1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/export.h> 31 #include <linux/rmap.h> /* anon_vma_prepare */ 32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 33 #include <linux/swap.h> /* try_to_free_swap */ 34 #include <linux/ptrace.h> /* user_enable_single_step */ 35 #include <linux/kdebug.h> /* notifier mechanism */ 36 #include "../../mm/internal.h" /* munlock_vma_page */ 37 #include <linux/percpu-rwsem.h> 38 #include <linux/task_work.h> 39 #include <linux/shmem_fs.h> 40 41 #include <linux/uprobes.h> 42 43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 45 46 static struct rb_root uprobes_tree = RB_ROOT; 47 /* 48 * allows us to skip the uprobe_mmap if there are no uprobe events active 49 * at this time. Probably a fine grained per inode count is better? 50 */ 51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 52 53 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 54 55 #define UPROBES_HASH_SZ 13 56 /* serialize uprobe->pending_list */ 57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 59 60 static struct percpu_rw_semaphore dup_mmap_sem; 61 62 /* Have a copy of original instruction */ 63 #define UPROBE_COPY_INSN 0 64 65 struct uprobe { 66 struct rb_node rb_node; /* node in the rb tree */ 67 atomic_t ref; 68 struct rw_semaphore register_rwsem; 69 struct rw_semaphore consumer_rwsem; 70 struct list_head pending_list; 71 struct uprobe_consumer *consumers; 72 struct inode *inode; /* Also hold a ref to inode */ 73 loff_t offset; 74 unsigned long flags; 75 76 /* 77 * The generic code assumes that it has two members of unknown type 78 * owned by the arch-specific code: 79 * 80 * insn - copy_insn() saves the original instruction here for 81 * arch_uprobe_analyze_insn(). 82 * 83 * ixol - potentially modified instruction to execute out of 84 * line, copied to xol_area by xol_get_insn_slot(). 85 */ 86 struct arch_uprobe arch; 87 }; 88 89 struct return_instance { 90 struct uprobe *uprobe; 91 unsigned long func; 92 unsigned long orig_ret_vaddr; /* original return address */ 93 bool chained; /* true, if instance is nested */ 94 95 struct return_instance *next; /* keep as stack */ 96 }; 97 98 /* 99 * Execute out of line area: anonymous executable mapping installed 100 * by the probed task to execute the copy of the original instruction 101 * mangled by set_swbp(). 102 * 103 * On a breakpoint hit, thread contests for a slot. It frees the 104 * slot after singlestep. Currently a fixed number of slots are 105 * allocated. 106 */ 107 struct xol_area { 108 wait_queue_head_t wq; /* if all slots are busy */ 109 atomic_t slot_count; /* number of in-use slots */ 110 unsigned long *bitmap; /* 0 = free slot */ 111 struct page *page; 112 113 /* 114 * We keep the vma's vm_start rather than a pointer to the vma 115 * itself. The probed process or a naughty kernel module could make 116 * the vma go away, and we must handle that reasonably gracefully. 117 */ 118 unsigned long vaddr; /* Page(s) of instruction slots */ 119 }; 120 121 /* 122 * valid_vma: Verify if the specified vma is an executable vma 123 * Relax restrictions while unregistering: vm_flags might have 124 * changed after breakpoint was inserted. 125 * - is_register: indicates if we are in register context. 126 * - Return 1 if the specified virtual address is in an 127 * executable vma. 128 */ 129 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 130 { 131 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 132 133 if (is_register) 134 flags |= VM_WRITE; 135 136 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 137 } 138 139 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 140 { 141 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 142 } 143 144 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 145 { 146 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 147 } 148 149 /** 150 * __replace_page - replace page in vma by new page. 151 * based on replace_page in mm/ksm.c 152 * 153 * @vma: vma that holds the pte pointing to page 154 * @addr: address the old @page is mapped at 155 * @page: the cowed page we are replacing by kpage 156 * @kpage: the modified page we replace page by 157 * 158 * Returns 0 on success, -EFAULT on failure. 159 */ 160 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 161 struct page *page, struct page *kpage) 162 { 163 struct mm_struct *mm = vma->vm_mm; 164 spinlock_t *ptl; 165 pte_t *ptep; 166 int err; 167 /* For mmu_notifiers */ 168 const unsigned long mmun_start = addr; 169 const unsigned long mmun_end = addr + PAGE_SIZE; 170 171 /* For try_to_free_swap() and munlock_vma_page() below */ 172 lock_page(page); 173 174 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 175 err = -EAGAIN; 176 ptep = page_check_address(page, mm, addr, &ptl, 0); 177 if (!ptep) 178 goto unlock; 179 180 get_page(kpage); 181 page_add_new_anon_rmap(kpage, vma, addr); 182 183 if (!PageAnon(page)) { 184 dec_mm_counter(mm, MM_FILEPAGES); 185 inc_mm_counter(mm, MM_ANONPAGES); 186 } 187 188 flush_cache_page(vma, addr, pte_pfn(*ptep)); 189 ptep_clear_flush(vma, addr, ptep); 190 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 191 192 page_remove_rmap(page); 193 if (!page_mapped(page)) 194 try_to_free_swap(page); 195 pte_unmap_unlock(ptep, ptl); 196 197 if (vma->vm_flags & VM_LOCKED) 198 munlock_vma_page(page); 199 put_page(page); 200 201 err = 0; 202 unlock: 203 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 204 unlock_page(page); 205 return err; 206 } 207 208 /** 209 * is_swbp_insn - check if instruction is breakpoint instruction. 210 * @insn: instruction to be checked. 211 * Default implementation of is_swbp_insn 212 * Returns true if @insn is a breakpoint instruction. 213 */ 214 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 215 { 216 return *insn == UPROBE_SWBP_INSN; 217 } 218 219 /** 220 * is_trap_insn - check if instruction is breakpoint instruction. 221 * @insn: instruction to be checked. 222 * Default implementation of is_trap_insn 223 * Returns true if @insn is a breakpoint instruction. 224 * 225 * This function is needed for the case where an architecture has multiple 226 * trap instructions (like powerpc). 227 */ 228 bool __weak is_trap_insn(uprobe_opcode_t *insn) 229 { 230 return is_swbp_insn(insn); 231 } 232 233 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 234 { 235 void *kaddr = kmap_atomic(page); 236 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 237 kunmap_atomic(kaddr); 238 } 239 240 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 241 { 242 void *kaddr = kmap_atomic(page); 243 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 244 kunmap_atomic(kaddr); 245 } 246 247 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 248 { 249 uprobe_opcode_t old_opcode; 250 bool is_swbp; 251 252 /* 253 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 254 * We do not check if it is any other 'trap variant' which could 255 * be conditional trap instruction such as the one powerpc supports. 256 * 257 * The logic is that we do not care if the underlying instruction 258 * is a trap variant; uprobes always wins over any other (gdb) 259 * breakpoint. 260 */ 261 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 262 is_swbp = is_swbp_insn(&old_opcode); 263 264 if (is_swbp_insn(new_opcode)) { 265 if (is_swbp) /* register: already installed? */ 266 return 0; 267 } else { 268 if (!is_swbp) /* unregister: was it changed by us? */ 269 return 0; 270 } 271 272 return 1; 273 } 274 275 /* 276 * NOTE: 277 * Expect the breakpoint instruction to be the smallest size instruction for 278 * the architecture. If an arch has variable length instruction and the 279 * breakpoint instruction is not of the smallest length instruction 280 * supported by that architecture then we need to modify is_trap_at_addr and 281 * uprobe_write_opcode accordingly. This would never be a problem for archs 282 * that have fixed length instructions. 283 * 284 * uprobe_write_opcode - write the opcode at a given virtual address. 285 * @mm: the probed process address space. 286 * @vaddr: the virtual address to store the opcode. 287 * @opcode: opcode to be written at @vaddr. 288 * 289 * Called with mm->mmap_sem held for write. 290 * Return 0 (success) or a negative errno. 291 */ 292 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, 293 uprobe_opcode_t opcode) 294 { 295 struct page *old_page, *new_page; 296 struct vm_area_struct *vma; 297 int ret; 298 299 retry: 300 /* Read the page with vaddr into memory */ 301 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma); 302 if (ret <= 0) 303 return ret; 304 305 ret = verify_opcode(old_page, vaddr, &opcode); 306 if (ret <= 0) 307 goto put_old; 308 309 ret = anon_vma_prepare(vma); 310 if (ret) 311 goto put_old; 312 313 ret = -ENOMEM; 314 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 315 if (!new_page) 316 goto put_old; 317 318 if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) 319 goto put_new; 320 321 __SetPageUptodate(new_page); 322 copy_highpage(new_page, old_page); 323 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 324 325 ret = __replace_page(vma, vaddr, old_page, new_page); 326 if (ret) 327 mem_cgroup_uncharge_page(new_page); 328 329 put_new: 330 page_cache_release(new_page); 331 put_old: 332 put_page(old_page); 333 334 if (unlikely(ret == -EAGAIN)) 335 goto retry; 336 return ret; 337 } 338 339 /** 340 * set_swbp - store breakpoint at a given address. 341 * @auprobe: arch specific probepoint information. 342 * @mm: the probed process address space. 343 * @vaddr: the virtual address to insert the opcode. 344 * 345 * For mm @mm, store the breakpoint instruction at @vaddr. 346 * Return 0 (success) or a negative errno. 347 */ 348 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 349 { 350 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN); 351 } 352 353 /** 354 * set_orig_insn - Restore the original instruction. 355 * @mm: the probed process address space. 356 * @auprobe: arch specific probepoint information. 357 * @vaddr: the virtual address to insert the opcode. 358 * 359 * For mm @mm, restore the original opcode (opcode) at @vaddr. 360 * Return 0 (success) or a negative errno. 361 */ 362 int __weak 363 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 364 { 365 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn); 366 } 367 368 static int match_uprobe(struct uprobe *l, struct uprobe *r) 369 { 370 if (l->inode < r->inode) 371 return -1; 372 373 if (l->inode > r->inode) 374 return 1; 375 376 if (l->offset < r->offset) 377 return -1; 378 379 if (l->offset > r->offset) 380 return 1; 381 382 return 0; 383 } 384 385 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 386 { 387 struct uprobe u = { .inode = inode, .offset = offset }; 388 struct rb_node *n = uprobes_tree.rb_node; 389 struct uprobe *uprobe; 390 int match; 391 392 while (n) { 393 uprobe = rb_entry(n, struct uprobe, rb_node); 394 match = match_uprobe(&u, uprobe); 395 if (!match) { 396 atomic_inc(&uprobe->ref); 397 return uprobe; 398 } 399 400 if (match < 0) 401 n = n->rb_left; 402 else 403 n = n->rb_right; 404 } 405 return NULL; 406 } 407 408 /* 409 * Find a uprobe corresponding to a given inode:offset 410 * Acquires uprobes_treelock 411 */ 412 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 413 { 414 struct uprobe *uprobe; 415 416 spin_lock(&uprobes_treelock); 417 uprobe = __find_uprobe(inode, offset); 418 spin_unlock(&uprobes_treelock); 419 420 return uprobe; 421 } 422 423 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 424 { 425 struct rb_node **p = &uprobes_tree.rb_node; 426 struct rb_node *parent = NULL; 427 struct uprobe *u; 428 int match; 429 430 while (*p) { 431 parent = *p; 432 u = rb_entry(parent, struct uprobe, rb_node); 433 match = match_uprobe(uprobe, u); 434 if (!match) { 435 atomic_inc(&u->ref); 436 return u; 437 } 438 439 if (match < 0) 440 p = &parent->rb_left; 441 else 442 p = &parent->rb_right; 443 444 } 445 446 u = NULL; 447 rb_link_node(&uprobe->rb_node, parent, p); 448 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 449 /* get access + creation ref */ 450 atomic_set(&uprobe->ref, 2); 451 452 return u; 453 } 454 455 /* 456 * Acquire uprobes_treelock. 457 * Matching uprobe already exists in rbtree; 458 * increment (access refcount) and return the matching uprobe. 459 * 460 * No matching uprobe; insert the uprobe in rb_tree; 461 * get a double refcount (access + creation) and return NULL. 462 */ 463 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 464 { 465 struct uprobe *u; 466 467 spin_lock(&uprobes_treelock); 468 u = __insert_uprobe(uprobe); 469 spin_unlock(&uprobes_treelock); 470 471 return u; 472 } 473 474 static void put_uprobe(struct uprobe *uprobe) 475 { 476 if (atomic_dec_and_test(&uprobe->ref)) 477 kfree(uprobe); 478 } 479 480 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 481 { 482 struct uprobe *uprobe, *cur_uprobe; 483 484 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 485 if (!uprobe) 486 return NULL; 487 488 uprobe->inode = igrab(inode); 489 uprobe->offset = offset; 490 init_rwsem(&uprobe->register_rwsem); 491 init_rwsem(&uprobe->consumer_rwsem); 492 493 /* add to uprobes_tree, sorted on inode:offset */ 494 cur_uprobe = insert_uprobe(uprobe); 495 /* a uprobe exists for this inode:offset combination */ 496 if (cur_uprobe) { 497 kfree(uprobe); 498 uprobe = cur_uprobe; 499 iput(inode); 500 } 501 502 return uprobe; 503 } 504 505 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 506 { 507 down_write(&uprobe->consumer_rwsem); 508 uc->next = uprobe->consumers; 509 uprobe->consumers = uc; 510 up_write(&uprobe->consumer_rwsem); 511 } 512 513 /* 514 * For uprobe @uprobe, delete the consumer @uc. 515 * Return true if the @uc is deleted successfully 516 * or return false. 517 */ 518 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 519 { 520 struct uprobe_consumer **con; 521 bool ret = false; 522 523 down_write(&uprobe->consumer_rwsem); 524 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 525 if (*con == uc) { 526 *con = uc->next; 527 ret = true; 528 break; 529 } 530 } 531 up_write(&uprobe->consumer_rwsem); 532 533 return ret; 534 } 535 536 static int __copy_insn(struct address_space *mapping, struct file *filp, 537 void *insn, int nbytes, loff_t offset) 538 { 539 struct page *page; 540 /* 541 * Ensure that the page that has the original instruction is populated 542 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 543 * see uprobe_register(). 544 */ 545 if (mapping->a_ops->readpage) 546 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp); 547 else 548 page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT); 549 if (IS_ERR(page)) 550 return PTR_ERR(page); 551 552 copy_from_page(page, offset, insn, nbytes); 553 page_cache_release(page); 554 555 return 0; 556 } 557 558 static int copy_insn(struct uprobe *uprobe, struct file *filp) 559 { 560 struct address_space *mapping = uprobe->inode->i_mapping; 561 loff_t offs = uprobe->offset; 562 void *insn = &uprobe->arch.insn; 563 int size = sizeof(uprobe->arch.insn); 564 int len, err = -EIO; 565 566 /* Copy only available bytes, -EIO if nothing was read */ 567 do { 568 if (offs >= i_size_read(uprobe->inode)) 569 break; 570 571 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 572 err = __copy_insn(mapping, filp, insn, len, offs); 573 if (err) 574 break; 575 576 insn += len; 577 offs += len; 578 size -= len; 579 } while (size); 580 581 return err; 582 } 583 584 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 585 struct mm_struct *mm, unsigned long vaddr) 586 { 587 int ret = 0; 588 589 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 590 return ret; 591 592 /* TODO: move this into _register, until then we abuse this sem. */ 593 down_write(&uprobe->consumer_rwsem); 594 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 595 goto out; 596 597 ret = copy_insn(uprobe, file); 598 if (ret) 599 goto out; 600 601 ret = -ENOTSUPP; 602 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 603 goto out; 604 605 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 606 if (ret) 607 goto out; 608 609 /* uprobe_write_opcode() assumes we don't cross page boundary */ 610 BUG_ON((uprobe->offset & ~PAGE_MASK) + 611 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 612 613 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */ 614 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 615 616 out: 617 up_write(&uprobe->consumer_rwsem); 618 619 return ret; 620 } 621 622 static inline bool consumer_filter(struct uprobe_consumer *uc, 623 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 624 { 625 return !uc->filter || uc->filter(uc, ctx, mm); 626 } 627 628 static bool filter_chain(struct uprobe *uprobe, 629 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 630 { 631 struct uprobe_consumer *uc; 632 bool ret = false; 633 634 down_read(&uprobe->consumer_rwsem); 635 for (uc = uprobe->consumers; uc; uc = uc->next) { 636 ret = consumer_filter(uc, ctx, mm); 637 if (ret) 638 break; 639 } 640 up_read(&uprobe->consumer_rwsem); 641 642 return ret; 643 } 644 645 static int 646 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 647 struct vm_area_struct *vma, unsigned long vaddr) 648 { 649 bool first_uprobe; 650 int ret; 651 652 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 653 if (ret) 654 return ret; 655 656 /* 657 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 658 * the task can hit this breakpoint right after __replace_page(). 659 */ 660 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 661 if (first_uprobe) 662 set_bit(MMF_HAS_UPROBES, &mm->flags); 663 664 ret = set_swbp(&uprobe->arch, mm, vaddr); 665 if (!ret) 666 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 667 else if (first_uprobe) 668 clear_bit(MMF_HAS_UPROBES, &mm->flags); 669 670 return ret; 671 } 672 673 static int 674 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 675 { 676 set_bit(MMF_RECALC_UPROBES, &mm->flags); 677 return set_orig_insn(&uprobe->arch, mm, vaddr); 678 } 679 680 static inline bool uprobe_is_active(struct uprobe *uprobe) 681 { 682 return !RB_EMPTY_NODE(&uprobe->rb_node); 683 } 684 /* 685 * There could be threads that have already hit the breakpoint. They 686 * will recheck the current insn and restart if find_uprobe() fails. 687 * See find_active_uprobe(). 688 */ 689 static void delete_uprobe(struct uprobe *uprobe) 690 { 691 if (WARN_ON(!uprobe_is_active(uprobe))) 692 return; 693 694 spin_lock(&uprobes_treelock); 695 rb_erase(&uprobe->rb_node, &uprobes_tree); 696 spin_unlock(&uprobes_treelock); 697 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 698 iput(uprobe->inode); 699 put_uprobe(uprobe); 700 } 701 702 struct map_info { 703 struct map_info *next; 704 struct mm_struct *mm; 705 unsigned long vaddr; 706 }; 707 708 static inline struct map_info *free_map_info(struct map_info *info) 709 { 710 struct map_info *next = info->next; 711 kfree(info); 712 return next; 713 } 714 715 static struct map_info * 716 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 717 { 718 unsigned long pgoff = offset >> PAGE_SHIFT; 719 struct vm_area_struct *vma; 720 struct map_info *curr = NULL; 721 struct map_info *prev = NULL; 722 struct map_info *info; 723 int more = 0; 724 725 again: 726 mutex_lock(&mapping->i_mmap_mutex); 727 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 728 if (!valid_vma(vma, is_register)) 729 continue; 730 731 if (!prev && !more) { 732 /* 733 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through 734 * reclaim. This is optimistic, no harm done if it fails. 735 */ 736 prev = kmalloc(sizeof(struct map_info), 737 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 738 if (prev) 739 prev->next = NULL; 740 } 741 if (!prev) { 742 more++; 743 continue; 744 } 745 746 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 747 continue; 748 749 info = prev; 750 prev = prev->next; 751 info->next = curr; 752 curr = info; 753 754 info->mm = vma->vm_mm; 755 info->vaddr = offset_to_vaddr(vma, offset); 756 } 757 mutex_unlock(&mapping->i_mmap_mutex); 758 759 if (!more) 760 goto out; 761 762 prev = curr; 763 while (curr) { 764 mmput(curr->mm); 765 curr = curr->next; 766 } 767 768 do { 769 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 770 if (!info) { 771 curr = ERR_PTR(-ENOMEM); 772 goto out; 773 } 774 info->next = prev; 775 prev = info; 776 } while (--more); 777 778 goto again; 779 out: 780 while (prev) 781 prev = free_map_info(prev); 782 return curr; 783 } 784 785 static int 786 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 787 { 788 bool is_register = !!new; 789 struct map_info *info; 790 int err = 0; 791 792 percpu_down_write(&dup_mmap_sem); 793 info = build_map_info(uprobe->inode->i_mapping, 794 uprobe->offset, is_register); 795 if (IS_ERR(info)) { 796 err = PTR_ERR(info); 797 goto out; 798 } 799 800 while (info) { 801 struct mm_struct *mm = info->mm; 802 struct vm_area_struct *vma; 803 804 if (err && is_register) 805 goto free; 806 807 down_write(&mm->mmap_sem); 808 vma = find_vma(mm, info->vaddr); 809 if (!vma || !valid_vma(vma, is_register) || 810 file_inode(vma->vm_file) != uprobe->inode) 811 goto unlock; 812 813 if (vma->vm_start > info->vaddr || 814 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 815 goto unlock; 816 817 if (is_register) { 818 /* consult only the "caller", new consumer. */ 819 if (consumer_filter(new, 820 UPROBE_FILTER_REGISTER, mm)) 821 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 822 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 823 if (!filter_chain(uprobe, 824 UPROBE_FILTER_UNREGISTER, mm)) 825 err |= remove_breakpoint(uprobe, mm, info->vaddr); 826 } 827 828 unlock: 829 up_write(&mm->mmap_sem); 830 free: 831 mmput(mm); 832 info = free_map_info(info); 833 } 834 out: 835 percpu_up_write(&dup_mmap_sem); 836 return err; 837 } 838 839 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc) 840 { 841 consumer_add(uprobe, uc); 842 return register_for_each_vma(uprobe, uc); 843 } 844 845 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 846 { 847 int err; 848 849 if (WARN_ON(!consumer_del(uprobe, uc))) 850 return; 851 852 err = register_for_each_vma(uprobe, NULL); 853 /* TODO : cant unregister? schedule a worker thread */ 854 if (!uprobe->consumers && !err) 855 delete_uprobe(uprobe); 856 } 857 858 /* 859 * uprobe_register - register a probe 860 * @inode: the file in which the probe has to be placed. 861 * @offset: offset from the start of the file. 862 * @uc: information on howto handle the probe.. 863 * 864 * Apart from the access refcount, uprobe_register() takes a creation 865 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 866 * inserted into the rbtree (i.e first consumer for a @inode:@offset 867 * tuple). Creation refcount stops uprobe_unregister from freeing the 868 * @uprobe even before the register operation is complete. Creation 869 * refcount is released when the last @uc for the @uprobe 870 * unregisters. 871 * 872 * Return errno if it cannot successully install probes 873 * else return 0 (success) 874 */ 875 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 876 { 877 struct uprobe *uprobe; 878 int ret; 879 880 /* Uprobe must have at least one set consumer */ 881 if (!uc->handler && !uc->ret_handler) 882 return -EINVAL; 883 884 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 885 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 886 return -EIO; 887 /* Racy, just to catch the obvious mistakes */ 888 if (offset > i_size_read(inode)) 889 return -EINVAL; 890 891 retry: 892 uprobe = alloc_uprobe(inode, offset); 893 if (!uprobe) 894 return -ENOMEM; 895 /* 896 * We can race with uprobe_unregister()->delete_uprobe(). 897 * Check uprobe_is_active() and retry if it is false. 898 */ 899 down_write(&uprobe->register_rwsem); 900 ret = -EAGAIN; 901 if (likely(uprobe_is_active(uprobe))) { 902 ret = __uprobe_register(uprobe, uc); 903 if (ret) 904 __uprobe_unregister(uprobe, uc); 905 } 906 up_write(&uprobe->register_rwsem); 907 put_uprobe(uprobe); 908 909 if (unlikely(ret == -EAGAIN)) 910 goto retry; 911 return ret; 912 } 913 EXPORT_SYMBOL_GPL(uprobe_register); 914 915 /* 916 * uprobe_apply - unregister a already registered probe. 917 * @inode: the file in which the probe has to be removed. 918 * @offset: offset from the start of the file. 919 * @uc: consumer which wants to add more or remove some breakpoints 920 * @add: add or remove the breakpoints 921 */ 922 int uprobe_apply(struct inode *inode, loff_t offset, 923 struct uprobe_consumer *uc, bool add) 924 { 925 struct uprobe *uprobe; 926 struct uprobe_consumer *con; 927 int ret = -ENOENT; 928 929 uprobe = find_uprobe(inode, offset); 930 if (WARN_ON(!uprobe)) 931 return ret; 932 933 down_write(&uprobe->register_rwsem); 934 for (con = uprobe->consumers; con && con != uc ; con = con->next) 935 ; 936 if (con) 937 ret = register_for_each_vma(uprobe, add ? uc : NULL); 938 up_write(&uprobe->register_rwsem); 939 put_uprobe(uprobe); 940 941 return ret; 942 } 943 944 /* 945 * uprobe_unregister - unregister a already registered probe. 946 * @inode: the file in which the probe has to be removed. 947 * @offset: offset from the start of the file. 948 * @uc: identify which probe if multiple probes are colocated. 949 */ 950 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 951 { 952 struct uprobe *uprobe; 953 954 uprobe = find_uprobe(inode, offset); 955 if (WARN_ON(!uprobe)) 956 return; 957 958 down_write(&uprobe->register_rwsem); 959 __uprobe_unregister(uprobe, uc); 960 up_write(&uprobe->register_rwsem); 961 put_uprobe(uprobe); 962 } 963 EXPORT_SYMBOL_GPL(uprobe_unregister); 964 965 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 966 { 967 struct vm_area_struct *vma; 968 int err = 0; 969 970 down_read(&mm->mmap_sem); 971 for (vma = mm->mmap; vma; vma = vma->vm_next) { 972 unsigned long vaddr; 973 loff_t offset; 974 975 if (!valid_vma(vma, false) || 976 file_inode(vma->vm_file) != uprobe->inode) 977 continue; 978 979 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 980 if (uprobe->offset < offset || 981 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 982 continue; 983 984 vaddr = offset_to_vaddr(vma, uprobe->offset); 985 err |= remove_breakpoint(uprobe, mm, vaddr); 986 } 987 up_read(&mm->mmap_sem); 988 989 return err; 990 } 991 992 static struct rb_node * 993 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 994 { 995 struct rb_node *n = uprobes_tree.rb_node; 996 997 while (n) { 998 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 999 1000 if (inode < u->inode) { 1001 n = n->rb_left; 1002 } else if (inode > u->inode) { 1003 n = n->rb_right; 1004 } else { 1005 if (max < u->offset) 1006 n = n->rb_left; 1007 else if (min > u->offset) 1008 n = n->rb_right; 1009 else 1010 break; 1011 } 1012 } 1013 1014 return n; 1015 } 1016 1017 /* 1018 * For a given range in vma, build a list of probes that need to be inserted. 1019 */ 1020 static void build_probe_list(struct inode *inode, 1021 struct vm_area_struct *vma, 1022 unsigned long start, unsigned long end, 1023 struct list_head *head) 1024 { 1025 loff_t min, max; 1026 struct rb_node *n, *t; 1027 struct uprobe *u; 1028 1029 INIT_LIST_HEAD(head); 1030 min = vaddr_to_offset(vma, start); 1031 max = min + (end - start) - 1; 1032 1033 spin_lock(&uprobes_treelock); 1034 n = find_node_in_range(inode, min, max); 1035 if (n) { 1036 for (t = n; t; t = rb_prev(t)) { 1037 u = rb_entry(t, struct uprobe, rb_node); 1038 if (u->inode != inode || u->offset < min) 1039 break; 1040 list_add(&u->pending_list, head); 1041 atomic_inc(&u->ref); 1042 } 1043 for (t = n; (t = rb_next(t)); ) { 1044 u = rb_entry(t, struct uprobe, rb_node); 1045 if (u->inode != inode || u->offset > max) 1046 break; 1047 list_add(&u->pending_list, head); 1048 atomic_inc(&u->ref); 1049 } 1050 } 1051 spin_unlock(&uprobes_treelock); 1052 } 1053 1054 /* 1055 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1056 * 1057 * Currently we ignore all errors and always return 0, the callers 1058 * can't handle the failure anyway. 1059 */ 1060 int uprobe_mmap(struct vm_area_struct *vma) 1061 { 1062 struct list_head tmp_list; 1063 struct uprobe *uprobe, *u; 1064 struct inode *inode; 1065 1066 if (no_uprobe_events() || !valid_vma(vma, true)) 1067 return 0; 1068 1069 inode = file_inode(vma->vm_file); 1070 if (!inode) 1071 return 0; 1072 1073 mutex_lock(uprobes_mmap_hash(inode)); 1074 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1075 /* 1076 * We can race with uprobe_unregister(), this uprobe can be already 1077 * removed. But in this case filter_chain() must return false, all 1078 * consumers have gone away. 1079 */ 1080 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1081 if (!fatal_signal_pending(current) && 1082 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1083 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1084 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1085 } 1086 put_uprobe(uprobe); 1087 } 1088 mutex_unlock(uprobes_mmap_hash(inode)); 1089 1090 return 0; 1091 } 1092 1093 static bool 1094 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1095 { 1096 loff_t min, max; 1097 struct inode *inode; 1098 struct rb_node *n; 1099 1100 inode = file_inode(vma->vm_file); 1101 1102 min = vaddr_to_offset(vma, start); 1103 max = min + (end - start) - 1; 1104 1105 spin_lock(&uprobes_treelock); 1106 n = find_node_in_range(inode, min, max); 1107 spin_unlock(&uprobes_treelock); 1108 1109 return !!n; 1110 } 1111 1112 /* 1113 * Called in context of a munmap of a vma. 1114 */ 1115 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1116 { 1117 if (no_uprobe_events() || !valid_vma(vma, false)) 1118 return; 1119 1120 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1121 return; 1122 1123 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1124 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1125 return; 1126 1127 if (vma_has_uprobes(vma, start, end)) 1128 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1129 } 1130 1131 /* Slot allocation for XOL */ 1132 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1133 { 1134 int ret = -EALREADY; 1135 1136 down_write(&mm->mmap_sem); 1137 if (mm->uprobes_state.xol_area) 1138 goto fail; 1139 1140 if (!area->vaddr) { 1141 /* Try to map as high as possible, this is only a hint. */ 1142 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1143 PAGE_SIZE, 0, 0); 1144 if (area->vaddr & ~PAGE_MASK) { 1145 ret = area->vaddr; 1146 goto fail; 1147 } 1148 } 1149 1150 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1151 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page); 1152 if (ret) 1153 goto fail; 1154 1155 smp_wmb(); /* pairs with get_xol_area() */ 1156 mm->uprobes_state.xol_area = area; 1157 fail: 1158 up_write(&mm->mmap_sem); 1159 1160 return ret; 1161 } 1162 1163 static struct xol_area *__create_xol_area(unsigned long vaddr) 1164 { 1165 struct mm_struct *mm = current->mm; 1166 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1167 struct xol_area *area; 1168 1169 area = kmalloc(sizeof(*area), GFP_KERNEL); 1170 if (unlikely(!area)) 1171 goto out; 1172 1173 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1174 if (!area->bitmap) 1175 goto free_area; 1176 1177 area->page = alloc_page(GFP_HIGHUSER); 1178 if (!area->page) 1179 goto free_bitmap; 1180 1181 area->vaddr = vaddr; 1182 init_waitqueue_head(&area->wq); 1183 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1184 set_bit(0, area->bitmap); 1185 atomic_set(&area->slot_count, 1); 1186 copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE); 1187 1188 if (!xol_add_vma(mm, area)) 1189 return area; 1190 1191 __free_page(area->page); 1192 free_bitmap: 1193 kfree(area->bitmap); 1194 free_area: 1195 kfree(area); 1196 out: 1197 return NULL; 1198 } 1199 1200 /* 1201 * get_xol_area - Allocate process's xol_area if necessary. 1202 * This area will be used for storing instructions for execution out of line. 1203 * 1204 * Returns the allocated area or NULL. 1205 */ 1206 static struct xol_area *get_xol_area(void) 1207 { 1208 struct mm_struct *mm = current->mm; 1209 struct xol_area *area; 1210 1211 if (!mm->uprobes_state.xol_area) 1212 __create_xol_area(0); 1213 1214 area = mm->uprobes_state.xol_area; 1215 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1216 return area; 1217 } 1218 1219 /* 1220 * uprobe_clear_state - Free the area allocated for slots. 1221 */ 1222 void uprobe_clear_state(struct mm_struct *mm) 1223 { 1224 struct xol_area *area = mm->uprobes_state.xol_area; 1225 1226 if (!area) 1227 return; 1228 1229 put_page(area->page); 1230 kfree(area->bitmap); 1231 kfree(area); 1232 } 1233 1234 void uprobe_start_dup_mmap(void) 1235 { 1236 percpu_down_read(&dup_mmap_sem); 1237 } 1238 1239 void uprobe_end_dup_mmap(void) 1240 { 1241 percpu_up_read(&dup_mmap_sem); 1242 } 1243 1244 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1245 { 1246 newmm->uprobes_state.xol_area = NULL; 1247 1248 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1249 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1250 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1251 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1252 } 1253 } 1254 1255 /* 1256 * - search for a free slot. 1257 */ 1258 static unsigned long xol_take_insn_slot(struct xol_area *area) 1259 { 1260 unsigned long slot_addr; 1261 int slot_nr; 1262 1263 do { 1264 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1265 if (slot_nr < UINSNS_PER_PAGE) { 1266 if (!test_and_set_bit(slot_nr, area->bitmap)) 1267 break; 1268 1269 slot_nr = UINSNS_PER_PAGE; 1270 continue; 1271 } 1272 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1273 } while (slot_nr >= UINSNS_PER_PAGE); 1274 1275 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1276 atomic_inc(&area->slot_count); 1277 1278 return slot_addr; 1279 } 1280 1281 /* 1282 * xol_get_insn_slot - allocate a slot for xol. 1283 * Returns the allocated slot address or 0. 1284 */ 1285 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1286 { 1287 struct xol_area *area; 1288 unsigned long xol_vaddr; 1289 1290 area = get_xol_area(); 1291 if (!area) 1292 return 0; 1293 1294 xol_vaddr = xol_take_insn_slot(area); 1295 if (unlikely(!xol_vaddr)) 1296 return 0; 1297 1298 arch_uprobe_copy_ixol(area->page, xol_vaddr, 1299 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1300 1301 return xol_vaddr; 1302 } 1303 1304 /* 1305 * xol_free_insn_slot - If slot was earlier allocated by 1306 * @xol_get_insn_slot(), make the slot available for 1307 * subsequent requests. 1308 */ 1309 static void xol_free_insn_slot(struct task_struct *tsk) 1310 { 1311 struct xol_area *area; 1312 unsigned long vma_end; 1313 unsigned long slot_addr; 1314 1315 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1316 return; 1317 1318 slot_addr = tsk->utask->xol_vaddr; 1319 if (unlikely(!slot_addr)) 1320 return; 1321 1322 area = tsk->mm->uprobes_state.xol_area; 1323 vma_end = area->vaddr + PAGE_SIZE; 1324 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1325 unsigned long offset; 1326 int slot_nr; 1327 1328 offset = slot_addr - area->vaddr; 1329 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1330 if (slot_nr >= UINSNS_PER_PAGE) 1331 return; 1332 1333 clear_bit(slot_nr, area->bitmap); 1334 atomic_dec(&area->slot_count); 1335 if (waitqueue_active(&area->wq)) 1336 wake_up(&area->wq); 1337 1338 tsk->utask->xol_vaddr = 0; 1339 } 1340 } 1341 1342 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1343 void *src, unsigned long len) 1344 { 1345 /* Initialize the slot */ 1346 copy_to_page(page, vaddr, src, len); 1347 1348 /* 1349 * We probably need flush_icache_user_range() but it needs vma. 1350 * This should work on most of architectures by default. If 1351 * architecture needs to do something different it can define 1352 * its own version of the function. 1353 */ 1354 flush_dcache_page(page); 1355 } 1356 1357 /** 1358 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1359 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1360 * instruction. 1361 * Return the address of the breakpoint instruction. 1362 */ 1363 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1364 { 1365 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1366 } 1367 1368 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1369 { 1370 struct uprobe_task *utask = current->utask; 1371 1372 if (unlikely(utask && utask->active_uprobe)) 1373 return utask->vaddr; 1374 1375 return instruction_pointer(regs); 1376 } 1377 1378 /* 1379 * Called with no locks held. 1380 * Called in context of a exiting or a exec-ing thread. 1381 */ 1382 void uprobe_free_utask(struct task_struct *t) 1383 { 1384 struct uprobe_task *utask = t->utask; 1385 struct return_instance *ri, *tmp; 1386 1387 if (!utask) 1388 return; 1389 1390 if (utask->active_uprobe) 1391 put_uprobe(utask->active_uprobe); 1392 1393 ri = utask->return_instances; 1394 while (ri) { 1395 tmp = ri; 1396 ri = ri->next; 1397 1398 put_uprobe(tmp->uprobe); 1399 kfree(tmp); 1400 } 1401 1402 xol_free_insn_slot(t); 1403 kfree(utask); 1404 t->utask = NULL; 1405 } 1406 1407 /* 1408 * Allocate a uprobe_task object for the task if if necessary. 1409 * Called when the thread hits a breakpoint. 1410 * 1411 * Returns: 1412 * - pointer to new uprobe_task on success 1413 * - NULL otherwise 1414 */ 1415 static struct uprobe_task *get_utask(void) 1416 { 1417 if (!current->utask) 1418 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1419 return current->utask; 1420 } 1421 1422 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1423 { 1424 struct uprobe_task *n_utask; 1425 struct return_instance **p, *o, *n; 1426 1427 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1428 if (!n_utask) 1429 return -ENOMEM; 1430 t->utask = n_utask; 1431 1432 p = &n_utask->return_instances; 1433 for (o = o_utask->return_instances; o; o = o->next) { 1434 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1435 if (!n) 1436 return -ENOMEM; 1437 1438 *n = *o; 1439 atomic_inc(&n->uprobe->ref); 1440 n->next = NULL; 1441 1442 *p = n; 1443 p = &n->next; 1444 n_utask->depth++; 1445 } 1446 1447 return 0; 1448 } 1449 1450 static void uprobe_warn(struct task_struct *t, const char *msg) 1451 { 1452 pr_warn("uprobe: %s:%d failed to %s\n", 1453 current->comm, current->pid, msg); 1454 } 1455 1456 static void dup_xol_work(struct callback_head *work) 1457 { 1458 if (current->flags & PF_EXITING) 1459 return; 1460 1461 if (!__create_xol_area(current->utask->dup_xol_addr)) 1462 uprobe_warn(current, "dup xol area"); 1463 } 1464 1465 /* 1466 * Called in context of a new clone/fork from copy_process. 1467 */ 1468 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1469 { 1470 struct uprobe_task *utask = current->utask; 1471 struct mm_struct *mm = current->mm; 1472 struct xol_area *area; 1473 1474 t->utask = NULL; 1475 1476 if (!utask || !utask->return_instances) 1477 return; 1478 1479 if (mm == t->mm && !(flags & CLONE_VFORK)) 1480 return; 1481 1482 if (dup_utask(t, utask)) 1483 return uprobe_warn(t, "dup ret instances"); 1484 1485 /* The task can fork() after dup_xol_work() fails */ 1486 area = mm->uprobes_state.xol_area; 1487 if (!area) 1488 return uprobe_warn(t, "dup xol area"); 1489 1490 if (mm == t->mm) 1491 return; 1492 1493 t->utask->dup_xol_addr = area->vaddr; 1494 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1495 task_work_add(t, &t->utask->dup_xol_work, true); 1496 } 1497 1498 /* 1499 * Current area->vaddr notion assume the trampoline address is always 1500 * equal area->vaddr. 1501 * 1502 * Returns -1 in case the xol_area is not allocated. 1503 */ 1504 static unsigned long get_trampoline_vaddr(void) 1505 { 1506 struct xol_area *area; 1507 unsigned long trampoline_vaddr = -1; 1508 1509 area = current->mm->uprobes_state.xol_area; 1510 smp_read_barrier_depends(); 1511 if (area) 1512 trampoline_vaddr = area->vaddr; 1513 1514 return trampoline_vaddr; 1515 } 1516 1517 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1518 { 1519 struct return_instance *ri; 1520 struct uprobe_task *utask; 1521 unsigned long orig_ret_vaddr, trampoline_vaddr; 1522 bool chained = false; 1523 1524 if (!get_xol_area()) 1525 return; 1526 1527 utask = get_utask(); 1528 if (!utask) 1529 return; 1530 1531 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1532 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1533 " nestedness limit pid/tgid=%d/%d\n", 1534 current->pid, current->tgid); 1535 return; 1536 } 1537 1538 ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL); 1539 if (!ri) 1540 goto fail; 1541 1542 trampoline_vaddr = get_trampoline_vaddr(); 1543 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1544 if (orig_ret_vaddr == -1) 1545 goto fail; 1546 1547 /* 1548 * We don't want to keep trampoline address in stack, rather keep the 1549 * original return address of first caller thru all the consequent 1550 * instances. This also makes breakpoint unwrapping easier. 1551 */ 1552 if (orig_ret_vaddr == trampoline_vaddr) { 1553 if (!utask->return_instances) { 1554 /* 1555 * This situation is not possible. Likely we have an 1556 * attack from user-space. 1557 */ 1558 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n", 1559 current->pid, current->tgid); 1560 goto fail; 1561 } 1562 1563 chained = true; 1564 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1565 } 1566 1567 atomic_inc(&uprobe->ref); 1568 ri->uprobe = uprobe; 1569 ri->func = instruction_pointer(regs); 1570 ri->orig_ret_vaddr = orig_ret_vaddr; 1571 ri->chained = chained; 1572 1573 utask->depth++; 1574 1575 /* add instance to the stack */ 1576 ri->next = utask->return_instances; 1577 utask->return_instances = ri; 1578 1579 return; 1580 1581 fail: 1582 kfree(ri); 1583 } 1584 1585 /* Prepare to single-step probed instruction out of line. */ 1586 static int 1587 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1588 { 1589 struct uprobe_task *utask; 1590 unsigned long xol_vaddr; 1591 int err; 1592 1593 utask = get_utask(); 1594 if (!utask) 1595 return -ENOMEM; 1596 1597 xol_vaddr = xol_get_insn_slot(uprobe); 1598 if (!xol_vaddr) 1599 return -ENOMEM; 1600 1601 utask->xol_vaddr = xol_vaddr; 1602 utask->vaddr = bp_vaddr; 1603 1604 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1605 if (unlikely(err)) { 1606 xol_free_insn_slot(current); 1607 return err; 1608 } 1609 1610 utask->active_uprobe = uprobe; 1611 utask->state = UTASK_SSTEP; 1612 return 0; 1613 } 1614 1615 /* 1616 * If we are singlestepping, then ensure this thread is not connected to 1617 * non-fatal signals until completion of singlestep. When xol insn itself 1618 * triggers the signal, restart the original insn even if the task is 1619 * already SIGKILL'ed (since coredump should report the correct ip). This 1620 * is even more important if the task has a handler for SIGSEGV/etc, The 1621 * _same_ instruction should be repeated again after return from the signal 1622 * handler, and SSTEP can never finish in this case. 1623 */ 1624 bool uprobe_deny_signal(void) 1625 { 1626 struct task_struct *t = current; 1627 struct uprobe_task *utask = t->utask; 1628 1629 if (likely(!utask || !utask->active_uprobe)) 1630 return false; 1631 1632 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1633 1634 if (signal_pending(t)) { 1635 spin_lock_irq(&t->sighand->siglock); 1636 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1637 spin_unlock_irq(&t->sighand->siglock); 1638 1639 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1640 utask->state = UTASK_SSTEP_TRAPPED; 1641 set_tsk_thread_flag(t, TIF_UPROBE); 1642 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1643 } 1644 } 1645 1646 return true; 1647 } 1648 1649 static void mmf_recalc_uprobes(struct mm_struct *mm) 1650 { 1651 struct vm_area_struct *vma; 1652 1653 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1654 if (!valid_vma(vma, false)) 1655 continue; 1656 /* 1657 * This is not strictly accurate, we can race with 1658 * uprobe_unregister() and see the already removed 1659 * uprobe if delete_uprobe() was not yet called. 1660 * Or this uprobe can be filtered out. 1661 */ 1662 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1663 return; 1664 } 1665 1666 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1667 } 1668 1669 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 1670 { 1671 struct page *page; 1672 uprobe_opcode_t opcode; 1673 int result; 1674 1675 pagefault_disable(); 1676 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr, 1677 sizeof(opcode)); 1678 pagefault_enable(); 1679 1680 if (likely(result == 0)) 1681 goto out; 1682 1683 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL); 1684 if (result < 0) 1685 return result; 1686 1687 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 1688 put_page(page); 1689 out: 1690 /* This needs to return true for any variant of the trap insn */ 1691 return is_trap_insn(&opcode); 1692 } 1693 1694 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1695 { 1696 struct mm_struct *mm = current->mm; 1697 struct uprobe *uprobe = NULL; 1698 struct vm_area_struct *vma; 1699 1700 down_read(&mm->mmap_sem); 1701 vma = find_vma(mm, bp_vaddr); 1702 if (vma && vma->vm_start <= bp_vaddr) { 1703 if (valid_vma(vma, false)) { 1704 struct inode *inode = file_inode(vma->vm_file); 1705 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1706 1707 uprobe = find_uprobe(inode, offset); 1708 } 1709 1710 if (!uprobe) 1711 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 1712 } else { 1713 *is_swbp = -EFAULT; 1714 } 1715 1716 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1717 mmf_recalc_uprobes(mm); 1718 up_read(&mm->mmap_sem); 1719 1720 return uprobe; 1721 } 1722 1723 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 1724 { 1725 struct uprobe_consumer *uc; 1726 int remove = UPROBE_HANDLER_REMOVE; 1727 bool need_prep = false; /* prepare return uprobe, when needed */ 1728 1729 down_read(&uprobe->register_rwsem); 1730 for (uc = uprobe->consumers; uc; uc = uc->next) { 1731 int rc = 0; 1732 1733 if (uc->handler) { 1734 rc = uc->handler(uc, regs); 1735 WARN(rc & ~UPROBE_HANDLER_MASK, 1736 "bad rc=0x%x from %pf()\n", rc, uc->handler); 1737 } 1738 1739 if (uc->ret_handler) 1740 need_prep = true; 1741 1742 remove &= rc; 1743 } 1744 1745 if (need_prep && !remove) 1746 prepare_uretprobe(uprobe, regs); /* put bp at return */ 1747 1748 if (remove && uprobe->consumers) { 1749 WARN_ON(!uprobe_is_active(uprobe)); 1750 unapply_uprobe(uprobe, current->mm); 1751 } 1752 up_read(&uprobe->register_rwsem); 1753 } 1754 1755 static void 1756 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 1757 { 1758 struct uprobe *uprobe = ri->uprobe; 1759 struct uprobe_consumer *uc; 1760 1761 down_read(&uprobe->register_rwsem); 1762 for (uc = uprobe->consumers; uc; uc = uc->next) { 1763 if (uc->ret_handler) 1764 uc->ret_handler(uc, ri->func, regs); 1765 } 1766 up_read(&uprobe->register_rwsem); 1767 } 1768 1769 static bool handle_trampoline(struct pt_regs *regs) 1770 { 1771 struct uprobe_task *utask; 1772 struct return_instance *ri, *tmp; 1773 bool chained; 1774 1775 utask = current->utask; 1776 if (!utask) 1777 return false; 1778 1779 ri = utask->return_instances; 1780 if (!ri) 1781 return false; 1782 1783 /* 1784 * TODO: we should throw out return_instance's invalidated by 1785 * longjmp(), currently we assume that the probed function always 1786 * returns. 1787 */ 1788 instruction_pointer_set(regs, ri->orig_ret_vaddr); 1789 1790 for (;;) { 1791 handle_uretprobe_chain(ri, regs); 1792 1793 chained = ri->chained; 1794 put_uprobe(ri->uprobe); 1795 1796 tmp = ri; 1797 ri = ri->next; 1798 kfree(tmp); 1799 utask->depth--; 1800 1801 if (!chained) 1802 break; 1803 BUG_ON(!ri); 1804 } 1805 1806 utask->return_instances = ri; 1807 1808 return true; 1809 } 1810 1811 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 1812 { 1813 return false; 1814 } 1815 1816 /* 1817 * Run handler and ask thread to singlestep. 1818 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1819 */ 1820 static void handle_swbp(struct pt_regs *regs) 1821 { 1822 struct uprobe *uprobe; 1823 unsigned long bp_vaddr; 1824 int uninitialized_var(is_swbp); 1825 1826 bp_vaddr = uprobe_get_swbp_addr(regs); 1827 if (bp_vaddr == get_trampoline_vaddr()) { 1828 if (handle_trampoline(regs)) 1829 return; 1830 1831 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n", 1832 current->pid, current->tgid); 1833 } 1834 1835 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1836 if (!uprobe) { 1837 if (is_swbp > 0) { 1838 /* No matching uprobe; signal SIGTRAP. */ 1839 send_sig(SIGTRAP, current, 0); 1840 } else { 1841 /* 1842 * Either we raced with uprobe_unregister() or we can't 1843 * access this memory. The latter is only possible if 1844 * another thread plays with our ->mm. In both cases 1845 * we can simply restart. If this vma was unmapped we 1846 * can pretend this insn was not executed yet and get 1847 * the (correct) SIGSEGV after restart. 1848 */ 1849 instruction_pointer_set(regs, bp_vaddr); 1850 } 1851 return; 1852 } 1853 1854 /* change it in advance for ->handler() and restart */ 1855 instruction_pointer_set(regs, bp_vaddr); 1856 1857 /* 1858 * TODO: move copy_insn/etc into _register and remove this hack. 1859 * After we hit the bp, _unregister + _register can install the 1860 * new and not-yet-analyzed uprobe at the same address, restart. 1861 */ 1862 smp_rmb(); /* pairs with wmb() in install_breakpoint() */ 1863 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 1864 goto out; 1865 1866 /* Tracing handlers use ->utask to communicate with fetch methods */ 1867 if (!get_utask()) 1868 goto out; 1869 1870 if (arch_uprobe_ignore(&uprobe->arch, regs)) 1871 goto out; 1872 1873 handler_chain(uprobe, regs); 1874 1875 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1876 goto out; 1877 1878 if (!pre_ssout(uprobe, regs, bp_vaddr)) 1879 return; 1880 1881 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 1882 out: 1883 put_uprobe(uprobe); 1884 } 1885 1886 /* 1887 * Perform required fix-ups and disable singlestep. 1888 * Allow pending signals to take effect. 1889 */ 1890 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1891 { 1892 struct uprobe *uprobe; 1893 int err = 0; 1894 1895 uprobe = utask->active_uprobe; 1896 if (utask->state == UTASK_SSTEP_ACK) 1897 err = arch_uprobe_post_xol(&uprobe->arch, regs); 1898 else if (utask->state == UTASK_SSTEP_TRAPPED) 1899 arch_uprobe_abort_xol(&uprobe->arch, regs); 1900 else 1901 WARN_ON_ONCE(1); 1902 1903 put_uprobe(uprobe); 1904 utask->active_uprobe = NULL; 1905 utask->state = UTASK_RUNNING; 1906 xol_free_insn_slot(current); 1907 1908 spin_lock_irq(¤t->sighand->siglock); 1909 recalc_sigpending(); /* see uprobe_deny_signal() */ 1910 spin_unlock_irq(¤t->sighand->siglock); 1911 1912 if (unlikely(err)) { 1913 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 1914 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1915 } 1916 } 1917 1918 /* 1919 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 1920 * allows the thread to return from interrupt. After that handle_swbp() 1921 * sets utask->active_uprobe. 1922 * 1923 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 1924 * and allows the thread to return from interrupt. 1925 * 1926 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1927 * uprobe_notify_resume(). 1928 */ 1929 void uprobe_notify_resume(struct pt_regs *regs) 1930 { 1931 struct uprobe_task *utask; 1932 1933 clear_thread_flag(TIF_UPROBE); 1934 1935 utask = current->utask; 1936 if (utask && utask->active_uprobe) 1937 handle_singlestep(utask, regs); 1938 else 1939 handle_swbp(regs); 1940 } 1941 1942 /* 1943 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1944 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1945 */ 1946 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1947 { 1948 if (!current->mm) 1949 return 0; 1950 1951 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 1952 (!current->utask || !current->utask->return_instances)) 1953 return 0; 1954 1955 set_thread_flag(TIF_UPROBE); 1956 return 1; 1957 } 1958 1959 /* 1960 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 1961 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 1962 */ 1963 int uprobe_post_sstep_notifier(struct pt_regs *regs) 1964 { 1965 struct uprobe_task *utask = current->utask; 1966 1967 if (!current->mm || !utask || !utask->active_uprobe) 1968 /* task is currently not uprobed */ 1969 return 0; 1970 1971 utask->state = UTASK_SSTEP_ACK; 1972 set_thread_flag(TIF_UPROBE); 1973 return 1; 1974 } 1975 1976 static struct notifier_block uprobe_exception_nb = { 1977 .notifier_call = arch_uprobe_exception_notify, 1978 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 1979 }; 1980 1981 static int __init init_uprobes(void) 1982 { 1983 int i; 1984 1985 for (i = 0; i < UPROBES_HASH_SZ; i++) 1986 mutex_init(&uprobes_mmap_mutex[i]); 1987 1988 if (percpu_init_rwsem(&dup_mmap_sem)) 1989 return -ENOMEM; 1990 1991 return register_die_notifier(&uprobe_exception_nb); 1992 } 1993 __initcall(init_uprobes); 1994