xref: /openbmc/linux/kernel/events/uprobes.c (revision c4ee0af3)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>		/* anon_vma_prepare */
32 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
33 #include <linux/swap.h>		/* try_to_free_swap */
34 #include <linux/ptrace.h>	/* user_enable_single_step */
35 #include <linux/kdebug.h>	/* notifier mechanism */
36 #include "../../mm/internal.h"	/* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 
40 #include <linux/uprobes.h>
41 
42 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
44 
45 static struct rb_root uprobes_tree = RB_ROOT;
46 /*
47  * allows us to skip the uprobe_mmap if there are no uprobe events active
48  * at this time.  Probably a fine grained per inode count is better?
49  */
50 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
51 
52 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
53 
54 #define UPROBES_HASH_SZ	13
55 /* serialize uprobe->pending_list */
56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58 
59 static struct percpu_rw_semaphore dup_mmap_sem;
60 
61 /* Have a copy of original instruction */
62 #define UPROBE_COPY_INSN	0
63 /* Can skip singlestep */
64 #define UPROBE_SKIP_SSTEP	1
65 
66 struct uprobe {
67 	struct rb_node		rb_node;	/* node in the rb tree */
68 	atomic_t		ref;
69 	struct rw_semaphore	register_rwsem;
70 	struct rw_semaphore	consumer_rwsem;
71 	struct list_head	pending_list;
72 	struct uprobe_consumer	*consumers;
73 	struct inode		*inode;		/* Also hold a ref to inode */
74 	loff_t			offset;
75 	unsigned long		flags;
76 	struct arch_uprobe	arch;
77 };
78 
79 struct return_instance {
80 	struct uprobe		*uprobe;
81 	unsigned long		func;
82 	unsigned long		orig_ret_vaddr; /* original return address */
83 	bool			chained;	/* true, if instance is nested */
84 
85 	struct return_instance	*next;		/* keep as stack */
86 };
87 
88 /*
89  * valid_vma: Verify if the specified vma is an executable vma
90  * Relax restrictions while unregistering: vm_flags might have
91  * changed after breakpoint was inserted.
92  *	- is_register: indicates if we are in register context.
93  *	- Return 1 if the specified virtual address is in an
94  *	  executable vma.
95  */
96 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
97 {
98 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
99 
100 	if (is_register)
101 		flags |= VM_WRITE;
102 
103 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
104 }
105 
106 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
107 {
108 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
109 }
110 
111 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
112 {
113 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
114 }
115 
116 /**
117  * __replace_page - replace page in vma by new page.
118  * based on replace_page in mm/ksm.c
119  *
120  * @vma:      vma that holds the pte pointing to page
121  * @addr:     address the old @page is mapped at
122  * @page:     the cowed page we are replacing by kpage
123  * @kpage:    the modified page we replace page by
124  *
125  * Returns 0 on success, -EFAULT on failure.
126  */
127 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
128 				struct page *page, struct page *kpage)
129 {
130 	struct mm_struct *mm = vma->vm_mm;
131 	spinlock_t *ptl;
132 	pte_t *ptep;
133 	int err;
134 	/* For mmu_notifiers */
135 	const unsigned long mmun_start = addr;
136 	const unsigned long mmun_end   = addr + PAGE_SIZE;
137 
138 	/* For try_to_free_swap() and munlock_vma_page() below */
139 	lock_page(page);
140 
141 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
142 	err = -EAGAIN;
143 	ptep = page_check_address(page, mm, addr, &ptl, 0);
144 	if (!ptep)
145 		goto unlock;
146 
147 	get_page(kpage);
148 	page_add_new_anon_rmap(kpage, vma, addr);
149 
150 	if (!PageAnon(page)) {
151 		dec_mm_counter(mm, MM_FILEPAGES);
152 		inc_mm_counter(mm, MM_ANONPAGES);
153 	}
154 
155 	flush_cache_page(vma, addr, pte_pfn(*ptep));
156 	ptep_clear_flush(vma, addr, ptep);
157 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
158 
159 	page_remove_rmap(page);
160 	if (!page_mapped(page))
161 		try_to_free_swap(page);
162 	pte_unmap_unlock(ptep, ptl);
163 
164 	if (vma->vm_flags & VM_LOCKED)
165 		munlock_vma_page(page);
166 	put_page(page);
167 
168 	err = 0;
169  unlock:
170 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
171 	unlock_page(page);
172 	return err;
173 }
174 
175 /**
176  * is_swbp_insn - check if instruction is breakpoint instruction.
177  * @insn: instruction to be checked.
178  * Default implementation of is_swbp_insn
179  * Returns true if @insn is a breakpoint instruction.
180  */
181 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
182 {
183 	return *insn == UPROBE_SWBP_INSN;
184 }
185 
186 /**
187  * is_trap_insn - check if instruction is breakpoint instruction.
188  * @insn: instruction to be checked.
189  * Default implementation of is_trap_insn
190  * Returns true if @insn is a breakpoint instruction.
191  *
192  * This function is needed for the case where an architecture has multiple
193  * trap instructions (like powerpc).
194  */
195 bool __weak is_trap_insn(uprobe_opcode_t *insn)
196 {
197 	return is_swbp_insn(insn);
198 }
199 
200 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
201 {
202 	void *kaddr = kmap_atomic(page);
203 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
204 	kunmap_atomic(kaddr);
205 }
206 
207 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
208 {
209 	void *kaddr = kmap_atomic(page);
210 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
211 	kunmap_atomic(kaddr);
212 }
213 
214 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
215 {
216 	uprobe_opcode_t old_opcode;
217 	bool is_swbp;
218 
219 	/*
220 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
221 	 * We do not check if it is any other 'trap variant' which could
222 	 * be conditional trap instruction such as the one powerpc supports.
223 	 *
224 	 * The logic is that we do not care if the underlying instruction
225 	 * is a trap variant; uprobes always wins over any other (gdb)
226 	 * breakpoint.
227 	 */
228 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
229 	is_swbp = is_swbp_insn(&old_opcode);
230 
231 	if (is_swbp_insn(new_opcode)) {
232 		if (is_swbp)		/* register: already installed? */
233 			return 0;
234 	} else {
235 		if (!is_swbp)		/* unregister: was it changed by us? */
236 			return 0;
237 	}
238 
239 	return 1;
240 }
241 
242 /*
243  * NOTE:
244  * Expect the breakpoint instruction to be the smallest size instruction for
245  * the architecture. If an arch has variable length instruction and the
246  * breakpoint instruction is not of the smallest length instruction
247  * supported by that architecture then we need to modify is_trap_at_addr and
248  * uprobe_write_opcode accordingly. This would never be a problem for archs
249  * that have fixed length instructions.
250  */
251 
252 /*
253  * uprobe_write_opcode - write the opcode at a given virtual address.
254  * @mm: the probed process address space.
255  * @vaddr: the virtual address to store the opcode.
256  * @opcode: opcode to be written at @vaddr.
257  *
258  * Called with mm->mmap_sem held (for read and with a reference to
259  * mm).
260  *
261  * For mm @mm, write the opcode at @vaddr.
262  * Return 0 (success) or a negative errno.
263  */
264 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
265 			uprobe_opcode_t opcode)
266 {
267 	struct page *old_page, *new_page;
268 	struct vm_area_struct *vma;
269 	int ret;
270 
271 retry:
272 	/* Read the page with vaddr into memory */
273 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
274 	if (ret <= 0)
275 		return ret;
276 
277 	ret = verify_opcode(old_page, vaddr, &opcode);
278 	if (ret <= 0)
279 		goto put_old;
280 
281 	ret = -ENOMEM;
282 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
283 	if (!new_page)
284 		goto put_old;
285 
286 	__SetPageUptodate(new_page);
287 
288 	copy_highpage(new_page, old_page);
289 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
290 
291 	ret = anon_vma_prepare(vma);
292 	if (ret)
293 		goto put_new;
294 
295 	ret = __replace_page(vma, vaddr, old_page, new_page);
296 
297 put_new:
298 	page_cache_release(new_page);
299 put_old:
300 	put_page(old_page);
301 
302 	if (unlikely(ret == -EAGAIN))
303 		goto retry;
304 	return ret;
305 }
306 
307 /**
308  * set_swbp - store breakpoint at a given address.
309  * @auprobe: arch specific probepoint information.
310  * @mm: the probed process address space.
311  * @vaddr: the virtual address to insert the opcode.
312  *
313  * For mm @mm, store the breakpoint instruction at @vaddr.
314  * Return 0 (success) or a negative errno.
315  */
316 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
317 {
318 	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
319 }
320 
321 /**
322  * set_orig_insn - Restore the original instruction.
323  * @mm: the probed process address space.
324  * @auprobe: arch specific probepoint information.
325  * @vaddr: the virtual address to insert the opcode.
326  *
327  * For mm @mm, restore the original opcode (opcode) at @vaddr.
328  * Return 0 (success) or a negative errno.
329  */
330 int __weak
331 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
332 {
333 	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
334 }
335 
336 static int match_uprobe(struct uprobe *l, struct uprobe *r)
337 {
338 	if (l->inode < r->inode)
339 		return -1;
340 
341 	if (l->inode > r->inode)
342 		return 1;
343 
344 	if (l->offset < r->offset)
345 		return -1;
346 
347 	if (l->offset > r->offset)
348 		return 1;
349 
350 	return 0;
351 }
352 
353 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
354 {
355 	struct uprobe u = { .inode = inode, .offset = offset };
356 	struct rb_node *n = uprobes_tree.rb_node;
357 	struct uprobe *uprobe;
358 	int match;
359 
360 	while (n) {
361 		uprobe = rb_entry(n, struct uprobe, rb_node);
362 		match = match_uprobe(&u, uprobe);
363 		if (!match) {
364 			atomic_inc(&uprobe->ref);
365 			return uprobe;
366 		}
367 
368 		if (match < 0)
369 			n = n->rb_left;
370 		else
371 			n = n->rb_right;
372 	}
373 	return NULL;
374 }
375 
376 /*
377  * Find a uprobe corresponding to a given inode:offset
378  * Acquires uprobes_treelock
379  */
380 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
381 {
382 	struct uprobe *uprobe;
383 
384 	spin_lock(&uprobes_treelock);
385 	uprobe = __find_uprobe(inode, offset);
386 	spin_unlock(&uprobes_treelock);
387 
388 	return uprobe;
389 }
390 
391 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
392 {
393 	struct rb_node **p = &uprobes_tree.rb_node;
394 	struct rb_node *parent = NULL;
395 	struct uprobe *u;
396 	int match;
397 
398 	while (*p) {
399 		parent = *p;
400 		u = rb_entry(parent, struct uprobe, rb_node);
401 		match = match_uprobe(uprobe, u);
402 		if (!match) {
403 			atomic_inc(&u->ref);
404 			return u;
405 		}
406 
407 		if (match < 0)
408 			p = &parent->rb_left;
409 		else
410 			p = &parent->rb_right;
411 
412 	}
413 
414 	u = NULL;
415 	rb_link_node(&uprobe->rb_node, parent, p);
416 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
417 	/* get access + creation ref */
418 	atomic_set(&uprobe->ref, 2);
419 
420 	return u;
421 }
422 
423 /*
424  * Acquire uprobes_treelock.
425  * Matching uprobe already exists in rbtree;
426  *	increment (access refcount) and return the matching uprobe.
427  *
428  * No matching uprobe; insert the uprobe in rb_tree;
429  *	get a double refcount (access + creation) and return NULL.
430  */
431 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
432 {
433 	struct uprobe *u;
434 
435 	spin_lock(&uprobes_treelock);
436 	u = __insert_uprobe(uprobe);
437 	spin_unlock(&uprobes_treelock);
438 
439 	return u;
440 }
441 
442 static void put_uprobe(struct uprobe *uprobe)
443 {
444 	if (atomic_dec_and_test(&uprobe->ref))
445 		kfree(uprobe);
446 }
447 
448 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
449 {
450 	struct uprobe *uprobe, *cur_uprobe;
451 
452 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
453 	if (!uprobe)
454 		return NULL;
455 
456 	uprobe->inode = igrab(inode);
457 	uprobe->offset = offset;
458 	init_rwsem(&uprobe->register_rwsem);
459 	init_rwsem(&uprobe->consumer_rwsem);
460 	/* For now assume that the instruction need not be single-stepped */
461 	__set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
462 
463 	/* add to uprobes_tree, sorted on inode:offset */
464 	cur_uprobe = insert_uprobe(uprobe);
465 
466 	/* a uprobe exists for this inode:offset combination */
467 	if (cur_uprobe) {
468 		kfree(uprobe);
469 		uprobe = cur_uprobe;
470 		iput(inode);
471 	}
472 
473 	return uprobe;
474 }
475 
476 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
477 {
478 	down_write(&uprobe->consumer_rwsem);
479 	uc->next = uprobe->consumers;
480 	uprobe->consumers = uc;
481 	up_write(&uprobe->consumer_rwsem);
482 }
483 
484 /*
485  * For uprobe @uprobe, delete the consumer @uc.
486  * Return true if the @uc is deleted successfully
487  * or return false.
488  */
489 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
490 {
491 	struct uprobe_consumer **con;
492 	bool ret = false;
493 
494 	down_write(&uprobe->consumer_rwsem);
495 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
496 		if (*con == uc) {
497 			*con = uc->next;
498 			ret = true;
499 			break;
500 		}
501 	}
502 	up_write(&uprobe->consumer_rwsem);
503 
504 	return ret;
505 }
506 
507 static int __copy_insn(struct address_space *mapping, struct file *filp,
508 			void *insn, int nbytes, loff_t offset)
509 {
510 	struct page *page;
511 
512 	if (!mapping->a_ops->readpage)
513 		return -EIO;
514 	/*
515 	 * Ensure that the page that has the original instruction is
516 	 * populated and in page-cache.
517 	 */
518 	page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
519 	if (IS_ERR(page))
520 		return PTR_ERR(page);
521 
522 	copy_from_page(page, offset, insn, nbytes);
523 	page_cache_release(page);
524 
525 	return 0;
526 }
527 
528 static int copy_insn(struct uprobe *uprobe, struct file *filp)
529 {
530 	struct address_space *mapping = uprobe->inode->i_mapping;
531 	loff_t offs = uprobe->offset;
532 	void *insn = uprobe->arch.insn;
533 	int size = MAX_UINSN_BYTES;
534 	int len, err = -EIO;
535 
536 	/* Copy only available bytes, -EIO if nothing was read */
537 	do {
538 		if (offs >= i_size_read(uprobe->inode))
539 			break;
540 
541 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
542 		err = __copy_insn(mapping, filp, insn, len, offs);
543 		if (err)
544 			break;
545 
546 		insn += len;
547 		offs += len;
548 		size -= len;
549 	} while (size);
550 
551 	return err;
552 }
553 
554 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
555 				struct mm_struct *mm, unsigned long vaddr)
556 {
557 	int ret = 0;
558 
559 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
560 		return ret;
561 
562 	/* TODO: move this into _register, until then we abuse this sem. */
563 	down_write(&uprobe->consumer_rwsem);
564 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
565 		goto out;
566 
567 	ret = copy_insn(uprobe, file);
568 	if (ret)
569 		goto out;
570 
571 	ret = -ENOTSUPP;
572 	if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn))
573 		goto out;
574 
575 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
576 	if (ret)
577 		goto out;
578 
579 	/* uprobe_write_opcode() assumes we don't cross page boundary */
580 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
581 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
582 
583 	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
584 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
585 
586  out:
587 	up_write(&uprobe->consumer_rwsem);
588 
589 	return ret;
590 }
591 
592 static inline bool consumer_filter(struct uprobe_consumer *uc,
593 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
594 {
595 	return !uc->filter || uc->filter(uc, ctx, mm);
596 }
597 
598 static bool filter_chain(struct uprobe *uprobe,
599 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
600 {
601 	struct uprobe_consumer *uc;
602 	bool ret = false;
603 
604 	down_read(&uprobe->consumer_rwsem);
605 	for (uc = uprobe->consumers; uc; uc = uc->next) {
606 		ret = consumer_filter(uc, ctx, mm);
607 		if (ret)
608 			break;
609 	}
610 	up_read(&uprobe->consumer_rwsem);
611 
612 	return ret;
613 }
614 
615 static int
616 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
617 			struct vm_area_struct *vma, unsigned long vaddr)
618 {
619 	bool first_uprobe;
620 	int ret;
621 
622 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
623 	if (ret)
624 		return ret;
625 
626 	/*
627 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
628 	 * the task can hit this breakpoint right after __replace_page().
629 	 */
630 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
631 	if (first_uprobe)
632 		set_bit(MMF_HAS_UPROBES, &mm->flags);
633 
634 	ret = set_swbp(&uprobe->arch, mm, vaddr);
635 	if (!ret)
636 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
637 	else if (first_uprobe)
638 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
639 
640 	return ret;
641 }
642 
643 static int
644 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
645 {
646 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
647 	return set_orig_insn(&uprobe->arch, mm, vaddr);
648 }
649 
650 static inline bool uprobe_is_active(struct uprobe *uprobe)
651 {
652 	return !RB_EMPTY_NODE(&uprobe->rb_node);
653 }
654 /*
655  * There could be threads that have already hit the breakpoint. They
656  * will recheck the current insn and restart if find_uprobe() fails.
657  * See find_active_uprobe().
658  */
659 static void delete_uprobe(struct uprobe *uprobe)
660 {
661 	if (WARN_ON(!uprobe_is_active(uprobe)))
662 		return;
663 
664 	spin_lock(&uprobes_treelock);
665 	rb_erase(&uprobe->rb_node, &uprobes_tree);
666 	spin_unlock(&uprobes_treelock);
667 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
668 	iput(uprobe->inode);
669 	put_uprobe(uprobe);
670 }
671 
672 struct map_info {
673 	struct map_info *next;
674 	struct mm_struct *mm;
675 	unsigned long vaddr;
676 };
677 
678 static inline struct map_info *free_map_info(struct map_info *info)
679 {
680 	struct map_info *next = info->next;
681 	kfree(info);
682 	return next;
683 }
684 
685 static struct map_info *
686 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
687 {
688 	unsigned long pgoff = offset >> PAGE_SHIFT;
689 	struct vm_area_struct *vma;
690 	struct map_info *curr = NULL;
691 	struct map_info *prev = NULL;
692 	struct map_info *info;
693 	int more = 0;
694 
695  again:
696 	mutex_lock(&mapping->i_mmap_mutex);
697 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
698 		if (!valid_vma(vma, is_register))
699 			continue;
700 
701 		if (!prev && !more) {
702 			/*
703 			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
704 			 * reclaim. This is optimistic, no harm done if it fails.
705 			 */
706 			prev = kmalloc(sizeof(struct map_info),
707 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
708 			if (prev)
709 				prev->next = NULL;
710 		}
711 		if (!prev) {
712 			more++;
713 			continue;
714 		}
715 
716 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
717 			continue;
718 
719 		info = prev;
720 		prev = prev->next;
721 		info->next = curr;
722 		curr = info;
723 
724 		info->mm = vma->vm_mm;
725 		info->vaddr = offset_to_vaddr(vma, offset);
726 	}
727 	mutex_unlock(&mapping->i_mmap_mutex);
728 
729 	if (!more)
730 		goto out;
731 
732 	prev = curr;
733 	while (curr) {
734 		mmput(curr->mm);
735 		curr = curr->next;
736 	}
737 
738 	do {
739 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
740 		if (!info) {
741 			curr = ERR_PTR(-ENOMEM);
742 			goto out;
743 		}
744 		info->next = prev;
745 		prev = info;
746 	} while (--more);
747 
748 	goto again;
749  out:
750 	while (prev)
751 		prev = free_map_info(prev);
752 	return curr;
753 }
754 
755 static int
756 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
757 {
758 	bool is_register = !!new;
759 	struct map_info *info;
760 	int err = 0;
761 
762 	percpu_down_write(&dup_mmap_sem);
763 	info = build_map_info(uprobe->inode->i_mapping,
764 					uprobe->offset, is_register);
765 	if (IS_ERR(info)) {
766 		err = PTR_ERR(info);
767 		goto out;
768 	}
769 
770 	while (info) {
771 		struct mm_struct *mm = info->mm;
772 		struct vm_area_struct *vma;
773 
774 		if (err && is_register)
775 			goto free;
776 
777 		down_write(&mm->mmap_sem);
778 		vma = find_vma(mm, info->vaddr);
779 		if (!vma || !valid_vma(vma, is_register) ||
780 		    file_inode(vma->vm_file) != uprobe->inode)
781 			goto unlock;
782 
783 		if (vma->vm_start > info->vaddr ||
784 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
785 			goto unlock;
786 
787 		if (is_register) {
788 			/* consult only the "caller", new consumer. */
789 			if (consumer_filter(new,
790 					UPROBE_FILTER_REGISTER, mm))
791 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
792 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
793 			if (!filter_chain(uprobe,
794 					UPROBE_FILTER_UNREGISTER, mm))
795 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
796 		}
797 
798  unlock:
799 		up_write(&mm->mmap_sem);
800  free:
801 		mmput(mm);
802 		info = free_map_info(info);
803 	}
804  out:
805 	percpu_up_write(&dup_mmap_sem);
806 	return err;
807 }
808 
809 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
810 {
811 	consumer_add(uprobe, uc);
812 	return register_for_each_vma(uprobe, uc);
813 }
814 
815 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
816 {
817 	int err;
818 
819 	if (!consumer_del(uprobe, uc))	/* WARN? */
820 		return;
821 
822 	err = register_for_each_vma(uprobe, NULL);
823 	/* TODO : cant unregister? schedule a worker thread */
824 	if (!uprobe->consumers && !err)
825 		delete_uprobe(uprobe);
826 }
827 
828 /*
829  * uprobe_register - register a probe
830  * @inode: the file in which the probe has to be placed.
831  * @offset: offset from the start of the file.
832  * @uc: information on howto handle the probe..
833  *
834  * Apart from the access refcount, uprobe_register() takes a creation
835  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
836  * inserted into the rbtree (i.e first consumer for a @inode:@offset
837  * tuple).  Creation refcount stops uprobe_unregister from freeing the
838  * @uprobe even before the register operation is complete. Creation
839  * refcount is released when the last @uc for the @uprobe
840  * unregisters.
841  *
842  * Return errno if it cannot successully install probes
843  * else return 0 (success)
844  */
845 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
846 {
847 	struct uprobe *uprobe;
848 	int ret;
849 
850 	/* Uprobe must have at least one set consumer */
851 	if (!uc->handler && !uc->ret_handler)
852 		return -EINVAL;
853 
854 	/* Racy, just to catch the obvious mistakes */
855 	if (offset > i_size_read(inode))
856 		return -EINVAL;
857 
858  retry:
859 	uprobe = alloc_uprobe(inode, offset);
860 	if (!uprobe)
861 		return -ENOMEM;
862 	/*
863 	 * We can race with uprobe_unregister()->delete_uprobe().
864 	 * Check uprobe_is_active() and retry if it is false.
865 	 */
866 	down_write(&uprobe->register_rwsem);
867 	ret = -EAGAIN;
868 	if (likely(uprobe_is_active(uprobe))) {
869 		ret = __uprobe_register(uprobe, uc);
870 		if (ret)
871 			__uprobe_unregister(uprobe, uc);
872 	}
873 	up_write(&uprobe->register_rwsem);
874 	put_uprobe(uprobe);
875 
876 	if (unlikely(ret == -EAGAIN))
877 		goto retry;
878 	return ret;
879 }
880 EXPORT_SYMBOL_GPL(uprobe_register);
881 
882 /*
883  * uprobe_apply - unregister a already registered probe.
884  * @inode: the file in which the probe has to be removed.
885  * @offset: offset from the start of the file.
886  * @uc: consumer which wants to add more or remove some breakpoints
887  * @add: add or remove the breakpoints
888  */
889 int uprobe_apply(struct inode *inode, loff_t offset,
890 			struct uprobe_consumer *uc, bool add)
891 {
892 	struct uprobe *uprobe;
893 	struct uprobe_consumer *con;
894 	int ret = -ENOENT;
895 
896 	uprobe = find_uprobe(inode, offset);
897 	if (!uprobe)
898 		return ret;
899 
900 	down_write(&uprobe->register_rwsem);
901 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
902 		;
903 	if (con)
904 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
905 	up_write(&uprobe->register_rwsem);
906 	put_uprobe(uprobe);
907 
908 	return ret;
909 }
910 
911 /*
912  * uprobe_unregister - unregister a already registered probe.
913  * @inode: the file in which the probe has to be removed.
914  * @offset: offset from the start of the file.
915  * @uc: identify which probe if multiple probes are colocated.
916  */
917 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
918 {
919 	struct uprobe *uprobe;
920 
921 	uprobe = find_uprobe(inode, offset);
922 	if (!uprobe)
923 		return;
924 
925 	down_write(&uprobe->register_rwsem);
926 	__uprobe_unregister(uprobe, uc);
927 	up_write(&uprobe->register_rwsem);
928 	put_uprobe(uprobe);
929 }
930 EXPORT_SYMBOL_GPL(uprobe_unregister);
931 
932 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
933 {
934 	struct vm_area_struct *vma;
935 	int err = 0;
936 
937 	down_read(&mm->mmap_sem);
938 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
939 		unsigned long vaddr;
940 		loff_t offset;
941 
942 		if (!valid_vma(vma, false) ||
943 		    file_inode(vma->vm_file) != uprobe->inode)
944 			continue;
945 
946 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
947 		if (uprobe->offset <  offset ||
948 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
949 			continue;
950 
951 		vaddr = offset_to_vaddr(vma, uprobe->offset);
952 		err |= remove_breakpoint(uprobe, mm, vaddr);
953 	}
954 	up_read(&mm->mmap_sem);
955 
956 	return err;
957 }
958 
959 static struct rb_node *
960 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
961 {
962 	struct rb_node *n = uprobes_tree.rb_node;
963 
964 	while (n) {
965 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
966 
967 		if (inode < u->inode) {
968 			n = n->rb_left;
969 		} else if (inode > u->inode) {
970 			n = n->rb_right;
971 		} else {
972 			if (max < u->offset)
973 				n = n->rb_left;
974 			else if (min > u->offset)
975 				n = n->rb_right;
976 			else
977 				break;
978 		}
979 	}
980 
981 	return n;
982 }
983 
984 /*
985  * For a given range in vma, build a list of probes that need to be inserted.
986  */
987 static void build_probe_list(struct inode *inode,
988 				struct vm_area_struct *vma,
989 				unsigned long start, unsigned long end,
990 				struct list_head *head)
991 {
992 	loff_t min, max;
993 	struct rb_node *n, *t;
994 	struct uprobe *u;
995 
996 	INIT_LIST_HEAD(head);
997 	min = vaddr_to_offset(vma, start);
998 	max = min + (end - start) - 1;
999 
1000 	spin_lock(&uprobes_treelock);
1001 	n = find_node_in_range(inode, min, max);
1002 	if (n) {
1003 		for (t = n; t; t = rb_prev(t)) {
1004 			u = rb_entry(t, struct uprobe, rb_node);
1005 			if (u->inode != inode || u->offset < min)
1006 				break;
1007 			list_add(&u->pending_list, head);
1008 			atomic_inc(&u->ref);
1009 		}
1010 		for (t = n; (t = rb_next(t)); ) {
1011 			u = rb_entry(t, struct uprobe, rb_node);
1012 			if (u->inode != inode || u->offset > max)
1013 				break;
1014 			list_add(&u->pending_list, head);
1015 			atomic_inc(&u->ref);
1016 		}
1017 	}
1018 	spin_unlock(&uprobes_treelock);
1019 }
1020 
1021 /*
1022  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1023  *
1024  * Currently we ignore all errors and always return 0, the callers
1025  * can't handle the failure anyway.
1026  */
1027 int uprobe_mmap(struct vm_area_struct *vma)
1028 {
1029 	struct list_head tmp_list;
1030 	struct uprobe *uprobe, *u;
1031 	struct inode *inode;
1032 
1033 	if (no_uprobe_events() || !valid_vma(vma, true))
1034 		return 0;
1035 
1036 	inode = file_inode(vma->vm_file);
1037 	if (!inode)
1038 		return 0;
1039 
1040 	mutex_lock(uprobes_mmap_hash(inode));
1041 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1042 	/*
1043 	 * We can race with uprobe_unregister(), this uprobe can be already
1044 	 * removed. But in this case filter_chain() must return false, all
1045 	 * consumers have gone away.
1046 	 */
1047 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1048 		if (!fatal_signal_pending(current) &&
1049 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1050 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1051 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1052 		}
1053 		put_uprobe(uprobe);
1054 	}
1055 	mutex_unlock(uprobes_mmap_hash(inode));
1056 
1057 	return 0;
1058 }
1059 
1060 static bool
1061 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1062 {
1063 	loff_t min, max;
1064 	struct inode *inode;
1065 	struct rb_node *n;
1066 
1067 	inode = file_inode(vma->vm_file);
1068 
1069 	min = vaddr_to_offset(vma, start);
1070 	max = min + (end - start) - 1;
1071 
1072 	spin_lock(&uprobes_treelock);
1073 	n = find_node_in_range(inode, min, max);
1074 	spin_unlock(&uprobes_treelock);
1075 
1076 	return !!n;
1077 }
1078 
1079 /*
1080  * Called in context of a munmap of a vma.
1081  */
1082 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1083 {
1084 	if (no_uprobe_events() || !valid_vma(vma, false))
1085 		return;
1086 
1087 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1088 		return;
1089 
1090 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1091 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1092 		return;
1093 
1094 	if (vma_has_uprobes(vma, start, end))
1095 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1096 }
1097 
1098 /* Slot allocation for XOL */
1099 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1100 {
1101 	int ret = -EALREADY;
1102 
1103 	down_write(&mm->mmap_sem);
1104 	if (mm->uprobes_state.xol_area)
1105 		goto fail;
1106 
1107 	if (!area->vaddr) {
1108 		/* Try to map as high as possible, this is only a hint. */
1109 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1110 						PAGE_SIZE, 0, 0);
1111 		if (area->vaddr & ~PAGE_MASK) {
1112 			ret = area->vaddr;
1113 			goto fail;
1114 		}
1115 	}
1116 
1117 	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1118 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1119 	if (ret)
1120 		goto fail;
1121 
1122 	smp_wmb();	/* pairs with get_xol_area() */
1123 	mm->uprobes_state.xol_area = area;
1124  fail:
1125 	up_write(&mm->mmap_sem);
1126 
1127 	return ret;
1128 }
1129 
1130 static struct xol_area *__create_xol_area(unsigned long vaddr)
1131 {
1132 	struct mm_struct *mm = current->mm;
1133 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1134 	struct xol_area *area;
1135 
1136 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1137 	if (unlikely(!area))
1138 		goto out;
1139 
1140 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1141 	if (!area->bitmap)
1142 		goto free_area;
1143 
1144 	area->page = alloc_page(GFP_HIGHUSER);
1145 	if (!area->page)
1146 		goto free_bitmap;
1147 
1148 	area->vaddr = vaddr;
1149 	init_waitqueue_head(&area->wq);
1150 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1151 	set_bit(0, area->bitmap);
1152 	atomic_set(&area->slot_count, 1);
1153 	copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1154 
1155 	if (!xol_add_vma(mm, area))
1156 		return area;
1157 
1158 	__free_page(area->page);
1159  free_bitmap:
1160 	kfree(area->bitmap);
1161  free_area:
1162 	kfree(area);
1163  out:
1164 	return NULL;
1165 }
1166 
1167 /*
1168  * get_xol_area - Allocate process's xol_area if necessary.
1169  * This area will be used for storing instructions for execution out of line.
1170  *
1171  * Returns the allocated area or NULL.
1172  */
1173 static struct xol_area *get_xol_area(void)
1174 {
1175 	struct mm_struct *mm = current->mm;
1176 	struct xol_area *area;
1177 
1178 	if (!mm->uprobes_state.xol_area)
1179 		__create_xol_area(0);
1180 
1181 	area = mm->uprobes_state.xol_area;
1182 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1183 	return area;
1184 }
1185 
1186 /*
1187  * uprobe_clear_state - Free the area allocated for slots.
1188  */
1189 void uprobe_clear_state(struct mm_struct *mm)
1190 {
1191 	struct xol_area *area = mm->uprobes_state.xol_area;
1192 
1193 	if (!area)
1194 		return;
1195 
1196 	put_page(area->page);
1197 	kfree(area->bitmap);
1198 	kfree(area);
1199 }
1200 
1201 void uprobe_start_dup_mmap(void)
1202 {
1203 	percpu_down_read(&dup_mmap_sem);
1204 }
1205 
1206 void uprobe_end_dup_mmap(void)
1207 {
1208 	percpu_up_read(&dup_mmap_sem);
1209 }
1210 
1211 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1212 {
1213 	newmm->uprobes_state.xol_area = NULL;
1214 
1215 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1216 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1217 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1218 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1219 	}
1220 }
1221 
1222 /*
1223  *  - search for a free slot.
1224  */
1225 static unsigned long xol_take_insn_slot(struct xol_area *area)
1226 {
1227 	unsigned long slot_addr;
1228 	int slot_nr;
1229 
1230 	do {
1231 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1232 		if (slot_nr < UINSNS_PER_PAGE) {
1233 			if (!test_and_set_bit(slot_nr, area->bitmap))
1234 				break;
1235 
1236 			slot_nr = UINSNS_PER_PAGE;
1237 			continue;
1238 		}
1239 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1240 	} while (slot_nr >= UINSNS_PER_PAGE);
1241 
1242 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1243 	atomic_inc(&area->slot_count);
1244 
1245 	return slot_addr;
1246 }
1247 
1248 /*
1249  * xol_get_insn_slot - allocate a slot for xol.
1250  * Returns the allocated slot address or 0.
1251  */
1252 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1253 {
1254 	struct xol_area *area;
1255 	unsigned long xol_vaddr;
1256 
1257 	area = get_xol_area();
1258 	if (!area)
1259 		return 0;
1260 
1261 	xol_vaddr = xol_take_insn_slot(area);
1262 	if (unlikely(!xol_vaddr))
1263 		return 0;
1264 
1265 	/* Initialize the slot */
1266 	copy_to_page(area->page, xol_vaddr,
1267 			uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1268 	/*
1269 	 * We probably need flush_icache_user_range() but it needs vma.
1270 	 * This should work on supported architectures too.
1271 	 */
1272 	flush_dcache_page(area->page);
1273 
1274 	return xol_vaddr;
1275 }
1276 
1277 /*
1278  * xol_free_insn_slot - If slot was earlier allocated by
1279  * @xol_get_insn_slot(), make the slot available for
1280  * subsequent requests.
1281  */
1282 static void xol_free_insn_slot(struct task_struct *tsk)
1283 {
1284 	struct xol_area *area;
1285 	unsigned long vma_end;
1286 	unsigned long slot_addr;
1287 
1288 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1289 		return;
1290 
1291 	slot_addr = tsk->utask->xol_vaddr;
1292 	if (unlikely(!slot_addr))
1293 		return;
1294 
1295 	area = tsk->mm->uprobes_state.xol_area;
1296 	vma_end = area->vaddr + PAGE_SIZE;
1297 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1298 		unsigned long offset;
1299 		int slot_nr;
1300 
1301 		offset = slot_addr - area->vaddr;
1302 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1303 		if (slot_nr >= UINSNS_PER_PAGE)
1304 			return;
1305 
1306 		clear_bit(slot_nr, area->bitmap);
1307 		atomic_dec(&area->slot_count);
1308 		if (waitqueue_active(&area->wq))
1309 			wake_up(&area->wq);
1310 
1311 		tsk->utask->xol_vaddr = 0;
1312 	}
1313 }
1314 
1315 /**
1316  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1317  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1318  * instruction.
1319  * Return the address of the breakpoint instruction.
1320  */
1321 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1322 {
1323 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1324 }
1325 
1326 /*
1327  * Called with no locks held.
1328  * Called in context of a exiting or a exec-ing thread.
1329  */
1330 void uprobe_free_utask(struct task_struct *t)
1331 {
1332 	struct uprobe_task *utask = t->utask;
1333 	struct return_instance *ri, *tmp;
1334 
1335 	if (!utask)
1336 		return;
1337 
1338 	if (utask->active_uprobe)
1339 		put_uprobe(utask->active_uprobe);
1340 
1341 	ri = utask->return_instances;
1342 	while (ri) {
1343 		tmp = ri;
1344 		ri = ri->next;
1345 
1346 		put_uprobe(tmp->uprobe);
1347 		kfree(tmp);
1348 	}
1349 
1350 	xol_free_insn_slot(t);
1351 	kfree(utask);
1352 	t->utask = NULL;
1353 }
1354 
1355 /*
1356  * Allocate a uprobe_task object for the task if if necessary.
1357  * Called when the thread hits a breakpoint.
1358  *
1359  * Returns:
1360  * - pointer to new uprobe_task on success
1361  * - NULL otherwise
1362  */
1363 static struct uprobe_task *get_utask(void)
1364 {
1365 	if (!current->utask)
1366 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1367 	return current->utask;
1368 }
1369 
1370 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1371 {
1372 	struct uprobe_task *n_utask;
1373 	struct return_instance **p, *o, *n;
1374 
1375 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1376 	if (!n_utask)
1377 		return -ENOMEM;
1378 	t->utask = n_utask;
1379 
1380 	p = &n_utask->return_instances;
1381 	for (o = o_utask->return_instances; o; o = o->next) {
1382 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1383 		if (!n)
1384 			return -ENOMEM;
1385 
1386 		*n = *o;
1387 		atomic_inc(&n->uprobe->ref);
1388 		n->next = NULL;
1389 
1390 		*p = n;
1391 		p = &n->next;
1392 		n_utask->depth++;
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static void uprobe_warn(struct task_struct *t, const char *msg)
1399 {
1400 	pr_warn("uprobe: %s:%d failed to %s\n",
1401 			current->comm, current->pid, msg);
1402 }
1403 
1404 static void dup_xol_work(struct callback_head *work)
1405 {
1406 	kfree(work);
1407 
1408 	if (current->flags & PF_EXITING)
1409 		return;
1410 
1411 	if (!__create_xol_area(current->utask->vaddr))
1412 		uprobe_warn(current, "dup xol area");
1413 }
1414 
1415 /*
1416  * Called in context of a new clone/fork from copy_process.
1417  */
1418 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1419 {
1420 	struct uprobe_task *utask = current->utask;
1421 	struct mm_struct *mm = current->mm;
1422 	struct callback_head *work;
1423 	struct xol_area *area;
1424 
1425 	t->utask = NULL;
1426 
1427 	if (!utask || !utask->return_instances)
1428 		return;
1429 
1430 	if (mm == t->mm && !(flags & CLONE_VFORK))
1431 		return;
1432 
1433 	if (dup_utask(t, utask))
1434 		return uprobe_warn(t, "dup ret instances");
1435 
1436 	/* The task can fork() after dup_xol_work() fails */
1437 	area = mm->uprobes_state.xol_area;
1438 	if (!area)
1439 		return uprobe_warn(t, "dup xol area");
1440 
1441 	if (mm == t->mm)
1442 		return;
1443 
1444 	/* TODO: move it into the union in uprobe_task */
1445 	work = kmalloc(sizeof(*work), GFP_KERNEL);
1446 	if (!work)
1447 		return uprobe_warn(t, "dup xol area");
1448 
1449 	t->utask->vaddr = area->vaddr;
1450 	init_task_work(work, dup_xol_work);
1451 	task_work_add(t, work, true);
1452 }
1453 
1454 /*
1455  * Current area->vaddr notion assume the trampoline address is always
1456  * equal area->vaddr.
1457  *
1458  * Returns -1 in case the xol_area is not allocated.
1459  */
1460 static unsigned long get_trampoline_vaddr(void)
1461 {
1462 	struct xol_area *area;
1463 	unsigned long trampoline_vaddr = -1;
1464 
1465 	area = current->mm->uprobes_state.xol_area;
1466 	smp_read_barrier_depends();
1467 	if (area)
1468 		trampoline_vaddr = area->vaddr;
1469 
1470 	return trampoline_vaddr;
1471 }
1472 
1473 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1474 {
1475 	struct return_instance *ri;
1476 	struct uprobe_task *utask;
1477 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1478 	bool chained = false;
1479 
1480 	if (!get_xol_area())
1481 		return;
1482 
1483 	utask = get_utask();
1484 	if (!utask)
1485 		return;
1486 
1487 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1488 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1489 				" nestedness limit pid/tgid=%d/%d\n",
1490 				current->pid, current->tgid);
1491 		return;
1492 	}
1493 
1494 	ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1495 	if (!ri)
1496 		goto fail;
1497 
1498 	trampoline_vaddr = get_trampoline_vaddr();
1499 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1500 	if (orig_ret_vaddr == -1)
1501 		goto fail;
1502 
1503 	/*
1504 	 * We don't want to keep trampoline address in stack, rather keep the
1505 	 * original return address of first caller thru all the consequent
1506 	 * instances. This also makes breakpoint unwrapping easier.
1507 	 */
1508 	if (orig_ret_vaddr == trampoline_vaddr) {
1509 		if (!utask->return_instances) {
1510 			/*
1511 			 * This situation is not possible. Likely we have an
1512 			 * attack from user-space.
1513 			 */
1514 			pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1515 						current->pid, current->tgid);
1516 			goto fail;
1517 		}
1518 
1519 		chained = true;
1520 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1521 	}
1522 
1523 	atomic_inc(&uprobe->ref);
1524 	ri->uprobe = uprobe;
1525 	ri->func = instruction_pointer(regs);
1526 	ri->orig_ret_vaddr = orig_ret_vaddr;
1527 	ri->chained = chained;
1528 
1529 	utask->depth++;
1530 
1531 	/* add instance to the stack */
1532 	ri->next = utask->return_instances;
1533 	utask->return_instances = ri;
1534 
1535 	return;
1536 
1537  fail:
1538 	kfree(ri);
1539 }
1540 
1541 /* Prepare to single-step probed instruction out of line. */
1542 static int
1543 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1544 {
1545 	struct uprobe_task *utask;
1546 	unsigned long xol_vaddr;
1547 	int err;
1548 
1549 	utask = get_utask();
1550 	if (!utask)
1551 		return -ENOMEM;
1552 
1553 	xol_vaddr = xol_get_insn_slot(uprobe);
1554 	if (!xol_vaddr)
1555 		return -ENOMEM;
1556 
1557 	utask->xol_vaddr = xol_vaddr;
1558 	utask->vaddr = bp_vaddr;
1559 
1560 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1561 	if (unlikely(err)) {
1562 		xol_free_insn_slot(current);
1563 		return err;
1564 	}
1565 
1566 	utask->active_uprobe = uprobe;
1567 	utask->state = UTASK_SSTEP;
1568 	return 0;
1569 }
1570 
1571 /*
1572  * If we are singlestepping, then ensure this thread is not connected to
1573  * non-fatal signals until completion of singlestep.  When xol insn itself
1574  * triggers the signal,  restart the original insn even if the task is
1575  * already SIGKILL'ed (since coredump should report the correct ip).  This
1576  * is even more important if the task has a handler for SIGSEGV/etc, The
1577  * _same_ instruction should be repeated again after return from the signal
1578  * handler, and SSTEP can never finish in this case.
1579  */
1580 bool uprobe_deny_signal(void)
1581 {
1582 	struct task_struct *t = current;
1583 	struct uprobe_task *utask = t->utask;
1584 
1585 	if (likely(!utask || !utask->active_uprobe))
1586 		return false;
1587 
1588 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1589 
1590 	if (signal_pending(t)) {
1591 		spin_lock_irq(&t->sighand->siglock);
1592 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1593 		spin_unlock_irq(&t->sighand->siglock);
1594 
1595 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1596 			utask->state = UTASK_SSTEP_TRAPPED;
1597 			set_tsk_thread_flag(t, TIF_UPROBE);
1598 			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1599 		}
1600 	}
1601 
1602 	return true;
1603 }
1604 
1605 /*
1606  * Avoid singlestepping the original instruction if the original instruction
1607  * is a NOP or can be emulated.
1608  */
1609 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1610 {
1611 	if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1612 		if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1613 			return true;
1614 		clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1615 	}
1616 	return false;
1617 }
1618 
1619 static void mmf_recalc_uprobes(struct mm_struct *mm)
1620 {
1621 	struct vm_area_struct *vma;
1622 
1623 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1624 		if (!valid_vma(vma, false))
1625 			continue;
1626 		/*
1627 		 * This is not strictly accurate, we can race with
1628 		 * uprobe_unregister() and see the already removed
1629 		 * uprobe if delete_uprobe() was not yet called.
1630 		 * Or this uprobe can be filtered out.
1631 		 */
1632 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1633 			return;
1634 	}
1635 
1636 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1637 }
1638 
1639 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1640 {
1641 	struct page *page;
1642 	uprobe_opcode_t opcode;
1643 	int result;
1644 
1645 	pagefault_disable();
1646 	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1647 							sizeof(opcode));
1648 	pagefault_enable();
1649 
1650 	if (likely(result == 0))
1651 		goto out;
1652 
1653 	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1654 	if (result < 0)
1655 		return result;
1656 
1657 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1658 	put_page(page);
1659  out:
1660 	/* This needs to return true for any variant of the trap insn */
1661 	return is_trap_insn(&opcode);
1662 }
1663 
1664 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1665 {
1666 	struct mm_struct *mm = current->mm;
1667 	struct uprobe *uprobe = NULL;
1668 	struct vm_area_struct *vma;
1669 
1670 	down_read(&mm->mmap_sem);
1671 	vma = find_vma(mm, bp_vaddr);
1672 	if (vma && vma->vm_start <= bp_vaddr) {
1673 		if (valid_vma(vma, false)) {
1674 			struct inode *inode = file_inode(vma->vm_file);
1675 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1676 
1677 			uprobe = find_uprobe(inode, offset);
1678 		}
1679 
1680 		if (!uprobe)
1681 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1682 	} else {
1683 		*is_swbp = -EFAULT;
1684 	}
1685 
1686 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1687 		mmf_recalc_uprobes(mm);
1688 	up_read(&mm->mmap_sem);
1689 
1690 	return uprobe;
1691 }
1692 
1693 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1694 {
1695 	struct uprobe_consumer *uc;
1696 	int remove = UPROBE_HANDLER_REMOVE;
1697 	bool need_prep = false; /* prepare return uprobe, when needed */
1698 
1699 	down_read(&uprobe->register_rwsem);
1700 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1701 		int rc = 0;
1702 
1703 		if (uc->handler) {
1704 			rc = uc->handler(uc, regs);
1705 			WARN(rc & ~UPROBE_HANDLER_MASK,
1706 				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1707 		}
1708 
1709 		if (uc->ret_handler)
1710 			need_prep = true;
1711 
1712 		remove &= rc;
1713 	}
1714 
1715 	if (need_prep && !remove)
1716 		prepare_uretprobe(uprobe, regs); /* put bp at return */
1717 
1718 	if (remove && uprobe->consumers) {
1719 		WARN_ON(!uprobe_is_active(uprobe));
1720 		unapply_uprobe(uprobe, current->mm);
1721 	}
1722 	up_read(&uprobe->register_rwsem);
1723 }
1724 
1725 static void
1726 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1727 {
1728 	struct uprobe *uprobe = ri->uprobe;
1729 	struct uprobe_consumer *uc;
1730 
1731 	down_read(&uprobe->register_rwsem);
1732 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1733 		if (uc->ret_handler)
1734 			uc->ret_handler(uc, ri->func, regs);
1735 	}
1736 	up_read(&uprobe->register_rwsem);
1737 }
1738 
1739 static bool handle_trampoline(struct pt_regs *regs)
1740 {
1741 	struct uprobe_task *utask;
1742 	struct return_instance *ri, *tmp;
1743 	bool chained;
1744 
1745 	utask = current->utask;
1746 	if (!utask)
1747 		return false;
1748 
1749 	ri = utask->return_instances;
1750 	if (!ri)
1751 		return false;
1752 
1753 	/*
1754 	 * TODO: we should throw out return_instance's invalidated by
1755 	 * longjmp(), currently we assume that the probed function always
1756 	 * returns.
1757 	 */
1758 	instruction_pointer_set(regs, ri->orig_ret_vaddr);
1759 
1760 	for (;;) {
1761 		handle_uretprobe_chain(ri, regs);
1762 
1763 		chained = ri->chained;
1764 		put_uprobe(ri->uprobe);
1765 
1766 		tmp = ri;
1767 		ri = ri->next;
1768 		kfree(tmp);
1769 		utask->depth--;
1770 
1771 		if (!chained)
1772 			break;
1773 		BUG_ON(!ri);
1774 	}
1775 
1776 	utask->return_instances = ri;
1777 
1778 	return true;
1779 }
1780 
1781 /*
1782  * Run handler and ask thread to singlestep.
1783  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1784  */
1785 static void handle_swbp(struct pt_regs *regs)
1786 {
1787 	struct uprobe *uprobe;
1788 	unsigned long bp_vaddr;
1789 	int uninitialized_var(is_swbp);
1790 
1791 	bp_vaddr = uprobe_get_swbp_addr(regs);
1792 	if (bp_vaddr == get_trampoline_vaddr()) {
1793 		if (handle_trampoline(regs))
1794 			return;
1795 
1796 		pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1797 						current->pid, current->tgid);
1798 	}
1799 
1800 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1801 	if (!uprobe) {
1802 		if (is_swbp > 0) {
1803 			/* No matching uprobe; signal SIGTRAP. */
1804 			send_sig(SIGTRAP, current, 0);
1805 		} else {
1806 			/*
1807 			 * Either we raced with uprobe_unregister() or we can't
1808 			 * access this memory. The latter is only possible if
1809 			 * another thread plays with our ->mm. In both cases
1810 			 * we can simply restart. If this vma was unmapped we
1811 			 * can pretend this insn was not executed yet and get
1812 			 * the (correct) SIGSEGV after restart.
1813 			 */
1814 			instruction_pointer_set(regs, bp_vaddr);
1815 		}
1816 		return;
1817 	}
1818 
1819 	/* change it in advance for ->handler() and restart */
1820 	instruction_pointer_set(regs, bp_vaddr);
1821 
1822 	/*
1823 	 * TODO: move copy_insn/etc into _register and remove this hack.
1824 	 * After we hit the bp, _unregister + _register can install the
1825 	 * new and not-yet-analyzed uprobe at the same address, restart.
1826 	 */
1827 	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1828 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1829 		goto out;
1830 
1831 	handler_chain(uprobe, regs);
1832 	if (can_skip_sstep(uprobe, regs))
1833 		goto out;
1834 
1835 	if (!pre_ssout(uprobe, regs, bp_vaddr))
1836 		return;
1837 
1838 	/* can_skip_sstep() succeeded, or restart if can't singlestep */
1839 out:
1840 	put_uprobe(uprobe);
1841 }
1842 
1843 /*
1844  * Perform required fix-ups and disable singlestep.
1845  * Allow pending signals to take effect.
1846  */
1847 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1848 {
1849 	struct uprobe *uprobe;
1850 
1851 	uprobe = utask->active_uprobe;
1852 	if (utask->state == UTASK_SSTEP_ACK)
1853 		arch_uprobe_post_xol(&uprobe->arch, regs);
1854 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1855 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1856 	else
1857 		WARN_ON_ONCE(1);
1858 
1859 	put_uprobe(uprobe);
1860 	utask->active_uprobe = NULL;
1861 	utask->state = UTASK_RUNNING;
1862 	xol_free_insn_slot(current);
1863 
1864 	spin_lock_irq(&current->sighand->siglock);
1865 	recalc_sigpending(); /* see uprobe_deny_signal() */
1866 	spin_unlock_irq(&current->sighand->siglock);
1867 }
1868 
1869 /*
1870  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1871  * allows the thread to return from interrupt. After that handle_swbp()
1872  * sets utask->active_uprobe.
1873  *
1874  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1875  * and allows the thread to return from interrupt.
1876  *
1877  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1878  * uprobe_notify_resume().
1879  */
1880 void uprobe_notify_resume(struct pt_regs *regs)
1881 {
1882 	struct uprobe_task *utask;
1883 
1884 	clear_thread_flag(TIF_UPROBE);
1885 
1886 	utask = current->utask;
1887 	if (utask && utask->active_uprobe)
1888 		handle_singlestep(utask, regs);
1889 	else
1890 		handle_swbp(regs);
1891 }
1892 
1893 /*
1894  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1895  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1896  */
1897 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1898 {
1899 	if (!current->mm)
1900 		return 0;
1901 
1902 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1903 	    (!current->utask || !current->utask->return_instances))
1904 		return 0;
1905 
1906 	set_thread_flag(TIF_UPROBE);
1907 	return 1;
1908 }
1909 
1910 /*
1911  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1912  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1913  */
1914 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1915 {
1916 	struct uprobe_task *utask = current->utask;
1917 
1918 	if (!current->mm || !utask || !utask->active_uprobe)
1919 		/* task is currently not uprobed */
1920 		return 0;
1921 
1922 	utask->state = UTASK_SSTEP_ACK;
1923 	set_thread_flag(TIF_UPROBE);
1924 	return 1;
1925 }
1926 
1927 static struct notifier_block uprobe_exception_nb = {
1928 	.notifier_call		= arch_uprobe_exception_notify,
1929 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1930 };
1931 
1932 static int __init init_uprobes(void)
1933 {
1934 	int i;
1935 
1936 	for (i = 0; i < UPROBES_HASH_SZ; i++)
1937 		mutex_init(&uprobes_mmap_mutex[i]);
1938 
1939 	if (percpu_init_rwsem(&dup_mmap_sem))
1940 		return -ENOMEM;
1941 
1942 	return register_die_notifier(&uprobe_exception_nb);
1943 }
1944 __initcall(init_uprobes);
1945