xref: /openbmc/linux/kernel/events/uprobes.c (revision cea86fe2)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* try_to_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include "../../mm/internal.h"	/* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30 
31 #include <linux/uprobes.h>
32 
33 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
35 
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
42 
43 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
44 
45 #define UPROBES_HASH_SZ	13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49 
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51 
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN	0
54 
55 struct uprobe {
56 	struct rb_node		rb_node;	/* node in the rb tree */
57 	refcount_t		ref;
58 	struct rw_semaphore	register_rwsem;
59 	struct rw_semaphore	consumer_rwsem;
60 	struct list_head	pending_list;
61 	struct uprobe_consumer	*consumers;
62 	struct inode		*inode;		/* Also hold a ref to inode */
63 	loff_t			offset;
64 	loff_t			ref_ctr_offset;
65 	unsigned long		flags;
66 
67 	/*
68 	 * The generic code assumes that it has two members of unknown type
69 	 * owned by the arch-specific code:
70 	 *
71 	 * 	insn -	copy_insn() saves the original instruction here for
72 	 *		arch_uprobe_analyze_insn().
73 	 *
74 	 *	ixol -	potentially modified instruction to execute out of
75 	 *		line, copied to xol_area by xol_get_insn_slot().
76 	 */
77 	struct arch_uprobe	arch;
78 };
79 
80 struct delayed_uprobe {
81 	struct list_head list;
82 	struct uprobe *uprobe;
83 	struct mm_struct *mm;
84 };
85 
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88 
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99 	wait_queue_head_t 		wq;		/* if all slots are busy */
100 	atomic_t 			slot_count;	/* number of in-use slots */
101 	unsigned long 			*bitmap;	/* 0 = free slot */
102 
103 	struct vm_special_mapping	xol_mapping;
104 	struct page 			*pages[2];
105 	/*
106 	 * We keep the vma's vm_start rather than a pointer to the vma
107 	 * itself.  The probed process or a naughty kernel module could make
108 	 * the vma go away, and we must handle that reasonably gracefully.
109 	 */
110 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
111 };
112 
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *	- is_register: indicates if we are in register context.
118  *	- Return 1 if the specified virtual address is in an
119  *	  executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124 
125 	if (is_register)
126 		flags |= VM_WRITE;
127 
128 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130 
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135 
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140 
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 				struct page *old_page, struct page *new_page)
156 {
157 	struct mm_struct *mm = vma->vm_mm;
158 	struct page_vma_mapped_walk pvmw = {
159 		.page = compound_head(old_page),
160 		.vma = vma,
161 		.address = addr,
162 	};
163 	int err;
164 	struct mmu_notifier_range range;
165 
166 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
167 				addr + PAGE_SIZE);
168 
169 	if (new_page) {
170 		err = mem_cgroup_charge(page_folio(new_page), vma->vm_mm,
171 					GFP_KERNEL);
172 		if (err)
173 			return err;
174 	}
175 
176 	/* For try_to_free_swap() below */
177 	lock_page(old_page);
178 
179 	mmu_notifier_invalidate_range_start(&range);
180 	err = -EAGAIN;
181 	if (!page_vma_mapped_walk(&pvmw))
182 		goto unlock;
183 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
184 
185 	if (new_page) {
186 		get_page(new_page);
187 		page_add_new_anon_rmap(new_page, vma, addr, false);
188 		lru_cache_add_inactive_or_unevictable(new_page, vma);
189 	} else
190 		/* no new page, just dec_mm_counter for old_page */
191 		dec_mm_counter(mm, MM_ANONPAGES);
192 
193 	if (!PageAnon(old_page)) {
194 		dec_mm_counter(mm, mm_counter_file(old_page));
195 		inc_mm_counter(mm, MM_ANONPAGES);
196 	}
197 
198 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
199 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
200 	if (new_page)
201 		set_pte_at_notify(mm, addr, pvmw.pte,
202 				  mk_pte(new_page, vma->vm_page_prot));
203 
204 	page_remove_rmap(old_page, vma, false);
205 	if (!page_mapped(old_page))
206 		try_to_free_swap(old_page);
207 	page_vma_mapped_walk_done(&pvmw);
208 	put_page(old_page);
209 
210 	err = 0;
211  unlock:
212 	mmu_notifier_invalidate_range_end(&range);
213 	unlock_page(old_page);
214 	return err;
215 }
216 
217 /**
218  * is_swbp_insn - check if instruction is breakpoint instruction.
219  * @insn: instruction to be checked.
220  * Default implementation of is_swbp_insn
221  * Returns true if @insn is a breakpoint instruction.
222  */
223 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
224 {
225 	return *insn == UPROBE_SWBP_INSN;
226 }
227 
228 /**
229  * is_trap_insn - check if instruction is breakpoint instruction.
230  * @insn: instruction to be checked.
231  * Default implementation of is_trap_insn
232  * Returns true if @insn is a breakpoint instruction.
233  *
234  * This function is needed for the case where an architecture has multiple
235  * trap instructions (like powerpc).
236  */
237 bool __weak is_trap_insn(uprobe_opcode_t *insn)
238 {
239 	return is_swbp_insn(insn);
240 }
241 
242 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
243 {
244 	void *kaddr = kmap_atomic(page);
245 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
246 	kunmap_atomic(kaddr);
247 }
248 
249 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
250 {
251 	void *kaddr = kmap_atomic(page);
252 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
253 	kunmap_atomic(kaddr);
254 }
255 
256 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
257 {
258 	uprobe_opcode_t old_opcode;
259 	bool is_swbp;
260 
261 	/*
262 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
263 	 * We do not check if it is any other 'trap variant' which could
264 	 * be conditional trap instruction such as the one powerpc supports.
265 	 *
266 	 * The logic is that we do not care if the underlying instruction
267 	 * is a trap variant; uprobes always wins over any other (gdb)
268 	 * breakpoint.
269 	 */
270 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
271 	is_swbp = is_swbp_insn(&old_opcode);
272 
273 	if (is_swbp_insn(new_opcode)) {
274 		if (is_swbp)		/* register: already installed? */
275 			return 0;
276 	} else {
277 		if (!is_swbp)		/* unregister: was it changed by us? */
278 			return 0;
279 	}
280 
281 	return 1;
282 }
283 
284 static struct delayed_uprobe *
285 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
286 {
287 	struct delayed_uprobe *du;
288 
289 	list_for_each_entry(du, &delayed_uprobe_list, list)
290 		if (du->uprobe == uprobe && du->mm == mm)
291 			return du;
292 	return NULL;
293 }
294 
295 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
296 {
297 	struct delayed_uprobe *du;
298 
299 	if (delayed_uprobe_check(uprobe, mm))
300 		return 0;
301 
302 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
303 	if (!du)
304 		return -ENOMEM;
305 
306 	du->uprobe = uprobe;
307 	du->mm = mm;
308 	list_add(&du->list, &delayed_uprobe_list);
309 	return 0;
310 }
311 
312 static void delayed_uprobe_delete(struct delayed_uprobe *du)
313 {
314 	if (WARN_ON(!du))
315 		return;
316 	list_del(&du->list);
317 	kfree(du);
318 }
319 
320 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
321 {
322 	struct list_head *pos, *q;
323 	struct delayed_uprobe *du;
324 
325 	if (!uprobe && !mm)
326 		return;
327 
328 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
329 		du = list_entry(pos, struct delayed_uprobe, list);
330 
331 		if (uprobe && du->uprobe != uprobe)
332 			continue;
333 		if (mm && du->mm != mm)
334 			continue;
335 
336 		delayed_uprobe_delete(du);
337 	}
338 }
339 
340 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
341 			      struct vm_area_struct *vma)
342 {
343 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
344 
345 	return uprobe->ref_ctr_offset &&
346 		vma->vm_file &&
347 		file_inode(vma->vm_file) == uprobe->inode &&
348 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
349 		vma->vm_start <= vaddr &&
350 		vma->vm_end > vaddr;
351 }
352 
353 static struct vm_area_struct *
354 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
355 {
356 	struct vm_area_struct *tmp;
357 
358 	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
359 		if (valid_ref_ctr_vma(uprobe, tmp))
360 			return tmp;
361 
362 	return NULL;
363 }
364 
365 static int
366 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
367 {
368 	void *kaddr;
369 	struct page *page;
370 	struct vm_area_struct *vma;
371 	int ret;
372 	short *ptr;
373 
374 	if (!vaddr || !d)
375 		return -EINVAL;
376 
377 	ret = get_user_pages_remote(mm, vaddr, 1,
378 			FOLL_WRITE, &page, &vma, NULL);
379 	if (unlikely(ret <= 0)) {
380 		/*
381 		 * We are asking for 1 page. If get_user_pages_remote() fails,
382 		 * it may return 0, in that case we have to return error.
383 		 */
384 		return ret == 0 ? -EBUSY : ret;
385 	}
386 
387 	kaddr = kmap_atomic(page);
388 	ptr = kaddr + (vaddr & ~PAGE_MASK);
389 
390 	if (unlikely(*ptr + d < 0)) {
391 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
392 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
393 		ret = -EINVAL;
394 		goto out;
395 	}
396 
397 	*ptr += d;
398 	ret = 0;
399 out:
400 	kunmap_atomic(kaddr);
401 	put_page(page);
402 	return ret;
403 }
404 
405 static void update_ref_ctr_warn(struct uprobe *uprobe,
406 				struct mm_struct *mm, short d)
407 {
408 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
409 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
410 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
411 		(unsigned long long) uprobe->offset,
412 		(unsigned long long) uprobe->ref_ctr_offset, mm);
413 }
414 
415 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
416 			  short d)
417 {
418 	struct vm_area_struct *rc_vma;
419 	unsigned long rc_vaddr;
420 	int ret = 0;
421 
422 	rc_vma = find_ref_ctr_vma(uprobe, mm);
423 
424 	if (rc_vma) {
425 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
426 		ret = __update_ref_ctr(mm, rc_vaddr, d);
427 		if (ret)
428 			update_ref_ctr_warn(uprobe, mm, d);
429 
430 		if (d > 0)
431 			return ret;
432 	}
433 
434 	mutex_lock(&delayed_uprobe_lock);
435 	if (d > 0)
436 		ret = delayed_uprobe_add(uprobe, mm);
437 	else
438 		delayed_uprobe_remove(uprobe, mm);
439 	mutex_unlock(&delayed_uprobe_lock);
440 
441 	return ret;
442 }
443 
444 /*
445  * NOTE:
446  * Expect the breakpoint instruction to be the smallest size instruction for
447  * the architecture. If an arch has variable length instruction and the
448  * breakpoint instruction is not of the smallest length instruction
449  * supported by that architecture then we need to modify is_trap_at_addr and
450  * uprobe_write_opcode accordingly. This would never be a problem for archs
451  * that have fixed length instructions.
452  *
453  * uprobe_write_opcode - write the opcode at a given virtual address.
454  * @auprobe: arch specific probepoint information.
455  * @mm: the probed process address space.
456  * @vaddr: the virtual address to store the opcode.
457  * @opcode: opcode to be written at @vaddr.
458  *
459  * Called with mm->mmap_lock held for write.
460  * Return 0 (success) or a negative errno.
461  */
462 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
463 			unsigned long vaddr, uprobe_opcode_t opcode)
464 {
465 	struct uprobe *uprobe;
466 	struct page *old_page, *new_page;
467 	struct vm_area_struct *vma;
468 	int ret, is_register, ref_ctr_updated = 0;
469 	bool orig_page_huge = false;
470 	unsigned int gup_flags = FOLL_FORCE;
471 
472 	is_register = is_swbp_insn(&opcode);
473 	uprobe = container_of(auprobe, struct uprobe, arch);
474 
475 retry:
476 	if (is_register)
477 		gup_flags |= FOLL_SPLIT_PMD;
478 	/* Read the page with vaddr into memory */
479 	ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
480 				    &old_page, &vma, NULL);
481 	if (ret <= 0)
482 		return ret;
483 
484 	ret = verify_opcode(old_page, vaddr, &opcode);
485 	if (ret <= 0)
486 		goto put_old;
487 
488 	if (WARN(!is_register && PageCompound(old_page),
489 		 "uprobe unregister should never work on compound page\n")) {
490 		ret = -EINVAL;
491 		goto put_old;
492 	}
493 
494 	/* We are going to replace instruction, update ref_ctr. */
495 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
496 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
497 		if (ret)
498 			goto put_old;
499 
500 		ref_ctr_updated = 1;
501 	}
502 
503 	ret = 0;
504 	if (!is_register && !PageAnon(old_page))
505 		goto put_old;
506 
507 	ret = anon_vma_prepare(vma);
508 	if (ret)
509 		goto put_old;
510 
511 	ret = -ENOMEM;
512 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
513 	if (!new_page)
514 		goto put_old;
515 
516 	__SetPageUptodate(new_page);
517 	copy_highpage(new_page, old_page);
518 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
519 
520 	if (!is_register) {
521 		struct page *orig_page;
522 		pgoff_t index;
523 
524 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
525 
526 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
527 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
528 					  index);
529 
530 		if (orig_page) {
531 			if (PageUptodate(orig_page) &&
532 			    pages_identical(new_page, orig_page)) {
533 				/* let go new_page */
534 				put_page(new_page);
535 				new_page = NULL;
536 
537 				if (PageCompound(orig_page))
538 					orig_page_huge = true;
539 			}
540 			put_page(orig_page);
541 		}
542 	}
543 
544 	ret = __replace_page(vma, vaddr, old_page, new_page);
545 	if (new_page)
546 		put_page(new_page);
547 put_old:
548 	put_page(old_page);
549 
550 	if (unlikely(ret == -EAGAIN))
551 		goto retry;
552 
553 	/* Revert back reference counter if instruction update failed. */
554 	if (ret && is_register && ref_ctr_updated)
555 		update_ref_ctr(uprobe, mm, -1);
556 
557 	/* try collapse pmd for compound page */
558 	if (!ret && orig_page_huge)
559 		collapse_pte_mapped_thp(mm, vaddr);
560 
561 	return ret;
562 }
563 
564 /**
565  * set_swbp - store breakpoint at a given address.
566  * @auprobe: arch specific probepoint information.
567  * @mm: the probed process address space.
568  * @vaddr: the virtual address to insert the opcode.
569  *
570  * For mm @mm, store the breakpoint instruction at @vaddr.
571  * Return 0 (success) or a negative errno.
572  */
573 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
574 {
575 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
576 }
577 
578 /**
579  * set_orig_insn - Restore the original instruction.
580  * @mm: the probed process address space.
581  * @auprobe: arch specific probepoint information.
582  * @vaddr: the virtual address to insert the opcode.
583  *
584  * For mm @mm, restore the original opcode (opcode) at @vaddr.
585  * Return 0 (success) or a negative errno.
586  */
587 int __weak
588 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
589 {
590 	return uprobe_write_opcode(auprobe, mm, vaddr,
591 			*(uprobe_opcode_t *)&auprobe->insn);
592 }
593 
594 static struct uprobe *get_uprobe(struct uprobe *uprobe)
595 {
596 	refcount_inc(&uprobe->ref);
597 	return uprobe;
598 }
599 
600 static void put_uprobe(struct uprobe *uprobe)
601 {
602 	if (refcount_dec_and_test(&uprobe->ref)) {
603 		/*
604 		 * If application munmap(exec_vma) before uprobe_unregister()
605 		 * gets called, we don't get a chance to remove uprobe from
606 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
607 		 */
608 		mutex_lock(&delayed_uprobe_lock);
609 		delayed_uprobe_remove(uprobe, NULL);
610 		mutex_unlock(&delayed_uprobe_lock);
611 		kfree(uprobe);
612 	}
613 }
614 
615 static __always_inline
616 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
617 	       const struct uprobe *r)
618 {
619 	if (l_inode < r->inode)
620 		return -1;
621 
622 	if (l_inode > r->inode)
623 		return 1;
624 
625 	if (l_offset < r->offset)
626 		return -1;
627 
628 	if (l_offset > r->offset)
629 		return 1;
630 
631 	return 0;
632 }
633 
634 #define __node_2_uprobe(node) \
635 	rb_entry((node), struct uprobe, rb_node)
636 
637 struct __uprobe_key {
638 	struct inode *inode;
639 	loff_t offset;
640 };
641 
642 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
643 {
644 	const struct __uprobe_key *a = key;
645 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
646 }
647 
648 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
649 {
650 	struct uprobe *u = __node_2_uprobe(a);
651 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
652 }
653 
654 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
655 {
656 	struct __uprobe_key key = {
657 		.inode = inode,
658 		.offset = offset,
659 	};
660 	struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
661 
662 	if (node)
663 		return get_uprobe(__node_2_uprobe(node));
664 
665 	return NULL;
666 }
667 
668 /*
669  * Find a uprobe corresponding to a given inode:offset
670  * Acquires uprobes_treelock
671  */
672 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
673 {
674 	struct uprobe *uprobe;
675 
676 	spin_lock(&uprobes_treelock);
677 	uprobe = __find_uprobe(inode, offset);
678 	spin_unlock(&uprobes_treelock);
679 
680 	return uprobe;
681 }
682 
683 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
684 {
685 	struct rb_node *node;
686 
687 	node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
688 	if (node)
689 		return get_uprobe(__node_2_uprobe(node));
690 
691 	/* get access + creation ref */
692 	refcount_set(&uprobe->ref, 2);
693 	return NULL;
694 }
695 
696 /*
697  * Acquire uprobes_treelock.
698  * Matching uprobe already exists in rbtree;
699  *	increment (access refcount) and return the matching uprobe.
700  *
701  * No matching uprobe; insert the uprobe in rb_tree;
702  *	get a double refcount (access + creation) and return NULL.
703  */
704 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
705 {
706 	struct uprobe *u;
707 
708 	spin_lock(&uprobes_treelock);
709 	u = __insert_uprobe(uprobe);
710 	spin_unlock(&uprobes_treelock);
711 
712 	return u;
713 }
714 
715 static void
716 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
717 {
718 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
719 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
720 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
721 		(unsigned long long) cur_uprobe->ref_ctr_offset,
722 		(unsigned long long) uprobe->ref_ctr_offset);
723 }
724 
725 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
726 				   loff_t ref_ctr_offset)
727 {
728 	struct uprobe *uprobe, *cur_uprobe;
729 
730 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
731 	if (!uprobe)
732 		return NULL;
733 
734 	uprobe->inode = inode;
735 	uprobe->offset = offset;
736 	uprobe->ref_ctr_offset = ref_ctr_offset;
737 	init_rwsem(&uprobe->register_rwsem);
738 	init_rwsem(&uprobe->consumer_rwsem);
739 
740 	/* add to uprobes_tree, sorted on inode:offset */
741 	cur_uprobe = insert_uprobe(uprobe);
742 	/* a uprobe exists for this inode:offset combination */
743 	if (cur_uprobe) {
744 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
745 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
746 			put_uprobe(cur_uprobe);
747 			kfree(uprobe);
748 			return ERR_PTR(-EINVAL);
749 		}
750 		kfree(uprobe);
751 		uprobe = cur_uprobe;
752 	}
753 
754 	return uprobe;
755 }
756 
757 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
758 {
759 	down_write(&uprobe->consumer_rwsem);
760 	uc->next = uprobe->consumers;
761 	uprobe->consumers = uc;
762 	up_write(&uprobe->consumer_rwsem);
763 }
764 
765 /*
766  * For uprobe @uprobe, delete the consumer @uc.
767  * Return true if the @uc is deleted successfully
768  * or return false.
769  */
770 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
771 {
772 	struct uprobe_consumer **con;
773 	bool ret = false;
774 
775 	down_write(&uprobe->consumer_rwsem);
776 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
777 		if (*con == uc) {
778 			*con = uc->next;
779 			ret = true;
780 			break;
781 		}
782 	}
783 	up_write(&uprobe->consumer_rwsem);
784 
785 	return ret;
786 }
787 
788 static int __copy_insn(struct address_space *mapping, struct file *filp,
789 			void *insn, int nbytes, loff_t offset)
790 {
791 	struct page *page;
792 	/*
793 	 * Ensure that the page that has the original instruction is populated
794 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
795 	 * see uprobe_register().
796 	 */
797 	if (mapping->a_ops->readpage)
798 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
799 	else
800 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
801 	if (IS_ERR(page))
802 		return PTR_ERR(page);
803 
804 	copy_from_page(page, offset, insn, nbytes);
805 	put_page(page);
806 
807 	return 0;
808 }
809 
810 static int copy_insn(struct uprobe *uprobe, struct file *filp)
811 {
812 	struct address_space *mapping = uprobe->inode->i_mapping;
813 	loff_t offs = uprobe->offset;
814 	void *insn = &uprobe->arch.insn;
815 	int size = sizeof(uprobe->arch.insn);
816 	int len, err = -EIO;
817 
818 	/* Copy only available bytes, -EIO if nothing was read */
819 	do {
820 		if (offs >= i_size_read(uprobe->inode))
821 			break;
822 
823 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
824 		err = __copy_insn(mapping, filp, insn, len, offs);
825 		if (err)
826 			break;
827 
828 		insn += len;
829 		offs += len;
830 		size -= len;
831 	} while (size);
832 
833 	return err;
834 }
835 
836 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
837 				struct mm_struct *mm, unsigned long vaddr)
838 {
839 	int ret = 0;
840 
841 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
842 		return ret;
843 
844 	/* TODO: move this into _register, until then we abuse this sem. */
845 	down_write(&uprobe->consumer_rwsem);
846 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
847 		goto out;
848 
849 	ret = copy_insn(uprobe, file);
850 	if (ret)
851 		goto out;
852 
853 	ret = -ENOTSUPP;
854 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
855 		goto out;
856 
857 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
858 	if (ret)
859 		goto out;
860 
861 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
862 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
863 
864  out:
865 	up_write(&uprobe->consumer_rwsem);
866 
867 	return ret;
868 }
869 
870 static inline bool consumer_filter(struct uprobe_consumer *uc,
871 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
872 {
873 	return !uc->filter || uc->filter(uc, ctx, mm);
874 }
875 
876 static bool filter_chain(struct uprobe *uprobe,
877 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
878 {
879 	struct uprobe_consumer *uc;
880 	bool ret = false;
881 
882 	down_read(&uprobe->consumer_rwsem);
883 	for (uc = uprobe->consumers; uc; uc = uc->next) {
884 		ret = consumer_filter(uc, ctx, mm);
885 		if (ret)
886 			break;
887 	}
888 	up_read(&uprobe->consumer_rwsem);
889 
890 	return ret;
891 }
892 
893 static int
894 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
895 			struct vm_area_struct *vma, unsigned long vaddr)
896 {
897 	bool first_uprobe;
898 	int ret;
899 
900 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
901 	if (ret)
902 		return ret;
903 
904 	/*
905 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
906 	 * the task can hit this breakpoint right after __replace_page().
907 	 */
908 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
909 	if (first_uprobe)
910 		set_bit(MMF_HAS_UPROBES, &mm->flags);
911 
912 	ret = set_swbp(&uprobe->arch, mm, vaddr);
913 	if (!ret)
914 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
915 	else if (first_uprobe)
916 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
917 
918 	return ret;
919 }
920 
921 static int
922 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
923 {
924 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
925 	return set_orig_insn(&uprobe->arch, mm, vaddr);
926 }
927 
928 static inline bool uprobe_is_active(struct uprobe *uprobe)
929 {
930 	return !RB_EMPTY_NODE(&uprobe->rb_node);
931 }
932 /*
933  * There could be threads that have already hit the breakpoint. They
934  * will recheck the current insn and restart if find_uprobe() fails.
935  * See find_active_uprobe().
936  */
937 static void delete_uprobe(struct uprobe *uprobe)
938 {
939 	if (WARN_ON(!uprobe_is_active(uprobe)))
940 		return;
941 
942 	spin_lock(&uprobes_treelock);
943 	rb_erase(&uprobe->rb_node, &uprobes_tree);
944 	spin_unlock(&uprobes_treelock);
945 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
946 	put_uprobe(uprobe);
947 }
948 
949 struct map_info {
950 	struct map_info *next;
951 	struct mm_struct *mm;
952 	unsigned long vaddr;
953 };
954 
955 static inline struct map_info *free_map_info(struct map_info *info)
956 {
957 	struct map_info *next = info->next;
958 	kfree(info);
959 	return next;
960 }
961 
962 static struct map_info *
963 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
964 {
965 	unsigned long pgoff = offset >> PAGE_SHIFT;
966 	struct vm_area_struct *vma;
967 	struct map_info *curr = NULL;
968 	struct map_info *prev = NULL;
969 	struct map_info *info;
970 	int more = 0;
971 
972  again:
973 	i_mmap_lock_read(mapping);
974 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
975 		if (!valid_vma(vma, is_register))
976 			continue;
977 
978 		if (!prev && !more) {
979 			/*
980 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
981 			 * reclaim. This is optimistic, no harm done if it fails.
982 			 */
983 			prev = kmalloc(sizeof(struct map_info),
984 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
985 			if (prev)
986 				prev->next = NULL;
987 		}
988 		if (!prev) {
989 			more++;
990 			continue;
991 		}
992 
993 		if (!mmget_not_zero(vma->vm_mm))
994 			continue;
995 
996 		info = prev;
997 		prev = prev->next;
998 		info->next = curr;
999 		curr = info;
1000 
1001 		info->mm = vma->vm_mm;
1002 		info->vaddr = offset_to_vaddr(vma, offset);
1003 	}
1004 	i_mmap_unlock_read(mapping);
1005 
1006 	if (!more)
1007 		goto out;
1008 
1009 	prev = curr;
1010 	while (curr) {
1011 		mmput(curr->mm);
1012 		curr = curr->next;
1013 	}
1014 
1015 	do {
1016 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1017 		if (!info) {
1018 			curr = ERR_PTR(-ENOMEM);
1019 			goto out;
1020 		}
1021 		info->next = prev;
1022 		prev = info;
1023 	} while (--more);
1024 
1025 	goto again;
1026  out:
1027 	while (prev)
1028 		prev = free_map_info(prev);
1029 	return curr;
1030 }
1031 
1032 static int
1033 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1034 {
1035 	bool is_register = !!new;
1036 	struct map_info *info;
1037 	int err = 0;
1038 
1039 	percpu_down_write(&dup_mmap_sem);
1040 	info = build_map_info(uprobe->inode->i_mapping,
1041 					uprobe->offset, is_register);
1042 	if (IS_ERR(info)) {
1043 		err = PTR_ERR(info);
1044 		goto out;
1045 	}
1046 
1047 	while (info) {
1048 		struct mm_struct *mm = info->mm;
1049 		struct vm_area_struct *vma;
1050 
1051 		if (err && is_register)
1052 			goto free;
1053 
1054 		mmap_write_lock(mm);
1055 		vma = find_vma(mm, info->vaddr);
1056 		if (!vma || !valid_vma(vma, is_register) ||
1057 		    file_inode(vma->vm_file) != uprobe->inode)
1058 			goto unlock;
1059 
1060 		if (vma->vm_start > info->vaddr ||
1061 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1062 			goto unlock;
1063 
1064 		if (is_register) {
1065 			/* consult only the "caller", new consumer. */
1066 			if (consumer_filter(new,
1067 					UPROBE_FILTER_REGISTER, mm))
1068 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1069 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1070 			if (!filter_chain(uprobe,
1071 					UPROBE_FILTER_UNREGISTER, mm))
1072 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1073 		}
1074 
1075  unlock:
1076 		mmap_write_unlock(mm);
1077  free:
1078 		mmput(mm);
1079 		info = free_map_info(info);
1080 	}
1081  out:
1082 	percpu_up_write(&dup_mmap_sem);
1083 	return err;
1084 }
1085 
1086 static void
1087 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1088 {
1089 	int err;
1090 
1091 	if (WARN_ON(!consumer_del(uprobe, uc)))
1092 		return;
1093 
1094 	err = register_for_each_vma(uprobe, NULL);
1095 	/* TODO : cant unregister? schedule a worker thread */
1096 	if (!uprobe->consumers && !err)
1097 		delete_uprobe(uprobe);
1098 }
1099 
1100 /*
1101  * uprobe_unregister - unregister an already registered probe.
1102  * @inode: the file in which the probe has to be removed.
1103  * @offset: offset from the start of the file.
1104  * @uc: identify which probe if multiple probes are colocated.
1105  */
1106 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1107 {
1108 	struct uprobe *uprobe;
1109 
1110 	uprobe = find_uprobe(inode, offset);
1111 	if (WARN_ON(!uprobe))
1112 		return;
1113 
1114 	down_write(&uprobe->register_rwsem);
1115 	__uprobe_unregister(uprobe, uc);
1116 	up_write(&uprobe->register_rwsem);
1117 	put_uprobe(uprobe);
1118 }
1119 EXPORT_SYMBOL_GPL(uprobe_unregister);
1120 
1121 /*
1122  * __uprobe_register - register a probe
1123  * @inode: the file in which the probe has to be placed.
1124  * @offset: offset from the start of the file.
1125  * @uc: information on howto handle the probe..
1126  *
1127  * Apart from the access refcount, __uprobe_register() takes a creation
1128  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1129  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1130  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1131  * @uprobe even before the register operation is complete. Creation
1132  * refcount is released when the last @uc for the @uprobe
1133  * unregisters. Caller of __uprobe_register() is required to keep @inode
1134  * (and the containing mount) referenced.
1135  *
1136  * Return errno if it cannot successully install probes
1137  * else return 0 (success)
1138  */
1139 static int __uprobe_register(struct inode *inode, loff_t offset,
1140 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1141 {
1142 	struct uprobe *uprobe;
1143 	int ret;
1144 
1145 	/* Uprobe must have at least one set consumer */
1146 	if (!uc->handler && !uc->ret_handler)
1147 		return -EINVAL;
1148 
1149 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1150 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1151 		return -EIO;
1152 	/* Racy, just to catch the obvious mistakes */
1153 	if (offset > i_size_read(inode))
1154 		return -EINVAL;
1155 
1156 	/*
1157 	 * This ensures that copy_from_page(), copy_to_page() and
1158 	 * __update_ref_ctr() can't cross page boundary.
1159 	 */
1160 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1161 		return -EINVAL;
1162 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1163 		return -EINVAL;
1164 
1165  retry:
1166 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1167 	if (!uprobe)
1168 		return -ENOMEM;
1169 	if (IS_ERR(uprobe))
1170 		return PTR_ERR(uprobe);
1171 
1172 	/*
1173 	 * We can race with uprobe_unregister()->delete_uprobe().
1174 	 * Check uprobe_is_active() and retry if it is false.
1175 	 */
1176 	down_write(&uprobe->register_rwsem);
1177 	ret = -EAGAIN;
1178 	if (likely(uprobe_is_active(uprobe))) {
1179 		consumer_add(uprobe, uc);
1180 		ret = register_for_each_vma(uprobe, uc);
1181 		if (ret)
1182 			__uprobe_unregister(uprobe, uc);
1183 	}
1184 	up_write(&uprobe->register_rwsem);
1185 	put_uprobe(uprobe);
1186 
1187 	if (unlikely(ret == -EAGAIN))
1188 		goto retry;
1189 	return ret;
1190 }
1191 
1192 int uprobe_register(struct inode *inode, loff_t offset,
1193 		    struct uprobe_consumer *uc)
1194 {
1195 	return __uprobe_register(inode, offset, 0, uc);
1196 }
1197 EXPORT_SYMBOL_GPL(uprobe_register);
1198 
1199 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1200 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1201 {
1202 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1203 }
1204 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1205 
1206 /*
1207  * uprobe_apply - unregister an already registered probe.
1208  * @inode: the file in which the probe has to be removed.
1209  * @offset: offset from the start of the file.
1210  * @uc: consumer which wants to add more or remove some breakpoints
1211  * @add: add or remove the breakpoints
1212  */
1213 int uprobe_apply(struct inode *inode, loff_t offset,
1214 			struct uprobe_consumer *uc, bool add)
1215 {
1216 	struct uprobe *uprobe;
1217 	struct uprobe_consumer *con;
1218 	int ret = -ENOENT;
1219 
1220 	uprobe = find_uprobe(inode, offset);
1221 	if (WARN_ON(!uprobe))
1222 		return ret;
1223 
1224 	down_write(&uprobe->register_rwsem);
1225 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1226 		;
1227 	if (con)
1228 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1229 	up_write(&uprobe->register_rwsem);
1230 	put_uprobe(uprobe);
1231 
1232 	return ret;
1233 }
1234 
1235 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1236 {
1237 	struct vm_area_struct *vma;
1238 	int err = 0;
1239 
1240 	mmap_read_lock(mm);
1241 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1242 		unsigned long vaddr;
1243 		loff_t offset;
1244 
1245 		if (!valid_vma(vma, false) ||
1246 		    file_inode(vma->vm_file) != uprobe->inode)
1247 			continue;
1248 
1249 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1250 		if (uprobe->offset <  offset ||
1251 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1252 			continue;
1253 
1254 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1255 		err |= remove_breakpoint(uprobe, mm, vaddr);
1256 	}
1257 	mmap_read_unlock(mm);
1258 
1259 	return err;
1260 }
1261 
1262 static struct rb_node *
1263 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1264 {
1265 	struct rb_node *n = uprobes_tree.rb_node;
1266 
1267 	while (n) {
1268 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1269 
1270 		if (inode < u->inode) {
1271 			n = n->rb_left;
1272 		} else if (inode > u->inode) {
1273 			n = n->rb_right;
1274 		} else {
1275 			if (max < u->offset)
1276 				n = n->rb_left;
1277 			else if (min > u->offset)
1278 				n = n->rb_right;
1279 			else
1280 				break;
1281 		}
1282 	}
1283 
1284 	return n;
1285 }
1286 
1287 /*
1288  * For a given range in vma, build a list of probes that need to be inserted.
1289  */
1290 static void build_probe_list(struct inode *inode,
1291 				struct vm_area_struct *vma,
1292 				unsigned long start, unsigned long end,
1293 				struct list_head *head)
1294 {
1295 	loff_t min, max;
1296 	struct rb_node *n, *t;
1297 	struct uprobe *u;
1298 
1299 	INIT_LIST_HEAD(head);
1300 	min = vaddr_to_offset(vma, start);
1301 	max = min + (end - start) - 1;
1302 
1303 	spin_lock(&uprobes_treelock);
1304 	n = find_node_in_range(inode, min, max);
1305 	if (n) {
1306 		for (t = n; t; t = rb_prev(t)) {
1307 			u = rb_entry(t, struct uprobe, rb_node);
1308 			if (u->inode != inode || u->offset < min)
1309 				break;
1310 			list_add(&u->pending_list, head);
1311 			get_uprobe(u);
1312 		}
1313 		for (t = n; (t = rb_next(t)); ) {
1314 			u = rb_entry(t, struct uprobe, rb_node);
1315 			if (u->inode != inode || u->offset > max)
1316 				break;
1317 			list_add(&u->pending_list, head);
1318 			get_uprobe(u);
1319 		}
1320 	}
1321 	spin_unlock(&uprobes_treelock);
1322 }
1323 
1324 /* @vma contains reference counter, not the probed instruction. */
1325 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1326 {
1327 	struct list_head *pos, *q;
1328 	struct delayed_uprobe *du;
1329 	unsigned long vaddr;
1330 	int ret = 0, err = 0;
1331 
1332 	mutex_lock(&delayed_uprobe_lock);
1333 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1334 		du = list_entry(pos, struct delayed_uprobe, list);
1335 
1336 		if (du->mm != vma->vm_mm ||
1337 		    !valid_ref_ctr_vma(du->uprobe, vma))
1338 			continue;
1339 
1340 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1341 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1342 		if (ret) {
1343 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1344 			if (!err)
1345 				err = ret;
1346 		}
1347 		delayed_uprobe_delete(du);
1348 	}
1349 	mutex_unlock(&delayed_uprobe_lock);
1350 	return err;
1351 }
1352 
1353 /*
1354  * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1355  *
1356  * Currently we ignore all errors and always return 0, the callers
1357  * can't handle the failure anyway.
1358  */
1359 int uprobe_mmap(struct vm_area_struct *vma)
1360 {
1361 	struct list_head tmp_list;
1362 	struct uprobe *uprobe, *u;
1363 	struct inode *inode;
1364 
1365 	if (no_uprobe_events())
1366 		return 0;
1367 
1368 	if (vma->vm_file &&
1369 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1370 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1371 		delayed_ref_ctr_inc(vma);
1372 
1373 	if (!valid_vma(vma, true))
1374 		return 0;
1375 
1376 	inode = file_inode(vma->vm_file);
1377 	if (!inode)
1378 		return 0;
1379 
1380 	mutex_lock(uprobes_mmap_hash(inode));
1381 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1382 	/*
1383 	 * We can race with uprobe_unregister(), this uprobe can be already
1384 	 * removed. But in this case filter_chain() must return false, all
1385 	 * consumers have gone away.
1386 	 */
1387 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1388 		if (!fatal_signal_pending(current) &&
1389 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1390 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1391 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1392 		}
1393 		put_uprobe(uprobe);
1394 	}
1395 	mutex_unlock(uprobes_mmap_hash(inode));
1396 
1397 	return 0;
1398 }
1399 
1400 static bool
1401 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1402 {
1403 	loff_t min, max;
1404 	struct inode *inode;
1405 	struct rb_node *n;
1406 
1407 	inode = file_inode(vma->vm_file);
1408 
1409 	min = vaddr_to_offset(vma, start);
1410 	max = min + (end - start) - 1;
1411 
1412 	spin_lock(&uprobes_treelock);
1413 	n = find_node_in_range(inode, min, max);
1414 	spin_unlock(&uprobes_treelock);
1415 
1416 	return !!n;
1417 }
1418 
1419 /*
1420  * Called in context of a munmap of a vma.
1421  */
1422 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1423 {
1424 	if (no_uprobe_events() || !valid_vma(vma, false))
1425 		return;
1426 
1427 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1428 		return;
1429 
1430 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1431 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1432 		return;
1433 
1434 	if (vma_has_uprobes(vma, start, end))
1435 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1436 }
1437 
1438 /* Slot allocation for XOL */
1439 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1440 {
1441 	struct vm_area_struct *vma;
1442 	int ret;
1443 
1444 	if (mmap_write_lock_killable(mm))
1445 		return -EINTR;
1446 
1447 	if (mm->uprobes_state.xol_area) {
1448 		ret = -EALREADY;
1449 		goto fail;
1450 	}
1451 
1452 	if (!area->vaddr) {
1453 		/* Try to map as high as possible, this is only a hint. */
1454 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1455 						PAGE_SIZE, 0, 0);
1456 		if (IS_ERR_VALUE(area->vaddr)) {
1457 			ret = area->vaddr;
1458 			goto fail;
1459 		}
1460 	}
1461 
1462 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1463 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1464 				&area->xol_mapping);
1465 	if (IS_ERR(vma)) {
1466 		ret = PTR_ERR(vma);
1467 		goto fail;
1468 	}
1469 
1470 	ret = 0;
1471 	/* pairs with get_xol_area() */
1472 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1473  fail:
1474 	mmap_write_unlock(mm);
1475 
1476 	return ret;
1477 }
1478 
1479 static struct xol_area *__create_xol_area(unsigned long vaddr)
1480 {
1481 	struct mm_struct *mm = current->mm;
1482 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1483 	struct xol_area *area;
1484 
1485 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1486 	if (unlikely(!area))
1487 		goto out;
1488 
1489 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1490 			       GFP_KERNEL);
1491 	if (!area->bitmap)
1492 		goto free_area;
1493 
1494 	area->xol_mapping.name = "[uprobes]";
1495 	area->xol_mapping.fault = NULL;
1496 	area->xol_mapping.pages = area->pages;
1497 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1498 	if (!area->pages[0])
1499 		goto free_bitmap;
1500 	area->pages[1] = NULL;
1501 
1502 	area->vaddr = vaddr;
1503 	init_waitqueue_head(&area->wq);
1504 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1505 	set_bit(0, area->bitmap);
1506 	atomic_set(&area->slot_count, 1);
1507 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1508 
1509 	if (!xol_add_vma(mm, area))
1510 		return area;
1511 
1512 	__free_page(area->pages[0]);
1513  free_bitmap:
1514 	kfree(area->bitmap);
1515  free_area:
1516 	kfree(area);
1517  out:
1518 	return NULL;
1519 }
1520 
1521 /*
1522  * get_xol_area - Allocate process's xol_area if necessary.
1523  * This area will be used for storing instructions for execution out of line.
1524  *
1525  * Returns the allocated area or NULL.
1526  */
1527 static struct xol_area *get_xol_area(void)
1528 {
1529 	struct mm_struct *mm = current->mm;
1530 	struct xol_area *area;
1531 
1532 	if (!mm->uprobes_state.xol_area)
1533 		__create_xol_area(0);
1534 
1535 	/* Pairs with xol_add_vma() smp_store_release() */
1536 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1537 	return area;
1538 }
1539 
1540 /*
1541  * uprobe_clear_state - Free the area allocated for slots.
1542  */
1543 void uprobe_clear_state(struct mm_struct *mm)
1544 {
1545 	struct xol_area *area = mm->uprobes_state.xol_area;
1546 
1547 	mutex_lock(&delayed_uprobe_lock);
1548 	delayed_uprobe_remove(NULL, mm);
1549 	mutex_unlock(&delayed_uprobe_lock);
1550 
1551 	if (!area)
1552 		return;
1553 
1554 	put_page(area->pages[0]);
1555 	kfree(area->bitmap);
1556 	kfree(area);
1557 }
1558 
1559 void uprobe_start_dup_mmap(void)
1560 {
1561 	percpu_down_read(&dup_mmap_sem);
1562 }
1563 
1564 void uprobe_end_dup_mmap(void)
1565 {
1566 	percpu_up_read(&dup_mmap_sem);
1567 }
1568 
1569 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1570 {
1571 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1572 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1573 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1574 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1575 	}
1576 }
1577 
1578 /*
1579  *  - search for a free slot.
1580  */
1581 static unsigned long xol_take_insn_slot(struct xol_area *area)
1582 {
1583 	unsigned long slot_addr;
1584 	int slot_nr;
1585 
1586 	do {
1587 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1588 		if (slot_nr < UINSNS_PER_PAGE) {
1589 			if (!test_and_set_bit(slot_nr, area->bitmap))
1590 				break;
1591 
1592 			slot_nr = UINSNS_PER_PAGE;
1593 			continue;
1594 		}
1595 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1596 	} while (slot_nr >= UINSNS_PER_PAGE);
1597 
1598 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1599 	atomic_inc(&area->slot_count);
1600 
1601 	return slot_addr;
1602 }
1603 
1604 /*
1605  * xol_get_insn_slot - allocate a slot for xol.
1606  * Returns the allocated slot address or 0.
1607  */
1608 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1609 {
1610 	struct xol_area *area;
1611 	unsigned long xol_vaddr;
1612 
1613 	area = get_xol_area();
1614 	if (!area)
1615 		return 0;
1616 
1617 	xol_vaddr = xol_take_insn_slot(area);
1618 	if (unlikely(!xol_vaddr))
1619 		return 0;
1620 
1621 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1622 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1623 
1624 	return xol_vaddr;
1625 }
1626 
1627 /*
1628  * xol_free_insn_slot - If slot was earlier allocated by
1629  * @xol_get_insn_slot(), make the slot available for
1630  * subsequent requests.
1631  */
1632 static void xol_free_insn_slot(struct task_struct *tsk)
1633 {
1634 	struct xol_area *area;
1635 	unsigned long vma_end;
1636 	unsigned long slot_addr;
1637 
1638 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1639 		return;
1640 
1641 	slot_addr = tsk->utask->xol_vaddr;
1642 	if (unlikely(!slot_addr))
1643 		return;
1644 
1645 	area = tsk->mm->uprobes_state.xol_area;
1646 	vma_end = area->vaddr + PAGE_SIZE;
1647 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1648 		unsigned long offset;
1649 		int slot_nr;
1650 
1651 		offset = slot_addr - area->vaddr;
1652 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1653 		if (slot_nr >= UINSNS_PER_PAGE)
1654 			return;
1655 
1656 		clear_bit(slot_nr, area->bitmap);
1657 		atomic_dec(&area->slot_count);
1658 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1659 		if (waitqueue_active(&area->wq))
1660 			wake_up(&area->wq);
1661 
1662 		tsk->utask->xol_vaddr = 0;
1663 	}
1664 }
1665 
1666 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1667 				  void *src, unsigned long len)
1668 {
1669 	/* Initialize the slot */
1670 	copy_to_page(page, vaddr, src, len);
1671 
1672 	/*
1673 	 * We probably need flush_icache_user_page() but it needs vma.
1674 	 * This should work on most of architectures by default. If
1675 	 * architecture needs to do something different it can define
1676 	 * its own version of the function.
1677 	 */
1678 	flush_dcache_page(page);
1679 }
1680 
1681 /**
1682  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1683  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1684  * instruction.
1685  * Return the address of the breakpoint instruction.
1686  */
1687 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1688 {
1689 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1690 }
1691 
1692 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1693 {
1694 	struct uprobe_task *utask = current->utask;
1695 
1696 	if (unlikely(utask && utask->active_uprobe))
1697 		return utask->vaddr;
1698 
1699 	return instruction_pointer(regs);
1700 }
1701 
1702 static struct return_instance *free_ret_instance(struct return_instance *ri)
1703 {
1704 	struct return_instance *next = ri->next;
1705 	put_uprobe(ri->uprobe);
1706 	kfree(ri);
1707 	return next;
1708 }
1709 
1710 /*
1711  * Called with no locks held.
1712  * Called in context of an exiting or an exec-ing thread.
1713  */
1714 void uprobe_free_utask(struct task_struct *t)
1715 {
1716 	struct uprobe_task *utask = t->utask;
1717 	struct return_instance *ri;
1718 
1719 	if (!utask)
1720 		return;
1721 
1722 	if (utask->active_uprobe)
1723 		put_uprobe(utask->active_uprobe);
1724 
1725 	ri = utask->return_instances;
1726 	while (ri)
1727 		ri = free_ret_instance(ri);
1728 
1729 	xol_free_insn_slot(t);
1730 	kfree(utask);
1731 	t->utask = NULL;
1732 }
1733 
1734 /*
1735  * Allocate a uprobe_task object for the task if necessary.
1736  * Called when the thread hits a breakpoint.
1737  *
1738  * Returns:
1739  * - pointer to new uprobe_task on success
1740  * - NULL otherwise
1741  */
1742 static struct uprobe_task *get_utask(void)
1743 {
1744 	if (!current->utask)
1745 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1746 	return current->utask;
1747 }
1748 
1749 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1750 {
1751 	struct uprobe_task *n_utask;
1752 	struct return_instance **p, *o, *n;
1753 
1754 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1755 	if (!n_utask)
1756 		return -ENOMEM;
1757 	t->utask = n_utask;
1758 
1759 	p = &n_utask->return_instances;
1760 	for (o = o_utask->return_instances; o; o = o->next) {
1761 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1762 		if (!n)
1763 			return -ENOMEM;
1764 
1765 		*n = *o;
1766 		get_uprobe(n->uprobe);
1767 		n->next = NULL;
1768 
1769 		*p = n;
1770 		p = &n->next;
1771 		n_utask->depth++;
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 static void uprobe_warn(struct task_struct *t, const char *msg)
1778 {
1779 	pr_warn("uprobe: %s:%d failed to %s\n",
1780 			current->comm, current->pid, msg);
1781 }
1782 
1783 static void dup_xol_work(struct callback_head *work)
1784 {
1785 	if (current->flags & PF_EXITING)
1786 		return;
1787 
1788 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1789 			!fatal_signal_pending(current))
1790 		uprobe_warn(current, "dup xol area");
1791 }
1792 
1793 /*
1794  * Called in context of a new clone/fork from copy_process.
1795  */
1796 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1797 {
1798 	struct uprobe_task *utask = current->utask;
1799 	struct mm_struct *mm = current->mm;
1800 	struct xol_area *area;
1801 
1802 	t->utask = NULL;
1803 
1804 	if (!utask || !utask->return_instances)
1805 		return;
1806 
1807 	if (mm == t->mm && !(flags & CLONE_VFORK))
1808 		return;
1809 
1810 	if (dup_utask(t, utask))
1811 		return uprobe_warn(t, "dup ret instances");
1812 
1813 	/* The task can fork() after dup_xol_work() fails */
1814 	area = mm->uprobes_state.xol_area;
1815 	if (!area)
1816 		return uprobe_warn(t, "dup xol area");
1817 
1818 	if (mm == t->mm)
1819 		return;
1820 
1821 	t->utask->dup_xol_addr = area->vaddr;
1822 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1823 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1824 }
1825 
1826 /*
1827  * Current area->vaddr notion assume the trampoline address is always
1828  * equal area->vaddr.
1829  *
1830  * Returns -1 in case the xol_area is not allocated.
1831  */
1832 static unsigned long get_trampoline_vaddr(void)
1833 {
1834 	struct xol_area *area;
1835 	unsigned long trampoline_vaddr = -1;
1836 
1837 	/* Pairs with xol_add_vma() smp_store_release() */
1838 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1839 	if (area)
1840 		trampoline_vaddr = area->vaddr;
1841 
1842 	return trampoline_vaddr;
1843 }
1844 
1845 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1846 					struct pt_regs *regs)
1847 {
1848 	struct return_instance *ri = utask->return_instances;
1849 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1850 
1851 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1852 		ri = free_ret_instance(ri);
1853 		utask->depth--;
1854 	}
1855 	utask->return_instances = ri;
1856 }
1857 
1858 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1859 {
1860 	struct return_instance *ri;
1861 	struct uprobe_task *utask;
1862 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1863 	bool chained;
1864 
1865 	if (!get_xol_area())
1866 		return;
1867 
1868 	utask = get_utask();
1869 	if (!utask)
1870 		return;
1871 
1872 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1873 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1874 				" nestedness limit pid/tgid=%d/%d\n",
1875 				current->pid, current->tgid);
1876 		return;
1877 	}
1878 
1879 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1880 	if (!ri)
1881 		return;
1882 
1883 	trampoline_vaddr = get_trampoline_vaddr();
1884 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1885 	if (orig_ret_vaddr == -1)
1886 		goto fail;
1887 
1888 	/* drop the entries invalidated by longjmp() */
1889 	chained = (orig_ret_vaddr == trampoline_vaddr);
1890 	cleanup_return_instances(utask, chained, regs);
1891 
1892 	/*
1893 	 * We don't want to keep trampoline address in stack, rather keep the
1894 	 * original return address of first caller thru all the consequent
1895 	 * instances. This also makes breakpoint unwrapping easier.
1896 	 */
1897 	if (chained) {
1898 		if (!utask->return_instances) {
1899 			/*
1900 			 * This situation is not possible. Likely we have an
1901 			 * attack from user-space.
1902 			 */
1903 			uprobe_warn(current, "handle tail call");
1904 			goto fail;
1905 		}
1906 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1907 	}
1908 
1909 	ri->uprobe = get_uprobe(uprobe);
1910 	ri->func = instruction_pointer(regs);
1911 	ri->stack = user_stack_pointer(regs);
1912 	ri->orig_ret_vaddr = orig_ret_vaddr;
1913 	ri->chained = chained;
1914 
1915 	utask->depth++;
1916 	ri->next = utask->return_instances;
1917 	utask->return_instances = ri;
1918 
1919 	return;
1920  fail:
1921 	kfree(ri);
1922 }
1923 
1924 /* Prepare to single-step probed instruction out of line. */
1925 static int
1926 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1927 {
1928 	struct uprobe_task *utask;
1929 	unsigned long xol_vaddr;
1930 	int err;
1931 
1932 	utask = get_utask();
1933 	if (!utask)
1934 		return -ENOMEM;
1935 
1936 	xol_vaddr = xol_get_insn_slot(uprobe);
1937 	if (!xol_vaddr)
1938 		return -ENOMEM;
1939 
1940 	utask->xol_vaddr = xol_vaddr;
1941 	utask->vaddr = bp_vaddr;
1942 
1943 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1944 	if (unlikely(err)) {
1945 		xol_free_insn_slot(current);
1946 		return err;
1947 	}
1948 
1949 	utask->active_uprobe = uprobe;
1950 	utask->state = UTASK_SSTEP;
1951 	return 0;
1952 }
1953 
1954 /*
1955  * If we are singlestepping, then ensure this thread is not connected to
1956  * non-fatal signals until completion of singlestep.  When xol insn itself
1957  * triggers the signal,  restart the original insn even if the task is
1958  * already SIGKILL'ed (since coredump should report the correct ip).  This
1959  * is even more important if the task has a handler for SIGSEGV/etc, The
1960  * _same_ instruction should be repeated again after return from the signal
1961  * handler, and SSTEP can never finish in this case.
1962  */
1963 bool uprobe_deny_signal(void)
1964 {
1965 	struct task_struct *t = current;
1966 	struct uprobe_task *utask = t->utask;
1967 
1968 	if (likely(!utask || !utask->active_uprobe))
1969 		return false;
1970 
1971 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1972 
1973 	if (task_sigpending(t)) {
1974 		spin_lock_irq(&t->sighand->siglock);
1975 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1976 		spin_unlock_irq(&t->sighand->siglock);
1977 
1978 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1979 			utask->state = UTASK_SSTEP_TRAPPED;
1980 			set_tsk_thread_flag(t, TIF_UPROBE);
1981 		}
1982 	}
1983 
1984 	return true;
1985 }
1986 
1987 static void mmf_recalc_uprobes(struct mm_struct *mm)
1988 {
1989 	struct vm_area_struct *vma;
1990 
1991 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1992 		if (!valid_vma(vma, false))
1993 			continue;
1994 		/*
1995 		 * This is not strictly accurate, we can race with
1996 		 * uprobe_unregister() and see the already removed
1997 		 * uprobe if delete_uprobe() was not yet called.
1998 		 * Or this uprobe can be filtered out.
1999 		 */
2000 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2001 			return;
2002 	}
2003 
2004 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2005 }
2006 
2007 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2008 {
2009 	struct page *page;
2010 	uprobe_opcode_t opcode;
2011 	int result;
2012 
2013 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2014 		return -EINVAL;
2015 
2016 	pagefault_disable();
2017 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2018 	pagefault_enable();
2019 
2020 	if (likely(result == 0))
2021 		goto out;
2022 
2023 	/*
2024 	 * The NULL 'tsk' here ensures that any faults that occur here
2025 	 * will not be accounted to the task.  'mm' *is* current->mm,
2026 	 * but we treat this as a 'remote' access since it is
2027 	 * essentially a kernel access to the memory.
2028 	 */
2029 	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2030 			NULL, NULL);
2031 	if (result < 0)
2032 		return result;
2033 
2034 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2035 	put_page(page);
2036  out:
2037 	/* This needs to return true for any variant of the trap insn */
2038 	return is_trap_insn(&opcode);
2039 }
2040 
2041 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2042 {
2043 	struct mm_struct *mm = current->mm;
2044 	struct uprobe *uprobe = NULL;
2045 	struct vm_area_struct *vma;
2046 
2047 	mmap_read_lock(mm);
2048 	vma = vma_lookup(mm, bp_vaddr);
2049 	if (vma) {
2050 		if (valid_vma(vma, false)) {
2051 			struct inode *inode = file_inode(vma->vm_file);
2052 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2053 
2054 			uprobe = find_uprobe(inode, offset);
2055 		}
2056 
2057 		if (!uprobe)
2058 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2059 	} else {
2060 		*is_swbp = -EFAULT;
2061 	}
2062 
2063 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2064 		mmf_recalc_uprobes(mm);
2065 	mmap_read_unlock(mm);
2066 
2067 	return uprobe;
2068 }
2069 
2070 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2071 {
2072 	struct uprobe_consumer *uc;
2073 	int remove = UPROBE_HANDLER_REMOVE;
2074 	bool need_prep = false; /* prepare return uprobe, when needed */
2075 
2076 	down_read(&uprobe->register_rwsem);
2077 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2078 		int rc = 0;
2079 
2080 		if (uc->handler) {
2081 			rc = uc->handler(uc, regs);
2082 			WARN(rc & ~UPROBE_HANDLER_MASK,
2083 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2084 		}
2085 
2086 		if (uc->ret_handler)
2087 			need_prep = true;
2088 
2089 		remove &= rc;
2090 	}
2091 
2092 	if (need_prep && !remove)
2093 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2094 
2095 	if (remove && uprobe->consumers) {
2096 		WARN_ON(!uprobe_is_active(uprobe));
2097 		unapply_uprobe(uprobe, current->mm);
2098 	}
2099 	up_read(&uprobe->register_rwsem);
2100 }
2101 
2102 static void
2103 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2104 {
2105 	struct uprobe *uprobe = ri->uprobe;
2106 	struct uprobe_consumer *uc;
2107 
2108 	down_read(&uprobe->register_rwsem);
2109 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2110 		if (uc->ret_handler)
2111 			uc->ret_handler(uc, ri->func, regs);
2112 	}
2113 	up_read(&uprobe->register_rwsem);
2114 }
2115 
2116 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2117 {
2118 	bool chained;
2119 
2120 	do {
2121 		chained = ri->chained;
2122 		ri = ri->next;	/* can't be NULL if chained */
2123 	} while (chained);
2124 
2125 	return ri;
2126 }
2127 
2128 static void handle_trampoline(struct pt_regs *regs)
2129 {
2130 	struct uprobe_task *utask;
2131 	struct return_instance *ri, *next;
2132 	bool valid;
2133 
2134 	utask = current->utask;
2135 	if (!utask)
2136 		goto sigill;
2137 
2138 	ri = utask->return_instances;
2139 	if (!ri)
2140 		goto sigill;
2141 
2142 	do {
2143 		/*
2144 		 * We should throw out the frames invalidated by longjmp().
2145 		 * If this chain is valid, then the next one should be alive
2146 		 * or NULL; the latter case means that nobody but ri->func
2147 		 * could hit this trampoline on return. TODO: sigaltstack().
2148 		 */
2149 		next = find_next_ret_chain(ri);
2150 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2151 
2152 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2153 		do {
2154 			if (valid)
2155 				handle_uretprobe_chain(ri, regs);
2156 			ri = free_ret_instance(ri);
2157 			utask->depth--;
2158 		} while (ri != next);
2159 	} while (!valid);
2160 
2161 	utask->return_instances = ri;
2162 	return;
2163 
2164  sigill:
2165 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2166 	force_sig(SIGILL);
2167 
2168 }
2169 
2170 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2171 {
2172 	return false;
2173 }
2174 
2175 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2176 					struct pt_regs *regs)
2177 {
2178 	return true;
2179 }
2180 
2181 /*
2182  * Run handler and ask thread to singlestep.
2183  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2184  */
2185 static void handle_swbp(struct pt_regs *regs)
2186 {
2187 	struct uprobe *uprobe;
2188 	unsigned long bp_vaddr;
2189 	int is_swbp;
2190 
2191 	bp_vaddr = uprobe_get_swbp_addr(regs);
2192 	if (bp_vaddr == get_trampoline_vaddr())
2193 		return handle_trampoline(regs);
2194 
2195 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2196 	if (!uprobe) {
2197 		if (is_swbp > 0) {
2198 			/* No matching uprobe; signal SIGTRAP. */
2199 			force_sig(SIGTRAP);
2200 		} else {
2201 			/*
2202 			 * Either we raced with uprobe_unregister() or we can't
2203 			 * access this memory. The latter is only possible if
2204 			 * another thread plays with our ->mm. In both cases
2205 			 * we can simply restart. If this vma was unmapped we
2206 			 * can pretend this insn was not executed yet and get
2207 			 * the (correct) SIGSEGV after restart.
2208 			 */
2209 			instruction_pointer_set(regs, bp_vaddr);
2210 		}
2211 		return;
2212 	}
2213 
2214 	/* change it in advance for ->handler() and restart */
2215 	instruction_pointer_set(regs, bp_vaddr);
2216 
2217 	/*
2218 	 * TODO: move copy_insn/etc into _register and remove this hack.
2219 	 * After we hit the bp, _unregister + _register can install the
2220 	 * new and not-yet-analyzed uprobe at the same address, restart.
2221 	 */
2222 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2223 		goto out;
2224 
2225 	/*
2226 	 * Pairs with the smp_wmb() in prepare_uprobe().
2227 	 *
2228 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2229 	 * we must also see the stores to &uprobe->arch performed by the
2230 	 * prepare_uprobe() call.
2231 	 */
2232 	smp_rmb();
2233 
2234 	/* Tracing handlers use ->utask to communicate with fetch methods */
2235 	if (!get_utask())
2236 		goto out;
2237 
2238 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2239 		goto out;
2240 
2241 	handler_chain(uprobe, regs);
2242 
2243 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2244 		goto out;
2245 
2246 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2247 		return;
2248 
2249 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2250 out:
2251 	put_uprobe(uprobe);
2252 }
2253 
2254 /*
2255  * Perform required fix-ups and disable singlestep.
2256  * Allow pending signals to take effect.
2257  */
2258 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2259 {
2260 	struct uprobe *uprobe;
2261 	int err = 0;
2262 
2263 	uprobe = utask->active_uprobe;
2264 	if (utask->state == UTASK_SSTEP_ACK)
2265 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2266 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2267 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2268 	else
2269 		WARN_ON_ONCE(1);
2270 
2271 	put_uprobe(uprobe);
2272 	utask->active_uprobe = NULL;
2273 	utask->state = UTASK_RUNNING;
2274 	xol_free_insn_slot(current);
2275 
2276 	spin_lock_irq(&current->sighand->siglock);
2277 	recalc_sigpending(); /* see uprobe_deny_signal() */
2278 	spin_unlock_irq(&current->sighand->siglock);
2279 
2280 	if (unlikely(err)) {
2281 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2282 		force_sig(SIGILL);
2283 	}
2284 }
2285 
2286 /*
2287  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2288  * allows the thread to return from interrupt. After that handle_swbp()
2289  * sets utask->active_uprobe.
2290  *
2291  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2292  * and allows the thread to return from interrupt.
2293  *
2294  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2295  * uprobe_notify_resume().
2296  */
2297 void uprobe_notify_resume(struct pt_regs *regs)
2298 {
2299 	struct uprobe_task *utask;
2300 
2301 	clear_thread_flag(TIF_UPROBE);
2302 
2303 	utask = current->utask;
2304 	if (utask && utask->active_uprobe)
2305 		handle_singlestep(utask, regs);
2306 	else
2307 		handle_swbp(regs);
2308 }
2309 
2310 /*
2311  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2312  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2313  */
2314 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2315 {
2316 	if (!current->mm)
2317 		return 0;
2318 
2319 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2320 	    (!current->utask || !current->utask->return_instances))
2321 		return 0;
2322 
2323 	set_thread_flag(TIF_UPROBE);
2324 	return 1;
2325 }
2326 
2327 /*
2328  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2329  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2330  */
2331 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2332 {
2333 	struct uprobe_task *utask = current->utask;
2334 
2335 	if (!current->mm || !utask || !utask->active_uprobe)
2336 		/* task is currently not uprobed */
2337 		return 0;
2338 
2339 	utask->state = UTASK_SSTEP_ACK;
2340 	set_thread_flag(TIF_UPROBE);
2341 	return 1;
2342 }
2343 
2344 static struct notifier_block uprobe_exception_nb = {
2345 	.notifier_call		= arch_uprobe_exception_notify,
2346 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2347 };
2348 
2349 void __init uprobes_init(void)
2350 {
2351 	int i;
2352 
2353 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2354 		mutex_init(&uprobes_mmap_mutex[i]);
2355 
2356 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2357 }
2358