
426 	struct vm_area_struct *rc_vma;
427 	unsigned long rc_vaddr;
428 	int ret = 0;
429 
430 	rc_vma = find_ref_ctr_vma(uprobe, mm);
431 
432 	if (rc_vma) {
433 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
434 		ret = __update_ref_ctr(mm, rc_vaddr, d);
435 		if (ret)
436 			update_ref_ctr_warn(uprobe, mm, d);
437 
438 		if (d > 0)
439 			return ret;
440 	}
441 
442 	mutex_lock(&delayed_uprobe_lock);
443 	if (d > 0)
444 		ret = delayed_uprobe_add(uprobe, mm);
445 	else
446 		delayed_uprobe_remove(uprobe, mm);
447 	mutex_unlock(&delayed_uprobe_lock);
448 
449 	return ret;
450 }
451 
452 /*
453  * NOTE:
454  * Expect the breakpoint instruction to be the smallest size instruction for
455  * the architecture. If an arch has variable length instruction and the
456  * breakpoint instruction is not of the smallest length instruction
457  * supported by that architecture then we need to modify is_trap_at_addr and
458  * uprobe_write_opcode accordingly. This would never be a problem for archs
459  * that have fixed length instructions.
460  *
461  * uprobe_write_opcode - write the opcode at a given virtual address.
462  * @mm: the probed process address space.
463  * @vaddr: the virtual address to store the opcode.
464  * @opcode: opcode to be written at @vaddr.
465  *
466  * Called with mm->mmap_sem held for write.
467  * Return 0 (success) or a negative errno.
468  */
469 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
470 			unsigned long vaddr, uprobe_opcode_t opcode)
471 {
472 	struct uprobe *uprobe;
473 	struct page *old_page, *new_page;
474 	struct vm_area_struct *vma;
475 	int ret, is_register, ref_ctr_updated = 0;
476 	bool orig_page_huge = false;
477 
478 	is_register = is_swbp_insn(&opcode);
479 	uprobe = container_of(auprobe, struct uprobe, arch);
480 
481 retry:
482 	/* Read the page with vaddr into memory */
483 	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
484 			FOLL_FORCE | FOLL_SPLIT_PMD, &old_page, &vma, NULL);
485 	if (ret <= 0)
486 		return ret;
487 
488 	ret = verify_opcode(old_page, vaddr, &opcode);
489 	if (ret <= 0)
490 		goto put_old;
491 
492 	/* We are going to replace instruction, update ref_ctr. */
493 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
494 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
495 		if (ret)
496 			goto put_old;
497 
498 		ref_ctr_updated = 1;
499 	}
500 
501 	ret = 0;
502 	if (!is_register && !PageAnon(old_page))
503 		goto put_old;
504 
505 	ret = anon_vma_prepare(vma);
506 	if (ret)
507 		goto put_old;
508 
509 	ret = -ENOMEM;
510 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
511 	if (!new_page)
512 		goto put_old;
513 
514 	__SetPageUptodate(new_page);
515 	copy_highpage(new_page, old_page);
516 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
517 
518 	if (!is_register) {
519 		struct page *orig_page;
520 		pgoff_t index;
521 
522 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
523 
524 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
525 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
526 					  index);
527 
528 		if (orig_page) {
529 			if (PageUptodate(orig_page) &&
530 			    pages_identical(new_page, orig_page)) {
531 				/* let go new_page */
532 				put_page(new_page);
533 				new_page = NULL;
534 
535 				if (PageCompound(orig_page))
536 					orig_page_huge = true;
537 			}
538 			put_page(orig_page);
539 		}
540 	}
541 
542 	ret = __replace_page(vma, vaddr, old_page, new_page);
543 	if (new_page)
544 		put_page(new_page);
545 put_old:
546 	put_page(old_page);
547 
548 	if (unlikely(ret == -EAGAIN))
549 		goto retry;
550 
551 	/* Revert back reference counter if instruction update failed. */
552 	if (ret && is_register && ref_ctr_updated)
553 		update_ref_ctr(uprobe, mm, -1);
554 
555 	/* try collapse pmd for compound page */
556 	if (!ret && orig_page_huge)
557 		collapse_pte_mapped_thp(mm, vaddr);
558 
559 	return ret;
560 }
561 
562 /**
563  * set_swbp - store breakpoint at a given address.
564  * @auprobe: arch specific probepoint information.
565  * @mm: the probed process address space.
566  * @vaddr: the virtual address to insert the opcode.
567  *
568  * For mm @mm, store the breakpoint instruction at @vaddr.
569  * Return 0 (success) or a negative errno.
570  */
571 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
572 {
573 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
574 }
575 
576 /**
577  * set_orig_insn - Restore the original instruction.
578  * @mm: the probed process address space.
579  * @auprobe: arch specific probepoint information.
580  * @vaddr: the virtual address to insert the opcode.
581  *
582  * For mm @mm, restore the original opcode (opcode) at @vaddr.
583  * Return 0 (success) or a negative errno.
584  */
585 int __weak
586 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
587 {
588 	return uprobe_write_opcode(auprobe, mm, vaddr,
589 			*(uprobe_opcode_t *)&auprobe->insn);
590 }
591 
592 static struct uprobe *get_uprobe(struct uprobe *uprobe)
593 {
594 	refcount_inc(&uprobe->ref);
595 	return uprobe;
596 }
597 
598 static void put_uprobe(struct uprobe *uprobe)
599 {
600 	if (refcount_dec_and_test(&uprobe->ref)) {
601 		/*
602 		 * If application munmap(exec_vma) before uprobe_unregister()
603 		 * gets called, we don't get a chance to remove uprobe from
604 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
605 		 */
606 		mutex_lock(&delayed_uprobe_lock);
607 		delayed_uprobe_remove(uprobe, NULL);
608 		mutex_unlock(&delayed_uprobe_lock);
609 		kfree(uprobe);
610 	}
611 }
612 
613 static int match_uprobe(struct uprobe *l, struct uprobe *r)
614 {
615 	if (l->inode < r->inode)
616 		return -1;
617 
618 	if (l->inode > r->inode)
619 		return 1;
620 
621 	if (l->offset < r->offset)
622 		return -1;
623 
624 	if (l->offset > r->offset)
625 		return 1;
626 
627 	return 0;
628 }
629 
630 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
631 {
632 	struct uprobe u = { .inode = inode, .offset = offset };
633 	struct rb_node *n = uprobes_tree.rb_node;
634 	struct uprobe *uprobe;
635 	int match;
636 
637 	while (n) {
638 		uprobe = rb_entry(n, struct uprobe, rb_node);
639 		match = match_uprobe(&u, uprobe);
640 		if (!match)
641 			return get_uprobe(uprobe);
642 
643 		if (match < 0)
644 			n = n->rb_left;
645 		else
646 			n = n->rb_right;
647 	}
648 	return NULL;
649 }
650 
651 /*
652  * Find a uprobe corresponding to a given inode:offset
653  * Acquires uprobes_treelock
654  */
655 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
656 {
657 	struct uprobe *uprobe;
658 
659 	spin_lock(&uprobes_treelock);
660 	uprobe = __find_uprobe(inode, offset);
661 	spin_unlock(&uprobes_treelock);
662 
663 	return uprobe;
664 }
665 
666 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
667 {
668 	struct rb_node **p = &uprobes_tree.rb_node;
669 	struct rb_node *parent = NULL;
670 	struct uprobe *u;
671 	int match;
672 
673 	while (*p) {
674 		parent = *p;
675 		u = rb_entry(parent, struct uprobe, rb_node);
676 		match = match_uprobe(uprobe, u);
677 		if (!match)
678 			return get_uprobe(u);
679 
680 		if (match < 0)
681 			p = &parent->rb_left;
682 		else
683 			p = &parent->rb_right;
684 
685 	}
686 
687 	u = NULL;
688 	rb_link_node(&uprobe->rb_node, parent, p);
689 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
690 	/* get access + creation ref */
691 	refcount_set(&uprobe->ref, 2);
692 
693 	return u;
694 }
695 
696 /*
697  * Acquire uprobes_treelock.
698  * Matching uprobe already exists in rbtree;
699  *	increment (access refcount) and return the matching uprobe.
700  *
701  * No matching uprobe; insert the uprobe in rb_tree;
702  *	get a double refcount (access + creation) and return NULL.
703  */
704 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
705 {
706 	struct uprobe *u;
707 
708 	spin_lock(&uprobes_treelock);
709 	u = __insert_uprobe(uprobe);
710 	spin_unlock(&uprobes_treelock);
711 
712 	return u;
713 }
714 
715 static void
716 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
717 {
718 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
719 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
720 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
721 		(unsigned long long) cur_uprobe->ref_ctr_offset,
722 		(unsigned long long) uprobe->ref_ctr_offset);
723 }
724 
725 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
726 				   loff_t ref_ctr_offset)
727 {
728 	struct uprobe *uprobe, *cur_uprobe;
729 
730 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
731 	if (!uprobe)
732 		return NULL;
733 
734 	uprobe->inode = inode;
735 	uprobe->offset = offset;
736 	uprobe->ref_ctr_offset = ref_ctr_offset;
737 	init_rwsem(&uprobe->register_rwsem);
738 	init_rwsem(&uprobe->consumer_rwsem);
739 
740 	/* add to uprobes_tree, sorted on inode:offset */
741 	cur_uprobe = insert_uprobe(uprobe);
742 	/* a uprobe exists for this inode:offset combination */
743 	if (cur_uprobe) {
744 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
745 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
746 			put_uprobe(cur_uprobe);
747 			kfree(uprobe);
748 			return ERR_PTR(-EINVAL);
749 		}
750 		kfree(uprobe);
751 		uprobe = cur_uprobe;
752 	}
753 
754 	return uprobe;
755 }
756 
757 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
758 {
759 	down_write(&uprobe->consumer_rwsem);
760 	uc->next = uprobe->consumers;
761 	uprobe->consumers = uc;
762 	up_write(&uprobe->consumer_rwsem);
763 }
764 
765 /*
766  * For uprobe @uprobe, delete the consumer @uc.
767  * Return true if the @uc is deleted successfully
768  * or return false.
769  */
770 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
771 {
772 	struct uprobe_consumer **con;
773 	bool ret = false;
774 
775 	down_write(&uprobe->consumer_rwsem);
776 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
777 		if (*con == uc) {
778 			*con = uc->next;
779 			ret = true;
780 			break;
781 		}
782 	}
783 	up_write(&uprobe->consumer_rwsem);
784 
785 	return ret;
786 }
787 
788 static int __copy_insn(struct address_space *mapping, struct file *filp,
789 			void *insn, int nbytes, loff_t offset)
790 {
791 	struct page *page;
792 	/*
793 	 * Ensure that the page that has the original instruction is populated
794 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
795 	 * see uprobe_register().
796 	 */
797 	if (mapping->a_ops->readpage)
798 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
799 	else
800 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
801 	if (IS_ERR(page))
802 		return PTR_ERR(page);
803 
804 	copy_from_page(page, offset, insn, nbytes);
805 	put_page(page);
806 
807 	return 0;
808 }
809 
810 static int copy_insn(struct uprobe *uprobe, struct file *filp)
811 {
812 	struct address_space *mapping = uprobe->inode->i_mapping;
813 	loff_t offs = uprobe->offset;
814 	void *insn = &uprobe->arch.insn;
815 	int size = sizeof(uprobe->arch.insn);
816 	int len, err = -EIO;
817 
818 	/* Copy only available bytes, -EIO if nothing was read */
819 	do {
820 		if (offs >= i_size_read(uprobe->inode))
821 			break;
822 
823 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
824 		err = __copy_insn(mapping, filp, insn, len, offs);
825 		if (err)
826 			break;
827 
828 		insn += len;
829 		offs += len;
830 		size -= len;
831 	} while (size);
832 
833 	return err;
834 }
835 
836 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
837 				struct mm_struct *mm, unsigned long vaddr)
838 {
839 	int ret = 0;
840 
841 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
842 		return ret;
843 
844 	/* TODO: move this into _register, until then we abuse this sem. */
845 	down_write(&uprobe->consumer_rwsem);
846 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
847 		goto out;
848 
849 	ret = copy_insn(uprobe, file);
850 	if (ret)
851 		goto out;
852 
853 	ret = -ENOTSUPP;
854 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
855 		goto out;
856 
857 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
858 	if (ret)
859 		goto out;
860 
861 	/* uprobe_write_opcode() assumes we don't cross page boundary */
862 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
863 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
864 
865 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
866 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
867 
868  out:
869 	up_write(&uprobe->consumer_rwsem);
870 
871 	return ret;
872 }
873 
874 static inline bool consumer_filter(struct uprobe_consumer *uc,
875 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
876 {
877 	return !uc->filter || uc->filter(uc, ctx, mm);
878 }
879 
880 static bool filter_chain(struct uprobe *uprobe,
881 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
882 {
883 	struct uprobe_consumer *uc;
884 	bool ret = false;
885 
886 	down_read(&uprobe->consumer_rwsem);
887 	for (uc = uprobe->consumers; uc; uc = uc->next) {
888 		ret = consumer_filter(uc, ctx, mm);
889 		if (ret)
890 			break;
891 	}
892 	up_read(&uprobe->consumer_rwsem);
893 
894 	return ret;
895 }
896 
897 static int
898 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
899 			struct vm_area_struct *vma, unsigned long vaddr)
900 {
901 	bool first_uprobe;
902 	int ret;
903 
904 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
905 	if (ret)
906 		return ret;
907 
908 	/*
909 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
910 	 * the task can hit this breakpoint right after __replace_page().
911 	 */
912 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
913 	if (first_uprobe)
914 		set_bit(MMF_HAS_UPROBES, &mm->flags);
915 
916 	ret = set_swbp(&uprobe->arch, mm, vaddr);
917 	if (!ret)
918 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
919 	else if (first_uprobe)
920 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
921 
922 	return ret;
923 }
924 
925 static int
926 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
927 {
928 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
929 	return set_orig_insn(&uprobe->arch, mm, vaddr);
930 }
931 
932 static inline bool uprobe_is_active(struct uprobe *uprobe)
933 {
934 	return !RB_EMPTY_NODE(&uprobe->rb_node);
935 }
936 /*
937  * There could be threads that have already hit the breakpoint. They
938  * will recheck the current insn and restart if find_uprobe() fails.
939  * See find_active_uprobe().
940  */
941 static void delete_uprobe(struct uprobe *uprobe)
942 {
943 	if (WARN_ON(!uprobe_is_active(uprobe)))
944 		return;
945 
946 	spin_lock(&uprobes_treelock);
947 	rb_erase(&uprobe->rb_node, &uprobes_tree);
948 	spin_unlock(&uprobes_treelock);
949 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
950 	put_uprobe(uprobe);
951 }
952 
953 struct map_info {
954 	struct map_info *next;
955 	struct mm_struct *mm;
956 	unsigned long vaddr;
957 };
958 
959 static inline struct map_info *free_map_info(struct map_info *info)
960 {
961 	struct map_info *next = info->next;
962 	kfree(info);
963 	return next;
964 }
965 
966 static struct map_info *
967 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
968 {
969 	unsigned long pgoff = offset >> PAGE_SHIFT;
970 	struct vm_area_struct *vma;
971 	struct map_info *curr = NULL;
972 	struct map_info *prev = NULL;
973 	struct map_info *info;
974 	int more = 0;
975 
976  again:
977 	i_mmap_lock_read(mapping);
978 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
979 		if (!valid_vma(vma, is_register))
980 			continue;
981 
982 		if (!prev && !more) {
983 			/*
984 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
985 			 * reclaim. This is optimistic, no harm done if it fails.
986 			 */
987 			prev = kmalloc(sizeof(struct map_info),
988 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
989 			if (prev)
990 				prev->next = NULL;
991 		}
992 		if (!prev) {
993 			more++;
994 			continue;
995 		}
996 
997 		if (!mmget_not_zero(vma->vm_mm))
998 			continue;
999 
1000 		info = prev;
1001 		prev = prev->next;
1002 		info->next = curr;
1003 		curr = info;
1004 
1005 		info->mm = vma->vm_mm;
1006 		info->vaddr = offset_to_vaddr(vma, offset);
1007 	}
1008 	i_mmap_unlock_read(mapping);
1009 
1010 	if (!more)
1011 		goto out;
1012 
1013 	prev = curr;
1014 	while (curr) {
1015 		mmput(curr->mm);
1016 		curr = curr->next;
1017 	}
1018 
1019 	do {
1020 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1021 		if (!info) {
1022 			curr = ERR_PTR(-ENOMEM);
1023 			goto out;
1024 		}
1025 		info->next = prev;
1026 		prev = info;
1027 	} while (--more);
1028 
1029 	goto again;
1030  out:
1031 	while (prev)
1032 		prev = free_map_info(prev);
1033 	return curr;
1034 }
1035 
1036 static int
1037 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1038 {
1039 	bool is_register = !!new;
1040 	struct map_info *info;
1041 	int err = 0;
1042 
1043 	percpu_down_write(&dup_mmap_sem);
1044 	info = build_map_info(uprobe->inode->i_mapping,
1045 					uprobe->offset, is_register);
1046 	if (IS_ERR(info)) {
1047 		err = PTR_ERR(info);
1048 		goto out;
1049 	}
1050 
1051 	while (info) {
1052 		struct mm_struct *mm = info->mm;
1053 		struct vm_area_struct *vma;
1054 
1055 		if (err && is_register)
1056 			goto free;
1057 
1058 		down_write(&mm->mmap_sem);
1059 		vma = find_vma(mm, info->vaddr);
1060 		if (!vma || !valid_vma(vma, is_register) ||
1061 		    file_inode(vma->vm_file) != uprobe->inode)
1062 			goto unlock;
1063 
1064 		if (vma->vm_start > info->vaddr ||
1065 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1066 			goto unlock;
1067 
1068 		if (is_register) {
1069 			/* consult only the "caller", new consumer. */
1070 			if (consumer_filter(new,
1071 					UPROBE_FILTER_REGISTER, mm))
1072 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1073 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1074 			if (!filter_chain(uprobe,
1075 					UPROBE_FILTER_UNREGISTER, mm))
1076 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1077 		}
1078 
1079  unlock:
1080 		up_write(&mm->mmap_sem);
1081  free:
1082 		mmput(mm);
1083 		info = free_map_info(info);
1084 	}
1085  out:
1086 	percpu_up_write(&dup_mmap_sem);
1087 	return err;
1088 }
1089 
1090 static void
1091 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1092 {
1093 	int err;
1094 
1095 	if (WARN_ON(!consumer_del(uprobe, uc)))
1096 		return;
1097 
1098 	err = register_for_each_vma(uprobe, NULL);
1099 	/* TODO : cant unregister? schedule a worker thread */
1100 	if (!uprobe->consumers && !err)
1101 		delete_uprobe(uprobe);
1102 }
1103 
1104 /*
1105  * uprobe_unregister - unregister an already registered probe.
1106  * @inode: the file in which the probe has to be removed.
1107  * @offset: offset from the start of the file.
1108  * @uc: identify which probe if multiple probes are colocated.
1109  */
1110 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1111 {
1112 	struct uprobe *uprobe;
1113 
1114 	uprobe = find_uprobe(inode, offset);
1115 	if (WARN_ON(!uprobe))
1116 		return;
1117 
1118 	down_write(&uprobe->register_rwsem);
1119 	__uprobe_unregister(uprobe, uc);
1120 	up_write(&uprobe->register_rwsem);
1121 	put_uprobe(uprobe);
1122 }
1123 EXPORT_SYMBOL_GPL(uprobe_unregister);
1124 
1125 /*
1126  * __uprobe_register - register a probe
1127  * @inode: the file in which the probe has to be placed.
1128  * @offset: offset from the start of the file.
1129  * @uc: information on howto handle the probe..
1130  *
1131  * Apart from the access refcount, __uprobe_register() takes a creation
1132  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1133  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1134  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1135  * @uprobe even before the register operation is complete. Creation
1136  * refcount is released when the last @uc for the @uprobe
1137  * unregisters. Caller of __uprobe_register() is required to keep @inode
1138  * (and the containing mount) referenced.
1139  *
1140  * Return errno if it cannot successully install probes
1141  * else return 0 (success)
1142  */
1143 static int __uprobe_register(struct inode *inode, loff_t offset,
1144 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1145 {
1146 	struct uprobe *uprobe;
1147 	int ret;
1148 
1149 	/* Uprobe must have at least one set consumer */
1150 	if (!uc->handler && !uc->ret_handler)
1151 		return -EINVAL;
1152 
1153 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1154 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1155 		return -EIO;
1156 	/* Racy, just to catch the obvious mistakes */
1157 	if (offset > i_size_read(inode))
1158 		return -EINVAL;
1159 
1160  retry:
1161 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1162 	if (!uprobe)
1163 		return -ENOMEM;
1164 	if (IS_ERR(uprobe))
1165 		return PTR_ERR(uprobe);
1166 
1167 	/*
1168 	 * We can race with uprobe_unregister()->delete_uprobe().
1169 	 * Check uprobe_is_active() and retry if it is false.
1170 	 */
1171 	down_write(&uprobe->register_rwsem);
1172 	ret = -EAGAIN;
1173 	if (likely(uprobe_is_active(uprobe))) {
1174 		consumer_add(uprobe, uc);
1175 		ret = register_for_each_vma(uprobe, uc);
1176 		if (ret)
1177 			__uprobe_unregister(uprobe, uc);
1178 	}
1179 	up_write(&uprobe->register_rwsem);
1180 	put_uprobe(uprobe);
1181 
1182 	if (unlikely(ret == -EAGAIN))
1183 		goto retry;
1184 	return ret;
1185 }
1186 
1187 int uprobe_register(struct inode *inode, loff_t offset,
1188 		    struct uprobe_consumer *uc)
1189 {
1190 	return __uprobe_register(inode, offset, 0, uc);
1191 }
1192 EXPORT_SYMBOL_GPL(uprobe_register);
1193 
1194 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1195 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1196 {
1197 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1198 }
1199 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1200 
1201 /*
1202  * uprobe_apply - unregister an already registered probe.
1203  * @inode: the file in which the probe has to be removed.
1204  * @offset: offset from the start of the file.
1205  * @uc: consumer which wants to add more or remove some breakpoints
1206  * @add: add or remove the breakpoints
1207  */
1208 int uprobe_apply(struct inode *inode, loff_t offset,
1209 			struct uprobe_consumer *uc, bool add)
1210 {
1211 	struct uprobe *uprobe;
1212 	struct uprobe_consumer *con;
1213 	int ret = -ENOENT;
1214 
1215 	uprobe = find_uprobe(inode, offset);
1216 	if (WARN_ON(!uprobe))
1217 		return ret;
1218 
1219 	down_write(&uprobe->register_rwsem);
1220 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1221 		;
1222 	if (con)
1223 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1224 	up_write(&uprobe->register_rwsem);
1225 	put_uprobe(uprobe);
1226 
1227 	return ret;
1228 }
1229 
1230 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1231 {
1232 	struct vm_area_struct *vma;
1233 	int err = 0;
1234 
1235 	down_read(&mm->mmap_sem);
1236 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1237 		unsigned long vaddr;
1238 		loff_t offset;
1239 
1240 		if (!valid_vma(vma, false) ||
1241 		    file_inode(vma->vm_file) != uprobe->inode)
1242 			continue;
1243 
1244 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1245 		if (uprobe->offset <  offset ||
1246 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1247 			continue;
1248 
1249 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1250 		err |= remove_breakpoint(uprobe, mm, vaddr);
1251 	}
1252 	up_read(&mm->mmap_sem);
1253 
1254 	return err;
1255 }
1256 
1257 static struct rb_node *
1258 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1259 {
1260 	struct rb_node *n = uprobes_tree.rb_node;
1261 
1262 	while (n) {
1263 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1264 
1265 		if (inode < u->inode) {
1266 			n = n->rb_left;
1267 		} else if (inode > u->inode) {
1268 			n = n->rb_right;
1269 		} else {
1270 			if (max < u->offset)
1271 				n = n->rb_left;
1272 			else if (min > u->offset)
1273 				n = n->rb_right;
1274 			else
1275 				break;
1276 		}
1277 	}
1278 
1279 	return n;
1280 }
1281 
1282 /*
1283  * For a given range in vma, build a list of probes that need to be inserted.
1284  */
1285 static void build_probe_list(struct inode *inode,
1286 				struct vm_area_struct *vma,
1287 				unsigned long start, unsigned long end,
1288 				struct list_head *head)
1289 {
1290 	loff_t min, max;
1291 	struct rb_node *n, *t;
1292 	struct uprobe *u;
1293 
1294 	INIT_LIST_HEAD(head);
1295 	min = vaddr_to_offset(vma, start);
1296 	max = min + (end - start) - 1;
1297 
1298 	spin_lock(&uprobes_treelock);
1299 	n = find_node_in_range(inode, min, max);
1300 	if (n) {
1301 		for (t = n; t; t = rb_prev(t)) {
1302 			u = rb_entry(t, struct uprobe, rb_node);
1303 			if (u->inode != inode || u->offset < min)
1304 				break;
1305 			list_add(&u->pending_list, head);
1306 			get_uprobe(u);
1307 		}
1308 		for (t = n; (t = rb_next(t)); ) {
1309 			u = rb_entry(t, struct uprobe, rb_node);
1310 			if (u->inode != inode || u->offset > max)
1311 				break;
1312 			list_add(&u->pending_list, head);
1313 			get_uprobe(u);
1314 		}
1315 	}
1316 	spin_unlock(&uprobes_treelock);
1317 }
1318 
1319 /* @vma contains reference counter, not the probed instruction. */
1320 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1321 {
1322 	struct list_head *pos, *q;
1323 	struct delayed_uprobe *du;
1324 	unsigned long vaddr;
1325 	int ret = 0, err = 0;
1326 
1327 	mutex_lock(&delayed_uprobe_lock);
1328 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1329 		du = list_entry(pos, struct delayed_uprobe, list);
1330 
1331 		if (du->mm != vma->vm_mm ||
1332 		    !valid_ref_ctr_vma(du->uprobe, vma))
1333 			continue;
1334 
1335 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1336 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1337 		if (ret) {
1338 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1339 			if (!err)
1340 				err = ret;
1341 		}
1342 		delayed_uprobe_delete(du);
1343 	}
1344 	mutex_unlock(&delayed_uprobe_lock);
1345 	return err;
1346 }
1347 
1348 /*
1349  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1350  *
1351  * Currently we ignore all errors and always return 0, the callers
1352  * can't handle the failure anyway.
1353  */
1354 int uprobe_mmap(struct vm_area_struct *vma)
1355 {
1356 	struct list_head tmp_list;
1357 	struct uprobe *uprobe, *u;
1358 	struct inode *inode;
1359 
1360 	if (no_uprobe_events())
1361 		return 0;
1362 
1363 	if (vma->vm_file &&
1364 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1365 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1366 		delayed_ref_ctr_inc(vma);
1367 
1368 	if (!valid_vma(vma, true))
1369 		return 0;
1370 
1371 	inode = file_inode(vma->vm_file);
1372 	if (!inode)
1373 		return 0;
1374 
1375 	mutex_lock(uprobes_mmap_hash(inode));
1376 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1377 	/*
1378 	 * We can race with uprobe_unregister(), this uprobe can be already
1379 	 * removed. But in this case filter_chain() must return false, all
1380 	 * consumers have gone away.
1381 	 */
1382 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1383 		if (!fatal_signal_pending(current) &&
1384 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1385 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1386 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1387 		}
1388 		put_uprobe(uprobe);
1389 	}
1390 	mutex_unlock(uprobes_mmap_hash(inode));
1391 
1392 	return 0;
1393 }
1394 
1395 static bool
1396 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1397 {
1398 	loff_t min, max;
1399 	struct inode *inode;
1400 	struct rb_node *n;
1401 
1402 	inode = file_inode(vma->vm_file);
1403 
1404 	min = vaddr_to_offset(vma, start);
1405 	max = min + (end - start) - 1;
1406 
1407 	spin_lock(&uprobes_treelock);
1408 	n = find_node_in_range(inode, min, max);
1409 	spin_unlock(&uprobes_treelock);
1410 
1411 	return !!n;
1412 }
1413 
1414 /*
1415  * Called in context of a munmap of a vma.
1416  */
1417 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1418 {
1419 	if (no_uprobe_events() || !valid_vma(vma, false))
1420 		return;
1421 
1422 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1423 		return;
1424 
1425 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1426 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1427 		return;
1428 
1429 	if (vma_has_uprobes(vma, start, end))
1430 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1431 }
1432 
1433 /* Slot allocation for XOL */
1434 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1435 {
1436 	struct vm_area_struct *vma;
1437 	int ret;
1438 
1439 	if (down_write_killable(&mm->mmap_sem))
1440 		return -EINTR;
1441 
1442 	if (mm->uprobes_state.xol_area) {
1443 		ret = -EALREADY;
1444 		goto fail;
1445 	}
1446 
1447 	if (!area->vaddr) {
1448 		/* Try to map as high as possible, this is only a hint. */
1449 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1450 						PAGE_SIZE, 0, 0);
1451 		if (area->vaddr & ~PAGE_MASK) {
1452 			ret = area->vaddr;
1453 			goto fail;
1454 		}
1455 	}
1456 
1457 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1458 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1459 				&area->xol_mapping);
1460 	if (IS_ERR(vma)) {
1461 		ret = PTR_ERR(vma);
1462 		goto fail;
1463 	}
1464 
1465 	ret = 0;
1466 	/* pairs with get_xol_area() */
1467 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1468  fail:
1469 	up_write(&mm->mmap_sem);
1470 
1471 	return ret;
1472 }
1473 
1474 static struct xol_area *__create_xol_area(unsigned long vaddr)
1475 {
1476 	struct mm_struct *mm = current->mm;
1477 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1478 	struct xol_area *area;
1479 
1480 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1481 	if (unlikely(!area))
1482 		goto out;
1483 
1484 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1485 			       GFP_KERNEL);
1486 	if (!area->bitmap)
1487 		goto free_area;
1488 
1489 	area->xol_mapping.name = "[uprobes]";
1490 	area->xol_mapping.fault = NULL;
1491 	area->xol_mapping.pages = area->pages;
1492 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1493 	if (!area->pages[0])
1494 		goto free_bitmap;
1495 	area->pages[1] = NULL;
1496 
1497 	area->vaddr = vaddr;
1498 	init_waitqueue_head(&area->wq);
1499 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1500 	set_bit(0, area->bitmap);
1501 	atomic_set(&area->slot_count, 1);
1502 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1503 
1504 	if (!xol_add_vma(mm, area))
1505 		return area;
1506 
1507 	__free_page(area->pages[0]);
1508  free_bitmap:
1509 	kfree(area->bitmap);
1510  free_area:
1511 	kfree(area);
1512  out:
1513 	return NULL;
1514 }
1515 
1516 /*
1517  * get_xol_area - Allocate process's xol_area if necessary.
1518  * This area will be used for storing instructions for execution out of line.
1519  *
1520  * Returns the allocated area or NULL.
1521  */
1522 static struct xol_area *get_xol_area(void)
1523 {
1524 	struct mm_struct *mm = current->mm;
1525 	struct xol_area *area;
1526 
1527 	if (!mm->uprobes_state.xol_area)
1528 		__create_xol_area(0);
1529 
1530 	/* Pairs with xol_add_vma() smp_store_release() */
1531 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1532 	return area;
1533 }
1534 
1535 /*
1536  * uprobe_clear_state - Free the area allocated for slots.
1537  */
1538 void uprobe_clear_state(struct mm_struct *mm)
1539 {
1540 	struct xol_area *area = mm->uprobes_state.xol_area;
1541 
1542 	mutex_lock(&delayed_uprobe_lock);
1543 	delayed_uprobe_remove(NULL, mm);
1544 	mutex_unlock(&delayed_uprobe_lock);
1545 
1546 	if (!area)
1547 		return;
1548 
1549 	put_page(area->pages[0]);
1550 	kfree(area->bitmap);
1551 	kfree(area);
1552 }
1553 
1554 void uprobe_start_dup_mmap(void)
1555 {
1556 	percpu_down_read(&dup_mmap_sem);
1557 }
1558 
1559 void uprobe_end_dup_mmap(void)
1560 {
1561 	percpu_up_read(&dup_mmap_sem);
1562 }
1563 
1564 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1565 {
1566 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1567 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1568 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1569 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1570 	}
1571 }
1572 
1573 /*
1574  *  - search for a free slot.
1575  */
1576 static unsigned long xol_take_insn_slot(struct xol_area *area)
1577 {
1578 	unsigned long slot_addr;
1579 	int slot_nr;
1580 
1581 	do {
1582 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1583 		if (slot_nr < UINSNS_PER_PAGE) {
1584 			if (!test_and_set_bit(slot_nr, area->bitmap))
1585 				break;
1586 
1587 			slot_nr = UINSNS_PER_PAGE;
1588 			continue;
1589 		}
1590 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1591 	} while (slot_nr >= UINSNS_PER_PAGE);
1592 
1593 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1594 	atomic_inc(&area->slot_count);
1595 
1596 	return slot_addr;
1597 }
1598 
1599 /*
1600  * xol_get_insn_slot - allocate a slot for xol.
1601  * Returns the allocated slot address or 0.
1602  */
1603 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1604 {
1605 	struct xol_area *area;
1606 	unsigned long xol_vaddr;
1607 
1608 	area = get_xol_area();
1609 	if (!area)
1610 		return 0;
1611 
1612 	xol_vaddr = xol_take_insn_slot(area);
1613 	if (unlikely(!xol_vaddr))
1614 		return 0;
1615 
1616 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1617 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1618 
1619 	return xol_vaddr;
1620 }
1621 
1622 /*
1623  * xol_free_insn_slot - If slot was earlier allocated by
1624  * @xol_get_insn_slot(), make the slot available for
1625  * subsequent requests.
1626  */
1627 static void xol_free_insn_slot(struct task_struct *tsk)
1628 {
1629 	struct xol_area *area;
1630 	unsigned long vma_end;
1631 	unsigned long slot_addr;
1632 
1633 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1634 		return;
1635 
1636 	slot_addr = tsk->utask->xol_vaddr;
1637 	if (unlikely(!slot_addr))
1638 		return;
1639 
1640 	area = tsk->mm->uprobes_state.xol_area;
1641 	vma_end = area->vaddr + PAGE_SIZE;
1642 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1643 		unsigned long offset;
1644 		int slot_nr;
1645 
1646 		offset = slot_addr - area->vaddr;
1647 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1648 		if (slot_nr >= UINSNS_PER_PAGE)
1649 			return;
1650 
1651 		clear_bit(slot_nr, area->bitmap);
1652 		atomic_dec(&area->slot_count);
1653 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1654 		if (waitqueue_active(&area->wq))
1655 			wake_up(&area->wq);
1656 
1657 		tsk->utask->xol_vaddr = 0;
1658 	}
1659 }
1660 
1661 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1662 				  void *src, unsigned long len)
1663 {
1664 	/* Initialize the slot */
1665 	copy_to_page(page, vaddr, src, len);
1666 
1667 	/*
1668 	 * We probably need flush_icache_user_range() but it needs vma.
1669 	 * This should work on most of architectures by default. If
1670 	 * architecture needs to do something different it can define
1671 	 * its own version of the function.
1672 	 */
1673 	flush_dcache_page(page);
1674 }
1675 
1676 /**
1677  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1678  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1679  * instruction.
1680  * Return the address of the breakpoint instruction.
1681  */
1682 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1683 {
1684 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1685 }
1686 
1687 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1688 {
1689 	struct uprobe_task *utask = current->utask;
1690 
1691 	if (unlikely(utask && utask->active_uprobe))
1692 		return utask->vaddr;
1693 
1694 	return instruction_pointer(regs);
1695 }
1696 
1697 static struct return_instance *free_ret_instance(struct return_instance *ri)
1698 {
1699 	struct return_instance *next = ri->next;
1700 	put_uprobe(ri->uprobe);
1701 	kfree(ri);
1702 	return next;
1703 }
1704 
1705 /*
1706  * Called with no locks held.
1707  * Called in context of an exiting or an exec-ing thread.
1708  */
1709 void uprobe_free_utask(struct task_struct *t)
1710 {
1711 	struct uprobe_task *utask = t->utask;
1712 	struct return_instance *ri;
1713 
1714 	if (!utask)
1715 		return;
1716 
1717 	if (utask->active_uprobe)
1718 		put_uprobe(utask->active_uprobe);
1719 
1720 	ri = utask->return_instances;
1721 	while (ri)
1722 		ri = free_ret_instance(ri);
1723 
1724 	xol_free_insn_slot(t);
1725 	kfree(utask);
1726 	t->utask = NULL;
1727 }
1728 
1729 /*
1730  * Allocate a uprobe_task object for the task if if necessary.
1731  * Called when the thread hits a breakpoint.
1732  *
1733  * Returns:
1734  * - pointer to new uprobe_task on success
1735  * - NULL otherwise
1736  */
1737 static struct uprobe_task *get_utask(void)
1738 {
1739 	if (!current->utask)
1740 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1741 	return current->utask;
1742 }
1743 
1744 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1745 {
1746 	struct uprobe_task *n_utask;
1747 	struct return_instance **p, *o, *n;
1748 
1749 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1750 	if (!n_utask)
1751 		return -ENOMEM;
1752 	t->utask = n_utask;
1753 
1754 	p = &n_utask->return_instances;
1755 	for (o = o_utask->return_instances; o; o = o->next) {
1756 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1757 		if (!n)
1758 			return -ENOMEM;
1759 
1760 		*n = *o;
1761 		get_uprobe(n->uprobe);
1762 		n->next = NULL;
1763 
1764 		*p = n;
1765 		p = &n->next;
1766 		n_utask->depth++;
1767 	}
1768 
1769 	return 0;
1770 }
1771 
1772 static void uprobe_warn(struct task_struct *t, const char *msg)
1773 {
1774 	pr_warn("uprobe: %s:%d failed to %s\n",
1775 			current->comm, current->pid, msg);
1776 }
1777 
1778 static void dup_xol_work(struct callback_head *work)
1779 {
1780 	if (current->flags & PF_EXITING)
1781 		return;
1782 
1783 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1784 			!fatal_signal_pending(current))
1785 		uprobe_warn(current, "dup xol area");
1786 }
1787 
1788 /*
1789  * Called in context of a new clone/fork from copy_process.
1790  */
1791 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1792 {
1793 	struct uprobe_task *utask = current->utask;
1794 	struct mm_struct *mm = current->mm;
1795 	struct xol_area *area;
1796 
1797 	t->utask = NULL;
1798 
1799 	if (!utask || !utask->return_instances)
1800 		return;
1801 
1802 	if (mm == t->mm && !(flags & CLONE_VFORK))
1803 		return;
1804 
1805 	if (dup_utask(t, utask))
1806 		return uprobe_warn(t, "dup ret instances");
1807 
1808 	/* The task can fork() after dup_xol_work() fails */
1809 	area = mm->uprobes_state.xol_area;
1810 	if (!area)
1811 		return uprobe_warn(t, "dup xol area");
1812 
1813 	if (mm == t->mm)
1814 		return;
1815 
1816 	t->utask->dup_xol_addr = area->vaddr;
1817 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1818 	task_work_add(t, &t->utask->dup_xol_work, true);
1819 }
1820 
1821 /*
1822  * Current area->vaddr notion assume the trampoline address is always
1823  * equal area->vaddr.
1824  *
1825  * Returns -1 in case the xol_area is not allocated.
1826  */
1827 static unsigned long get_trampoline_vaddr(void)
1828 {
1829 	struct xol_area *area;
1830 	unsigned long trampoline_vaddr = -1;
1831 
1832 	/* Pairs with xol_add_vma() smp_store_release() */
1833 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1834 	if (area)
1835 		trampoline_vaddr = area->vaddr;
1836 
1837 	return trampoline_vaddr;
1838 }
1839 
1840 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1841 					struct pt_regs *regs)
1842 {
1843 	struct return_instance *ri = utask->return_instances;
1844 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1845 
1846 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1847 		ri = free_ret_instance(ri);
1848 		utask->depth--;
1849 	}
1850 	utask->return_instances = ri;
1851 }
1852 
1853 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1854 {
1855 	struct return_instance *ri;
1856 	struct uprobe_task *utask;
1857 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1858 	bool chained;
1859 
1860 	if (!get_xol_area())
1861 		return;
1862 
1863 	utask = get_utask();
1864 	if (!utask)
1865 		return;
1866 
1867 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1868 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1869 				" nestedness limit pid/tgid=%d/%d\n",
1870 				current->pid, current->tgid);
1871 		return;
1872 	}
1873 
1874 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1875 	if (!ri)
1876 		return;
1877 
1878 	trampoline_vaddr = get_trampoline_vaddr();
1879 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1880 	if (orig_ret_vaddr == -1)
1881 		goto fail;
1882 
1883 	/* drop the entries invalidated by longjmp() */
1884 	chained = (orig_ret_vaddr == trampoline_vaddr);
1885 	cleanup_return_instances(utask, chained, regs);
1886 
1887 	/*
1888 	 * We don't want to keep trampoline address in stack, rather keep the
1889 	 * original return address of first caller thru all the consequent
1890 	 * instances. This also makes breakpoint unwrapping easier.
1891 	 */
1892 	if (chained) {
1893 		if (!utask->return_instances) {
1894 			/*
1895 			 * This situation is not possible. Likely we have an
1896 			 * attack from user-space.
1897 			 */
1898 			uprobe_warn(current, "handle tail call");
1899 			goto fail;
1900 		}
1901 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1902 	}
1903 
1904 	ri->uprobe = get_uprobe(uprobe);
1905 	ri->func = instruction_pointer(regs);
1906 	ri->stack = user_stack_pointer(regs);
1907 	ri->orig_ret_vaddr = orig_ret_vaddr;
1908 	ri->chained = chained;
1909 
1910 	utask->depth++;
1911 	ri->next = utask->return_instances;
1912 	utask->return_instances = ri;
1913 
1914 	return;
1915  fail:
1916 	kfree(ri);
1917 }
1918 
1919 /* Prepare to single-step probed instruction out of line. */
1920 static int
1921 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1922 {
1923 	struct uprobe_task *utask;
1924 	unsigned long xol_vaddr;
1925 	int err;
1926 
1927 	utask = get_utask();
1928 	if (!utask)
1929 		return -ENOMEM;
1930 
1931 	xol_vaddr = xol_get_insn_slot(uprobe);
1932 	if (!xol_vaddr)
1933 		return -ENOMEM;
1934 
1935 	utask->xol_vaddr = xol_vaddr;
1936 	utask->vaddr = bp_vaddr;
1937 
1938 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1939 	if (unlikely(err)) {
1940 		xol_free_insn_slot(current);
1941 		return err;
1942 	}
1943 
1944 	utask->active_uprobe = uprobe;
1945 	utask->state = UTASK_SSTEP;
1946 	return 0;
1947 }
1948 
1949 /*
1950  * If we are singlestepping, then ensure this thread is not connected to
1951  * non-fatal signals until completion of singlestep.  When xol insn itself
1952  * triggers the signal,  restart the original insn even if the task is
1953  * already SIGKILL'ed (since coredump should report the correct ip).  This
1954  * is even more important if the task has a handler for SIGSEGV/etc, The
1955  * _same_ instruction should be repeated again after return from the signal
1956  * handler, and SSTEP can never finish in this case.
1957  */
1958 bool uprobe_deny_signal(void)
1959 {
1960 	struct task_struct *t = current;
1961 	struct uprobe_task *utask = t->utask;
1962 
1963 	if (likely(!utask || !utask->active_uprobe))
1964 		return false;
1965 
1966 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1967 
1968 	if (signal_pending(t)) {
1969 		spin_lock_irq(&t->sighand->siglock);
1970 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1971 		spin_unlock_irq(&t->sighand->siglock);
1972 
1973 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1974 			utask->state = UTASK_SSTEP_TRAPPED;
1975 			set_tsk_thread_flag(t, TIF_UPROBE);
1976 		}
1977 	}
1978 
1979 	return true;
1980 }
1981 
1982 static void mmf_recalc_uprobes(struct mm_struct *mm)
1983 {
1984 	struct vm_area_struct *vma;
1985 
1986 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1987 		if (!valid_vma(vma, false))
1988 			continue;
1989 		/*
1990 		 * This is not strictly accurate, we can race with
1991 		 * uprobe_unregister() and see the already removed
1992 		 * uprobe if delete_uprobe() was not yet called.
1993 		 * Or this uprobe can be filtered out.
1994 		 */
1995 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1996 			return;
1997 	}
1998 
1999 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2000 }
2001 
2002 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2003 {
2004 	struct page *page;
2005 	uprobe_opcode_t opcode;
2006 	int result;
2007 
2008 	pagefault_disable();
2009 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2010 	pagefault_enable();
2011 
2012 	if (likely(result == 0))
2013 		goto out;
2014 
2015 	/*
2016 	 * The NULL 'tsk' here ensures that any faults that occur here
2017 	 * will not be accounted to the task.  'mm' *is* current->mm,
2018 	 * but we treat this as a 'remote' access since it is
2019 	 * essentially a kernel access to the memory.
2020 	 */
2021 	result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2022 			NULL, NULL);
2023 	if (result < 0)
2024 		return result;
2025 
2026 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2027 	put_page(page);
2028  out:
2029 	/* This needs to return true for any variant of the trap insn */
2030 	return is_trap_insn(&opcode);
2031 }
2032 
2033 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2034 {
2035 	struct mm_struct *mm = current->mm;
2036 	struct uprobe *uprobe = NULL;
2037 	struct vm_area_struct *vma;
2038 
2039 	down_read(&mm->mmap_sem);
2040 	vma = find_vma(mm, bp_vaddr);
2041 	if (vma && vma->vm_start <= bp_vaddr) {
2042 		if (valid_vma(vma, false)) {
2043 			struct inode *inode = file_inode(vma->vm_file);
2044 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2045 
2046 			uprobe = find_uprobe(inode, offset);
2047 		}
2048 
2049 		if (!uprobe)
2050 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2051 	} else {
2052 		*is_swbp = -EFAULT;
2053 	}
2054 
2055 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2056 		mmf_recalc_uprobes(mm);
2057 	up_read(&mm->mmap_sem);
2058 
2059 	return uprobe;
2060 }
2061 
2062 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2063 {
2064 	struct uprobe_consumer *uc;
2065 	int remove = UPROBE_HANDLER_REMOVE;
2066 	bool need_prep = false; /* prepare return uprobe, when needed */
2067 
2068 	down_read(&uprobe->register_rwsem);
2069 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2070 		int rc = 0;
2071 
2072 		if (uc->handler) {
2073 			rc = uc->handler(uc, regs);
2074 			WARN(rc & ~UPROBE_HANDLER_MASK,
2075 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2076 		}
2077 
2078 		if (uc->ret_handler)
2079 			need_prep = true;
2080 
2081 		remove &= rc;
2082 	}
2083 
2084 	if (need_prep && !remove)
2085 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2086 
2087 	if (remove && uprobe->consumers) {
2088 		WARN_ON(!uprobe_is_active(uprobe));
2089 		unapply_uprobe(uprobe, current->mm);
2090 	}
2091 	up_read(&uprobe->register_rwsem);
2092 }
2093 
2094 static void
2095 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2096 {
2097 	struct uprobe *uprobe = ri->uprobe;
2098 	struct uprobe_consumer *uc;
2099 
2100 	down_read(&uprobe->register_rwsem);
2101 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2102 		if (uc->ret_handler)
2103 			uc->ret_handler(uc, ri->func, regs);
2104 	}
2105 	up_read(&uprobe->register_rwsem);
2106 }
2107 
2108 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2109 {
2110 	bool chained;
2111 
2112 	do {
2113 		chained = ri->chained;
2114 		ri = ri->next;	/* can't be NULL if chained */
2115 	} while (chained);
2116 
2117 	return ri;
2118 }
2119 
2120 static void handle_trampoline(struct pt_regs *regs)
2121 {
2122 	struct uprobe_task *utask;
2123 	struct return_instance *ri, *next;
2124 	bool valid;
2125 
2126 	utask = current->utask;
2127 	if (!utask)
2128 		goto sigill;
2129 
2130 	ri = utask->return_instances;
2131 	if (!ri)
2132 		goto sigill;
2133 
2134 	do {
2135 		/*
2136 		 * We should throw out the frames invalidated by longjmp().
2137 		 * If this chain is valid, then the next one should be alive
2138 		 * or NULL; the latter case means that nobody but ri->func
2139 		 * could hit this trampoline on return. TODO: sigaltstack().
2140 		 */
2141 		next = find_next_ret_chain(ri);
2142 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2143 
2144 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2145 		do {
2146 			if (valid)
2147 				handle_uretprobe_chain(ri, regs);
2148 			ri = free_ret_instance(ri);
2149 			utask->depth--;
2150 		} while (ri != next);
2151 	} while (!valid);
2152 
2153 	utask->return_instances = ri;
2154 	return;
2155 
2156  sigill:
2157 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2158 	force_sig(SIGILL);
2159 
2160 }
2161 
2162 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2163 {
2164 	return false;
2165 }
2166 
2167 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2168 					struct pt_regs *regs)
2169 {
2170 	return true;
2171 }
2172 
2173 /*
2174  * Run handler and ask thread to singlestep.
2175  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2176  */
2177 static void handle_swbp(struct pt_regs *regs)
2178 {
2179 	struct uprobe *uprobe;
2180 	unsigned long bp_vaddr;
2181 	int uninitialized_var(is_swbp);
2182 
2183 	bp_vaddr = uprobe_get_swbp_addr(regs);
2184 	if (bp_vaddr == get_trampoline_vaddr())
2185 		return handle_trampoline(regs);
2186 
2187 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2188 	if (!uprobe) {
2189 		if (is_swbp > 0) {
2190 			/* No matching uprobe; signal SIGTRAP. */
2191 			send_sig(SIGTRAP, current, 0);
2192 		} else {
2193 			/*
2194 			 * Either we raced with uprobe_unregister() or we can't
2195 			 * access this memory. The latter is only possible if
2196 			 * another thread plays with our ->mm. In both cases
2197 			 * we can simply restart. If this vma was unmapped we
2198 			 * can pretend this insn was not executed yet and get
2199 			 * the (correct) SIGSEGV after restart.
2200 			 */
2201 			instruction_pointer_set(regs, bp_vaddr);
2202 		}
2203 		return;
2204 	}
2205 
2206 	/* change it in advance for ->handler() and restart */
2207 	instruction_pointer_set(regs, bp_vaddr);
2208 
2209 	/*
2210 	 * TODO: move copy_insn/etc into _register and remove this hack.
2211 	 * After we hit the bp, _unregister + _register can install the
2212 	 * new and not-yet-analyzed uprobe at the same address, restart.
2213 	 */
2214 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2215 		goto out;
2216 
2217 	/*
2218 	 * Pairs with the smp_wmb() in prepare_uprobe().
2219 	 *
2220 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2221 	 * we must also see the stores to &uprobe->arch performed by the
2222 	 * prepare_uprobe() call.
2223 	 */
2224 	smp_rmb();
2225 
2226 	/* Tracing handlers use ->utask to communicate with fetch methods */
2227 	if (!get_utask())
2228 		goto out;
2229 
2230 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2231 		goto out;
2232 
2233 	handler_chain(uprobe, regs);
2234 
2235 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2236 		goto out;
2237 
2238 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2239 		return;
2240 
2241 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2242 out:
2243 	put_uprobe(uprobe);
2244 }
2245 
2246 /*
2247  * Perform required fix-ups and disable singlestep.
2248  * Allow pending signals to take effect.
2249  */
2250 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2251 {
2252 	struct uprobe *uprobe;
2253 	int err = 0;
2254 
2255 	uprobe = utask->active_uprobe;
2256 	if (utask->state == UTASK_SSTEP_ACK)
2257 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2258 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2259 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2260 	else
2261 		WARN_ON_ONCE(1);
2262 
2263 	put_uprobe(uprobe);
2264 	utask->active_uprobe = NULL;
2265 	utask->state = UTASK_RUNNING;
2266 	xol_free_insn_slot(current);
2267 
2268 	spin_lock_irq(&current->sighand->siglock);
2269 	recalc_sigpending(); /* see uprobe_deny_signal() */
2270 	spin_unlock_irq(&current->sighand->siglock);
2271 
2272 	if (unlikely(err)) {
2273 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2274 		force_sig(SIGILL);
2275 	}
2276 }
2277 
2278 /*
2279  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2280  * allows the thread to return from interrupt. After that handle_swbp()
2281  * sets utask->active_uprobe.
2282  *
2283  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2284  * and allows the thread to return from interrupt.
2285  *
2286  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2287  * uprobe_notify_resume().
2288  */
2289 void uprobe_notify_resume(struct pt_regs *regs)
2290 {
2291 	struct uprobe_task *utask;
2292 
2293 	clear_thread_flag(TIF_UPROBE);
2294 
2295 	utask = current->utask;
2296 	if (utask && utask->active_uprobe)
2297 		handle_singlestep(utask, regs);
2298 	else
2299 		handle_swbp(regs);
2300 }
2301 
2302 /*
2303  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2304  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2305  */
2306 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2307 {
2308 	if (!current->mm)
2309 		return 0;
2310 
2311 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2312 	    (!current->utask || !current->utask->return_instances))
2313 		return 0;
2314 
2315 	set_thread_flag(TIF_UPROBE);
2316 	return 1;
2317 }
2318 
2319 /*
2320  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2321  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2322  */
2323 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2324 {
2325 	struct uprobe_task *utask = current->utask;
2326 
2327 	if (!current->mm || !utask || !utask->active_uprobe)
2328 		/* task is currently not uprobed */
2329 		return 0;
2330 
2331 	utask->state = UTASK_SSTEP_ACK;
2332 	set_thread_flag(TIF_UPROBE);
2333 	return 1;
2334 }
2335 
2336 static struct notifier_block uprobe_exception_nb = {
2337 	.notifier_call		= arch_uprobe_exception_notify,
2338 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2339 };
2340 
2341 void __init uprobes_init(void)
2342 {
2343 	int i;
2344 
2345 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2346 		mutex_init(&uprobes_mmap_mutex[i]);
2347 
2348 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2349 }
2350