1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 22 #include <linux/swap.h> /* try_to_free_swap */ 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier mechanism */ 25 #include "../../mm/internal.h" /* munlock_vma_page */ 26 #include <linux/percpu-rwsem.h> 27 #include <linux/task_work.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/khugepaged.h> 30 31 #include <linux/uprobes.h> 32 33 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 34 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 35 36 static struct rb_root uprobes_tree = RB_ROOT; 37 /* 38 * allows us to skip the uprobe_mmap if there are no uprobe events active 39 * at this time. Probably a fine grained per inode count is better? 40 */ 41 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 42 43 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 44 45 #define UPROBES_HASH_SZ 13 46 /* serialize uprobe->pending_list */ 47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 48 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 49 50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 51 52 /* Have a copy of original instruction */ 53 #define UPROBE_COPY_INSN 0 54 55 struct uprobe { 56 struct rb_node rb_node; /* node in the rb tree */ 57 refcount_t ref; 58 struct rw_semaphore register_rwsem; 59 struct rw_semaphore consumer_rwsem; 60 struct list_head pending_list; 61 struct uprobe_consumer *consumers; 62 struct inode *inode; /* Also hold a ref to inode */ 63 loff_t offset; 64 loff_t ref_ctr_offset; 65 unsigned long flags; 66 67 /* 68 * The generic code assumes that it has two members of unknown type 69 * owned by the arch-specific code: 70 * 71 * insn - copy_insn() saves the original instruction here for 72 * arch_uprobe_analyze_insn(). 73 * 74 * ixol - potentially modified instruction to execute out of 75 * line, copied to xol_area by xol_get_insn_slot(). 76 */ 77 struct arch_uprobe arch; 78 }; 79 80 struct delayed_uprobe { 81 struct list_head list; 82 struct uprobe *uprobe; 83 struct mm_struct *mm; 84 }; 85 86 static DEFINE_MUTEX(delayed_uprobe_lock); 87 static LIST_HEAD(delayed_uprobe_list); 88 89 /* 90 * Execute out of line area: anonymous executable mapping installed 91 * by the probed task to execute the copy of the original instruction 92 * mangled by set_swbp(). 93 * 94 * On a breakpoint hit, thread contests for a slot. It frees the 95 * slot after singlestep. Currently a fixed number of slots are 96 * allocated. 97 */ 98 struct xol_area { 99 wait_queue_head_t wq; /* if all slots are busy */ 100 atomic_t slot_count; /* number of in-use slots */ 101 unsigned long *bitmap; /* 0 = free slot */ 102 103 struct vm_special_mapping xol_mapping; 104 struct page *pages[2]; 105 /* 106 * We keep the vma's vm_start rather than a pointer to the vma 107 * itself. The probed process or a naughty kernel module could make 108 * the vma go away, and we must handle that reasonably gracefully. 109 */ 110 unsigned long vaddr; /* Page(s) of instruction slots */ 111 }; 112 113 /* 114 * valid_vma: Verify if the specified vma is an executable vma 115 * Relax restrictions while unregistering: vm_flags might have 116 * changed after breakpoint was inserted. 117 * - is_register: indicates if we are in register context. 118 * - Return 1 if the specified virtual address is in an 119 * executable vma. 120 */ 121 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 122 { 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 124 125 if (is_register) 126 flags |= VM_WRITE; 127 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 129 } 130 131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 132 { 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 134 } 135 136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 137 { 138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 139 } 140 141 /** 142 * __replace_page - replace page in vma by new page. 143 * based on replace_page in mm/ksm.c 144 * 145 * @vma: vma that holds the pte pointing to page 146 * @addr: address the old @page is mapped at 147 * @old_page: the page we are replacing by new_page 148 * @new_page: the modified page we replace page by 149 * 150 * If @new_page is NULL, only unmap @old_page. 151 * 152 * Returns 0 on success, negative error code otherwise. 153 */ 154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 155 struct page *old_page, struct page *new_page) 156 { 157 struct mm_struct *mm = vma->vm_mm; 158 struct page_vma_mapped_walk pvmw = { 159 .page = compound_head(old_page), 160 .vma = vma, 161 .address = addr, 162 }; 163 int err; 164 struct mmu_notifier_range range; 165 struct mem_cgroup *memcg; 166 167 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 168 addr + PAGE_SIZE); 169 170 if (new_page) { 171 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, 172 &memcg, false); 173 if (err) 174 return err; 175 } 176 177 /* For try_to_free_swap() and munlock_vma_page() below */ 178 lock_page(old_page); 179 180 mmu_notifier_invalidate_range_start(&range); 181 err = -EAGAIN; 182 if (!page_vma_mapped_walk(&pvmw)) { 183 if (new_page) 184 mem_cgroup_cancel_charge(new_page, memcg, false); 185 goto unlock; 186 } 187 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 188 189 if (new_page) { 190 get_page(new_page); 191 page_add_new_anon_rmap(new_page, vma, addr, false); 192 mem_cgroup_commit_charge(new_page, memcg, false, false); 193 lru_cache_add_active_or_unevictable(new_page, vma); 194 } else 195 /* no new page, just dec_mm_counter for old_page */ 196 dec_mm_counter(mm, MM_ANONPAGES); 197 198 if (!PageAnon(old_page)) { 199 dec_mm_counter(mm, mm_counter_file(old_page)); 200 inc_mm_counter(mm, MM_ANONPAGES); 201 } 202 203 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 204 ptep_clear_flush_notify(vma, addr, pvmw.pte); 205 if (new_page) 206 set_pte_at_notify(mm, addr, pvmw.pte, 207 mk_pte(new_page, vma->vm_page_prot)); 208 209 page_remove_rmap(old_page, false); 210 if (!page_mapped(old_page)) 211 try_to_free_swap(old_page); 212 page_vma_mapped_walk_done(&pvmw); 213 214 if (vma->vm_flags & VM_LOCKED) 215 munlock_vma_page(old_page); 216 put_page(old_page); 217 218 err = 0; 219 unlock: 220 mmu_notifier_invalidate_range_end(&range); 221 unlock_page(old_page); 222 return err; 223 } 224 225 /** 226 * is_swbp_insn - check if instruction is breakpoint instruction. 227 * @insn: instruction to be checked. 228 * Default implementation of is_swbp_insn 229 * Returns true if @insn is a breakpoint instruction. 230 */ 231 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 232 { 233 return *insn == UPROBE_SWBP_INSN; 234 } 235 236 /** 237 * is_trap_insn - check if instruction is breakpoint instruction. 238 * @insn: instruction to be checked. 239 * Default implementation of is_trap_insn 240 * Returns true if @insn is a breakpoint instruction. 241 * 242 * This function is needed for the case where an architecture has multiple 243 * trap instructions (like powerpc). 244 */ 245 bool __weak is_trap_insn(uprobe_opcode_t *insn) 246 { 247 return is_swbp_insn(insn); 248 } 249 250 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 251 { 252 void *kaddr = kmap_atomic(page); 253 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 254 kunmap_atomic(kaddr); 255 } 256 257 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 258 { 259 void *kaddr = kmap_atomic(page); 260 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 261 kunmap_atomic(kaddr); 262 } 263 264 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 265 { 266 uprobe_opcode_t old_opcode; 267 bool is_swbp; 268 269 /* 270 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 271 * We do not check if it is any other 'trap variant' which could 272 * be conditional trap instruction such as the one powerpc supports. 273 * 274 * The logic is that we do not care if the underlying instruction 275 * is a trap variant; uprobes always wins over any other (gdb) 276 * breakpoint. 277 */ 278 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 279 is_swbp = is_swbp_insn(&old_opcode); 280 281 if (is_swbp_insn(new_opcode)) { 282 if (is_swbp) /* register: already installed? */ 283 return 0; 284 } else { 285 if (!is_swbp) /* unregister: was it changed by us? */ 286 return 0; 287 } 288 289 return 1; 290 } 291 292 static struct delayed_uprobe * 293 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 294 { 295 struct delayed_uprobe *du; 296 297 list_for_each_entry(du, &delayed_uprobe_list, list) 298 if (du->uprobe == uprobe && du->mm == mm) 299 return du; 300 return NULL; 301 } 302 303 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 304 { 305 struct delayed_uprobe *du; 306 307 if (delayed_uprobe_check(uprobe, mm)) 308 return 0; 309 310 du = kzalloc(sizeof(*du), GFP_KERNEL); 311 if (!du) 312 return -ENOMEM; 313 314 du->uprobe = uprobe; 315 du->mm = mm; 316 list_add(&du->list, &delayed_uprobe_list); 317 return 0; 318 } 319 320 static void delayed_uprobe_delete(struct delayed_uprobe *du) 321 { 322 if (WARN_ON(!du)) 323 return; 324 list_del(&du->list); 325 kfree(du); 326 } 327 328 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 329 { 330 struct list_head *pos, *q; 331 struct delayed_uprobe *du; 332 333 if (!uprobe && !mm) 334 return; 335 336 list_for_each_safe(pos, q, &delayed_uprobe_list) { 337 du = list_entry(pos, struct delayed_uprobe, list); 338 339 if (uprobe && du->uprobe != uprobe) 340 continue; 341 if (mm && du->mm != mm) 342 continue; 343 344 delayed_uprobe_delete(du); 345 } 346 } 347 348 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 349 struct vm_area_struct *vma) 350 { 351 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 352 353 return uprobe->ref_ctr_offset && 354 vma->vm_file && 355 file_inode(vma->vm_file) == uprobe->inode && 356 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 357 vma->vm_start <= vaddr && 358 vma->vm_end > vaddr; 359 } 360 361 static struct vm_area_struct * 362 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 363 { 364 struct vm_area_struct *tmp; 365 366 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next) 367 if (valid_ref_ctr_vma(uprobe, tmp)) 368 return tmp; 369 370 return NULL; 371 } 372 373 static int 374 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 375 { 376 void *kaddr; 377 struct page *page; 378 struct vm_area_struct *vma; 379 int ret; 380 short *ptr; 381 382 if (!vaddr || !d) 383 return -EINVAL; 384 385 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 386 FOLL_WRITE, &page, &vma, NULL); 387 if (unlikely(ret <= 0)) { 388 /* 389 * We are asking for 1 page. If get_user_pages_remote() fails, 390 * it may return 0, in that case we have to return error. 391 */ 392 return ret == 0 ? -EBUSY : ret; 393 } 394 395 kaddr = kmap_atomic(page); 396 ptr = kaddr + (vaddr & ~PAGE_MASK); 397 398 if (unlikely(*ptr + d < 0)) { 399 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 400 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 401 ret = -EINVAL; 402 goto out; 403 } 404 405 *ptr += d; 406 ret = 0; 407 out: 408 kunmap_atomic(kaddr); 409 put_page(page); 410 return ret; 411 } 412 413 static void update_ref_ctr_warn(struct uprobe *uprobe, 414 struct mm_struct *mm, short d) 415 { 416 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 417 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 418 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 419 (unsigned long long) uprobe->offset, 420 (unsigned long long) uprobe->ref_ctr_offset, mm); 421 } 422 423 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 424 short d) 425 { 426 struct vm_area_struct *rc_vma; 427 unsigned long rc_vaddr; 428 int ret = 0; 429 430 rc_vma = find_ref_ctr_vma(uprobe, mm); 431 432 if (rc_vma) { 433 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 434 ret = __update_ref_ctr(mm, rc_vaddr, d); 435 if (ret) 436 update_ref_ctr_warn(uprobe, mm, d); 437 438 if (d > 0) 439 return ret; 440 } 441 442 mutex_lock(&delayed_uprobe_lock); 443 if (d > 0) 444 ret = delayed_uprobe_add(uprobe, mm); 445 else 446 delayed_uprobe_remove(uprobe, mm); 447 mutex_unlock(&delayed_uprobe_lock); 448 449 return ret; 450 } 451 452 /* 453 * NOTE: 454 * Expect the breakpoint instruction to be the smallest size instruction for 455 * the architecture. If an arch has variable length instruction and the 456 * breakpoint instruction is not of the smallest length instruction 457 * supported by that architecture then we need to modify is_trap_at_addr and 458 * uprobe_write_opcode accordingly. This would never be a problem for archs 459 * that have fixed length instructions. 460 * 461 * uprobe_write_opcode - write the opcode at a given virtual address. 462 * @mm: the probed process address space. 463 * @vaddr: the virtual address to store the opcode. 464 * @opcode: opcode to be written at @vaddr. 465 * 466 * Called with mm->mmap_sem held for write. 467 * Return 0 (success) or a negative errno. 468 */ 469 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 470 unsigned long vaddr, uprobe_opcode_t opcode) 471 { 472 struct uprobe *uprobe; 473 struct page *old_page, *new_page; 474 struct vm_area_struct *vma; 475 int ret, is_register, ref_ctr_updated = 0; 476 bool orig_page_huge = false; 477 478 is_register = is_swbp_insn(&opcode); 479 uprobe = container_of(auprobe, struct uprobe, arch); 480 481 retry: 482 /* Read the page with vaddr into memory */ 483 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 484 FOLL_FORCE | FOLL_SPLIT_PMD, &old_page, &vma, NULL); 485 if (ret <= 0) 486 return ret; 487 488 ret = verify_opcode(old_page, vaddr, &opcode); 489 if (ret <= 0) 490 goto put_old; 491 492 /* We are going to replace instruction, update ref_ctr. */ 493 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 494 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 495 if (ret) 496 goto put_old; 497 498 ref_ctr_updated = 1; 499 } 500 501 ret = 0; 502 if (!is_register && !PageAnon(old_page)) 503 goto put_old; 504 505 ret = anon_vma_prepare(vma); 506 if (ret) 507 goto put_old; 508 509 ret = -ENOMEM; 510 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 511 if (!new_page) 512 goto put_old; 513 514 __SetPageUptodate(new_page); 515 copy_highpage(new_page, old_page); 516 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 517 518 if (!is_register) { 519 struct page *orig_page; 520 pgoff_t index; 521 522 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 523 524 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 525 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 526 index); 527 528 if (orig_page) { 529 if (PageUptodate(orig_page) && 530 pages_identical(new_page, orig_page)) { 531 /* let go new_page */ 532 put_page(new_page); 533 new_page = NULL; 534 535 if (PageCompound(orig_page)) 536 orig_page_huge = true; 537 } 538 put_page(orig_page); 539 } 540 } 541 542 ret = __replace_page(vma, vaddr, old_page, new_page); 543 if (new_page) 544 put_page(new_page); 545 put_old: 546 put_page(old_page); 547 548 if (unlikely(ret == -EAGAIN)) 549 goto retry; 550 551 /* Revert back reference counter if instruction update failed. */ 552 if (ret && is_register && ref_ctr_updated) 553 update_ref_ctr(uprobe, mm, -1); 554 555 /* try collapse pmd for compound page */ 556 if (!ret && orig_page_huge) 557 collapse_pte_mapped_thp(mm, vaddr); 558 559 return ret; 560 } 561 562 /** 563 * set_swbp - store breakpoint at a given address. 564 * @auprobe: arch specific probepoint information. 565 * @mm: the probed process address space. 566 * @vaddr: the virtual address to insert the opcode. 567 * 568 * For mm @mm, store the breakpoint instruction at @vaddr. 569 * Return 0 (success) or a negative errno. 570 */ 571 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 572 { 573 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 574 } 575 576 /** 577 * set_orig_insn - Restore the original instruction. 578 * @mm: the probed process address space. 579 * @auprobe: arch specific probepoint information. 580 * @vaddr: the virtual address to insert the opcode. 581 * 582 * For mm @mm, restore the original opcode (opcode) at @vaddr. 583 * Return 0 (success) or a negative errno. 584 */ 585 int __weak 586 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 587 { 588 return uprobe_write_opcode(auprobe, mm, vaddr, 589 *(uprobe_opcode_t *)&auprobe->insn); 590 } 591 592 static struct uprobe *get_uprobe(struct uprobe *uprobe) 593 { 594 refcount_inc(&uprobe->ref); 595 return uprobe; 596 } 597 598 static void put_uprobe(struct uprobe *uprobe) 599 { 600 if (refcount_dec_and_test(&uprobe->ref)) { 601 /* 602 * If application munmap(exec_vma) before uprobe_unregister() 603 * gets called, we don't get a chance to remove uprobe from 604 * delayed_uprobe_list from remove_breakpoint(). Do it here. 605 */ 606 mutex_lock(&delayed_uprobe_lock); 607 delayed_uprobe_remove(uprobe, NULL); 608 mutex_unlock(&delayed_uprobe_lock); 609 kfree(uprobe); 610 } 611 } 612 613 static int match_uprobe(struct uprobe *l, struct uprobe *r) 614 { 615 if (l->inode < r->inode) 616 return -1; 617 618 if (l->inode > r->inode) 619 return 1; 620 621 if (l->offset < r->offset) 622 return -1; 623 624 if (l->offset > r->offset) 625 return 1; 626 627 return 0; 628 } 629 630 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 631 { 632 struct uprobe u = { .inode = inode, .offset = offset }; 633 struct rb_node *n = uprobes_tree.rb_node; 634 struct uprobe *uprobe; 635 int match; 636 637 while (n) { 638 uprobe = rb_entry(n, struct uprobe, rb_node); 639 match = match_uprobe(&u, uprobe); 640 if (!match) 641 return get_uprobe(uprobe); 642 643 if (match < 0) 644 n = n->rb_left; 645 else 646 n = n->rb_right; 647 } 648 return NULL; 649 } 650 651 /* 652 * Find a uprobe corresponding to a given inode:offset 653 * Acquires uprobes_treelock 654 */ 655 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 656 { 657 struct uprobe *uprobe; 658 659 spin_lock(&uprobes_treelock); 660 uprobe = __find_uprobe(inode, offset); 661 spin_unlock(&uprobes_treelock); 662 663 return uprobe; 664 } 665 666 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 667 { 668 struct rb_node **p = &uprobes_tree.rb_node; 669 struct rb_node *parent = NULL; 670 struct uprobe *u; 671 int match; 672 673 while (*p) { 674 parent = *p; 675 u = rb_entry(parent, struct uprobe, rb_node); 676 match = match_uprobe(uprobe, u); 677 if (!match) 678 return get_uprobe(u); 679 680 if (match < 0) 681 p = &parent->rb_left; 682 else 683 p = &parent->rb_right; 684 685 } 686 687 u = NULL; 688 rb_link_node(&uprobe->rb_node, parent, p); 689 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 690 /* get access + creation ref */ 691 refcount_set(&uprobe->ref, 2); 692 693 return u; 694 } 695 696 /* 697 * Acquire uprobes_treelock. 698 * Matching uprobe already exists in rbtree; 699 * increment (access refcount) and return the matching uprobe. 700 * 701 * No matching uprobe; insert the uprobe in rb_tree; 702 * get a double refcount (access + creation) and return NULL. 703 */ 704 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 705 { 706 struct uprobe *u; 707 708 spin_lock(&uprobes_treelock); 709 u = __insert_uprobe(uprobe); 710 spin_unlock(&uprobes_treelock); 711 712 return u; 713 } 714 715 static void 716 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 717 { 718 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 719 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 720 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 721 (unsigned long long) cur_uprobe->ref_ctr_offset, 722 (unsigned long long) uprobe->ref_ctr_offset); 723 } 724 725 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 726 loff_t ref_ctr_offset) 727 { 728 struct uprobe *uprobe, *cur_uprobe; 729 730 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 731 if (!uprobe) 732 return NULL; 733 734 uprobe->inode = inode; 735 uprobe->offset = offset; 736 uprobe->ref_ctr_offset = ref_ctr_offset; 737 init_rwsem(&uprobe->register_rwsem); 738 init_rwsem(&uprobe->consumer_rwsem); 739 740 /* add to uprobes_tree, sorted on inode:offset */ 741 cur_uprobe = insert_uprobe(uprobe); 742 /* a uprobe exists for this inode:offset combination */ 743 if (cur_uprobe) { 744 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 745 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 746 put_uprobe(cur_uprobe); 747 kfree(uprobe); 748 return ERR_PTR(-EINVAL); 749 } 750 kfree(uprobe); 751 uprobe = cur_uprobe; 752 } 753 754 return uprobe; 755 } 756 757 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 758 { 759 down_write(&uprobe->consumer_rwsem); 760 uc->next = uprobe->consumers; 761 uprobe->consumers = uc; 762 up_write(&uprobe->consumer_rwsem); 763 } 764 765 /* 766 * For uprobe @uprobe, delete the consumer @uc. 767 * Return true if the @uc is deleted successfully 768 * or return false. 769 */ 770 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 771 { 772 struct uprobe_consumer **con; 773 bool ret = false; 774 775 down_write(&uprobe->consumer_rwsem); 776 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 777 if (*con == uc) { 778 *con = uc->next; 779 ret = true; 780 break; 781 } 782 } 783 up_write(&uprobe->consumer_rwsem); 784 785 return ret; 786 } 787 788 static int __copy_insn(struct address_space *mapping, struct file *filp, 789 void *insn, int nbytes, loff_t offset) 790 { 791 struct page *page; 792 /* 793 * Ensure that the page that has the original instruction is populated 794 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 795 * see uprobe_register(). 796 */ 797 if (mapping->a_ops->readpage) 798 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 799 else 800 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 801 if (IS_ERR(page)) 802 return PTR_ERR(page); 803 804 copy_from_page(page, offset, insn, nbytes); 805 put_page(page); 806 807 return 0; 808 } 809 810 static int copy_insn(struct uprobe *uprobe, struct file *filp) 811 { 812 struct address_space *mapping = uprobe->inode->i_mapping; 813 loff_t offs = uprobe->offset; 814 void *insn = &uprobe->arch.insn; 815 int size = sizeof(uprobe->arch.insn); 816 int len, err = -EIO; 817 818 /* Copy only available bytes, -EIO if nothing was read */ 819 do { 820 if (offs >= i_size_read(uprobe->inode)) 821 break; 822 823 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 824 err = __copy_insn(mapping, filp, insn, len, offs); 825 if (err) 826 break; 827 828 insn += len; 829 offs += len; 830 size -= len; 831 } while (size); 832 833 return err; 834 } 835 836 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 837 struct mm_struct *mm, unsigned long vaddr) 838 { 839 int ret = 0; 840 841 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 842 return ret; 843 844 /* TODO: move this into _register, until then we abuse this sem. */ 845 down_write(&uprobe->consumer_rwsem); 846 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 847 goto out; 848 849 ret = copy_insn(uprobe, file); 850 if (ret) 851 goto out; 852 853 ret = -ENOTSUPP; 854 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 855 goto out; 856 857 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 858 if (ret) 859 goto out; 860 861 /* uprobe_write_opcode() assumes we don't cross page boundary */ 862 BUG_ON((uprobe->offset & ~PAGE_MASK) + 863 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 864 865 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 866 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 867 868 out: 869 up_write(&uprobe->consumer_rwsem); 870 871 return ret; 872 } 873 874 static inline bool consumer_filter(struct uprobe_consumer *uc, 875 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 876 { 877 return !uc->filter || uc->filter(uc, ctx, mm); 878 } 879 880 static bool filter_chain(struct uprobe *uprobe, 881 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 882 { 883 struct uprobe_consumer *uc; 884 bool ret = false; 885 886 down_read(&uprobe->consumer_rwsem); 887 for (uc = uprobe->consumers; uc; uc = uc->next) { 888 ret = consumer_filter(uc, ctx, mm); 889 if (ret) 890 break; 891 } 892 up_read(&uprobe->consumer_rwsem); 893 894 return ret; 895 } 896 897 static int 898 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 899 struct vm_area_struct *vma, unsigned long vaddr) 900 { 901 bool first_uprobe; 902 int ret; 903 904 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 905 if (ret) 906 return ret; 907 908 /* 909 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 910 * the task can hit this breakpoint right after __replace_page(). 911 */ 912 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 913 if (first_uprobe) 914 set_bit(MMF_HAS_UPROBES, &mm->flags); 915 916 ret = set_swbp(&uprobe->arch, mm, vaddr); 917 if (!ret) 918 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 919 else if (first_uprobe) 920 clear_bit(MMF_HAS_UPROBES, &mm->flags); 921 922 return ret; 923 } 924 925 static int 926 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 927 { 928 set_bit(MMF_RECALC_UPROBES, &mm->flags); 929 return set_orig_insn(&uprobe->arch, mm, vaddr); 930 } 931 932 static inline bool uprobe_is_active(struct uprobe *uprobe) 933 { 934 return !RB_EMPTY_NODE(&uprobe->rb_node); 935 } 936 /* 937 * There could be threads that have already hit the breakpoint. They 938 * will recheck the current insn and restart if find_uprobe() fails. 939 * See find_active_uprobe(). 940 */ 941 static void delete_uprobe(struct uprobe *uprobe) 942 { 943 if (WARN_ON(!uprobe_is_active(uprobe))) 944 return; 945 946 spin_lock(&uprobes_treelock); 947 rb_erase(&uprobe->rb_node, &uprobes_tree); 948 spin_unlock(&uprobes_treelock); 949 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 950 put_uprobe(uprobe); 951 } 952 953 struct map_info { 954 struct map_info *next; 955 struct mm_struct *mm; 956 unsigned long vaddr; 957 }; 958 959 static inline struct map_info *free_map_info(struct map_info *info) 960 { 961 struct map_info *next = info->next; 962 kfree(info); 963 return next; 964 } 965 966 static struct map_info * 967 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 968 { 969 unsigned long pgoff = offset >> PAGE_SHIFT; 970 struct vm_area_struct *vma; 971 struct map_info *curr = NULL; 972 struct map_info *prev = NULL; 973 struct map_info *info; 974 int more = 0; 975 976 again: 977 i_mmap_lock_read(mapping); 978 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 979 if (!valid_vma(vma, is_register)) 980 continue; 981 982 if (!prev && !more) { 983 /* 984 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 985 * reclaim. This is optimistic, no harm done if it fails. 986 */ 987 prev = kmalloc(sizeof(struct map_info), 988 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 989 if (prev) 990 prev->next = NULL; 991 } 992 if (!prev) { 993 more++; 994 continue; 995 } 996 997 if (!mmget_not_zero(vma->vm_mm)) 998 continue; 999 1000 info = prev; 1001 prev = prev->next; 1002 info->next = curr; 1003 curr = info; 1004 1005 info->mm = vma->vm_mm; 1006 info->vaddr = offset_to_vaddr(vma, offset); 1007 } 1008 i_mmap_unlock_read(mapping); 1009 1010 if (!more) 1011 goto out; 1012 1013 prev = curr; 1014 while (curr) { 1015 mmput(curr->mm); 1016 curr = curr->next; 1017 } 1018 1019 do { 1020 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1021 if (!info) { 1022 curr = ERR_PTR(-ENOMEM); 1023 goto out; 1024 } 1025 info->next = prev; 1026 prev = info; 1027 } while (--more); 1028 1029 goto again; 1030 out: 1031 while (prev) 1032 prev = free_map_info(prev); 1033 return curr; 1034 } 1035 1036 static int 1037 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1038 { 1039 bool is_register = !!new; 1040 struct map_info *info; 1041 int err = 0; 1042 1043 percpu_down_write(&dup_mmap_sem); 1044 info = build_map_info(uprobe->inode->i_mapping, 1045 uprobe->offset, is_register); 1046 if (IS_ERR(info)) { 1047 err = PTR_ERR(info); 1048 goto out; 1049 } 1050 1051 while (info) { 1052 struct mm_struct *mm = info->mm; 1053 struct vm_area_struct *vma; 1054 1055 if (err && is_register) 1056 goto free; 1057 1058 down_write(&mm->mmap_sem); 1059 vma = find_vma(mm, info->vaddr); 1060 if (!vma || !valid_vma(vma, is_register) || 1061 file_inode(vma->vm_file) != uprobe->inode) 1062 goto unlock; 1063 1064 if (vma->vm_start > info->vaddr || 1065 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1066 goto unlock; 1067 1068 if (is_register) { 1069 /* consult only the "caller", new consumer. */ 1070 if (consumer_filter(new, 1071 UPROBE_FILTER_REGISTER, mm)) 1072 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1073 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1074 if (!filter_chain(uprobe, 1075 UPROBE_FILTER_UNREGISTER, mm)) 1076 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1077 } 1078 1079 unlock: 1080 up_write(&mm->mmap_sem); 1081 free: 1082 mmput(mm); 1083 info = free_map_info(info); 1084 } 1085 out: 1086 percpu_up_write(&dup_mmap_sem); 1087 return err; 1088 } 1089 1090 static void 1091 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1092 { 1093 int err; 1094 1095 if (WARN_ON(!consumer_del(uprobe, uc))) 1096 return; 1097 1098 err = register_for_each_vma(uprobe, NULL); 1099 /* TODO : cant unregister? schedule a worker thread */ 1100 if (!uprobe->consumers && !err) 1101 delete_uprobe(uprobe); 1102 } 1103 1104 /* 1105 * uprobe_unregister - unregister an already registered probe. 1106 * @inode: the file in which the probe has to be removed. 1107 * @offset: offset from the start of the file. 1108 * @uc: identify which probe if multiple probes are colocated. 1109 */ 1110 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1111 { 1112 struct uprobe *uprobe; 1113 1114 uprobe = find_uprobe(inode, offset); 1115 if (WARN_ON(!uprobe)) 1116 return; 1117 1118 down_write(&uprobe->register_rwsem); 1119 __uprobe_unregister(uprobe, uc); 1120 up_write(&uprobe->register_rwsem); 1121 put_uprobe(uprobe); 1122 } 1123 EXPORT_SYMBOL_GPL(uprobe_unregister); 1124 1125 /* 1126 * __uprobe_register - register a probe 1127 * @inode: the file in which the probe has to be placed. 1128 * @offset: offset from the start of the file. 1129 * @uc: information on howto handle the probe.. 1130 * 1131 * Apart from the access refcount, __uprobe_register() takes a creation 1132 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1133 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1134 * tuple). Creation refcount stops uprobe_unregister from freeing the 1135 * @uprobe even before the register operation is complete. Creation 1136 * refcount is released when the last @uc for the @uprobe 1137 * unregisters. Caller of __uprobe_register() is required to keep @inode 1138 * (and the containing mount) referenced. 1139 * 1140 * Return errno if it cannot successully install probes 1141 * else return 0 (success) 1142 */ 1143 static int __uprobe_register(struct inode *inode, loff_t offset, 1144 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1145 { 1146 struct uprobe *uprobe; 1147 int ret; 1148 1149 /* Uprobe must have at least one set consumer */ 1150 if (!uc->handler && !uc->ret_handler) 1151 return -EINVAL; 1152 1153 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1154 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 1155 return -EIO; 1156 /* Racy, just to catch the obvious mistakes */ 1157 if (offset > i_size_read(inode)) 1158 return -EINVAL; 1159 1160 retry: 1161 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1162 if (!uprobe) 1163 return -ENOMEM; 1164 if (IS_ERR(uprobe)) 1165 return PTR_ERR(uprobe); 1166 1167 /* 1168 * We can race with uprobe_unregister()->delete_uprobe(). 1169 * Check uprobe_is_active() and retry if it is false. 1170 */ 1171 down_write(&uprobe->register_rwsem); 1172 ret = -EAGAIN; 1173 if (likely(uprobe_is_active(uprobe))) { 1174 consumer_add(uprobe, uc); 1175 ret = register_for_each_vma(uprobe, uc); 1176 if (ret) 1177 __uprobe_unregister(uprobe, uc); 1178 } 1179 up_write(&uprobe->register_rwsem); 1180 put_uprobe(uprobe); 1181 1182 if (unlikely(ret == -EAGAIN)) 1183 goto retry; 1184 return ret; 1185 } 1186 1187 int uprobe_register(struct inode *inode, loff_t offset, 1188 struct uprobe_consumer *uc) 1189 { 1190 return __uprobe_register(inode, offset, 0, uc); 1191 } 1192 EXPORT_SYMBOL_GPL(uprobe_register); 1193 1194 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1195 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1196 { 1197 return __uprobe_register(inode, offset, ref_ctr_offset, uc); 1198 } 1199 EXPORT_SYMBOL_GPL(uprobe_register_refctr); 1200 1201 /* 1202 * uprobe_apply - unregister an already registered probe. 1203 * @inode: the file in which the probe has to be removed. 1204 * @offset: offset from the start of the file. 1205 * @uc: consumer which wants to add more or remove some breakpoints 1206 * @add: add or remove the breakpoints 1207 */ 1208 int uprobe_apply(struct inode *inode, loff_t offset, 1209 struct uprobe_consumer *uc, bool add) 1210 { 1211 struct uprobe *uprobe; 1212 struct uprobe_consumer *con; 1213 int ret = -ENOENT; 1214 1215 uprobe = find_uprobe(inode, offset); 1216 if (WARN_ON(!uprobe)) 1217 return ret; 1218 1219 down_write(&uprobe->register_rwsem); 1220 for (con = uprobe->consumers; con && con != uc ; con = con->next) 1221 ; 1222 if (con) 1223 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1224 up_write(&uprobe->register_rwsem); 1225 put_uprobe(uprobe); 1226 1227 return ret; 1228 } 1229 1230 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1231 { 1232 struct vm_area_struct *vma; 1233 int err = 0; 1234 1235 down_read(&mm->mmap_sem); 1236 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1237 unsigned long vaddr; 1238 loff_t offset; 1239 1240 if (!valid_vma(vma, false) || 1241 file_inode(vma->vm_file) != uprobe->inode) 1242 continue; 1243 1244 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1245 if (uprobe->offset < offset || 1246 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1247 continue; 1248 1249 vaddr = offset_to_vaddr(vma, uprobe->offset); 1250 err |= remove_breakpoint(uprobe, mm, vaddr); 1251 } 1252 up_read(&mm->mmap_sem); 1253 1254 return err; 1255 } 1256 1257 static struct rb_node * 1258 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1259 { 1260 struct rb_node *n = uprobes_tree.rb_node; 1261 1262 while (n) { 1263 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1264 1265 if (inode < u->inode) { 1266 n = n->rb_left; 1267 } else if (inode > u->inode) { 1268 n = n->rb_right; 1269 } else { 1270 if (max < u->offset) 1271 n = n->rb_left; 1272 else if (min > u->offset) 1273 n = n->rb_right; 1274 else 1275 break; 1276 } 1277 } 1278 1279 return n; 1280 } 1281 1282 /* 1283 * For a given range in vma, build a list of probes that need to be inserted. 1284 */ 1285 static void build_probe_list(struct inode *inode, 1286 struct vm_area_struct *vma, 1287 unsigned long start, unsigned long end, 1288 struct list_head *head) 1289 { 1290 loff_t min, max; 1291 struct rb_node *n, *t; 1292 struct uprobe *u; 1293 1294 INIT_LIST_HEAD(head); 1295 min = vaddr_to_offset(vma, start); 1296 max = min + (end - start) - 1; 1297 1298 spin_lock(&uprobes_treelock); 1299 n = find_node_in_range(inode, min, max); 1300 if (n) { 1301 for (t = n; t; t = rb_prev(t)) { 1302 u = rb_entry(t, struct uprobe, rb_node); 1303 if (u->inode != inode || u->offset < min) 1304 break; 1305 list_add(&u->pending_list, head); 1306 get_uprobe(u); 1307 } 1308 for (t = n; (t = rb_next(t)); ) { 1309 u = rb_entry(t, struct uprobe, rb_node); 1310 if (u->inode != inode || u->offset > max) 1311 break; 1312 list_add(&u->pending_list, head); 1313 get_uprobe(u); 1314 } 1315 } 1316 spin_unlock(&uprobes_treelock); 1317 } 1318 1319 /* @vma contains reference counter, not the probed instruction. */ 1320 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1321 { 1322 struct list_head *pos, *q; 1323 struct delayed_uprobe *du; 1324 unsigned long vaddr; 1325 int ret = 0, err = 0; 1326 1327 mutex_lock(&delayed_uprobe_lock); 1328 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1329 du = list_entry(pos, struct delayed_uprobe, list); 1330 1331 if (du->mm != vma->vm_mm || 1332 !valid_ref_ctr_vma(du->uprobe, vma)) 1333 continue; 1334 1335 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1336 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1337 if (ret) { 1338 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1339 if (!err) 1340 err = ret; 1341 } 1342 delayed_uprobe_delete(du); 1343 } 1344 mutex_unlock(&delayed_uprobe_lock); 1345 return err; 1346 } 1347 1348 /* 1349 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1350 * 1351 * Currently we ignore all errors and always return 0, the callers 1352 * can't handle the failure anyway. 1353 */ 1354 int uprobe_mmap(struct vm_area_struct *vma) 1355 { 1356 struct list_head tmp_list; 1357 struct uprobe *uprobe, *u; 1358 struct inode *inode; 1359 1360 if (no_uprobe_events()) 1361 return 0; 1362 1363 if (vma->vm_file && 1364 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1365 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1366 delayed_ref_ctr_inc(vma); 1367 1368 if (!valid_vma(vma, true)) 1369 return 0; 1370 1371 inode = file_inode(vma->vm_file); 1372 if (!inode) 1373 return 0; 1374 1375 mutex_lock(uprobes_mmap_hash(inode)); 1376 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1377 /* 1378 * We can race with uprobe_unregister(), this uprobe can be already 1379 * removed. But in this case filter_chain() must return false, all 1380 * consumers have gone away. 1381 */ 1382 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1383 if (!fatal_signal_pending(current) && 1384 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1385 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1386 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1387 } 1388 put_uprobe(uprobe); 1389 } 1390 mutex_unlock(uprobes_mmap_hash(inode)); 1391 1392 return 0; 1393 } 1394 1395 static bool 1396 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1397 { 1398 loff_t min, max; 1399 struct inode *inode; 1400 struct rb_node *n; 1401 1402 inode = file_inode(vma->vm_file); 1403 1404 min = vaddr_to_offset(vma, start); 1405 max = min + (end - start) - 1; 1406 1407 spin_lock(&uprobes_treelock); 1408 n = find_node_in_range(inode, min, max); 1409 spin_unlock(&uprobes_treelock); 1410 1411 return !!n; 1412 } 1413 1414 /* 1415 * Called in context of a munmap of a vma. 1416 */ 1417 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1418 { 1419 if (no_uprobe_events() || !valid_vma(vma, false)) 1420 return; 1421 1422 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1423 return; 1424 1425 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1426 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1427 return; 1428 1429 if (vma_has_uprobes(vma, start, end)) 1430 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1431 } 1432 1433 /* Slot allocation for XOL */ 1434 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1435 { 1436 struct vm_area_struct *vma; 1437 int ret; 1438 1439 if (down_write_killable(&mm->mmap_sem)) 1440 return -EINTR; 1441 1442 if (mm->uprobes_state.xol_area) { 1443 ret = -EALREADY; 1444 goto fail; 1445 } 1446 1447 if (!area->vaddr) { 1448 /* Try to map as high as possible, this is only a hint. */ 1449 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1450 PAGE_SIZE, 0, 0); 1451 if (area->vaddr & ~PAGE_MASK) { 1452 ret = area->vaddr; 1453 goto fail; 1454 } 1455 } 1456 1457 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1458 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1459 &area->xol_mapping); 1460 if (IS_ERR(vma)) { 1461 ret = PTR_ERR(vma); 1462 goto fail; 1463 } 1464 1465 ret = 0; 1466 /* pairs with get_xol_area() */ 1467 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1468 fail: 1469 up_write(&mm->mmap_sem); 1470 1471 return ret; 1472 } 1473 1474 static struct xol_area *__create_xol_area(unsigned long vaddr) 1475 { 1476 struct mm_struct *mm = current->mm; 1477 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1478 struct xol_area *area; 1479 1480 area = kmalloc(sizeof(*area), GFP_KERNEL); 1481 if (unlikely(!area)) 1482 goto out; 1483 1484 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1485 GFP_KERNEL); 1486 if (!area->bitmap) 1487 goto free_area; 1488 1489 area->xol_mapping.name = "[uprobes]"; 1490 area->xol_mapping.fault = NULL; 1491 area->xol_mapping.pages = area->pages; 1492 area->pages[0] = alloc_page(GFP_HIGHUSER); 1493 if (!area->pages[0]) 1494 goto free_bitmap; 1495 area->pages[1] = NULL; 1496 1497 area->vaddr = vaddr; 1498 init_waitqueue_head(&area->wq); 1499 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1500 set_bit(0, area->bitmap); 1501 atomic_set(&area->slot_count, 1); 1502 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1503 1504 if (!xol_add_vma(mm, area)) 1505 return area; 1506 1507 __free_page(area->pages[0]); 1508 free_bitmap: 1509 kfree(area->bitmap); 1510 free_area: 1511 kfree(area); 1512 out: 1513 return NULL; 1514 } 1515 1516 /* 1517 * get_xol_area - Allocate process's xol_area if necessary. 1518 * This area will be used for storing instructions for execution out of line. 1519 * 1520 * Returns the allocated area or NULL. 1521 */ 1522 static struct xol_area *get_xol_area(void) 1523 { 1524 struct mm_struct *mm = current->mm; 1525 struct xol_area *area; 1526 1527 if (!mm->uprobes_state.xol_area) 1528 __create_xol_area(0); 1529 1530 /* Pairs with xol_add_vma() smp_store_release() */ 1531 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1532 return area; 1533 } 1534 1535 /* 1536 * uprobe_clear_state - Free the area allocated for slots. 1537 */ 1538 void uprobe_clear_state(struct mm_struct *mm) 1539 { 1540 struct xol_area *area = mm->uprobes_state.xol_area; 1541 1542 mutex_lock(&delayed_uprobe_lock); 1543 delayed_uprobe_remove(NULL, mm); 1544 mutex_unlock(&delayed_uprobe_lock); 1545 1546 if (!area) 1547 return; 1548 1549 put_page(area->pages[0]); 1550 kfree(area->bitmap); 1551 kfree(area); 1552 } 1553 1554 void uprobe_start_dup_mmap(void) 1555 { 1556 percpu_down_read(&dup_mmap_sem); 1557 } 1558 1559 void uprobe_end_dup_mmap(void) 1560 { 1561 percpu_up_read(&dup_mmap_sem); 1562 } 1563 1564 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1565 { 1566 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1567 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1568 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1569 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1570 } 1571 } 1572 1573 /* 1574 * - search for a free slot. 1575 */ 1576 static unsigned long xol_take_insn_slot(struct xol_area *area) 1577 { 1578 unsigned long slot_addr; 1579 int slot_nr; 1580 1581 do { 1582 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1583 if (slot_nr < UINSNS_PER_PAGE) { 1584 if (!test_and_set_bit(slot_nr, area->bitmap)) 1585 break; 1586 1587 slot_nr = UINSNS_PER_PAGE; 1588 continue; 1589 } 1590 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1591 } while (slot_nr >= UINSNS_PER_PAGE); 1592 1593 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1594 atomic_inc(&area->slot_count); 1595 1596 return slot_addr; 1597 } 1598 1599 /* 1600 * xol_get_insn_slot - allocate a slot for xol. 1601 * Returns the allocated slot address or 0. 1602 */ 1603 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1604 { 1605 struct xol_area *area; 1606 unsigned long xol_vaddr; 1607 1608 area = get_xol_area(); 1609 if (!area) 1610 return 0; 1611 1612 xol_vaddr = xol_take_insn_slot(area); 1613 if (unlikely(!xol_vaddr)) 1614 return 0; 1615 1616 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1617 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1618 1619 return xol_vaddr; 1620 } 1621 1622 /* 1623 * xol_free_insn_slot - If slot was earlier allocated by 1624 * @xol_get_insn_slot(), make the slot available for 1625 * subsequent requests. 1626 */ 1627 static void xol_free_insn_slot(struct task_struct *tsk) 1628 { 1629 struct xol_area *area; 1630 unsigned long vma_end; 1631 unsigned long slot_addr; 1632 1633 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1634 return; 1635 1636 slot_addr = tsk->utask->xol_vaddr; 1637 if (unlikely(!slot_addr)) 1638 return; 1639 1640 area = tsk->mm->uprobes_state.xol_area; 1641 vma_end = area->vaddr + PAGE_SIZE; 1642 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1643 unsigned long offset; 1644 int slot_nr; 1645 1646 offset = slot_addr - area->vaddr; 1647 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1648 if (slot_nr >= UINSNS_PER_PAGE) 1649 return; 1650 1651 clear_bit(slot_nr, area->bitmap); 1652 atomic_dec(&area->slot_count); 1653 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1654 if (waitqueue_active(&area->wq)) 1655 wake_up(&area->wq); 1656 1657 tsk->utask->xol_vaddr = 0; 1658 } 1659 } 1660 1661 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1662 void *src, unsigned long len) 1663 { 1664 /* Initialize the slot */ 1665 copy_to_page(page, vaddr, src, len); 1666 1667 /* 1668 * We probably need flush_icache_user_range() but it needs vma. 1669 * This should work on most of architectures by default. If 1670 * architecture needs to do something different it can define 1671 * its own version of the function. 1672 */ 1673 flush_dcache_page(page); 1674 } 1675 1676 /** 1677 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1678 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1679 * instruction. 1680 * Return the address of the breakpoint instruction. 1681 */ 1682 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1683 { 1684 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1685 } 1686 1687 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1688 { 1689 struct uprobe_task *utask = current->utask; 1690 1691 if (unlikely(utask && utask->active_uprobe)) 1692 return utask->vaddr; 1693 1694 return instruction_pointer(regs); 1695 } 1696 1697 static struct return_instance *free_ret_instance(struct return_instance *ri) 1698 { 1699 struct return_instance *next = ri->next; 1700 put_uprobe(ri->uprobe); 1701 kfree(ri); 1702 return next; 1703 } 1704 1705 /* 1706 * Called with no locks held. 1707 * Called in context of an exiting or an exec-ing thread. 1708 */ 1709 void uprobe_free_utask(struct task_struct *t) 1710 { 1711 struct uprobe_task *utask = t->utask; 1712 struct return_instance *ri; 1713 1714 if (!utask) 1715 return; 1716 1717 if (utask->active_uprobe) 1718 put_uprobe(utask->active_uprobe); 1719 1720 ri = utask->return_instances; 1721 while (ri) 1722 ri = free_ret_instance(ri); 1723 1724 xol_free_insn_slot(t); 1725 kfree(utask); 1726 t->utask = NULL; 1727 } 1728 1729 /* 1730 * Allocate a uprobe_task object for the task if if necessary. 1731 * Called when the thread hits a breakpoint. 1732 * 1733 * Returns: 1734 * - pointer to new uprobe_task on success 1735 * - NULL otherwise 1736 */ 1737 static struct uprobe_task *get_utask(void) 1738 { 1739 if (!current->utask) 1740 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1741 return current->utask; 1742 } 1743 1744 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1745 { 1746 struct uprobe_task *n_utask; 1747 struct return_instance **p, *o, *n; 1748 1749 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1750 if (!n_utask) 1751 return -ENOMEM; 1752 t->utask = n_utask; 1753 1754 p = &n_utask->return_instances; 1755 for (o = o_utask->return_instances; o; o = o->next) { 1756 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1757 if (!n) 1758 return -ENOMEM; 1759 1760 *n = *o; 1761 get_uprobe(n->uprobe); 1762 n->next = NULL; 1763 1764 *p = n; 1765 p = &n->next; 1766 n_utask->depth++; 1767 } 1768 1769 return 0; 1770 } 1771 1772 static void uprobe_warn(struct task_struct *t, const char *msg) 1773 { 1774 pr_warn("uprobe: %s:%d failed to %s\n", 1775 current->comm, current->pid, msg); 1776 } 1777 1778 static void dup_xol_work(struct callback_head *work) 1779 { 1780 if (current->flags & PF_EXITING) 1781 return; 1782 1783 if (!__create_xol_area(current->utask->dup_xol_addr) && 1784 !fatal_signal_pending(current)) 1785 uprobe_warn(current, "dup xol area"); 1786 } 1787 1788 /* 1789 * Called in context of a new clone/fork from copy_process. 1790 */ 1791 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1792 { 1793 struct uprobe_task *utask = current->utask; 1794 struct mm_struct *mm = current->mm; 1795 struct xol_area *area; 1796 1797 t->utask = NULL; 1798 1799 if (!utask || !utask->return_instances) 1800 return; 1801 1802 if (mm == t->mm && !(flags & CLONE_VFORK)) 1803 return; 1804 1805 if (dup_utask(t, utask)) 1806 return uprobe_warn(t, "dup ret instances"); 1807 1808 /* The task can fork() after dup_xol_work() fails */ 1809 area = mm->uprobes_state.xol_area; 1810 if (!area) 1811 return uprobe_warn(t, "dup xol area"); 1812 1813 if (mm == t->mm) 1814 return; 1815 1816 t->utask->dup_xol_addr = area->vaddr; 1817 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1818 task_work_add(t, &t->utask->dup_xol_work, true); 1819 } 1820 1821 /* 1822 * Current area->vaddr notion assume the trampoline address is always 1823 * equal area->vaddr. 1824 * 1825 * Returns -1 in case the xol_area is not allocated. 1826 */ 1827 static unsigned long get_trampoline_vaddr(void) 1828 { 1829 struct xol_area *area; 1830 unsigned long trampoline_vaddr = -1; 1831 1832 /* Pairs with xol_add_vma() smp_store_release() */ 1833 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1834 if (area) 1835 trampoline_vaddr = area->vaddr; 1836 1837 return trampoline_vaddr; 1838 } 1839 1840 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1841 struct pt_regs *regs) 1842 { 1843 struct return_instance *ri = utask->return_instances; 1844 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1845 1846 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1847 ri = free_ret_instance(ri); 1848 utask->depth--; 1849 } 1850 utask->return_instances = ri; 1851 } 1852 1853 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1854 { 1855 struct return_instance *ri; 1856 struct uprobe_task *utask; 1857 unsigned long orig_ret_vaddr, trampoline_vaddr; 1858 bool chained; 1859 1860 if (!get_xol_area()) 1861 return; 1862 1863 utask = get_utask(); 1864 if (!utask) 1865 return; 1866 1867 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1868 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1869 " nestedness limit pid/tgid=%d/%d\n", 1870 current->pid, current->tgid); 1871 return; 1872 } 1873 1874 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1875 if (!ri) 1876 return; 1877 1878 trampoline_vaddr = get_trampoline_vaddr(); 1879 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1880 if (orig_ret_vaddr == -1) 1881 goto fail; 1882 1883 /* drop the entries invalidated by longjmp() */ 1884 chained = (orig_ret_vaddr == trampoline_vaddr); 1885 cleanup_return_instances(utask, chained, regs); 1886 1887 /* 1888 * We don't want to keep trampoline address in stack, rather keep the 1889 * original return address of first caller thru all the consequent 1890 * instances. This also makes breakpoint unwrapping easier. 1891 */ 1892 if (chained) { 1893 if (!utask->return_instances) { 1894 /* 1895 * This situation is not possible. Likely we have an 1896 * attack from user-space. 1897 */ 1898 uprobe_warn(current, "handle tail call"); 1899 goto fail; 1900 } 1901 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1902 } 1903 1904 ri->uprobe = get_uprobe(uprobe); 1905 ri->func = instruction_pointer(regs); 1906 ri->stack = user_stack_pointer(regs); 1907 ri->orig_ret_vaddr = orig_ret_vaddr; 1908 ri->chained = chained; 1909 1910 utask->depth++; 1911 ri->next = utask->return_instances; 1912 utask->return_instances = ri; 1913 1914 return; 1915 fail: 1916 kfree(ri); 1917 } 1918 1919 /* Prepare to single-step probed instruction out of line. */ 1920 static int 1921 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1922 { 1923 struct uprobe_task *utask; 1924 unsigned long xol_vaddr; 1925 int err; 1926 1927 utask = get_utask(); 1928 if (!utask) 1929 return -ENOMEM; 1930 1931 xol_vaddr = xol_get_insn_slot(uprobe); 1932 if (!xol_vaddr) 1933 return -ENOMEM; 1934 1935 utask->xol_vaddr = xol_vaddr; 1936 utask->vaddr = bp_vaddr; 1937 1938 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1939 if (unlikely(err)) { 1940 xol_free_insn_slot(current); 1941 return err; 1942 } 1943 1944 utask->active_uprobe = uprobe; 1945 utask->state = UTASK_SSTEP; 1946 return 0; 1947 } 1948 1949 /* 1950 * If we are singlestepping, then ensure this thread is not connected to 1951 * non-fatal signals until completion of singlestep. When xol insn itself 1952 * triggers the signal, restart the original insn even if the task is 1953 * already SIGKILL'ed (since coredump should report the correct ip). This 1954 * is even more important if the task has a handler for SIGSEGV/etc, The 1955 * _same_ instruction should be repeated again after return from the signal 1956 * handler, and SSTEP can never finish in this case. 1957 */ 1958 bool uprobe_deny_signal(void) 1959 { 1960 struct task_struct *t = current; 1961 struct uprobe_task *utask = t->utask; 1962 1963 if (likely(!utask || !utask->active_uprobe)) 1964 return false; 1965 1966 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1967 1968 if (signal_pending(t)) { 1969 spin_lock_irq(&t->sighand->siglock); 1970 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1971 spin_unlock_irq(&t->sighand->siglock); 1972 1973 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1974 utask->state = UTASK_SSTEP_TRAPPED; 1975 set_tsk_thread_flag(t, TIF_UPROBE); 1976 } 1977 } 1978 1979 return true; 1980 } 1981 1982 static void mmf_recalc_uprobes(struct mm_struct *mm) 1983 { 1984 struct vm_area_struct *vma; 1985 1986 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1987 if (!valid_vma(vma, false)) 1988 continue; 1989 /* 1990 * This is not strictly accurate, we can race with 1991 * uprobe_unregister() and see the already removed 1992 * uprobe if delete_uprobe() was not yet called. 1993 * Or this uprobe can be filtered out. 1994 */ 1995 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1996 return; 1997 } 1998 1999 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2000 } 2001 2002 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2003 { 2004 struct page *page; 2005 uprobe_opcode_t opcode; 2006 int result; 2007 2008 pagefault_disable(); 2009 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2010 pagefault_enable(); 2011 2012 if (likely(result == 0)) 2013 goto out; 2014 2015 /* 2016 * The NULL 'tsk' here ensures that any faults that occur here 2017 * will not be accounted to the task. 'mm' *is* current->mm, 2018 * but we treat this as a 'remote' access since it is 2019 * essentially a kernel access to the memory. 2020 */ 2021 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page, 2022 NULL, NULL); 2023 if (result < 0) 2024 return result; 2025 2026 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2027 put_page(page); 2028 out: 2029 /* This needs to return true for any variant of the trap insn */ 2030 return is_trap_insn(&opcode); 2031 } 2032 2033 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 2034 { 2035 struct mm_struct *mm = current->mm; 2036 struct uprobe *uprobe = NULL; 2037 struct vm_area_struct *vma; 2038 2039 down_read(&mm->mmap_sem); 2040 vma = find_vma(mm, bp_vaddr); 2041 if (vma && vma->vm_start <= bp_vaddr) { 2042 if (valid_vma(vma, false)) { 2043 struct inode *inode = file_inode(vma->vm_file); 2044 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2045 2046 uprobe = find_uprobe(inode, offset); 2047 } 2048 2049 if (!uprobe) 2050 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2051 } else { 2052 *is_swbp = -EFAULT; 2053 } 2054 2055 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2056 mmf_recalc_uprobes(mm); 2057 up_read(&mm->mmap_sem); 2058 2059 return uprobe; 2060 } 2061 2062 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2063 { 2064 struct uprobe_consumer *uc; 2065 int remove = UPROBE_HANDLER_REMOVE; 2066 bool need_prep = false; /* prepare return uprobe, when needed */ 2067 2068 down_read(&uprobe->register_rwsem); 2069 for (uc = uprobe->consumers; uc; uc = uc->next) { 2070 int rc = 0; 2071 2072 if (uc->handler) { 2073 rc = uc->handler(uc, regs); 2074 WARN(rc & ~UPROBE_HANDLER_MASK, 2075 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2076 } 2077 2078 if (uc->ret_handler) 2079 need_prep = true; 2080 2081 remove &= rc; 2082 } 2083 2084 if (need_prep && !remove) 2085 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2086 2087 if (remove && uprobe->consumers) { 2088 WARN_ON(!uprobe_is_active(uprobe)); 2089 unapply_uprobe(uprobe, current->mm); 2090 } 2091 up_read(&uprobe->register_rwsem); 2092 } 2093 2094 static void 2095 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2096 { 2097 struct uprobe *uprobe = ri->uprobe; 2098 struct uprobe_consumer *uc; 2099 2100 down_read(&uprobe->register_rwsem); 2101 for (uc = uprobe->consumers; uc; uc = uc->next) { 2102 if (uc->ret_handler) 2103 uc->ret_handler(uc, ri->func, regs); 2104 } 2105 up_read(&uprobe->register_rwsem); 2106 } 2107 2108 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2109 { 2110 bool chained; 2111 2112 do { 2113 chained = ri->chained; 2114 ri = ri->next; /* can't be NULL if chained */ 2115 } while (chained); 2116 2117 return ri; 2118 } 2119 2120 static void handle_trampoline(struct pt_regs *regs) 2121 { 2122 struct uprobe_task *utask; 2123 struct return_instance *ri, *next; 2124 bool valid; 2125 2126 utask = current->utask; 2127 if (!utask) 2128 goto sigill; 2129 2130 ri = utask->return_instances; 2131 if (!ri) 2132 goto sigill; 2133 2134 do { 2135 /* 2136 * We should throw out the frames invalidated by longjmp(). 2137 * If this chain is valid, then the next one should be alive 2138 * or NULL; the latter case means that nobody but ri->func 2139 * could hit this trampoline on return. TODO: sigaltstack(). 2140 */ 2141 next = find_next_ret_chain(ri); 2142 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2143 2144 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2145 do { 2146 if (valid) 2147 handle_uretprobe_chain(ri, regs); 2148 ri = free_ret_instance(ri); 2149 utask->depth--; 2150 } while (ri != next); 2151 } while (!valid); 2152 2153 utask->return_instances = ri; 2154 return; 2155 2156 sigill: 2157 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2158 force_sig(SIGILL); 2159 2160 } 2161 2162 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2163 { 2164 return false; 2165 } 2166 2167 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2168 struct pt_regs *regs) 2169 { 2170 return true; 2171 } 2172 2173 /* 2174 * Run handler and ask thread to singlestep. 2175 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2176 */ 2177 static void handle_swbp(struct pt_regs *regs) 2178 { 2179 struct uprobe *uprobe; 2180 unsigned long bp_vaddr; 2181 int uninitialized_var(is_swbp); 2182 2183 bp_vaddr = uprobe_get_swbp_addr(regs); 2184 if (bp_vaddr == get_trampoline_vaddr()) 2185 return handle_trampoline(regs); 2186 2187 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2188 if (!uprobe) { 2189 if (is_swbp > 0) { 2190 /* No matching uprobe; signal SIGTRAP. */ 2191 send_sig(SIGTRAP, current, 0); 2192 } else { 2193 /* 2194 * Either we raced with uprobe_unregister() or we can't 2195 * access this memory. The latter is only possible if 2196 * another thread plays with our ->mm. In both cases 2197 * we can simply restart. If this vma was unmapped we 2198 * can pretend this insn was not executed yet and get 2199 * the (correct) SIGSEGV after restart. 2200 */ 2201 instruction_pointer_set(regs, bp_vaddr); 2202 } 2203 return; 2204 } 2205 2206 /* change it in advance for ->handler() and restart */ 2207 instruction_pointer_set(regs, bp_vaddr); 2208 2209 /* 2210 * TODO: move copy_insn/etc into _register and remove this hack. 2211 * After we hit the bp, _unregister + _register can install the 2212 * new and not-yet-analyzed uprobe at the same address, restart. 2213 */ 2214 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2215 goto out; 2216 2217 /* 2218 * Pairs with the smp_wmb() in prepare_uprobe(). 2219 * 2220 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2221 * we must also see the stores to &uprobe->arch performed by the 2222 * prepare_uprobe() call. 2223 */ 2224 smp_rmb(); 2225 2226 /* Tracing handlers use ->utask to communicate with fetch methods */ 2227 if (!get_utask()) 2228 goto out; 2229 2230 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2231 goto out; 2232 2233 handler_chain(uprobe, regs); 2234 2235 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2236 goto out; 2237 2238 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2239 return; 2240 2241 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2242 out: 2243 put_uprobe(uprobe); 2244 } 2245 2246 /* 2247 * Perform required fix-ups and disable singlestep. 2248 * Allow pending signals to take effect. 2249 */ 2250 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2251 { 2252 struct uprobe *uprobe; 2253 int err = 0; 2254 2255 uprobe = utask->active_uprobe; 2256 if (utask->state == UTASK_SSTEP_ACK) 2257 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2258 else if (utask->state == UTASK_SSTEP_TRAPPED) 2259 arch_uprobe_abort_xol(&uprobe->arch, regs); 2260 else 2261 WARN_ON_ONCE(1); 2262 2263 put_uprobe(uprobe); 2264 utask->active_uprobe = NULL; 2265 utask->state = UTASK_RUNNING; 2266 xol_free_insn_slot(current); 2267 2268 spin_lock_irq(¤t->sighand->siglock); 2269 recalc_sigpending(); /* see uprobe_deny_signal() */ 2270 spin_unlock_irq(¤t->sighand->siglock); 2271 2272 if (unlikely(err)) { 2273 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2274 force_sig(SIGILL); 2275 } 2276 } 2277 2278 /* 2279 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2280 * allows the thread to return from interrupt. After that handle_swbp() 2281 * sets utask->active_uprobe. 2282 * 2283 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2284 * and allows the thread to return from interrupt. 2285 * 2286 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2287 * uprobe_notify_resume(). 2288 */ 2289 void uprobe_notify_resume(struct pt_regs *regs) 2290 { 2291 struct uprobe_task *utask; 2292 2293 clear_thread_flag(TIF_UPROBE); 2294 2295 utask = current->utask; 2296 if (utask && utask->active_uprobe) 2297 handle_singlestep(utask, regs); 2298 else 2299 handle_swbp(regs); 2300 } 2301 2302 /* 2303 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2304 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2305 */ 2306 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2307 { 2308 if (!current->mm) 2309 return 0; 2310 2311 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2312 (!current->utask || !current->utask->return_instances)) 2313 return 0; 2314 2315 set_thread_flag(TIF_UPROBE); 2316 return 1; 2317 } 2318 2319 /* 2320 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2321 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2322 */ 2323 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2324 { 2325 struct uprobe_task *utask = current->utask; 2326 2327 if (!current->mm || !utask || !utask->active_uprobe) 2328 /* task is currently not uprobed */ 2329 return 0; 2330 2331 utask->state = UTASK_SSTEP_ACK; 2332 set_thread_flag(TIF_UPROBE); 2333 return 1; 2334 } 2335 2336 static struct notifier_block uprobe_exception_nb = { 2337 .notifier_call = arch_uprobe_exception_notify, 2338 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2339 }; 2340 2341 void __init uprobes_init(void) 2342 { 2343 int i; 2344 2345 for (i = 0; i < UPROBES_HASH_SZ; i++) 2346 mutex_init(&uprobes_mmap_mutex[i]); 2347 2348 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2349 } 2350