xref: /openbmc/linux/kernel/events/uprobes.c (revision d2168146)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>		/* anon_vma_prepare */
32 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
33 #include <linux/swap.h>		/* try_to_free_swap */
34 #include <linux/ptrace.h>	/* user_enable_single_step */
35 #include <linux/kdebug.h>	/* notifier mechanism */
36 #include "../../mm/internal.h"	/* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40 
41 #include <linux/uprobes.h>
42 
43 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
45 
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
52 
53 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
54 
55 #define UPROBES_HASH_SZ	13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59 
60 static struct percpu_rw_semaphore dup_mmap_sem;
61 
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN	0
64 
65 struct uprobe {
66 	struct rb_node		rb_node;	/* node in the rb tree */
67 	atomic_t		ref;
68 	struct rw_semaphore	register_rwsem;
69 	struct rw_semaphore	consumer_rwsem;
70 	struct list_head	pending_list;
71 	struct uprobe_consumer	*consumers;
72 	struct inode		*inode;		/* Also hold a ref to inode */
73 	loff_t			offset;
74 	unsigned long		flags;
75 
76 	/*
77 	 * The generic code assumes that it has two members of unknown type
78 	 * owned by the arch-specific code:
79 	 *
80 	 * 	insn -	copy_insn() saves the original instruction here for
81 	 *		arch_uprobe_analyze_insn().
82 	 *
83 	 *	ixol -	potentially modified instruction to execute out of
84 	 *		line, copied to xol_area by xol_get_insn_slot().
85 	 */
86 	struct arch_uprobe	arch;
87 };
88 
89 struct return_instance {
90 	struct uprobe		*uprobe;
91 	unsigned long		func;
92 	unsigned long		orig_ret_vaddr; /* original return address */
93 	bool			chained;	/* true, if instance is nested */
94 
95 	struct return_instance	*next;		/* keep as stack */
96 };
97 
98 /*
99  * Execute out of line area: anonymous executable mapping installed
100  * by the probed task to execute the copy of the original instruction
101  * mangled by set_swbp().
102  *
103  * On a breakpoint hit, thread contests for a slot.  It frees the
104  * slot after singlestep. Currently a fixed number of slots are
105  * allocated.
106  */
107 struct xol_area {
108 	wait_queue_head_t 	wq;		/* if all slots are busy */
109 	atomic_t 		slot_count;	/* number of in-use slots */
110 	unsigned long 		*bitmap;	/* 0 = free slot */
111 	struct page 		*page;
112 
113 	/*
114 	 * We keep the vma's vm_start rather than a pointer to the vma
115 	 * itself.  The probed process or a naughty kernel module could make
116 	 * the vma go away, and we must handle that reasonably gracefully.
117 	 */
118 	unsigned long 		vaddr;		/* Page(s) of instruction slots */
119 };
120 
121 /*
122  * valid_vma: Verify if the specified vma is an executable vma
123  * Relax restrictions while unregistering: vm_flags might have
124  * changed after breakpoint was inserted.
125  *	- is_register: indicates if we are in register context.
126  *	- Return 1 if the specified virtual address is in an
127  *	  executable vma.
128  */
129 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
130 {
131 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
132 
133 	if (is_register)
134 		flags |= VM_WRITE;
135 
136 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
137 }
138 
139 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
140 {
141 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
142 }
143 
144 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
145 {
146 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
147 }
148 
149 /**
150  * __replace_page - replace page in vma by new page.
151  * based on replace_page in mm/ksm.c
152  *
153  * @vma:      vma that holds the pte pointing to page
154  * @addr:     address the old @page is mapped at
155  * @page:     the cowed page we are replacing by kpage
156  * @kpage:    the modified page we replace page by
157  *
158  * Returns 0 on success, -EFAULT on failure.
159  */
160 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
161 				struct page *page, struct page *kpage)
162 {
163 	struct mm_struct *mm = vma->vm_mm;
164 	spinlock_t *ptl;
165 	pte_t *ptep;
166 	int err;
167 	/* For mmu_notifiers */
168 	const unsigned long mmun_start = addr;
169 	const unsigned long mmun_end   = addr + PAGE_SIZE;
170 
171 	/* For try_to_free_swap() and munlock_vma_page() below */
172 	lock_page(page);
173 
174 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
175 	err = -EAGAIN;
176 	ptep = page_check_address(page, mm, addr, &ptl, 0);
177 	if (!ptep)
178 		goto unlock;
179 
180 	get_page(kpage);
181 	page_add_new_anon_rmap(kpage, vma, addr);
182 
183 	if (!PageAnon(page)) {
184 		dec_mm_counter(mm, MM_FILEPAGES);
185 		inc_mm_counter(mm, MM_ANONPAGES);
186 	}
187 
188 	flush_cache_page(vma, addr, pte_pfn(*ptep));
189 	ptep_clear_flush(vma, addr, ptep);
190 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
191 
192 	page_remove_rmap(page);
193 	if (!page_mapped(page))
194 		try_to_free_swap(page);
195 	pte_unmap_unlock(ptep, ptl);
196 
197 	if (vma->vm_flags & VM_LOCKED)
198 		munlock_vma_page(page);
199 	put_page(page);
200 
201 	err = 0;
202  unlock:
203 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
204 	unlock_page(page);
205 	return err;
206 }
207 
208 /**
209  * is_swbp_insn - check if instruction is breakpoint instruction.
210  * @insn: instruction to be checked.
211  * Default implementation of is_swbp_insn
212  * Returns true if @insn is a breakpoint instruction.
213  */
214 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
215 {
216 	return *insn == UPROBE_SWBP_INSN;
217 }
218 
219 /**
220  * is_trap_insn - check if instruction is breakpoint instruction.
221  * @insn: instruction to be checked.
222  * Default implementation of is_trap_insn
223  * Returns true if @insn is a breakpoint instruction.
224  *
225  * This function is needed for the case where an architecture has multiple
226  * trap instructions (like powerpc).
227  */
228 bool __weak is_trap_insn(uprobe_opcode_t *insn)
229 {
230 	return is_swbp_insn(insn);
231 }
232 
233 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
234 {
235 	void *kaddr = kmap_atomic(page);
236 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
237 	kunmap_atomic(kaddr);
238 }
239 
240 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
241 {
242 	void *kaddr = kmap_atomic(page);
243 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
244 	kunmap_atomic(kaddr);
245 }
246 
247 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
248 {
249 	uprobe_opcode_t old_opcode;
250 	bool is_swbp;
251 
252 	/*
253 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
254 	 * We do not check if it is any other 'trap variant' which could
255 	 * be conditional trap instruction such as the one powerpc supports.
256 	 *
257 	 * The logic is that we do not care if the underlying instruction
258 	 * is a trap variant; uprobes always wins over any other (gdb)
259 	 * breakpoint.
260 	 */
261 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
262 	is_swbp = is_swbp_insn(&old_opcode);
263 
264 	if (is_swbp_insn(new_opcode)) {
265 		if (is_swbp)		/* register: already installed? */
266 			return 0;
267 	} else {
268 		if (!is_swbp)		/* unregister: was it changed by us? */
269 			return 0;
270 	}
271 
272 	return 1;
273 }
274 
275 /*
276  * NOTE:
277  * Expect the breakpoint instruction to be the smallest size instruction for
278  * the architecture. If an arch has variable length instruction and the
279  * breakpoint instruction is not of the smallest length instruction
280  * supported by that architecture then we need to modify is_trap_at_addr and
281  * uprobe_write_opcode accordingly. This would never be a problem for archs
282  * that have fixed length instructions.
283  *
284  * uprobe_write_opcode - write the opcode at a given virtual address.
285  * @mm: the probed process address space.
286  * @vaddr: the virtual address to store the opcode.
287  * @opcode: opcode to be written at @vaddr.
288  *
289  * Called with mm->mmap_sem held for write.
290  * Return 0 (success) or a negative errno.
291  */
292 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
293 			uprobe_opcode_t opcode)
294 {
295 	struct page *old_page, *new_page;
296 	struct vm_area_struct *vma;
297 	int ret;
298 
299 retry:
300 	/* Read the page with vaddr into memory */
301 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
302 	if (ret <= 0)
303 		return ret;
304 
305 	ret = verify_opcode(old_page, vaddr, &opcode);
306 	if (ret <= 0)
307 		goto put_old;
308 
309 	ret = anon_vma_prepare(vma);
310 	if (ret)
311 		goto put_old;
312 
313 	ret = -ENOMEM;
314 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
315 	if (!new_page)
316 		goto put_old;
317 
318 	if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
319 		goto put_new;
320 
321 	__SetPageUptodate(new_page);
322 	copy_highpage(new_page, old_page);
323 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
324 
325 	ret = __replace_page(vma, vaddr, old_page, new_page);
326 	if (ret)
327 		mem_cgroup_uncharge_page(new_page);
328 
329 put_new:
330 	page_cache_release(new_page);
331 put_old:
332 	put_page(old_page);
333 
334 	if (unlikely(ret == -EAGAIN))
335 		goto retry;
336 	return ret;
337 }
338 
339 /**
340  * set_swbp - store breakpoint at a given address.
341  * @auprobe: arch specific probepoint information.
342  * @mm: the probed process address space.
343  * @vaddr: the virtual address to insert the opcode.
344  *
345  * For mm @mm, store the breakpoint instruction at @vaddr.
346  * Return 0 (success) or a negative errno.
347  */
348 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
349 {
350 	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
351 }
352 
353 /**
354  * set_orig_insn - Restore the original instruction.
355  * @mm: the probed process address space.
356  * @auprobe: arch specific probepoint information.
357  * @vaddr: the virtual address to insert the opcode.
358  *
359  * For mm @mm, restore the original opcode (opcode) at @vaddr.
360  * Return 0 (success) or a negative errno.
361  */
362 int __weak
363 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
364 {
365 	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
366 }
367 
368 static int match_uprobe(struct uprobe *l, struct uprobe *r)
369 {
370 	if (l->inode < r->inode)
371 		return -1;
372 
373 	if (l->inode > r->inode)
374 		return 1;
375 
376 	if (l->offset < r->offset)
377 		return -1;
378 
379 	if (l->offset > r->offset)
380 		return 1;
381 
382 	return 0;
383 }
384 
385 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
386 {
387 	struct uprobe u = { .inode = inode, .offset = offset };
388 	struct rb_node *n = uprobes_tree.rb_node;
389 	struct uprobe *uprobe;
390 	int match;
391 
392 	while (n) {
393 		uprobe = rb_entry(n, struct uprobe, rb_node);
394 		match = match_uprobe(&u, uprobe);
395 		if (!match) {
396 			atomic_inc(&uprobe->ref);
397 			return uprobe;
398 		}
399 
400 		if (match < 0)
401 			n = n->rb_left;
402 		else
403 			n = n->rb_right;
404 	}
405 	return NULL;
406 }
407 
408 /*
409  * Find a uprobe corresponding to a given inode:offset
410  * Acquires uprobes_treelock
411  */
412 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
413 {
414 	struct uprobe *uprobe;
415 
416 	spin_lock(&uprobes_treelock);
417 	uprobe = __find_uprobe(inode, offset);
418 	spin_unlock(&uprobes_treelock);
419 
420 	return uprobe;
421 }
422 
423 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
424 {
425 	struct rb_node **p = &uprobes_tree.rb_node;
426 	struct rb_node *parent = NULL;
427 	struct uprobe *u;
428 	int match;
429 
430 	while (*p) {
431 		parent = *p;
432 		u = rb_entry(parent, struct uprobe, rb_node);
433 		match = match_uprobe(uprobe, u);
434 		if (!match) {
435 			atomic_inc(&u->ref);
436 			return u;
437 		}
438 
439 		if (match < 0)
440 			p = &parent->rb_left;
441 		else
442 			p = &parent->rb_right;
443 
444 	}
445 
446 	u = NULL;
447 	rb_link_node(&uprobe->rb_node, parent, p);
448 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
449 	/* get access + creation ref */
450 	atomic_set(&uprobe->ref, 2);
451 
452 	return u;
453 }
454 
455 /*
456  * Acquire uprobes_treelock.
457  * Matching uprobe already exists in rbtree;
458  *	increment (access refcount) and return the matching uprobe.
459  *
460  * No matching uprobe; insert the uprobe in rb_tree;
461  *	get a double refcount (access + creation) and return NULL.
462  */
463 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
464 {
465 	struct uprobe *u;
466 
467 	spin_lock(&uprobes_treelock);
468 	u = __insert_uprobe(uprobe);
469 	spin_unlock(&uprobes_treelock);
470 
471 	return u;
472 }
473 
474 static void put_uprobe(struct uprobe *uprobe)
475 {
476 	if (atomic_dec_and_test(&uprobe->ref))
477 		kfree(uprobe);
478 }
479 
480 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
481 {
482 	struct uprobe *uprobe, *cur_uprobe;
483 
484 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
485 	if (!uprobe)
486 		return NULL;
487 
488 	uprobe->inode = igrab(inode);
489 	uprobe->offset = offset;
490 	init_rwsem(&uprobe->register_rwsem);
491 	init_rwsem(&uprobe->consumer_rwsem);
492 
493 	/* add to uprobes_tree, sorted on inode:offset */
494 	cur_uprobe = insert_uprobe(uprobe);
495 	/* a uprobe exists for this inode:offset combination */
496 	if (cur_uprobe) {
497 		kfree(uprobe);
498 		uprobe = cur_uprobe;
499 		iput(inode);
500 	}
501 
502 	return uprobe;
503 }
504 
505 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
506 {
507 	down_write(&uprobe->consumer_rwsem);
508 	uc->next = uprobe->consumers;
509 	uprobe->consumers = uc;
510 	up_write(&uprobe->consumer_rwsem);
511 }
512 
513 /*
514  * For uprobe @uprobe, delete the consumer @uc.
515  * Return true if the @uc is deleted successfully
516  * or return false.
517  */
518 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
519 {
520 	struct uprobe_consumer **con;
521 	bool ret = false;
522 
523 	down_write(&uprobe->consumer_rwsem);
524 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
525 		if (*con == uc) {
526 			*con = uc->next;
527 			ret = true;
528 			break;
529 		}
530 	}
531 	up_write(&uprobe->consumer_rwsem);
532 
533 	return ret;
534 }
535 
536 static int __copy_insn(struct address_space *mapping, struct file *filp,
537 			void *insn, int nbytes, loff_t offset)
538 {
539 	struct page *page;
540 	/*
541 	 * Ensure that the page that has the original instruction is populated
542 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
543 	 * see uprobe_register().
544 	 */
545 	if (mapping->a_ops->readpage)
546 		page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
547 	else
548 		page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
549 	if (IS_ERR(page))
550 		return PTR_ERR(page);
551 
552 	copy_from_page(page, offset, insn, nbytes);
553 	page_cache_release(page);
554 
555 	return 0;
556 }
557 
558 static int copy_insn(struct uprobe *uprobe, struct file *filp)
559 {
560 	struct address_space *mapping = uprobe->inode->i_mapping;
561 	loff_t offs = uprobe->offset;
562 	void *insn = &uprobe->arch.insn;
563 	int size = sizeof(uprobe->arch.insn);
564 	int len, err = -EIO;
565 
566 	/* Copy only available bytes, -EIO if nothing was read */
567 	do {
568 		if (offs >= i_size_read(uprobe->inode))
569 			break;
570 
571 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
572 		err = __copy_insn(mapping, filp, insn, len, offs);
573 		if (err)
574 			break;
575 
576 		insn += len;
577 		offs += len;
578 		size -= len;
579 	} while (size);
580 
581 	return err;
582 }
583 
584 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
585 				struct mm_struct *mm, unsigned long vaddr)
586 {
587 	int ret = 0;
588 
589 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
590 		return ret;
591 
592 	/* TODO: move this into _register, until then we abuse this sem. */
593 	down_write(&uprobe->consumer_rwsem);
594 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
595 		goto out;
596 
597 	ret = copy_insn(uprobe, file);
598 	if (ret)
599 		goto out;
600 
601 	ret = -ENOTSUPP;
602 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
603 		goto out;
604 
605 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
606 	if (ret)
607 		goto out;
608 
609 	/* uprobe_write_opcode() assumes we don't cross page boundary */
610 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
611 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
612 
613 	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
614 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
615 
616  out:
617 	up_write(&uprobe->consumer_rwsem);
618 
619 	return ret;
620 }
621 
622 static inline bool consumer_filter(struct uprobe_consumer *uc,
623 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
624 {
625 	return !uc->filter || uc->filter(uc, ctx, mm);
626 }
627 
628 static bool filter_chain(struct uprobe *uprobe,
629 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
630 {
631 	struct uprobe_consumer *uc;
632 	bool ret = false;
633 
634 	down_read(&uprobe->consumer_rwsem);
635 	for (uc = uprobe->consumers; uc; uc = uc->next) {
636 		ret = consumer_filter(uc, ctx, mm);
637 		if (ret)
638 			break;
639 	}
640 	up_read(&uprobe->consumer_rwsem);
641 
642 	return ret;
643 }
644 
645 static int
646 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
647 			struct vm_area_struct *vma, unsigned long vaddr)
648 {
649 	bool first_uprobe;
650 	int ret;
651 
652 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
653 	if (ret)
654 		return ret;
655 
656 	/*
657 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
658 	 * the task can hit this breakpoint right after __replace_page().
659 	 */
660 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
661 	if (first_uprobe)
662 		set_bit(MMF_HAS_UPROBES, &mm->flags);
663 
664 	ret = set_swbp(&uprobe->arch, mm, vaddr);
665 	if (!ret)
666 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
667 	else if (first_uprobe)
668 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
669 
670 	return ret;
671 }
672 
673 static int
674 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
675 {
676 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
677 	return set_orig_insn(&uprobe->arch, mm, vaddr);
678 }
679 
680 static inline bool uprobe_is_active(struct uprobe *uprobe)
681 {
682 	return !RB_EMPTY_NODE(&uprobe->rb_node);
683 }
684 /*
685  * There could be threads that have already hit the breakpoint. They
686  * will recheck the current insn and restart if find_uprobe() fails.
687  * See find_active_uprobe().
688  */
689 static void delete_uprobe(struct uprobe *uprobe)
690 {
691 	if (WARN_ON(!uprobe_is_active(uprobe)))
692 		return;
693 
694 	spin_lock(&uprobes_treelock);
695 	rb_erase(&uprobe->rb_node, &uprobes_tree);
696 	spin_unlock(&uprobes_treelock);
697 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
698 	iput(uprobe->inode);
699 	put_uprobe(uprobe);
700 }
701 
702 struct map_info {
703 	struct map_info *next;
704 	struct mm_struct *mm;
705 	unsigned long vaddr;
706 };
707 
708 static inline struct map_info *free_map_info(struct map_info *info)
709 {
710 	struct map_info *next = info->next;
711 	kfree(info);
712 	return next;
713 }
714 
715 static struct map_info *
716 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
717 {
718 	unsigned long pgoff = offset >> PAGE_SHIFT;
719 	struct vm_area_struct *vma;
720 	struct map_info *curr = NULL;
721 	struct map_info *prev = NULL;
722 	struct map_info *info;
723 	int more = 0;
724 
725  again:
726 	mutex_lock(&mapping->i_mmap_mutex);
727 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
728 		if (!valid_vma(vma, is_register))
729 			continue;
730 
731 		if (!prev && !more) {
732 			/*
733 			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
734 			 * reclaim. This is optimistic, no harm done if it fails.
735 			 */
736 			prev = kmalloc(sizeof(struct map_info),
737 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
738 			if (prev)
739 				prev->next = NULL;
740 		}
741 		if (!prev) {
742 			more++;
743 			continue;
744 		}
745 
746 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
747 			continue;
748 
749 		info = prev;
750 		prev = prev->next;
751 		info->next = curr;
752 		curr = info;
753 
754 		info->mm = vma->vm_mm;
755 		info->vaddr = offset_to_vaddr(vma, offset);
756 	}
757 	mutex_unlock(&mapping->i_mmap_mutex);
758 
759 	if (!more)
760 		goto out;
761 
762 	prev = curr;
763 	while (curr) {
764 		mmput(curr->mm);
765 		curr = curr->next;
766 	}
767 
768 	do {
769 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
770 		if (!info) {
771 			curr = ERR_PTR(-ENOMEM);
772 			goto out;
773 		}
774 		info->next = prev;
775 		prev = info;
776 	} while (--more);
777 
778 	goto again;
779  out:
780 	while (prev)
781 		prev = free_map_info(prev);
782 	return curr;
783 }
784 
785 static int
786 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
787 {
788 	bool is_register = !!new;
789 	struct map_info *info;
790 	int err = 0;
791 
792 	percpu_down_write(&dup_mmap_sem);
793 	info = build_map_info(uprobe->inode->i_mapping,
794 					uprobe->offset, is_register);
795 	if (IS_ERR(info)) {
796 		err = PTR_ERR(info);
797 		goto out;
798 	}
799 
800 	while (info) {
801 		struct mm_struct *mm = info->mm;
802 		struct vm_area_struct *vma;
803 
804 		if (err && is_register)
805 			goto free;
806 
807 		down_write(&mm->mmap_sem);
808 		vma = find_vma(mm, info->vaddr);
809 		if (!vma || !valid_vma(vma, is_register) ||
810 		    file_inode(vma->vm_file) != uprobe->inode)
811 			goto unlock;
812 
813 		if (vma->vm_start > info->vaddr ||
814 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
815 			goto unlock;
816 
817 		if (is_register) {
818 			/* consult only the "caller", new consumer. */
819 			if (consumer_filter(new,
820 					UPROBE_FILTER_REGISTER, mm))
821 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
822 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
823 			if (!filter_chain(uprobe,
824 					UPROBE_FILTER_UNREGISTER, mm))
825 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
826 		}
827 
828  unlock:
829 		up_write(&mm->mmap_sem);
830  free:
831 		mmput(mm);
832 		info = free_map_info(info);
833 	}
834  out:
835 	percpu_up_write(&dup_mmap_sem);
836 	return err;
837 }
838 
839 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
840 {
841 	consumer_add(uprobe, uc);
842 	return register_for_each_vma(uprobe, uc);
843 }
844 
845 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
846 {
847 	int err;
848 
849 	if (WARN_ON(!consumer_del(uprobe, uc)))
850 		return;
851 
852 	err = register_for_each_vma(uprobe, NULL);
853 	/* TODO : cant unregister? schedule a worker thread */
854 	if (!uprobe->consumers && !err)
855 		delete_uprobe(uprobe);
856 }
857 
858 /*
859  * uprobe_register - register a probe
860  * @inode: the file in which the probe has to be placed.
861  * @offset: offset from the start of the file.
862  * @uc: information on howto handle the probe..
863  *
864  * Apart from the access refcount, uprobe_register() takes a creation
865  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
866  * inserted into the rbtree (i.e first consumer for a @inode:@offset
867  * tuple).  Creation refcount stops uprobe_unregister from freeing the
868  * @uprobe even before the register operation is complete. Creation
869  * refcount is released when the last @uc for the @uprobe
870  * unregisters.
871  *
872  * Return errno if it cannot successully install probes
873  * else return 0 (success)
874  */
875 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
876 {
877 	struct uprobe *uprobe;
878 	int ret;
879 
880 	/* Uprobe must have at least one set consumer */
881 	if (!uc->handler && !uc->ret_handler)
882 		return -EINVAL;
883 
884 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
885 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
886 		return -EIO;
887 	/* Racy, just to catch the obvious mistakes */
888 	if (offset > i_size_read(inode))
889 		return -EINVAL;
890 
891  retry:
892 	uprobe = alloc_uprobe(inode, offset);
893 	if (!uprobe)
894 		return -ENOMEM;
895 	/*
896 	 * We can race with uprobe_unregister()->delete_uprobe().
897 	 * Check uprobe_is_active() and retry if it is false.
898 	 */
899 	down_write(&uprobe->register_rwsem);
900 	ret = -EAGAIN;
901 	if (likely(uprobe_is_active(uprobe))) {
902 		ret = __uprobe_register(uprobe, uc);
903 		if (ret)
904 			__uprobe_unregister(uprobe, uc);
905 	}
906 	up_write(&uprobe->register_rwsem);
907 	put_uprobe(uprobe);
908 
909 	if (unlikely(ret == -EAGAIN))
910 		goto retry;
911 	return ret;
912 }
913 EXPORT_SYMBOL_GPL(uprobe_register);
914 
915 /*
916  * uprobe_apply - unregister a already registered probe.
917  * @inode: the file in which the probe has to be removed.
918  * @offset: offset from the start of the file.
919  * @uc: consumer which wants to add more or remove some breakpoints
920  * @add: add or remove the breakpoints
921  */
922 int uprobe_apply(struct inode *inode, loff_t offset,
923 			struct uprobe_consumer *uc, bool add)
924 {
925 	struct uprobe *uprobe;
926 	struct uprobe_consumer *con;
927 	int ret = -ENOENT;
928 
929 	uprobe = find_uprobe(inode, offset);
930 	if (WARN_ON(!uprobe))
931 		return ret;
932 
933 	down_write(&uprobe->register_rwsem);
934 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
935 		;
936 	if (con)
937 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
938 	up_write(&uprobe->register_rwsem);
939 	put_uprobe(uprobe);
940 
941 	return ret;
942 }
943 
944 /*
945  * uprobe_unregister - unregister a already registered probe.
946  * @inode: the file in which the probe has to be removed.
947  * @offset: offset from the start of the file.
948  * @uc: identify which probe if multiple probes are colocated.
949  */
950 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
951 {
952 	struct uprobe *uprobe;
953 
954 	uprobe = find_uprobe(inode, offset);
955 	if (WARN_ON(!uprobe))
956 		return;
957 
958 	down_write(&uprobe->register_rwsem);
959 	__uprobe_unregister(uprobe, uc);
960 	up_write(&uprobe->register_rwsem);
961 	put_uprobe(uprobe);
962 }
963 EXPORT_SYMBOL_GPL(uprobe_unregister);
964 
965 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
966 {
967 	struct vm_area_struct *vma;
968 	int err = 0;
969 
970 	down_read(&mm->mmap_sem);
971 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
972 		unsigned long vaddr;
973 		loff_t offset;
974 
975 		if (!valid_vma(vma, false) ||
976 		    file_inode(vma->vm_file) != uprobe->inode)
977 			continue;
978 
979 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
980 		if (uprobe->offset <  offset ||
981 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
982 			continue;
983 
984 		vaddr = offset_to_vaddr(vma, uprobe->offset);
985 		err |= remove_breakpoint(uprobe, mm, vaddr);
986 	}
987 	up_read(&mm->mmap_sem);
988 
989 	return err;
990 }
991 
992 static struct rb_node *
993 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
994 {
995 	struct rb_node *n = uprobes_tree.rb_node;
996 
997 	while (n) {
998 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
999 
1000 		if (inode < u->inode) {
1001 			n = n->rb_left;
1002 		} else if (inode > u->inode) {
1003 			n = n->rb_right;
1004 		} else {
1005 			if (max < u->offset)
1006 				n = n->rb_left;
1007 			else if (min > u->offset)
1008 				n = n->rb_right;
1009 			else
1010 				break;
1011 		}
1012 	}
1013 
1014 	return n;
1015 }
1016 
1017 /*
1018  * For a given range in vma, build a list of probes that need to be inserted.
1019  */
1020 static void build_probe_list(struct inode *inode,
1021 				struct vm_area_struct *vma,
1022 				unsigned long start, unsigned long end,
1023 				struct list_head *head)
1024 {
1025 	loff_t min, max;
1026 	struct rb_node *n, *t;
1027 	struct uprobe *u;
1028 
1029 	INIT_LIST_HEAD(head);
1030 	min = vaddr_to_offset(vma, start);
1031 	max = min + (end - start) - 1;
1032 
1033 	spin_lock(&uprobes_treelock);
1034 	n = find_node_in_range(inode, min, max);
1035 	if (n) {
1036 		for (t = n; t; t = rb_prev(t)) {
1037 			u = rb_entry(t, struct uprobe, rb_node);
1038 			if (u->inode != inode || u->offset < min)
1039 				break;
1040 			list_add(&u->pending_list, head);
1041 			atomic_inc(&u->ref);
1042 		}
1043 		for (t = n; (t = rb_next(t)); ) {
1044 			u = rb_entry(t, struct uprobe, rb_node);
1045 			if (u->inode != inode || u->offset > max)
1046 				break;
1047 			list_add(&u->pending_list, head);
1048 			atomic_inc(&u->ref);
1049 		}
1050 	}
1051 	spin_unlock(&uprobes_treelock);
1052 }
1053 
1054 /*
1055  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1056  *
1057  * Currently we ignore all errors and always return 0, the callers
1058  * can't handle the failure anyway.
1059  */
1060 int uprobe_mmap(struct vm_area_struct *vma)
1061 {
1062 	struct list_head tmp_list;
1063 	struct uprobe *uprobe, *u;
1064 	struct inode *inode;
1065 
1066 	if (no_uprobe_events() || !valid_vma(vma, true))
1067 		return 0;
1068 
1069 	inode = file_inode(vma->vm_file);
1070 	if (!inode)
1071 		return 0;
1072 
1073 	mutex_lock(uprobes_mmap_hash(inode));
1074 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1075 	/*
1076 	 * We can race with uprobe_unregister(), this uprobe can be already
1077 	 * removed. But in this case filter_chain() must return false, all
1078 	 * consumers have gone away.
1079 	 */
1080 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1081 		if (!fatal_signal_pending(current) &&
1082 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1083 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1084 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1085 		}
1086 		put_uprobe(uprobe);
1087 	}
1088 	mutex_unlock(uprobes_mmap_hash(inode));
1089 
1090 	return 0;
1091 }
1092 
1093 static bool
1094 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1095 {
1096 	loff_t min, max;
1097 	struct inode *inode;
1098 	struct rb_node *n;
1099 
1100 	inode = file_inode(vma->vm_file);
1101 
1102 	min = vaddr_to_offset(vma, start);
1103 	max = min + (end - start) - 1;
1104 
1105 	spin_lock(&uprobes_treelock);
1106 	n = find_node_in_range(inode, min, max);
1107 	spin_unlock(&uprobes_treelock);
1108 
1109 	return !!n;
1110 }
1111 
1112 /*
1113  * Called in context of a munmap of a vma.
1114  */
1115 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1116 {
1117 	if (no_uprobe_events() || !valid_vma(vma, false))
1118 		return;
1119 
1120 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1121 		return;
1122 
1123 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1124 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1125 		return;
1126 
1127 	if (vma_has_uprobes(vma, start, end))
1128 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1129 }
1130 
1131 /* Slot allocation for XOL */
1132 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1133 {
1134 	int ret = -EALREADY;
1135 
1136 	down_write(&mm->mmap_sem);
1137 	if (mm->uprobes_state.xol_area)
1138 		goto fail;
1139 
1140 	if (!area->vaddr) {
1141 		/* Try to map as high as possible, this is only a hint. */
1142 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1143 						PAGE_SIZE, 0, 0);
1144 		if (area->vaddr & ~PAGE_MASK) {
1145 			ret = area->vaddr;
1146 			goto fail;
1147 		}
1148 	}
1149 
1150 	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1151 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1152 	if (ret)
1153 		goto fail;
1154 
1155 	smp_wmb();	/* pairs with get_xol_area() */
1156 	mm->uprobes_state.xol_area = area;
1157  fail:
1158 	up_write(&mm->mmap_sem);
1159 
1160 	return ret;
1161 }
1162 
1163 static struct xol_area *__create_xol_area(unsigned long vaddr)
1164 {
1165 	struct mm_struct *mm = current->mm;
1166 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1167 	struct xol_area *area;
1168 
1169 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1170 	if (unlikely(!area))
1171 		goto out;
1172 
1173 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1174 	if (!area->bitmap)
1175 		goto free_area;
1176 
1177 	area->page = alloc_page(GFP_HIGHUSER);
1178 	if (!area->page)
1179 		goto free_bitmap;
1180 
1181 	area->vaddr = vaddr;
1182 	init_waitqueue_head(&area->wq);
1183 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1184 	set_bit(0, area->bitmap);
1185 	atomic_set(&area->slot_count, 1);
1186 	copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1187 
1188 	if (!xol_add_vma(mm, area))
1189 		return area;
1190 
1191 	__free_page(area->page);
1192  free_bitmap:
1193 	kfree(area->bitmap);
1194  free_area:
1195 	kfree(area);
1196  out:
1197 	return NULL;
1198 }
1199 
1200 /*
1201  * get_xol_area - Allocate process's xol_area if necessary.
1202  * This area will be used for storing instructions for execution out of line.
1203  *
1204  * Returns the allocated area or NULL.
1205  */
1206 static struct xol_area *get_xol_area(void)
1207 {
1208 	struct mm_struct *mm = current->mm;
1209 	struct xol_area *area;
1210 
1211 	if (!mm->uprobes_state.xol_area)
1212 		__create_xol_area(0);
1213 
1214 	area = mm->uprobes_state.xol_area;
1215 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1216 	return area;
1217 }
1218 
1219 /*
1220  * uprobe_clear_state - Free the area allocated for slots.
1221  */
1222 void uprobe_clear_state(struct mm_struct *mm)
1223 {
1224 	struct xol_area *area = mm->uprobes_state.xol_area;
1225 
1226 	if (!area)
1227 		return;
1228 
1229 	put_page(area->page);
1230 	kfree(area->bitmap);
1231 	kfree(area);
1232 }
1233 
1234 void uprobe_start_dup_mmap(void)
1235 {
1236 	percpu_down_read(&dup_mmap_sem);
1237 }
1238 
1239 void uprobe_end_dup_mmap(void)
1240 {
1241 	percpu_up_read(&dup_mmap_sem);
1242 }
1243 
1244 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1245 {
1246 	newmm->uprobes_state.xol_area = NULL;
1247 
1248 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1249 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1250 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1251 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1252 	}
1253 }
1254 
1255 /*
1256  *  - search for a free slot.
1257  */
1258 static unsigned long xol_take_insn_slot(struct xol_area *area)
1259 {
1260 	unsigned long slot_addr;
1261 	int slot_nr;
1262 
1263 	do {
1264 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1265 		if (slot_nr < UINSNS_PER_PAGE) {
1266 			if (!test_and_set_bit(slot_nr, area->bitmap))
1267 				break;
1268 
1269 			slot_nr = UINSNS_PER_PAGE;
1270 			continue;
1271 		}
1272 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1273 	} while (slot_nr >= UINSNS_PER_PAGE);
1274 
1275 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1276 	atomic_inc(&area->slot_count);
1277 
1278 	return slot_addr;
1279 }
1280 
1281 /*
1282  * xol_get_insn_slot - allocate a slot for xol.
1283  * Returns the allocated slot address or 0.
1284  */
1285 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1286 {
1287 	struct xol_area *area;
1288 	unsigned long xol_vaddr;
1289 
1290 	area = get_xol_area();
1291 	if (!area)
1292 		return 0;
1293 
1294 	xol_vaddr = xol_take_insn_slot(area);
1295 	if (unlikely(!xol_vaddr))
1296 		return 0;
1297 
1298 	arch_uprobe_copy_ixol(area->page, xol_vaddr,
1299 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1300 
1301 	return xol_vaddr;
1302 }
1303 
1304 /*
1305  * xol_free_insn_slot - If slot was earlier allocated by
1306  * @xol_get_insn_slot(), make the slot available for
1307  * subsequent requests.
1308  */
1309 static void xol_free_insn_slot(struct task_struct *tsk)
1310 {
1311 	struct xol_area *area;
1312 	unsigned long vma_end;
1313 	unsigned long slot_addr;
1314 
1315 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1316 		return;
1317 
1318 	slot_addr = tsk->utask->xol_vaddr;
1319 	if (unlikely(!slot_addr))
1320 		return;
1321 
1322 	area = tsk->mm->uprobes_state.xol_area;
1323 	vma_end = area->vaddr + PAGE_SIZE;
1324 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1325 		unsigned long offset;
1326 		int slot_nr;
1327 
1328 		offset = slot_addr - area->vaddr;
1329 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1330 		if (slot_nr >= UINSNS_PER_PAGE)
1331 			return;
1332 
1333 		clear_bit(slot_nr, area->bitmap);
1334 		atomic_dec(&area->slot_count);
1335 		if (waitqueue_active(&area->wq))
1336 			wake_up(&area->wq);
1337 
1338 		tsk->utask->xol_vaddr = 0;
1339 	}
1340 }
1341 
1342 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1343 				  void *src, unsigned long len)
1344 {
1345 	/* Initialize the slot */
1346 	copy_to_page(page, vaddr, src, len);
1347 
1348 	/*
1349 	 * We probably need flush_icache_user_range() but it needs vma.
1350 	 * This should work on most of architectures by default. If
1351 	 * architecture needs to do something different it can define
1352 	 * its own version of the function.
1353 	 */
1354 	flush_dcache_page(page);
1355 }
1356 
1357 /**
1358  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1359  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1360  * instruction.
1361  * Return the address of the breakpoint instruction.
1362  */
1363 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1364 {
1365 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1366 }
1367 
1368 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1369 {
1370 	struct uprobe_task *utask = current->utask;
1371 
1372 	if (unlikely(utask && utask->active_uprobe))
1373 		return utask->vaddr;
1374 
1375 	return instruction_pointer(regs);
1376 }
1377 
1378 /*
1379  * Called with no locks held.
1380  * Called in context of a exiting or a exec-ing thread.
1381  */
1382 void uprobe_free_utask(struct task_struct *t)
1383 {
1384 	struct uprobe_task *utask = t->utask;
1385 	struct return_instance *ri, *tmp;
1386 
1387 	if (!utask)
1388 		return;
1389 
1390 	if (utask->active_uprobe)
1391 		put_uprobe(utask->active_uprobe);
1392 
1393 	ri = utask->return_instances;
1394 	while (ri) {
1395 		tmp = ri;
1396 		ri = ri->next;
1397 
1398 		put_uprobe(tmp->uprobe);
1399 		kfree(tmp);
1400 	}
1401 
1402 	xol_free_insn_slot(t);
1403 	kfree(utask);
1404 	t->utask = NULL;
1405 }
1406 
1407 /*
1408  * Allocate a uprobe_task object for the task if if necessary.
1409  * Called when the thread hits a breakpoint.
1410  *
1411  * Returns:
1412  * - pointer to new uprobe_task on success
1413  * - NULL otherwise
1414  */
1415 static struct uprobe_task *get_utask(void)
1416 {
1417 	if (!current->utask)
1418 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1419 	return current->utask;
1420 }
1421 
1422 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1423 {
1424 	struct uprobe_task *n_utask;
1425 	struct return_instance **p, *o, *n;
1426 
1427 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1428 	if (!n_utask)
1429 		return -ENOMEM;
1430 	t->utask = n_utask;
1431 
1432 	p = &n_utask->return_instances;
1433 	for (o = o_utask->return_instances; o; o = o->next) {
1434 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1435 		if (!n)
1436 			return -ENOMEM;
1437 
1438 		*n = *o;
1439 		atomic_inc(&n->uprobe->ref);
1440 		n->next = NULL;
1441 
1442 		*p = n;
1443 		p = &n->next;
1444 		n_utask->depth++;
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 static void uprobe_warn(struct task_struct *t, const char *msg)
1451 {
1452 	pr_warn("uprobe: %s:%d failed to %s\n",
1453 			current->comm, current->pid, msg);
1454 }
1455 
1456 static void dup_xol_work(struct callback_head *work)
1457 {
1458 	if (current->flags & PF_EXITING)
1459 		return;
1460 
1461 	if (!__create_xol_area(current->utask->dup_xol_addr))
1462 		uprobe_warn(current, "dup xol area");
1463 }
1464 
1465 /*
1466  * Called in context of a new clone/fork from copy_process.
1467  */
1468 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1469 {
1470 	struct uprobe_task *utask = current->utask;
1471 	struct mm_struct *mm = current->mm;
1472 	struct xol_area *area;
1473 
1474 	t->utask = NULL;
1475 
1476 	if (!utask || !utask->return_instances)
1477 		return;
1478 
1479 	if (mm == t->mm && !(flags & CLONE_VFORK))
1480 		return;
1481 
1482 	if (dup_utask(t, utask))
1483 		return uprobe_warn(t, "dup ret instances");
1484 
1485 	/* The task can fork() after dup_xol_work() fails */
1486 	area = mm->uprobes_state.xol_area;
1487 	if (!area)
1488 		return uprobe_warn(t, "dup xol area");
1489 
1490 	if (mm == t->mm)
1491 		return;
1492 
1493 	t->utask->dup_xol_addr = area->vaddr;
1494 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1495 	task_work_add(t, &t->utask->dup_xol_work, true);
1496 }
1497 
1498 /*
1499  * Current area->vaddr notion assume the trampoline address is always
1500  * equal area->vaddr.
1501  *
1502  * Returns -1 in case the xol_area is not allocated.
1503  */
1504 static unsigned long get_trampoline_vaddr(void)
1505 {
1506 	struct xol_area *area;
1507 	unsigned long trampoline_vaddr = -1;
1508 
1509 	area = current->mm->uprobes_state.xol_area;
1510 	smp_read_barrier_depends();
1511 	if (area)
1512 		trampoline_vaddr = area->vaddr;
1513 
1514 	return trampoline_vaddr;
1515 }
1516 
1517 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1518 {
1519 	struct return_instance *ri;
1520 	struct uprobe_task *utask;
1521 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1522 	bool chained = false;
1523 
1524 	if (!get_xol_area())
1525 		return;
1526 
1527 	utask = get_utask();
1528 	if (!utask)
1529 		return;
1530 
1531 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1532 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1533 				" nestedness limit pid/tgid=%d/%d\n",
1534 				current->pid, current->tgid);
1535 		return;
1536 	}
1537 
1538 	ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1539 	if (!ri)
1540 		goto fail;
1541 
1542 	trampoline_vaddr = get_trampoline_vaddr();
1543 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1544 	if (orig_ret_vaddr == -1)
1545 		goto fail;
1546 
1547 	/*
1548 	 * We don't want to keep trampoline address in stack, rather keep the
1549 	 * original return address of first caller thru all the consequent
1550 	 * instances. This also makes breakpoint unwrapping easier.
1551 	 */
1552 	if (orig_ret_vaddr == trampoline_vaddr) {
1553 		if (!utask->return_instances) {
1554 			/*
1555 			 * This situation is not possible. Likely we have an
1556 			 * attack from user-space.
1557 			 */
1558 			pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1559 						current->pid, current->tgid);
1560 			goto fail;
1561 		}
1562 
1563 		chained = true;
1564 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1565 	}
1566 
1567 	atomic_inc(&uprobe->ref);
1568 	ri->uprobe = uprobe;
1569 	ri->func = instruction_pointer(regs);
1570 	ri->orig_ret_vaddr = orig_ret_vaddr;
1571 	ri->chained = chained;
1572 
1573 	utask->depth++;
1574 
1575 	/* add instance to the stack */
1576 	ri->next = utask->return_instances;
1577 	utask->return_instances = ri;
1578 
1579 	return;
1580 
1581  fail:
1582 	kfree(ri);
1583 }
1584 
1585 /* Prepare to single-step probed instruction out of line. */
1586 static int
1587 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1588 {
1589 	struct uprobe_task *utask;
1590 	unsigned long xol_vaddr;
1591 	int err;
1592 
1593 	utask = get_utask();
1594 	if (!utask)
1595 		return -ENOMEM;
1596 
1597 	xol_vaddr = xol_get_insn_slot(uprobe);
1598 	if (!xol_vaddr)
1599 		return -ENOMEM;
1600 
1601 	utask->xol_vaddr = xol_vaddr;
1602 	utask->vaddr = bp_vaddr;
1603 
1604 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1605 	if (unlikely(err)) {
1606 		xol_free_insn_slot(current);
1607 		return err;
1608 	}
1609 
1610 	utask->active_uprobe = uprobe;
1611 	utask->state = UTASK_SSTEP;
1612 	return 0;
1613 }
1614 
1615 /*
1616  * If we are singlestepping, then ensure this thread is not connected to
1617  * non-fatal signals until completion of singlestep.  When xol insn itself
1618  * triggers the signal,  restart the original insn even if the task is
1619  * already SIGKILL'ed (since coredump should report the correct ip).  This
1620  * is even more important if the task has a handler for SIGSEGV/etc, The
1621  * _same_ instruction should be repeated again after return from the signal
1622  * handler, and SSTEP can never finish in this case.
1623  */
1624 bool uprobe_deny_signal(void)
1625 {
1626 	struct task_struct *t = current;
1627 	struct uprobe_task *utask = t->utask;
1628 
1629 	if (likely(!utask || !utask->active_uprobe))
1630 		return false;
1631 
1632 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1633 
1634 	if (signal_pending(t)) {
1635 		spin_lock_irq(&t->sighand->siglock);
1636 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1637 		spin_unlock_irq(&t->sighand->siglock);
1638 
1639 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1640 			utask->state = UTASK_SSTEP_TRAPPED;
1641 			set_tsk_thread_flag(t, TIF_UPROBE);
1642 			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1643 		}
1644 	}
1645 
1646 	return true;
1647 }
1648 
1649 static void mmf_recalc_uprobes(struct mm_struct *mm)
1650 {
1651 	struct vm_area_struct *vma;
1652 
1653 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1654 		if (!valid_vma(vma, false))
1655 			continue;
1656 		/*
1657 		 * This is not strictly accurate, we can race with
1658 		 * uprobe_unregister() and see the already removed
1659 		 * uprobe if delete_uprobe() was not yet called.
1660 		 * Or this uprobe can be filtered out.
1661 		 */
1662 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1663 			return;
1664 	}
1665 
1666 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1667 }
1668 
1669 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1670 {
1671 	struct page *page;
1672 	uprobe_opcode_t opcode;
1673 	int result;
1674 
1675 	pagefault_disable();
1676 	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1677 							sizeof(opcode));
1678 	pagefault_enable();
1679 
1680 	if (likely(result == 0))
1681 		goto out;
1682 
1683 	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1684 	if (result < 0)
1685 		return result;
1686 
1687 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1688 	put_page(page);
1689  out:
1690 	/* This needs to return true for any variant of the trap insn */
1691 	return is_trap_insn(&opcode);
1692 }
1693 
1694 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1695 {
1696 	struct mm_struct *mm = current->mm;
1697 	struct uprobe *uprobe = NULL;
1698 	struct vm_area_struct *vma;
1699 
1700 	down_read(&mm->mmap_sem);
1701 	vma = find_vma(mm, bp_vaddr);
1702 	if (vma && vma->vm_start <= bp_vaddr) {
1703 		if (valid_vma(vma, false)) {
1704 			struct inode *inode = file_inode(vma->vm_file);
1705 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1706 
1707 			uprobe = find_uprobe(inode, offset);
1708 		}
1709 
1710 		if (!uprobe)
1711 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1712 	} else {
1713 		*is_swbp = -EFAULT;
1714 	}
1715 
1716 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1717 		mmf_recalc_uprobes(mm);
1718 	up_read(&mm->mmap_sem);
1719 
1720 	return uprobe;
1721 }
1722 
1723 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1724 {
1725 	struct uprobe_consumer *uc;
1726 	int remove = UPROBE_HANDLER_REMOVE;
1727 	bool need_prep = false; /* prepare return uprobe, when needed */
1728 
1729 	down_read(&uprobe->register_rwsem);
1730 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1731 		int rc = 0;
1732 
1733 		if (uc->handler) {
1734 			rc = uc->handler(uc, regs);
1735 			WARN(rc & ~UPROBE_HANDLER_MASK,
1736 				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1737 		}
1738 
1739 		if (uc->ret_handler)
1740 			need_prep = true;
1741 
1742 		remove &= rc;
1743 	}
1744 
1745 	if (need_prep && !remove)
1746 		prepare_uretprobe(uprobe, regs); /* put bp at return */
1747 
1748 	if (remove && uprobe->consumers) {
1749 		WARN_ON(!uprobe_is_active(uprobe));
1750 		unapply_uprobe(uprobe, current->mm);
1751 	}
1752 	up_read(&uprobe->register_rwsem);
1753 }
1754 
1755 static void
1756 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1757 {
1758 	struct uprobe *uprobe = ri->uprobe;
1759 	struct uprobe_consumer *uc;
1760 
1761 	down_read(&uprobe->register_rwsem);
1762 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1763 		if (uc->ret_handler)
1764 			uc->ret_handler(uc, ri->func, regs);
1765 	}
1766 	up_read(&uprobe->register_rwsem);
1767 }
1768 
1769 static bool handle_trampoline(struct pt_regs *regs)
1770 {
1771 	struct uprobe_task *utask;
1772 	struct return_instance *ri, *tmp;
1773 	bool chained;
1774 
1775 	utask = current->utask;
1776 	if (!utask)
1777 		return false;
1778 
1779 	ri = utask->return_instances;
1780 	if (!ri)
1781 		return false;
1782 
1783 	/*
1784 	 * TODO: we should throw out return_instance's invalidated by
1785 	 * longjmp(), currently we assume that the probed function always
1786 	 * returns.
1787 	 */
1788 	instruction_pointer_set(regs, ri->orig_ret_vaddr);
1789 
1790 	for (;;) {
1791 		handle_uretprobe_chain(ri, regs);
1792 
1793 		chained = ri->chained;
1794 		put_uprobe(ri->uprobe);
1795 
1796 		tmp = ri;
1797 		ri = ri->next;
1798 		kfree(tmp);
1799 		utask->depth--;
1800 
1801 		if (!chained)
1802 			break;
1803 		BUG_ON(!ri);
1804 	}
1805 
1806 	utask->return_instances = ri;
1807 
1808 	return true;
1809 }
1810 
1811 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1812 {
1813 	return false;
1814 }
1815 
1816 /*
1817  * Run handler and ask thread to singlestep.
1818  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1819  */
1820 static void handle_swbp(struct pt_regs *regs)
1821 {
1822 	struct uprobe *uprobe;
1823 	unsigned long bp_vaddr;
1824 	int uninitialized_var(is_swbp);
1825 
1826 	bp_vaddr = uprobe_get_swbp_addr(regs);
1827 	if (bp_vaddr == get_trampoline_vaddr()) {
1828 		if (handle_trampoline(regs))
1829 			return;
1830 
1831 		pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1832 						current->pid, current->tgid);
1833 	}
1834 
1835 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1836 	if (!uprobe) {
1837 		if (is_swbp > 0) {
1838 			/* No matching uprobe; signal SIGTRAP. */
1839 			send_sig(SIGTRAP, current, 0);
1840 		} else {
1841 			/*
1842 			 * Either we raced with uprobe_unregister() or we can't
1843 			 * access this memory. The latter is only possible if
1844 			 * another thread plays with our ->mm. In both cases
1845 			 * we can simply restart. If this vma was unmapped we
1846 			 * can pretend this insn was not executed yet and get
1847 			 * the (correct) SIGSEGV after restart.
1848 			 */
1849 			instruction_pointer_set(regs, bp_vaddr);
1850 		}
1851 		return;
1852 	}
1853 
1854 	/* change it in advance for ->handler() and restart */
1855 	instruction_pointer_set(regs, bp_vaddr);
1856 
1857 	/*
1858 	 * TODO: move copy_insn/etc into _register and remove this hack.
1859 	 * After we hit the bp, _unregister + _register can install the
1860 	 * new and not-yet-analyzed uprobe at the same address, restart.
1861 	 */
1862 	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1863 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1864 		goto out;
1865 
1866 	/* Tracing handlers use ->utask to communicate with fetch methods */
1867 	if (!get_utask())
1868 		goto out;
1869 
1870 	if (arch_uprobe_ignore(&uprobe->arch, regs))
1871 		goto out;
1872 
1873 	handler_chain(uprobe, regs);
1874 
1875 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1876 		goto out;
1877 
1878 	if (!pre_ssout(uprobe, regs, bp_vaddr))
1879 		return;
1880 
1881 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1882 out:
1883 	put_uprobe(uprobe);
1884 }
1885 
1886 /*
1887  * Perform required fix-ups and disable singlestep.
1888  * Allow pending signals to take effect.
1889  */
1890 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1891 {
1892 	struct uprobe *uprobe;
1893 	int err = 0;
1894 
1895 	uprobe = utask->active_uprobe;
1896 	if (utask->state == UTASK_SSTEP_ACK)
1897 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1898 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1899 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1900 	else
1901 		WARN_ON_ONCE(1);
1902 
1903 	put_uprobe(uprobe);
1904 	utask->active_uprobe = NULL;
1905 	utask->state = UTASK_RUNNING;
1906 	xol_free_insn_slot(current);
1907 
1908 	spin_lock_irq(&current->sighand->siglock);
1909 	recalc_sigpending(); /* see uprobe_deny_signal() */
1910 	spin_unlock_irq(&current->sighand->siglock);
1911 
1912 	if (unlikely(err)) {
1913 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1914 		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1915 	}
1916 }
1917 
1918 /*
1919  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1920  * allows the thread to return from interrupt. After that handle_swbp()
1921  * sets utask->active_uprobe.
1922  *
1923  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1924  * and allows the thread to return from interrupt.
1925  *
1926  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1927  * uprobe_notify_resume().
1928  */
1929 void uprobe_notify_resume(struct pt_regs *regs)
1930 {
1931 	struct uprobe_task *utask;
1932 
1933 	clear_thread_flag(TIF_UPROBE);
1934 
1935 	utask = current->utask;
1936 	if (utask && utask->active_uprobe)
1937 		handle_singlestep(utask, regs);
1938 	else
1939 		handle_swbp(regs);
1940 }
1941 
1942 /*
1943  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1944  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1945  */
1946 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1947 {
1948 	if (!current->mm)
1949 		return 0;
1950 
1951 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1952 	    (!current->utask || !current->utask->return_instances))
1953 		return 0;
1954 
1955 	set_thread_flag(TIF_UPROBE);
1956 	return 1;
1957 }
1958 
1959 /*
1960  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1961  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1962  */
1963 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1964 {
1965 	struct uprobe_task *utask = current->utask;
1966 
1967 	if (!current->mm || !utask || !utask->active_uprobe)
1968 		/* task is currently not uprobed */
1969 		return 0;
1970 
1971 	utask->state = UTASK_SSTEP_ACK;
1972 	set_thread_flag(TIF_UPROBE);
1973 	return 1;
1974 }
1975 
1976 static struct notifier_block uprobe_exception_nb = {
1977 	.notifier_call		= arch_uprobe_exception_notify,
1978 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1979 };
1980 
1981 static int __init init_uprobes(void)
1982 {
1983 	int i;
1984 
1985 	for (i = 0; i < UPROBES_HASH_SZ; i++)
1986 		mutex_init(&uprobes_mmap_mutex[i]);
1987 
1988 	if (percpu_init_rwsem(&dup_mmap_sem))
1989 		return -ENOMEM;
1990 
1991 	return register_die_notifier(&uprobe_exception_nb);
1992 }
1993 __initcall(init_uprobes);
1994