xref: /openbmc/linux/kernel/events/uprobes.c (revision e52a6321)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* try_to_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include "../../mm/internal.h"	/* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 
30 #include <linux/uprobes.h>
31 
32 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
34 
35 static struct rb_root uprobes_tree = RB_ROOT;
36 /*
37  * allows us to skip the uprobe_mmap if there are no uprobe events active
38  * at this time.  Probably a fine grained per inode count is better?
39  */
40 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
41 
42 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
43 
44 #define UPROBES_HASH_SZ	13
45 /* serialize uprobe->pending_list */
46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48 
49 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
50 
51 /* Have a copy of original instruction */
52 #define UPROBE_COPY_INSN	0
53 
54 struct uprobe {
55 	struct rb_node		rb_node;	/* node in the rb tree */
56 	refcount_t		ref;
57 	struct rw_semaphore	register_rwsem;
58 	struct rw_semaphore	consumer_rwsem;
59 	struct list_head	pending_list;
60 	struct uprobe_consumer	*consumers;
61 	struct inode		*inode;		/* Also hold a ref to inode */
62 	loff_t			offset;
63 	loff_t			ref_ctr_offset;
64 	unsigned long		flags;
65 
66 	/*
67 	 * The generic code assumes that it has two members of unknown type
68 	 * owned by the arch-specific code:
69 	 *
70 	 * 	insn -	copy_insn() saves the original instruction here for
71 	 *		arch_uprobe_analyze_insn().
72 	 *
73 	 *	ixol -	potentially modified instruction to execute out of
74 	 *		line, copied to xol_area by xol_get_insn_slot().
75 	 */
76 	struct arch_uprobe	arch;
77 };
78 
79 struct delayed_uprobe {
80 	struct list_head list;
81 	struct uprobe *uprobe;
82 	struct mm_struct *mm;
83 };
84 
85 static DEFINE_MUTEX(delayed_uprobe_lock);
86 static LIST_HEAD(delayed_uprobe_list);
87 
88 /*
89  * Execute out of line area: anonymous executable mapping installed
90  * by the probed task to execute the copy of the original instruction
91  * mangled by set_swbp().
92  *
93  * On a breakpoint hit, thread contests for a slot.  It frees the
94  * slot after singlestep. Currently a fixed number of slots are
95  * allocated.
96  */
97 struct xol_area {
98 	wait_queue_head_t 		wq;		/* if all slots are busy */
99 	atomic_t 			slot_count;	/* number of in-use slots */
100 	unsigned long 			*bitmap;	/* 0 = free slot */
101 
102 	struct vm_special_mapping	xol_mapping;
103 	struct page 			*pages[2];
104 	/*
105 	 * We keep the vma's vm_start rather than a pointer to the vma
106 	 * itself.  The probed process or a naughty kernel module could make
107 	 * the vma go away, and we must handle that reasonably gracefully.
108 	 */
109 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
110 };
111 
112 /*
113  * valid_vma: Verify if the specified vma is an executable vma
114  * Relax restrictions while unregistering: vm_flags might have
115  * changed after breakpoint was inserted.
116  *	- is_register: indicates if we are in register context.
117  *	- Return 1 if the specified virtual address is in an
118  *	  executable vma.
119  */
120 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121 {
122 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123 
124 	if (is_register)
125 		flags |= VM_WRITE;
126 
127 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128 }
129 
130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131 {
132 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133 }
134 
135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136 {
137 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138 }
139 
140 /**
141  * __replace_page - replace page in vma by new page.
142  * based on replace_page in mm/ksm.c
143  *
144  * @vma:      vma that holds the pte pointing to page
145  * @addr:     address the old @page is mapped at
146  * @page:     the cowed page we are replacing by kpage
147  * @kpage:    the modified page we replace page by
148  *
149  * Returns 0 on success, -EFAULT on failure.
150  */
151 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
152 				struct page *old_page, struct page *new_page)
153 {
154 	struct mm_struct *mm = vma->vm_mm;
155 	struct page_vma_mapped_walk pvmw = {
156 		.page = old_page,
157 		.vma = vma,
158 		.address = addr,
159 	};
160 	int err;
161 	struct mmu_notifier_range range;
162 	struct mem_cgroup *memcg;
163 
164 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
165 				addr + PAGE_SIZE);
166 
167 	VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
168 
169 	err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
170 			false);
171 	if (err)
172 		return err;
173 
174 	/* For try_to_free_swap() and munlock_vma_page() below */
175 	lock_page(old_page);
176 
177 	mmu_notifier_invalidate_range_start(&range);
178 	err = -EAGAIN;
179 	if (!page_vma_mapped_walk(&pvmw)) {
180 		mem_cgroup_cancel_charge(new_page, memcg, false);
181 		goto unlock;
182 	}
183 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
184 
185 	get_page(new_page);
186 	page_add_new_anon_rmap(new_page, vma, addr, false);
187 	mem_cgroup_commit_charge(new_page, memcg, false, false);
188 	lru_cache_add_active_or_unevictable(new_page, vma);
189 
190 	if (!PageAnon(old_page)) {
191 		dec_mm_counter(mm, mm_counter_file(old_page));
192 		inc_mm_counter(mm, MM_ANONPAGES);
193 	}
194 
195 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
196 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
197 	set_pte_at_notify(mm, addr, pvmw.pte,
198 			mk_pte(new_page, vma->vm_page_prot));
199 
200 	page_remove_rmap(old_page, false);
201 	if (!page_mapped(old_page))
202 		try_to_free_swap(old_page);
203 	page_vma_mapped_walk_done(&pvmw);
204 
205 	if (vma->vm_flags & VM_LOCKED)
206 		munlock_vma_page(old_page);
207 	put_page(old_page);
208 
209 	err = 0;
210  unlock:
211 	mmu_notifier_invalidate_range_end(&range);
212 	unlock_page(old_page);
213 	return err;
214 }
215 
216 /**
217  * is_swbp_insn - check if instruction is breakpoint instruction.
218  * @insn: instruction to be checked.
219  * Default implementation of is_swbp_insn
220  * Returns true if @insn is a breakpoint instruction.
221  */
222 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
223 {
224 	return *insn == UPROBE_SWBP_INSN;
225 }
226 
227 /**
228  * is_trap_insn - check if instruction is breakpoint instruction.
229  * @insn: instruction to be checked.
230  * Default implementation of is_trap_insn
231  * Returns true if @insn is a breakpoint instruction.
232  *
233  * This function is needed for the case where an architecture has multiple
234  * trap instructions (like powerpc).
235  */
236 bool __weak is_trap_insn(uprobe_opcode_t *insn)
237 {
238 	return is_swbp_insn(insn);
239 }
240 
241 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
242 {
243 	void *kaddr = kmap_atomic(page);
244 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
245 	kunmap_atomic(kaddr);
246 }
247 
248 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
249 {
250 	void *kaddr = kmap_atomic(page);
251 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
252 	kunmap_atomic(kaddr);
253 }
254 
255 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
256 {
257 	uprobe_opcode_t old_opcode;
258 	bool is_swbp;
259 
260 	/*
261 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
262 	 * We do not check if it is any other 'trap variant' which could
263 	 * be conditional trap instruction such as the one powerpc supports.
264 	 *
265 	 * The logic is that we do not care if the underlying instruction
266 	 * is a trap variant; uprobes always wins over any other (gdb)
267 	 * breakpoint.
268 	 */
269 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
270 	is_swbp = is_swbp_insn(&old_opcode);
271 
272 	if (is_swbp_insn(new_opcode)) {
273 		if (is_swbp)		/* register: already installed? */
274 			return 0;
275 	} else {
276 		if (!is_swbp)		/* unregister: was it changed by us? */
277 			return 0;
278 	}
279 
280 	return 1;
281 }
282 
283 static struct delayed_uprobe *
284 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
285 {
286 	struct delayed_uprobe *du;
287 
288 	list_for_each_entry(du, &delayed_uprobe_list, list)
289 		if (du->uprobe == uprobe && du->mm == mm)
290 			return du;
291 	return NULL;
292 }
293 
294 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
295 {
296 	struct delayed_uprobe *du;
297 
298 	if (delayed_uprobe_check(uprobe, mm))
299 		return 0;
300 
301 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
302 	if (!du)
303 		return -ENOMEM;
304 
305 	du->uprobe = uprobe;
306 	du->mm = mm;
307 	list_add(&du->list, &delayed_uprobe_list);
308 	return 0;
309 }
310 
311 static void delayed_uprobe_delete(struct delayed_uprobe *du)
312 {
313 	if (WARN_ON(!du))
314 		return;
315 	list_del(&du->list);
316 	kfree(du);
317 }
318 
319 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
320 {
321 	struct list_head *pos, *q;
322 	struct delayed_uprobe *du;
323 
324 	if (!uprobe && !mm)
325 		return;
326 
327 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
328 		du = list_entry(pos, struct delayed_uprobe, list);
329 
330 		if (uprobe && du->uprobe != uprobe)
331 			continue;
332 		if (mm && du->mm != mm)
333 			continue;
334 
335 		delayed_uprobe_delete(du);
336 	}
337 }
338 
339 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
340 			      struct vm_area_struct *vma)
341 {
342 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
343 
344 	return uprobe->ref_ctr_offset &&
345 		vma->vm_file &&
346 		file_inode(vma->vm_file) == uprobe->inode &&
347 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
348 		vma->vm_start <= vaddr &&
349 		vma->vm_end > vaddr;
350 }
351 
352 static struct vm_area_struct *
353 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
354 {
355 	struct vm_area_struct *tmp;
356 
357 	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
358 		if (valid_ref_ctr_vma(uprobe, tmp))
359 			return tmp;
360 
361 	return NULL;
362 }
363 
364 static int
365 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
366 {
367 	void *kaddr;
368 	struct page *page;
369 	struct vm_area_struct *vma;
370 	int ret;
371 	short *ptr;
372 
373 	if (!vaddr || !d)
374 		return -EINVAL;
375 
376 	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
377 			FOLL_WRITE, &page, &vma, NULL);
378 	if (unlikely(ret <= 0)) {
379 		/*
380 		 * We are asking for 1 page. If get_user_pages_remote() fails,
381 		 * it may return 0, in that case we have to return error.
382 		 */
383 		return ret == 0 ? -EBUSY : ret;
384 	}
385 
386 	kaddr = kmap_atomic(page);
387 	ptr = kaddr + (vaddr & ~PAGE_MASK);
388 
389 	if (unlikely(*ptr + d < 0)) {
390 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
391 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
392 		ret = -EINVAL;
393 		goto out;
394 	}
395 
396 	*ptr += d;
397 	ret = 0;
398 out:
399 	kunmap_atomic(kaddr);
400 	put_page(page);
401 	return ret;
402 }
403 
404 static void update_ref_ctr_warn(struct uprobe *uprobe,
405 				struct mm_struct *mm, short d)
406 {
407 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
408 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
409 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
410 		(unsigned long long) uprobe->offset,
411 		(unsigned long long) uprobe->ref_ctr_offset, mm);
412 }
413 
414 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
415 			  short d)
416 {
417 	struct vm_area_struct *rc_vma;
418 	unsigned long rc_vaddr;
419 	int ret = 0;
420 
421 	rc_vma = find_ref_ctr_vma(uprobe, mm);
422 
423 	if (rc_vma) {
424 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
425 		ret = __update_ref_ctr(mm, rc_vaddr, d);
426 		if (ret)
427 			update_ref_ctr_warn(uprobe, mm, d);
428 
429 		if (d > 0)
430 			return ret;
431 	}
432 
433 	mutex_lock(&delayed_uprobe_lock);
434 	if (d > 0)
435 		ret = delayed_uprobe_add(uprobe, mm);
436 	else
437 		delayed_uprobe_remove(uprobe, mm);
438 	mutex_unlock(&delayed_uprobe_lock);
439 
440 	return ret;
441 }
442 
443 /*
444  * NOTE:
445  * Expect the breakpoint instruction to be the smallest size instruction for
446  * the architecture. If an arch has variable length instruction and the
447  * breakpoint instruction is not of the smallest length instruction
448  * supported by that architecture then we need to modify is_trap_at_addr and
449  * uprobe_write_opcode accordingly. This would never be a problem for archs
450  * that have fixed length instructions.
451  *
452  * uprobe_write_opcode - write the opcode at a given virtual address.
453  * @mm: the probed process address space.
454  * @vaddr: the virtual address to store the opcode.
455  * @opcode: opcode to be written at @vaddr.
456  *
457  * Called with mm->mmap_sem held for write.
458  * Return 0 (success) or a negative errno.
459  */
460 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
461 			unsigned long vaddr, uprobe_opcode_t opcode)
462 {
463 	struct uprobe *uprobe;
464 	struct page *old_page, *new_page;
465 	struct vm_area_struct *vma;
466 	int ret, is_register, ref_ctr_updated = 0;
467 
468 	is_register = is_swbp_insn(&opcode);
469 	uprobe = container_of(auprobe, struct uprobe, arch);
470 
471 retry:
472 	/* Read the page with vaddr into memory */
473 	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
474 			FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
475 	if (ret <= 0)
476 		return ret;
477 
478 	ret = verify_opcode(old_page, vaddr, &opcode);
479 	if (ret <= 0)
480 		goto put_old;
481 
482 	/* We are going to replace instruction, update ref_ctr. */
483 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
484 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
485 		if (ret)
486 			goto put_old;
487 
488 		ref_ctr_updated = 1;
489 	}
490 
491 	ret = anon_vma_prepare(vma);
492 	if (ret)
493 		goto put_old;
494 
495 	ret = -ENOMEM;
496 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
497 	if (!new_page)
498 		goto put_old;
499 
500 	__SetPageUptodate(new_page);
501 	copy_highpage(new_page, old_page);
502 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
503 
504 	ret = __replace_page(vma, vaddr, old_page, new_page);
505 	put_page(new_page);
506 put_old:
507 	put_page(old_page);
508 
509 	if (unlikely(ret == -EAGAIN))
510 		goto retry;
511 
512 	/* Revert back reference counter if instruction update failed. */
513 	if (ret && is_register && ref_ctr_updated)
514 		update_ref_ctr(uprobe, mm, -1);
515 
516 	return ret;
517 }
518 
519 /**
520  * set_swbp - store breakpoint at a given address.
521  * @auprobe: arch specific probepoint information.
522  * @mm: the probed process address space.
523  * @vaddr: the virtual address to insert the opcode.
524  *
525  * For mm @mm, store the breakpoint instruction at @vaddr.
526  * Return 0 (success) or a negative errno.
527  */
528 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
529 {
530 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
531 }
532 
533 /**
534  * set_orig_insn - Restore the original instruction.
535  * @mm: the probed process address space.
536  * @auprobe: arch specific probepoint information.
537  * @vaddr: the virtual address to insert the opcode.
538  *
539  * For mm @mm, restore the original opcode (opcode) at @vaddr.
540  * Return 0 (success) or a negative errno.
541  */
542 int __weak
543 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
544 {
545 	return uprobe_write_opcode(auprobe, mm, vaddr,
546 			*(uprobe_opcode_t *)&auprobe->insn);
547 }
548 
549 static struct uprobe *get_uprobe(struct uprobe *uprobe)
550 {
551 	refcount_inc(&uprobe->ref);
552 	return uprobe;
553 }
554 
555 static void put_uprobe(struct uprobe *uprobe)
556 {
557 	if (refcount_dec_and_test(&uprobe->ref)) {
558 		/*
559 		 * If application munmap(exec_vma) before uprobe_unregister()
560 		 * gets called, we don't get a chance to remove uprobe from
561 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
562 		 */
563 		mutex_lock(&delayed_uprobe_lock);
564 		delayed_uprobe_remove(uprobe, NULL);
565 		mutex_unlock(&delayed_uprobe_lock);
566 		kfree(uprobe);
567 	}
568 }
569 
570 static int match_uprobe(struct uprobe *l, struct uprobe *r)
571 {
572 	if (l->inode < r->inode)
573 		return -1;
574 
575 	if (l->inode > r->inode)
576 		return 1;
577 
578 	if (l->offset < r->offset)
579 		return -1;
580 
581 	if (l->offset > r->offset)
582 		return 1;
583 
584 	return 0;
585 }
586 
587 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
588 {
589 	struct uprobe u = { .inode = inode, .offset = offset };
590 	struct rb_node *n = uprobes_tree.rb_node;
591 	struct uprobe *uprobe;
592 	int match;
593 
594 	while (n) {
595 		uprobe = rb_entry(n, struct uprobe, rb_node);
596 		match = match_uprobe(&u, uprobe);
597 		if (!match)
598 			return get_uprobe(uprobe);
599 
600 		if (match < 0)
601 			n = n->rb_left;
602 		else
603 			n = n->rb_right;
604 	}
605 	return NULL;
606 }
607 
608 /*
609  * Find a uprobe corresponding to a given inode:offset
610  * Acquires uprobes_treelock
611  */
612 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
613 {
614 	struct uprobe *uprobe;
615 
616 	spin_lock(&uprobes_treelock);
617 	uprobe = __find_uprobe(inode, offset);
618 	spin_unlock(&uprobes_treelock);
619 
620 	return uprobe;
621 }
622 
623 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
624 {
625 	struct rb_node **p = &uprobes_tree.rb_node;
626 	struct rb_node *parent = NULL;
627 	struct uprobe *u;
628 	int match;
629 
630 	while (*p) {
631 		parent = *p;
632 		u = rb_entry(parent, struct uprobe, rb_node);
633 		match = match_uprobe(uprobe, u);
634 		if (!match)
635 			return get_uprobe(u);
636 
637 		if (match < 0)
638 			p = &parent->rb_left;
639 		else
640 			p = &parent->rb_right;
641 
642 	}
643 
644 	u = NULL;
645 	rb_link_node(&uprobe->rb_node, parent, p);
646 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
647 	/* get access + creation ref */
648 	refcount_set(&uprobe->ref, 2);
649 
650 	return u;
651 }
652 
653 /*
654  * Acquire uprobes_treelock.
655  * Matching uprobe already exists in rbtree;
656  *	increment (access refcount) and return the matching uprobe.
657  *
658  * No matching uprobe; insert the uprobe in rb_tree;
659  *	get a double refcount (access + creation) and return NULL.
660  */
661 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
662 {
663 	struct uprobe *u;
664 
665 	spin_lock(&uprobes_treelock);
666 	u = __insert_uprobe(uprobe);
667 	spin_unlock(&uprobes_treelock);
668 
669 	return u;
670 }
671 
672 static void
673 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
674 {
675 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
676 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
677 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
678 		(unsigned long long) cur_uprobe->ref_ctr_offset,
679 		(unsigned long long) uprobe->ref_ctr_offset);
680 }
681 
682 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
683 				   loff_t ref_ctr_offset)
684 {
685 	struct uprobe *uprobe, *cur_uprobe;
686 
687 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
688 	if (!uprobe)
689 		return NULL;
690 
691 	uprobe->inode = inode;
692 	uprobe->offset = offset;
693 	uprobe->ref_ctr_offset = ref_ctr_offset;
694 	init_rwsem(&uprobe->register_rwsem);
695 	init_rwsem(&uprobe->consumer_rwsem);
696 
697 	/* add to uprobes_tree, sorted on inode:offset */
698 	cur_uprobe = insert_uprobe(uprobe);
699 	/* a uprobe exists for this inode:offset combination */
700 	if (cur_uprobe) {
701 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
702 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
703 			put_uprobe(cur_uprobe);
704 			kfree(uprobe);
705 			return ERR_PTR(-EINVAL);
706 		}
707 		kfree(uprobe);
708 		uprobe = cur_uprobe;
709 	}
710 
711 	return uprobe;
712 }
713 
714 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
715 {
716 	down_write(&uprobe->consumer_rwsem);
717 	uc->next = uprobe->consumers;
718 	uprobe->consumers = uc;
719 	up_write(&uprobe->consumer_rwsem);
720 }
721 
722 /*
723  * For uprobe @uprobe, delete the consumer @uc.
724  * Return true if the @uc is deleted successfully
725  * or return false.
726  */
727 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
728 {
729 	struct uprobe_consumer **con;
730 	bool ret = false;
731 
732 	down_write(&uprobe->consumer_rwsem);
733 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
734 		if (*con == uc) {
735 			*con = uc->next;
736 			ret = true;
737 			break;
738 		}
739 	}
740 	up_write(&uprobe->consumer_rwsem);
741 
742 	return ret;
743 }
744 
745 static int __copy_insn(struct address_space *mapping, struct file *filp,
746 			void *insn, int nbytes, loff_t offset)
747 {
748 	struct page *page;
749 	/*
750 	 * Ensure that the page that has the original instruction is populated
751 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
752 	 * see uprobe_register().
753 	 */
754 	if (mapping->a_ops->readpage)
755 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
756 	else
757 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
758 	if (IS_ERR(page))
759 		return PTR_ERR(page);
760 
761 	copy_from_page(page, offset, insn, nbytes);
762 	put_page(page);
763 
764 	return 0;
765 }
766 
767 static int copy_insn(struct uprobe *uprobe, struct file *filp)
768 {
769 	struct address_space *mapping = uprobe->inode->i_mapping;
770 	loff_t offs = uprobe->offset;
771 	void *insn = &uprobe->arch.insn;
772 	int size = sizeof(uprobe->arch.insn);
773 	int len, err = -EIO;
774 
775 	/* Copy only available bytes, -EIO if nothing was read */
776 	do {
777 		if (offs >= i_size_read(uprobe->inode))
778 			break;
779 
780 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
781 		err = __copy_insn(mapping, filp, insn, len, offs);
782 		if (err)
783 			break;
784 
785 		insn += len;
786 		offs += len;
787 		size -= len;
788 	} while (size);
789 
790 	return err;
791 }
792 
793 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
794 				struct mm_struct *mm, unsigned long vaddr)
795 {
796 	int ret = 0;
797 
798 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
799 		return ret;
800 
801 	/* TODO: move this into _register, until then we abuse this sem. */
802 	down_write(&uprobe->consumer_rwsem);
803 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
804 		goto out;
805 
806 	ret = copy_insn(uprobe, file);
807 	if (ret)
808 		goto out;
809 
810 	ret = -ENOTSUPP;
811 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
812 		goto out;
813 
814 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
815 	if (ret)
816 		goto out;
817 
818 	/* uprobe_write_opcode() assumes we don't cross page boundary */
819 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
820 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
821 
822 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
823 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
824 
825  out:
826 	up_write(&uprobe->consumer_rwsem);
827 
828 	return ret;
829 }
830 
831 static inline bool consumer_filter(struct uprobe_consumer *uc,
832 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
833 {
834 	return !uc->filter || uc->filter(uc, ctx, mm);
835 }
836 
837 static bool filter_chain(struct uprobe *uprobe,
838 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
839 {
840 	struct uprobe_consumer *uc;
841 	bool ret = false;
842 
843 	down_read(&uprobe->consumer_rwsem);
844 	for (uc = uprobe->consumers; uc; uc = uc->next) {
845 		ret = consumer_filter(uc, ctx, mm);
846 		if (ret)
847 			break;
848 	}
849 	up_read(&uprobe->consumer_rwsem);
850 
851 	return ret;
852 }
853 
854 static int
855 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
856 			struct vm_area_struct *vma, unsigned long vaddr)
857 {
858 	bool first_uprobe;
859 	int ret;
860 
861 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
862 	if (ret)
863 		return ret;
864 
865 	/*
866 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
867 	 * the task can hit this breakpoint right after __replace_page().
868 	 */
869 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
870 	if (first_uprobe)
871 		set_bit(MMF_HAS_UPROBES, &mm->flags);
872 
873 	ret = set_swbp(&uprobe->arch, mm, vaddr);
874 	if (!ret)
875 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
876 	else if (first_uprobe)
877 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
878 
879 	return ret;
880 }
881 
882 static int
883 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
884 {
885 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
886 	return set_orig_insn(&uprobe->arch, mm, vaddr);
887 }
888 
889 static inline bool uprobe_is_active(struct uprobe *uprobe)
890 {
891 	return !RB_EMPTY_NODE(&uprobe->rb_node);
892 }
893 /*
894  * There could be threads that have already hit the breakpoint. They
895  * will recheck the current insn and restart if find_uprobe() fails.
896  * See find_active_uprobe().
897  */
898 static void delete_uprobe(struct uprobe *uprobe)
899 {
900 	if (WARN_ON(!uprobe_is_active(uprobe)))
901 		return;
902 
903 	spin_lock(&uprobes_treelock);
904 	rb_erase(&uprobe->rb_node, &uprobes_tree);
905 	spin_unlock(&uprobes_treelock);
906 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
907 	put_uprobe(uprobe);
908 }
909 
910 struct map_info {
911 	struct map_info *next;
912 	struct mm_struct *mm;
913 	unsigned long vaddr;
914 };
915 
916 static inline struct map_info *free_map_info(struct map_info *info)
917 {
918 	struct map_info *next = info->next;
919 	kfree(info);
920 	return next;
921 }
922 
923 static struct map_info *
924 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
925 {
926 	unsigned long pgoff = offset >> PAGE_SHIFT;
927 	struct vm_area_struct *vma;
928 	struct map_info *curr = NULL;
929 	struct map_info *prev = NULL;
930 	struct map_info *info;
931 	int more = 0;
932 
933  again:
934 	i_mmap_lock_read(mapping);
935 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
936 		if (!valid_vma(vma, is_register))
937 			continue;
938 
939 		if (!prev && !more) {
940 			/*
941 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
942 			 * reclaim. This is optimistic, no harm done if it fails.
943 			 */
944 			prev = kmalloc(sizeof(struct map_info),
945 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
946 			if (prev)
947 				prev->next = NULL;
948 		}
949 		if (!prev) {
950 			more++;
951 			continue;
952 		}
953 
954 		if (!mmget_not_zero(vma->vm_mm))
955 			continue;
956 
957 		info = prev;
958 		prev = prev->next;
959 		info->next = curr;
960 		curr = info;
961 
962 		info->mm = vma->vm_mm;
963 		info->vaddr = offset_to_vaddr(vma, offset);
964 	}
965 	i_mmap_unlock_read(mapping);
966 
967 	if (!more)
968 		goto out;
969 
970 	prev = curr;
971 	while (curr) {
972 		mmput(curr->mm);
973 		curr = curr->next;
974 	}
975 
976 	do {
977 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
978 		if (!info) {
979 			curr = ERR_PTR(-ENOMEM);
980 			goto out;
981 		}
982 		info->next = prev;
983 		prev = info;
984 	} while (--more);
985 
986 	goto again;
987  out:
988 	while (prev)
989 		prev = free_map_info(prev);
990 	return curr;
991 }
992 
993 static int
994 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
995 {
996 	bool is_register = !!new;
997 	struct map_info *info;
998 	int err = 0;
999 
1000 	percpu_down_write(&dup_mmap_sem);
1001 	info = build_map_info(uprobe->inode->i_mapping,
1002 					uprobe->offset, is_register);
1003 	if (IS_ERR(info)) {
1004 		err = PTR_ERR(info);
1005 		goto out;
1006 	}
1007 
1008 	while (info) {
1009 		struct mm_struct *mm = info->mm;
1010 		struct vm_area_struct *vma;
1011 
1012 		if (err && is_register)
1013 			goto free;
1014 
1015 		down_write(&mm->mmap_sem);
1016 		vma = find_vma(mm, info->vaddr);
1017 		if (!vma || !valid_vma(vma, is_register) ||
1018 		    file_inode(vma->vm_file) != uprobe->inode)
1019 			goto unlock;
1020 
1021 		if (vma->vm_start > info->vaddr ||
1022 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1023 			goto unlock;
1024 
1025 		if (is_register) {
1026 			/* consult only the "caller", new consumer. */
1027 			if (consumer_filter(new,
1028 					UPROBE_FILTER_REGISTER, mm))
1029 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1030 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1031 			if (!filter_chain(uprobe,
1032 					UPROBE_FILTER_UNREGISTER, mm))
1033 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1034 		}
1035 
1036  unlock:
1037 		up_write(&mm->mmap_sem);
1038  free:
1039 		mmput(mm);
1040 		info = free_map_info(info);
1041 	}
1042  out:
1043 	percpu_up_write(&dup_mmap_sem);
1044 	return err;
1045 }
1046 
1047 static void
1048 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1049 {
1050 	int err;
1051 
1052 	if (WARN_ON(!consumer_del(uprobe, uc)))
1053 		return;
1054 
1055 	err = register_for_each_vma(uprobe, NULL);
1056 	/* TODO : cant unregister? schedule a worker thread */
1057 	if (!uprobe->consumers && !err)
1058 		delete_uprobe(uprobe);
1059 }
1060 
1061 /*
1062  * uprobe_unregister - unregister an already registered probe.
1063  * @inode: the file in which the probe has to be removed.
1064  * @offset: offset from the start of the file.
1065  * @uc: identify which probe if multiple probes are colocated.
1066  */
1067 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1068 {
1069 	struct uprobe *uprobe;
1070 
1071 	uprobe = find_uprobe(inode, offset);
1072 	if (WARN_ON(!uprobe))
1073 		return;
1074 
1075 	down_write(&uprobe->register_rwsem);
1076 	__uprobe_unregister(uprobe, uc);
1077 	up_write(&uprobe->register_rwsem);
1078 	put_uprobe(uprobe);
1079 }
1080 EXPORT_SYMBOL_GPL(uprobe_unregister);
1081 
1082 /*
1083  * __uprobe_register - register a probe
1084  * @inode: the file in which the probe has to be placed.
1085  * @offset: offset from the start of the file.
1086  * @uc: information on howto handle the probe..
1087  *
1088  * Apart from the access refcount, __uprobe_register() takes a creation
1089  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1090  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1091  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1092  * @uprobe even before the register operation is complete. Creation
1093  * refcount is released when the last @uc for the @uprobe
1094  * unregisters. Caller of __uprobe_register() is required to keep @inode
1095  * (and the containing mount) referenced.
1096  *
1097  * Return errno if it cannot successully install probes
1098  * else return 0 (success)
1099  */
1100 static int __uprobe_register(struct inode *inode, loff_t offset,
1101 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1102 {
1103 	struct uprobe *uprobe;
1104 	int ret;
1105 
1106 	/* Uprobe must have at least one set consumer */
1107 	if (!uc->handler && !uc->ret_handler)
1108 		return -EINVAL;
1109 
1110 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1111 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1112 		return -EIO;
1113 	/* Racy, just to catch the obvious mistakes */
1114 	if (offset > i_size_read(inode))
1115 		return -EINVAL;
1116 
1117  retry:
1118 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1119 	if (!uprobe)
1120 		return -ENOMEM;
1121 	if (IS_ERR(uprobe))
1122 		return PTR_ERR(uprobe);
1123 
1124 	/*
1125 	 * We can race with uprobe_unregister()->delete_uprobe().
1126 	 * Check uprobe_is_active() and retry if it is false.
1127 	 */
1128 	down_write(&uprobe->register_rwsem);
1129 	ret = -EAGAIN;
1130 	if (likely(uprobe_is_active(uprobe))) {
1131 		consumer_add(uprobe, uc);
1132 		ret = register_for_each_vma(uprobe, uc);
1133 		if (ret)
1134 			__uprobe_unregister(uprobe, uc);
1135 	}
1136 	up_write(&uprobe->register_rwsem);
1137 	put_uprobe(uprobe);
1138 
1139 	if (unlikely(ret == -EAGAIN))
1140 		goto retry;
1141 	return ret;
1142 }
1143 
1144 int uprobe_register(struct inode *inode, loff_t offset,
1145 		    struct uprobe_consumer *uc)
1146 {
1147 	return __uprobe_register(inode, offset, 0, uc);
1148 }
1149 EXPORT_SYMBOL_GPL(uprobe_register);
1150 
1151 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1152 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1153 {
1154 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1155 }
1156 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1157 
1158 /*
1159  * uprobe_apply - unregister an already registered probe.
1160  * @inode: the file in which the probe has to be removed.
1161  * @offset: offset from the start of the file.
1162  * @uc: consumer which wants to add more or remove some breakpoints
1163  * @add: add or remove the breakpoints
1164  */
1165 int uprobe_apply(struct inode *inode, loff_t offset,
1166 			struct uprobe_consumer *uc, bool add)
1167 {
1168 	struct uprobe *uprobe;
1169 	struct uprobe_consumer *con;
1170 	int ret = -ENOENT;
1171 
1172 	uprobe = find_uprobe(inode, offset);
1173 	if (WARN_ON(!uprobe))
1174 		return ret;
1175 
1176 	down_write(&uprobe->register_rwsem);
1177 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1178 		;
1179 	if (con)
1180 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1181 	up_write(&uprobe->register_rwsem);
1182 	put_uprobe(uprobe);
1183 
1184 	return ret;
1185 }
1186 
1187 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1188 {
1189 	struct vm_area_struct *vma;
1190 	int err = 0;
1191 
1192 	down_read(&mm->mmap_sem);
1193 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1194 		unsigned long vaddr;
1195 		loff_t offset;
1196 
1197 		if (!valid_vma(vma, false) ||
1198 		    file_inode(vma->vm_file) != uprobe->inode)
1199 			continue;
1200 
1201 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1202 		if (uprobe->offset <  offset ||
1203 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1204 			continue;
1205 
1206 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1207 		err |= remove_breakpoint(uprobe, mm, vaddr);
1208 	}
1209 	up_read(&mm->mmap_sem);
1210 
1211 	return err;
1212 }
1213 
1214 static struct rb_node *
1215 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1216 {
1217 	struct rb_node *n = uprobes_tree.rb_node;
1218 
1219 	while (n) {
1220 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1221 
1222 		if (inode < u->inode) {
1223 			n = n->rb_left;
1224 		} else if (inode > u->inode) {
1225 			n = n->rb_right;
1226 		} else {
1227 			if (max < u->offset)
1228 				n = n->rb_left;
1229 			else if (min > u->offset)
1230 				n = n->rb_right;
1231 			else
1232 				break;
1233 		}
1234 	}
1235 
1236 	return n;
1237 }
1238 
1239 /*
1240  * For a given range in vma, build a list of probes that need to be inserted.
1241  */
1242 static void build_probe_list(struct inode *inode,
1243 				struct vm_area_struct *vma,
1244 				unsigned long start, unsigned long end,
1245 				struct list_head *head)
1246 {
1247 	loff_t min, max;
1248 	struct rb_node *n, *t;
1249 	struct uprobe *u;
1250 
1251 	INIT_LIST_HEAD(head);
1252 	min = vaddr_to_offset(vma, start);
1253 	max = min + (end - start) - 1;
1254 
1255 	spin_lock(&uprobes_treelock);
1256 	n = find_node_in_range(inode, min, max);
1257 	if (n) {
1258 		for (t = n; t; t = rb_prev(t)) {
1259 			u = rb_entry(t, struct uprobe, rb_node);
1260 			if (u->inode != inode || u->offset < min)
1261 				break;
1262 			list_add(&u->pending_list, head);
1263 			get_uprobe(u);
1264 		}
1265 		for (t = n; (t = rb_next(t)); ) {
1266 			u = rb_entry(t, struct uprobe, rb_node);
1267 			if (u->inode != inode || u->offset > max)
1268 				break;
1269 			list_add(&u->pending_list, head);
1270 			get_uprobe(u);
1271 		}
1272 	}
1273 	spin_unlock(&uprobes_treelock);
1274 }
1275 
1276 /* @vma contains reference counter, not the probed instruction. */
1277 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1278 {
1279 	struct list_head *pos, *q;
1280 	struct delayed_uprobe *du;
1281 	unsigned long vaddr;
1282 	int ret = 0, err = 0;
1283 
1284 	mutex_lock(&delayed_uprobe_lock);
1285 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1286 		du = list_entry(pos, struct delayed_uprobe, list);
1287 
1288 		if (du->mm != vma->vm_mm ||
1289 		    !valid_ref_ctr_vma(du->uprobe, vma))
1290 			continue;
1291 
1292 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1293 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1294 		if (ret) {
1295 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1296 			if (!err)
1297 				err = ret;
1298 		}
1299 		delayed_uprobe_delete(du);
1300 	}
1301 	mutex_unlock(&delayed_uprobe_lock);
1302 	return err;
1303 }
1304 
1305 /*
1306  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1307  *
1308  * Currently we ignore all errors and always return 0, the callers
1309  * can't handle the failure anyway.
1310  */
1311 int uprobe_mmap(struct vm_area_struct *vma)
1312 {
1313 	struct list_head tmp_list;
1314 	struct uprobe *uprobe, *u;
1315 	struct inode *inode;
1316 
1317 	if (no_uprobe_events())
1318 		return 0;
1319 
1320 	if (vma->vm_file &&
1321 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1322 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1323 		delayed_ref_ctr_inc(vma);
1324 
1325 	if (!valid_vma(vma, true))
1326 		return 0;
1327 
1328 	inode = file_inode(vma->vm_file);
1329 	if (!inode)
1330 		return 0;
1331 
1332 	mutex_lock(uprobes_mmap_hash(inode));
1333 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1334 	/*
1335 	 * We can race with uprobe_unregister(), this uprobe can be already
1336 	 * removed. But in this case filter_chain() must return false, all
1337 	 * consumers have gone away.
1338 	 */
1339 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1340 		if (!fatal_signal_pending(current) &&
1341 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1342 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1343 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1344 		}
1345 		put_uprobe(uprobe);
1346 	}
1347 	mutex_unlock(uprobes_mmap_hash(inode));
1348 
1349 	return 0;
1350 }
1351 
1352 static bool
1353 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1354 {
1355 	loff_t min, max;
1356 	struct inode *inode;
1357 	struct rb_node *n;
1358 
1359 	inode = file_inode(vma->vm_file);
1360 
1361 	min = vaddr_to_offset(vma, start);
1362 	max = min + (end - start) - 1;
1363 
1364 	spin_lock(&uprobes_treelock);
1365 	n = find_node_in_range(inode, min, max);
1366 	spin_unlock(&uprobes_treelock);
1367 
1368 	return !!n;
1369 }
1370 
1371 /*
1372  * Called in context of a munmap of a vma.
1373  */
1374 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1375 {
1376 	if (no_uprobe_events() || !valid_vma(vma, false))
1377 		return;
1378 
1379 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1380 		return;
1381 
1382 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1383 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1384 		return;
1385 
1386 	if (vma_has_uprobes(vma, start, end))
1387 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1388 }
1389 
1390 /* Slot allocation for XOL */
1391 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1392 {
1393 	struct vm_area_struct *vma;
1394 	int ret;
1395 
1396 	if (down_write_killable(&mm->mmap_sem))
1397 		return -EINTR;
1398 
1399 	if (mm->uprobes_state.xol_area) {
1400 		ret = -EALREADY;
1401 		goto fail;
1402 	}
1403 
1404 	if (!area->vaddr) {
1405 		/* Try to map as high as possible, this is only a hint. */
1406 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1407 						PAGE_SIZE, 0, 0);
1408 		if (area->vaddr & ~PAGE_MASK) {
1409 			ret = area->vaddr;
1410 			goto fail;
1411 		}
1412 	}
1413 
1414 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1415 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1416 				&area->xol_mapping);
1417 	if (IS_ERR(vma)) {
1418 		ret = PTR_ERR(vma);
1419 		goto fail;
1420 	}
1421 
1422 	ret = 0;
1423 	/* pairs with get_xol_area() */
1424 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1425  fail:
1426 	up_write(&mm->mmap_sem);
1427 
1428 	return ret;
1429 }
1430 
1431 static struct xol_area *__create_xol_area(unsigned long vaddr)
1432 {
1433 	struct mm_struct *mm = current->mm;
1434 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1435 	struct xol_area *area;
1436 
1437 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1438 	if (unlikely(!area))
1439 		goto out;
1440 
1441 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1442 			       GFP_KERNEL);
1443 	if (!area->bitmap)
1444 		goto free_area;
1445 
1446 	area->xol_mapping.name = "[uprobes]";
1447 	area->xol_mapping.fault = NULL;
1448 	area->xol_mapping.pages = area->pages;
1449 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1450 	if (!area->pages[0])
1451 		goto free_bitmap;
1452 	area->pages[1] = NULL;
1453 
1454 	area->vaddr = vaddr;
1455 	init_waitqueue_head(&area->wq);
1456 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1457 	set_bit(0, area->bitmap);
1458 	atomic_set(&area->slot_count, 1);
1459 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1460 
1461 	if (!xol_add_vma(mm, area))
1462 		return area;
1463 
1464 	__free_page(area->pages[0]);
1465  free_bitmap:
1466 	kfree(area->bitmap);
1467  free_area:
1468 	kfree(area);
1469  out:
1470 	return NULL;
1471 }
1472 
1473 /*
1474  * get_xol_area - Allocate process's xol_area if necessary.
1475  * This area will be used for storing instructions for execution out of line.
1476  *
1477  * Returns the allocated area or NULL.
1478  */
1479 static struct xol_area *get_xol_area(void)
1480 {
1481 	struct mm_struct *mm = current->mm;
1482 	struct xol_area *area;
1483 
1484 	if (!mm->uprobes_state.xol_area)
1485 		__create_xol_area(0);
1486 
1487 	/* Pairs with xol_add_vma() smp_store_release() */
1488 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1489 	return area;
1490 }
1491 
1492 /*
1493  * uprobe_clear_state - Free the area allocated for slots.
1494  */
1495 void uprobe_clear_state(struct mm_struct *mm)
1496 {
1497 	struct xol_area *area = mm->uprobes_state.xol_area;
1498 
1499 	mutex_lock(&delayed_uprobe_lock);
1500 	delayed_uprobe_remove(NULL, mm);
1501 	mutex_unlock(&delayed_uprobe_lock);
1502 
1503 	if (!area)
1504 		return;
1505 
1506 	put_page(area->pages[0]);
1507 	kfree(area->bitmap);
1508 	kfree(area);
1509 }
1510 
1511 void uprobe_start_dup_mmap(void)
1512 {
1513 	percpu_down_read(&dup_mmap_sem);
1514 }
1515 
1516 void uprobe_end_dup_mmap(void)
1517 {
1518 	percpu_up_read(&dup_mmap_sem);
1519 }
1520 
1521 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1522 {
1523 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1524 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1525 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1526 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1527 	}
1528 }
1529 
1530 /*
1531  *  - search for a free slot.
1532  */
1533 static unsigned long xol_take_insn_slot(struct xol_area *area)
1534 {
1535 	unsigned long slot_addr;
1536 	int slot_nr;
1537 
1538 	do {
1539 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1540 		if (slot_nr < UINSNS_PER_PAGE) {
1541 			if (!test_and_set_bit(slot_nr, area->bitmap))
1542 				break;
1543 
1544 			slot_nr = UINSNS_PER_PAGE;
1545 			continue;
1546 		}
1547 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1548 	} while (slot_nr >= UINSNS_PER_PAGE);
1549 
1550 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1551 	atomic_inc(&area->slot_count);
1552 
1553 	return slot_addr;
1554 }
1555 
1556 /*
1557  * xol_get_insn_slot - allocate a slot for xol.
1558  * Returns the allocated slot address or 0.
1559  */
1560 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1561 {
1562 	struct xol_area *area;
1563 	unsigned long xol_vaddr;
1564 
1565 	area = get_xol_area();
1566 	if (!area)
1567 		return 0;
1568 
1569 	xol_vaddr = xol_take_insn_slot(area);
1570 	if (unlikely(!xol_vaddr))
1571 		return 0;
1572 
1573 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1574 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1575 
1576 	return xol_vaddr;
1577 }
1578 
1579 /*
1580  * xol_free_insn_slot - If slot was earlier allocated by
1581  * @xol_get_insn_slot(), make the slot available for
1582  * subsequent requests.
1583  */
1584 static void xol_free_insn_slot(struct task_struct *tsk)
1585 {
1586 	struct xol_area *area;
1587 	unsigned long vma_end;
1588 	unsigned long slot_addr;
1589 
1590 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1591 		return;
1592 
1593 	slot_addr = tsk->utask->xol_vaddr;
1594 	if (unlikely(!slot_addr))
1595 		return;
1596 
1597 	area = tsk->mm->uprobes_state.xol_area;
1598 	vma_end = area->vaddr + PAGE_SIZE;
1599 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1600 		unsigned long offset;
1601 		int slot_nr;
1602 
1603 		offset = slot_addr - area->vaddr;
1604 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1605 		if (slot_nr >= UINSNS_PER_PAGE)
1606 			return;
1607 
1608 		clear_bit(slot_nr, area->bitmap);
1609 		atomic_dec(&area->slot_count);
1610 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1611 		if (waitqueue_active(&area->wq))
1612 			wake_up(&area->wq);
1613 
1614 		tsk->utask->xol_vaddr = 0;
1615 	}
1616 }
1617 
1618 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1619 				  void *src, unsigned long len)
1620 {
1621 	/* Initialize the slot */
1622 	copy_to_page(page, vaddr, src, len);
1623 
1624 	/*
1625 	 * We probably need flush_icache_user_range() but it needs vma.
1626 	 * This should work on most of architectures by default. If
1627 	 * architecture needs to do something different it can define
1628 	 * its own version of the function.
1629 	 */
1630 	flush_dcache_page(page);
1631 }
1632 
1633 /**
1634  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1635  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1636  * instruction.
1637  * Return the address of the breakpoint instruction.
1638  */
1639 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1640 {
1641 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1642 }
1643 
1644 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1645 {
1646 	struct uprobe_task *utask = current->utask;
1647 
1648 	if (unlikely(utask && utask->active_uprobe))
1649 		return utask->vaddr;
1650 
1651 	return instruction_pointer(regs);
1652 }
1653 
1654 static struct return_instance *free_ret_instance(struct return_instance *ri)
1655 {
1656 	struct return_instance *next = ri->next;
1657 	put_uprobe(ri->uprobe);
1658 	kfree(ri);
1659 	return next;
1660 }
1661 
1662 /*
1663  * Called with no locks held.
1664  * Called in context of an exiting or an exec-ing thread.
1665  */
1666 void uprobe_free_utask(struct task_struct *t)
1667 {
1668 	struct uprobe_task *utask = t->utask;
1669 	struct return_instance *ri;
1670 
1671 	if (!utask)
1672 		return;
1673 
1674 	if (utask->active_uprobe)
1675 		put_uprobe(utask->active_uprobe);
1676 
1677 	ri = utask->return_instances;
1678 	while (ri)
1679 		ri = free_ret_instance(ri);
1680 
1681 	xol_free_insn_slot(t);
1682 	kfree(utask);
1683 	t->utask = NULL;
1684 }
1685 
1686 /*
1687  * Allocate a uprobe_task object for the task if if necessary.
1688  * Called when the thread hits a breakpoint.
1689  *
1690  * Returns:
1691  * - pointer to new uprobe_task on success
1692  * - NULL otherwise
1693  */
1694 static struct uprobe_task *get_utask(void)
1695 {
1696 	if (!current->utask)
1697 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1698 	return current->utask;
1699 }
1700 
1701 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1702 {
1703 	struct uprobe_task *n_utask;
1704 	struct return_instance **p, *o, *n;
1705 
1706 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1707 	if (!n_utask)
1708 		return -ENOMEM;
1709 	t->utask = n_utask;
1710 
1711 	p = &n_utask->return_instances;
1712 	for (o = o_utask->return_instances; o; o = o->next) {
1713 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1714 		if (!n)
1715 			return -ENOMEM;
1716 
1717 		*n = *o;
1718 		get_uprobe(n->uprobe);
1719 		n->next = NULL;
1720 
1721 		*p = n;
1722 		p = &n->next;
1723 		n_utask->depth++;
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 static void uprobe_warn(struct task_struct *t, const char *msg)
1730 {
1731 	pr_warn("uprobe: %s:%d failed to %s\n",
1732 			current->comm, current->pid, msg);
1733 }
1734 
1735 static void dup_xol_work(struct callback_head *work)
1736 {
1737 	if (current->flags & PF_EXITING)
1738 		return;
1739 
1740 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1741 			!fatal_signal_pending(current))
1742 		uprobe_warn(current, "dup xol area");
1743 }
1744 
1745 /*
1746  * Called in context of a new clone/fork from copy_process.
1747  */
1748 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1749 {
1750 	struct uprobe_task *utask = current->utask;
1751 	struct mm_struct *mm = current->mm;
1752 	struct xol_area *area;
1753 
1754 	t->utask = NULL;
1755 
1756 	if (!utask || !utask->return_instances)
1757 		return;
1758 
1759 	if (mm == t->mm && !(flags & CLONE_VFORK))
1760 		return;
1761 
1762 	if (dup_utask(t, utask))
1763 		return uprobe_warn(t, "dup ret instances");
1764 
1765 	/* The task can fork() after dup_xol_work() fails */
1766 	area = mm->uprobes_state.xol_area;
1767 	if (!area)
1768 		return uprobe_warn(t, "dup xol area");
1769 
1770 	if (mm == t->mm)
1771 		return;
1772 
1773 	t->utask->dup_xol_addr = area->vaddr;
1774 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1775 	task_work_add(t, &t->utask->dup_xol_work, true);
1776 }
1777 
1778 /*
1779  * Current area->vaddr notion assume the trampoline address is always
1780  * equal area->vaddr.
1781  *
1782  * Returns -1 in case the xol_area is not allocated.
1783  */
1784 static unsigned long get_trampoline_vaddr(void)
1785 {
1786 	struct xol_area *area;
1787 	unsigned long trampoline_vaddr = -1;
1788 
1789 	/* Pairs with xol_add_vma() smp_store_release() */
1790 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1791 	if (area)
1792 		trampoline_vaddr = area->vaddr;
1793 
1794 	return trampoline_vaddr;
1795 }
1796 
1797 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1798 					struct pt_regs *regs)
1799 {
1800 	struct return_instance *ri = utask->return_instances;
1801 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1802 
1803 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1804 		ri = free_ret_instance(ri);
1805 		utask->depth--;
1806 	}
1807 	utask->return_instances = ri;
1808 }
1809 
1810 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1811 {
1812 	struct return_instance *ri;
1813 	struct uprobe_task *utask;
1814 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1815 	bool chained;
1816 
1817 	if (!get_xol_area())
1818 		return;
1819 
1820 	utask = get_utask();
1821 	if (!utask)
1822 		return;
1823 
1824 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1825 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1826 				" nestedness limit pid/tgid=%d/%d\n",
1827 				current->pid, current->tgid);
1828 		return;
1829 	}
1830 
1831 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1832 	if (!ri)
1833 		return;
1834 
1835 	trampoline_vaddr = get_trampoline_vaddr();
1836 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1837 	if (orig_ret_vaddr == -1)
1838 		goto fail;
1839 
1840 	/* drop the entries invalidated by longjmp() */
1841 	chained = (orig_ret_vaddr == trampoline_vaddr);
1842 	cleanup_return_instances(utask, chained, regs);
1843 
1844 	/*
1845 	 * We don't want to keep trampoline address in stack, rather keep the
1846 	 * original return address of first caller thru all the consequent
1847 	 * instances. This also makes breakpoint unwrapping easier.
1848 	 */
1849 	if (chained) {
1850 		if (!utask->return_instances) {
1851 			/*
1852 			 * This situation is not possible. Likely we have an
1853 			 * attack from user-space.
1854 			 */
1855 			uprobe_warn(current, "handle tail call");
1856 			goto fail;
1857 		}
1858 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1859 	}
1860 
1861 	ri->uprobe = get_uprobe(uprobe);
1862 	ri->func = instruction_pointer(regs);
1863 	ri->stack = user_stack_pointer(regs);
1864 	ri->orig_ret_vaddr = orig_ret_vaddr;
1865 	ri->chained = chained;
1866 
1867 	utask->depth++;
1868 	ri->next = utask->return_instances;
1869 	utask->return_instances = ri;
1870 
1871 	return;
1872  fail:
1873 	kfree(ri);
1874 }
1875 
1876 /* Prepare to single-step probed instruction out of line. */
1877 static int
1878 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1879 {
1880 	struct uprobe_task *utask;
1881 	unsigned long xol_vaddr;
1882 	int err;
1883 
1884 	utask = get_utask();
1885 	if (!utask)
1886 		return -ENOMEM;
1887 
1888 	xol_vaddr = xol_get_insn_slot(uprobe);
1889 	if (!xol_vaddr)
1890 		return -ENOMEM;
1891 
1892 	utask->xol_vaddr = xol_vaddr;
1893 	utask->vaddr = bp_vaddr;
1894 
1895 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1896 	if (unlikely(err)) {
1897 		xol_free_insn_slot(current);
1898 		return err;
1899 	}
1900 
1901 	utask->active_uprobe = uprobe;
1902 	utask->state = UTASK_SSTEP;
1903 	return 0;
1904 }
1905 
1906 /*
1907  * If we are singlestepping, then ensure this thread is not connected to
1908  * non-fatal signals until completion of singlestep.  When xol insn itself
1909  * triggers the signal,  restart the original insn even if the task is
1910  * already SIGKILL'ed (since coredump should report the correct ip).  This
1911  * is even more important if the task has a handler for SIGSEGV/etc, The
1912  * _same_ instruction should be repeated again after return from the signal
1913  * handler, and SSTEP can never finish in this case.
1914  */
1915 bool uprobe_deny_signal(void)
1916 {
1917 	struct task_struct *t = current;
1918 	struct uprobe_task *utask = t->utask;
1919 
1920 	if (likely(!utask || !utask->active_uprobe))
1921 		return false;
1922 
1923 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1924 
1925 	if (signal_pending(t)) {
1926 		spin_lock_irq(&t->sighand->siglock);
1927 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1928 		spin_unlock_irq(&t->sighand->siglock);
1929 
1930 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1931 			utask->state = UTASK_SSTEP_TRAPPED;
1932 			set_tsk_thread_flag(t, TIF_UPROBE);
1933 		}
1934 	}
1935 
1936 	return true;
1937 }
1938 
1939 static void mmf_recalc_uprobes(struct mm_struct *mm)
1940 {
1941 	struct vm_area_struct *vma;
1942 
1943 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1944 		if (!valid_vma(vma, false))
1945 			continue;
1946 		/*
1947 		 * This is not strictly accurate, we can race with
1948 		 * uprobe_unregister() and see the already removed
1949 		 * uprobe if delete_uprobe() was not yet called.
1950 		 * Or this uprobe can be filtered out.
1951 		 */
1952 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1953 			return;
1954 	}
1955 
1956 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1957 }
1958 
1959 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1960 {
1961 	struct page *page;
1962 	uprobe_opcode_t opcode;
1963 	int result;
1964 
1965 	pagefault_disable();
1966 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1967 	pagefault_enable();
1968 
1969 	if (likely(result == 0))
1970 		goto out;
1971 
1972 	/*
1973 	 * The NULL 'tsk' here ensures that any faults that occur here
1974 	 * will not be accounted to the task.  'mm' *is* current->mm,
1975 	 * but we treat this as a 'remote' access since it is
1976 	 * essentially a kernel access to the memory.
1977 	 */
1978 	result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1979 			NULL, NULL);
1980 	if (result < 0)
1981 		return result;
1982 
1983 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1984 	put_page(page);
1985  out:
1986 	/* This needs to return true for any variant of the trap insn */
1987 	return is_trap_insn(&opcode);
1988 }
1989 
1990 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1991 {
1992 	struct mm_struct *mm = current->mm;
1993 	struct uprobe *uprobe = NULL;
1994 	struct vm_area_struct *vma;
1995 
1996 	down_read(&mm->mmap_sem);
1997 	vma = find_vma(mm, bp_vaddr);
1998 	if (vma && vma->vm_start <= bp_vaddr) {
1999 		if (valid_vma(vma, false)) {
2000 			struct inode *inode = file_inode(vma->vm_file);
2001 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2002 
2003 			uprobe = find_uprobe(inode, offset);
2004 		}
2005 
2006 		if (!uprobe)
2007 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2008 	} else {
2009 		*is_swbp = -EFAULT;
2010 	}
2011 
2012 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2013 		mmf_recalc_uprobes(mm);
2014 	up_read(&mm->mmap_sem);
2015 
2016 	return uprobe;
2017 }
2018 
2019 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2020 {
2021 	struct uprobe_consumer *uc;
2022 	int remove = UPROBE_HANDLER_REMOVE;
2023 	bool need_prep = false; /* prepare return uprobe, when needed */
2024 
2025 	down_read(&uprobe->register_rwsem);
2026 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2027 		int rc = 0;
2028 
2029 		if (uc->handler) {
2030 			rc = uc->handler(uc, regs);
2031 			WARN(rc & ~UPROBE_HANDLER_MASK,
2032 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2033 		}
2034 
2035 		if (uc->ret_handler)
2036 			need_prep = true;
2037 
2038 		remove &= rc;
2039 	}
2040 
2041 	if (need_prep && !remove)
2042 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2043 
2044 	if (remove && uprobe->consumers) {
2045 		WARN_ON(!uprobe_is_active(uprobe));
2046 		unapply_uprobe(uprobe, current->mm);
2047 	}
2048 	up_read(&uprobe->register_rwsem);
2049 }
2050 
2051 static void
2052 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2053 {
2054 	struct uprobe *uprobe = ri->uprobe;
2055 	struct uprobe_consumer *uc;
2056 
2057 	down_read(&uprobe->register_rwsem);
2058 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2059 		if (uc->ret_handler)
2060 			uc->ret_handler(uc, ri->func, regs);
2061 	}
2062 	up_read(&uprobe->register_rwsem);
2063 }
2064 
2065 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2066 {
2067 	bool chained;
2068 
2069 	do {
2070 		chained = ri->chained;
2071 		ri = ri->next;	/* can't be NULL if chained */
2072 	} while (chained);
2073 
2074 	return ri;
2075 }
2076 
2077 static void handle_trampoline(struct pt_regs *regs)
2078 {
2079 	struct uprobe_task *utask;
2080 	struct return_instance *ri, *next;
2081 	bool valid;
2082 
2083 	utask = current->utask;
2084 	if (!utask)
2085 		goto sigill;
2086 
2087 	ri = utask->return_instances;
2088 	if (!ri)
2089 		goto sigill;
2090 
2091 	do {
2092 		/*
2093 		 * We should throw out the frames invalidated by longjmp().
2094 		 * If this chain is valid, then the next one should be alive
2095 		 * or NULL; the latter case means that nobody but ri->func
2096 		 * could hit this trampoline on return. TODO: sigaltstack().
2097 		 */
2098 		next = find_next_ret_chain(ri);
2099 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2100 
2101 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2102 		do {
2103 			if (valid)
2104 				handle_uretprobe_chain(ri, regs);
2105 			ri = free_ret_instance(ri);
2106 			utask->depth--;
2107 		} while (ri != next);
2108 	} while (!valid);
2109 
2110 	utask->return_instances = ri;
2111 	return;
2112 
2113  sigill:
2114 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2115 	force_sig(SIGILL);
2116 
2117 }
2118 
2119 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2120 {
2121 	return false;
2122 }
2123 
2124 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2125 					struct pt_regs *regs)
2126 {
2127 	return true;
2128 }
2129 
2130 /*
2131  * Run handler and ask thread to singlestep.
2132  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2133  */
2134 static void handle_swbp(struct pt_regs *regs)
2135 {
2136 	struct uprobe *uprobe;
2137 	unsigned long bp_vaddr;
2138 	int uninitialized_var(is_swbp);
2139 
2140 	bp_vaddr = uprobe_get_swbp_addr(regs);
2141 	if (bp_vaddr == get_trampoline_vaddr())
2142 		return handle_trampoline(regs);
2143 
2144 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2145 	if (!uprobe) {
2146 		if (is_swbp > 0) {
2147 			/* No matching uprobe; signal SIGTRAP. */
2148 			send_sig(SIGTRAP, current, 0);
2149 		} else {
2150 			/*
2151 			 * Either we raced with uprobe_unregister() or we can't
2152 			 * access this memory. The latter is only possible if
2153 			 * another thread plays with our ->mm. In both cases
2154 			 * we can simply restart. If this vma was unmapped we
2155 			 * can pretend this insn was not executed yet and get
2156 			 * the (correct) SIGSEGV after restart.
2157 			 */
2158 			instruction_pointer_set(regs, bp_vaddr);
2159 		}
2160 		return;
2161 	}
2162 
2163 	/* change it in advance for ->handler() and restart */
2164 	instruction_pointer_set(regs, bp_vaddr);
2165 
2166 	/*
2167 	 * TODO: move copy_insn/etc into _register and remove this hack.
2168 	 * After we hit the bp, _unregister + _register can install the
2169 	 * new and not-yet-analyzed uprobe at the same address, restart.
2170 	 */
2171 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2172 		goto out;
2173 
2174 	/*
2175 	 * Pairs with the smp_wmb() in prepare_uprobe().
2176 	 *
2177 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2178 	 * we must also see the stores to &uprobe->arch performed by the
2179 	 * prepare_uprobe() call.
2180 	 */
2181 	smp_rmb();
2182 
2183 	/* Tracing handlers use ->utask to communicate with fetch methods */
2184 	if (!get_utask())
2185 		goto out;
2186 
2187 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2188 		goto out;
2189 
2190 	handler_chain(uprobe, regs);
2191 
2192 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2193 		goto out;
2194 
2195 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2196 		return;
2197 
2198 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2199 out:
2200 	put_uprobe(uprobe);
2201 }
2202 
2203 /*
2204  * Perform required fix-ups and disable singlestep.
2205  * Allow pending signals to take effect.
2206  */
2207 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2208 {
2209 	struct uprobe *uprobe;
2210 	int err = 0;
2211 
2212 	uprobe = utask->active_uprobe;
2213 	if (utask->state == UTASK_SSTEP_ACK)
2214 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2215 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2216 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2217 	else
2218 		WARN_ON_ONCE(1);
2219 
2220 	put_uprobe(uprobe);
2221 	utask->active_uprobe = NULL;
2222 	utask->state = UTASK_RUNNING;
2223 	xol_free_insn_slot(current);
2224 
2225 	spin_lock_irq(&current->sighand->siglock);
2226 	recalc_sigpending(); /* see uprobe_deny_signal() */
2227 	spin_unlock_irq(&current->sighand->siglock);
2228 
2229 	if (unlikely(err)) {
2230 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2231 		force_sig(SIGILL);
2232 	}
2233 }
2234 
2235 /*
2236  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2237  * allows the thread to return from interrupt. After that handle_swbp()
2238  * sets utask->active_uprobe.
2239  *
2240  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2241  * and allows the thread to return from interrupt.
2242  *
2243  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2244  * uprobe_notify_resume().
2245  */
2246 void uprobe_notify_resume(struct pt_regs *regs)
2247 {
2248 	struct uprobe_task *utask;
2249 
2250 	clear_thread_flag(TIF_UPROBE);
2251 
2252 	utask = current->utask;
2253 	if (utask && utask->active_uprobe)
2254 		handle_singlestep(utask, regs);
2255 	else
2256 		handle_swbp(regs);
2257 }
2258 
2259 /*
2260  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2261  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2262  */
2263 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2264 {
2265 	if (!current->mm)
2266 		return 0;
2267 
2268 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2269 	    (!current->utask || !current->utask->return_instances))
2270 		return 0;
2271 
2272 	set_thread_flag(TIF_UPROBE);
2273 	return 1;
2274 }
2275 
2276 /*
2277  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2278  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2279  */
2280 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2281 {
2282 	struct uprobe_task *utask = current->utask;
2283 
2284 	if (!current->mm || !utask || !utask->active_uprobe)
2285 		/* task is currently not uprobed */
2286 		return 0;
2287 
2288 	utask->state = UTASK_SSTEP_ACK;
2289 	set_thread_flag(TIF_UPROBE);
2290 	return 1;
2291 }
2292 
2293 static struct notifier_block uprobe_exception_nb = {
2294 	.notifier_call		= arch_uprobe_exception_notify,
2295 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2296 };
2297 
2298 void __init uprobes_init(void)
2299 {
2300 	int i;
2301 
2302 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2303 		mutex_init(&uprobes_mmap_mutex[i]);
2304 
2305 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2306 }
2307