1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/export.h> 31 #include <linux/rmap.h> /* anon_vma_prepare */ 32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 33 #include <linux/swap.h> /* try_to_free_swap */ 34 #include <linux/ptrace.h> /* user_enable_single_step */ 35 #include <linux/kdebug.h> /* notifier mechanism */ 36 #include "../../mm/internal.h" /* munlock_vma_page */ 37 #include <linux/percpu-rwsem.h> 38 #include <linux/task_work.h> 39 #include <linux/shmem_fs.h> 40 41 #include <linux/uprobes.h> 42 43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 45 46 static struct rb_root uprobes_tree = RB_ROOT; 47 /* 48 * allows us to skip the uprobe_mmap if there are no uprobe events active 49 * at this time. Probably a fine grained per inode count is better? 50 */ 51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 52 53 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 54 55 #define UPROBES_HASH_SZ 13 56 /* serialize uprobe->pending_list */ 57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 59 60 static struct percpu_rw_semaphore dup_mmap_sem; 61 62 /* Have a copy of original instruction */ 63 #define UPROBE_COPY_INSN 0 64 65 struct uprobe { 66 struct rb_node rb_node; /* node in the rb tree */ 67 atomic_t ref; 68 struct rw_semaphore register_rwsem; 69 struct rw_semaphore consumer_rwsem; 70 struct list_head pending_list; 71 struct uprobe_consumer *consumers; 72 struct inode *inode; /* Also hold a ref to inode */ 73 loff_t offset; 74 unsigned long flags; 75 76 /* 77 * The generic code assumes that it has two members of unknown type 78 * owned by the arch-specific code: 79 * 80 * insn - copy_insn() saves the original instruction here for 81 * arch_uprobe_analyze_insn(). 82 * 83 * ixol - potentially modified instruction to execute out of 84 * line, copied to xol_area by xol_get_insn_slot(). 85 */ 86 struct arch_uprobe arch; 87 }; 88 89 /* 90 * Execute out of line area: anonymous executable mapping installed 91 * by the probed task to execute the copy of the original instruction 92 * mangled by set_swbp(). 93 * 94 * On a breakpoint hit, thread contests for a slot. It frees the 95 * slot after singlestep. Currently a fixed number of slots are 96 * allocated. 97 */ 98 struct xol_area { 99 wait_queue_head_t wq; /* if all slots are busy */ 100 atomic_t slot_count; /* number of in-use slots */ 101 unsigned long *bitmap; /* 0 = free slot */ 102 103 struct vm_special_mapping xol_mapping; 104 struct page *pages[2]; 105 /* 106 * We keep the vma's vm_start rather than a pointer to the vma 107 * itself. The probed process or a naughty kernel module could make 108 * the vma go away, and we must handle that reasonably gracefully. 109 */ 110 unsigned long vaddr; /* Page(s) of instruction slots */ 111 }; 112 113 /* 114 * valid_vma: Verify if the specified vma is an executable vma 115 * Relax restrictions while unregistering: vm_flags might have 116 * changed after breakpoint was inserted. 117 * - is_register: indicates if we are in register context. 118 * - Return 1 if the specified virtual address is in an 119 * executable vma. 120 */ 121 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 122 { 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 124 125 if (is_register) 126 flags |= VM_WRITE; 127 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 129 } 130 131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 132 { 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 134 } 135 136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 137 { 138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 139 } 140 141 /** 142 * __replace_page - replace page in vma by new page. 143 * based on replace_page in mm/ksm.c 144 * 145 * @vma: vma that holds the pte pointing to page 146 * @addr: address the old @page is mapped at 147 * @page: the cowed page we are replacing by kpage 148 * @kpage: the modified page we replace page by 149 * 150 * Returns 0 on success, -EFAULT on failure. 151 */ 152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 153 struct page *page, struct page *kpage) 154 { 155 struct mm_struct *mm = vma->vm_mm; 156 spinlock_t *ptl; 157 pte_t *ptep; 158 int err; 159 /* For mmu_notifiers */ 160 const unsigned long mmun_start = addr; 161 const unsigned long mmun_end = addr + PAGE_SIZE; 162 struct mem_cgroup *memcg; 163 164 err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg, 165 false); 166 if (err) 167 return err; 168 169 /* For try_to_free_swap() and munlock_vma_page() below */ 170 lock_page(page); 171 172 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 173 err = -EAGAIN; 174 ptep = page_check_address(page, mm, addr, &ptl, 0); 175 if (!ptep) { 176 mem_cgroup_cancel_charge(kpage, memcg, false); 177 goto unlock; 178 } 179 180 get_page(kpage); 181 page_add_new_anon_rmap(kpage, vma, addr, false); 182 mem_cgroup_commit_charge(kpage, memcg, false, false); 183 lru_cache_add_active_or_unevictable(kpage, vma); 184 185 if (!PageAnon(page)) { 186 dec_mm_counter(mm, mm_counter_file(page)); 187 inc_mm_counter(mm, MM_ANONPAGES); 188 } 189 190 flush_cache_page(vma, addr, pte_pfn(*ptep)); 191 ptep_clear_flush_notify(vma, addr, ptep); 192 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 193 194 page_remove_rmap(page, false); 195 if (!page_mapped(page)) 196 try_to_free_swap(page); 197 pte_unmap_unlock(ptep, ptl); 198 199 if (vma->vm_flags & VM_LOCKED) 200 munlock_vma_page(page); 201 put_page(page); 202 203 err = 0; 204 unlock: 205 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 206 unlock_page(page); 207 return err; 208 } 209 210 /** 211 * is_swbp_insn - check if instruction is breakpoint instruction. 212 * @insn: instruction to be checked. 213 * Default implementation of is_swbp_insn 214 * Returns true if @insn is a breakpoint instruction. 215 */ 216 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 217 { 218 return *insn == UPROBE_SWBP_INSN; 219 } 220 221 /** 222 * is_trap_insn - check if instruction is breakpoint instruction. 223 * @insn: instruction to be checked. 224 * Default implementation of is_trap_insn 225 * Returns true if @insn is a breakpoint instruction. 226 * 227 * This function is needed for the case where an architecture has multiple 228 * trap instructions (like powerpc). 229 */ 230 bool __weak is_trap_insn(uprobe_opcode_t *insn) 231 { 232 return is_swbp_insn(insn); 233 } 234 235 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 236 { 237 void *kaddr = kmap_atomic(page); 238 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 239 kunmap_atomic(kaddr); 240 } 241 242 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 243 { 244 void *kaddr = kmap_atomic(page); 245 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 246 kunmap_atomic(kaddr); 247 } 248 249 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 250 { 251 uprobe_opcode_t old_opcode; 252 bool is_swbp; 253 254 /* 255 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 256 * We do not check if it is any other 'trap variant' which could 257 * be conditional trap instruction such as the one powerpc supports. 258 * 259 * The logic is that we do not care if the underlying instruction 260 * is a trap variant; uprobes always wins over any other (gdb) 261 * breakpoint. 262 */ 263 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 264 is_swbp = is_swbp_insn(&old_opcode); 265 266 if (is_swbp_insn(new_opcode)) { 267 if (is_swbp) /* register: already installed? */ 268 return 0; 269 } else { 270 if (!is_swbp) /* unregister: was it changed by us? */ 271 return 0; 272 } 273 274 return 1; 275 } 276 277 /* 278 * NOTE: 279 * Expect the breakpoint instruction to be the smallest size instruction for 280 * the architecture. If an arch has variable length instruction and the 281 * breakpoint instruction is not of the smallest length instruction 282 * supported by that architecture then we need to modify is_trap_at_addr and 283 * uprobe_write_opcode accordingly. This would never be a problem for archs 284 * that have fixed length instructions. 285 * 286 * uprobe_write_opcode - write the opcode at a given virtual address. 287 * @mm: the probed process address space. 288 * @vaddr: the virtual address to store the opcode. 289 * @opcode: opcode to be written at @vaddr. 290 * 291 * Called with mm->mmap_sem held for write. 292 * Return 0 (success) or a negative errno. 293 */ 294 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, 295 uprobe_opcode_t opcode) 296 { 297 struct page *old_page, *new_page; 298 struct vm_area_struct *vma; 299 int ret; 300 301 retry: 302 /* Read the page with vaddr into memory */ 303 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma); 304 if (ret <= 0) 305 return ret; 306 307 ret = verify_opcode(old_page, vaddr, &opcode); 308 if (ret <= 0) 309 goto put_old; 310 311 ret = anon_vma_prepare(vma); 312 if (ret) 313 goto put_old; 314 315 ret = -ENOMEM; 316 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 317 if (!new_page) 318 goto put_old; 319 320 __SetPageUptodate(new_page); 321 copy_highpage(new_page, old_page); 322 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 323 324 ret = __replace_page(vma, vaddr, old_page, new_page); 325 put_page(new_page); 326 put_old: 327 put_page(old_page); 328 329 if (unlikely(ret == -EAGAIN)) 330 goto retry; 331 return ret; 332 } 333 334 /** 335 * set_swbp - store breakpoint at a given address. 336 * @auprobe: arch specific probepoint information. 337 * @mm: the probed process address space. 338 * @vaddr: the virtual address to insert the opcode. 339 * 340 * For mm @mm, store the breakpoint instruction at @vaddr. 341 * Return 0 (success) or a negative errno. 342 */ 343 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 344 { 345 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN); 346 } 347 348 /** 349 * set_orig_insn - Restore the original instruction. 350 * @mm: the probed process address space. 351 * @auprobe: arch specific probepoint information. 352 * @vaddr: the virtual address to insert the opcode. 353 * 354 * For mm @mm, restore the original opcode (opcode) at @vaddr. 355 * Return 0 (success) or a negative errno. 356 */ 357 int __weak 358 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 359 { 360 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn); 361 } 362 363 static struct uprobe *get_uprobe(struct uprobe *uprobe) 364 { 365 atomic_inc(&uprobe->ref); 366 return uprobe; 367 } 368 369 static void put_uprobe(struct uprobe *uprobe) 370 { 371 if (atomic_dec_and_test(&uprobe->ref)) 372 kfree(uprobe); 373 } 374 375 static int match_uprobe(struct uprobe *l, struct uprobe *r) 376 { 377 if (l->inode < r->inode) 378 return -1; 379 380 if (l->inode > r->inode) 381 return 1; 382 383 if (l->offset < r->offset) 384 return -1; 385 386 if (l->offset > r->offset) 387 return 1; 388 389 return 0; 390 } 391 392 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 393 { 394 struct uprobe u = { .inode = inode, .offset = offset }; 395 struct rb_node *n = uprobes_tree.rb_node; 396 struct uprobe *uprobe; 397 int match; 398 399 while (n) { 400 uprobe = rb_entry(n, struct uprobe, rb_node); 401 match = match_uprobe(&u, uprobe); 402 if (!match) 403 return get_uprobe(uprobe); 404 405 if (match < 0) 406 n = n->rb_left; 407 else 408 n = n->rb_right; 409 } 410 return NULL; 411 } 412 413 /* 414 * Find a uprobe corresponding to a given inode:offset 415 * Acquires uprobes_treelock 416 */ 417 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 418 { 419 struct uprobe *uprobe; 420 421 spin_lock(&uprobes_treelock); 422 uprobe = __find_uprobe(inode, offset); 423 spin_unlock(&uprobes_treelock); 424 425 return uprobe; 426 } 427 428 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 429 { 430 struct rb_node **p = &uprobes_tree.rb_node; 431 struct rb_node *parent = NULL; 432 struct uprobe *u; 433 int match; 434 435 while (*p) { 436 parent = *p; 437 u = rb_entry(parent, struct uprobe, rb_node); 438 match = match_uprobe(uprobe, u); 439 if (!match) 440 return get_uprobe(u); 441 442 if (match < 0) 443 p = &parent->rb_left; 444 else 445 p = &parent->rb_right; 446 447 } 448 449 u = NULL; 450 rb_link_node(&uprobe->rb_node, parent, p); 451 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 452 /* get access + creation ref */ 453 atomic_set(&uprobe->ref, 2); 454 455 return u; 456 } 457 458 /* 459 * Acquire uprobes_treelock. 460 * Matching uprobe already exists in rbtree; 461 * increment (access refcount) and return the matching uprobe. 462 * 463 * No matching uprobe; insert the uprobe in rb_tree; 464 * get a double refcount (access + creation) and return NULL. 465 */ 466 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 467 { 468 struct uprobe *u; 469 470 spin_lock(&uprobes_treelock); 471 u = __insert_uprobe(uprobe); 472 spin_unlock(&uprobes_treelock); 473 474 return u; 475 } 476 477 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 478 { 479 struct uprobe *uprobe, *cur_uprobe; 480 481 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 482 if (!uprobe) 483 return NULL; 484 485 uprobe->inode = igrab(inode); 486 uprobe->offset = offset; 487 init_rwsem(&uprobe->register_rwsem); 488 init_rwsem(&uprobe->consumer_rwsem); 489 490 /* add to uprobes_tree, sorted on inode:offset */ 491 cur_uprobe = insert_uprobe(uprobe); 492 /* a uprobe exists for this inode:offset combination */ 493 if (cur_uprobe) { 494 kfree(uprobe); 495 uprobe = cur_uprobe; 496 iput(inode); 497 } 498 499 return uprobe; 500 } 501 502 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 503 { 504 down_write(&uprobe->consumer_rwsem); 505 uc->next = uprobe->consumers; 506 uprobe->consumers = uc; 507 up_write(&uprobe->consumer_rwsem); 508 } 509 510 /* 511 * For uprobe @uprobe, delete the consumer @uc. 512 * Return true if the @uc is deleted successfully 513 * or return false. 514 */ 515 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 516 { 517 struct uprobe_consumer **con; 518 bool ret = false; 519 520 down_write(&uprobe->consumer_rwsem); 521 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 522 if (*con == uc) { 523 *con = uc->next; 524 ret = true; 525 break; 526 } 527 } 528 up_write(&uprobe->consumer_rwsem); 529 530 return ret; 531 } 532 533 static int __copy_insn(struct address_space *mapping, struct file *filp, 534 void *insn, int nbytes, loff_t offset) 535 { 536 struct page *page; 537 /* 538 * Ensure that the page that has the original instruction is populated 539 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 540 * see uprobe_register(). 541 */ 542 if (mapping->a_ops->readpage) 543 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 544 else 545 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 546 if (IS_ERR(page)) 547 return PTR_ERR(page); 548 549 copy_from_page(page, offset, insn, nbytes); 550 put_page(page); 551 552 return 0; 553 } 554 555 static int copy_insn(struct uprobe *uprobe, struct file *filp) 556 { 557 struct address_space *mapping = uprobe->inode->i_mapping; 558 loff_t offs = uprobe->offset; 559 void *insn = &uprobe->arch.insn; 560 int size = sizeof(uprobe->arch.insn); 561 int len, err = -EIO; 562 563 /* Copy only available bytes, -EIO if nothing was read */ 564 do { 565 if (offs >= i_size_read(uprobe->inode)) 566 break; 567 568 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 569 err = __copy_insn(mapping, filp, insn, len, offs); 570 if (err) 571 break; 572 573 insn += len; 574 offs += len; 575 size -= len; 576 } while (size); 577 578 return err; 579 } 580 581 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 582 struct mm_struct *mm, unsigned long vaddr) 583 { 584 int ret = 0; 585 586 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 587 return ret; 588 589 /* TODO: move this into _register, until then we abuse this sem. */ 590 down_write(&uprobe->consumer_rwsem); 591 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 592 goto out; 593 594 ret = copy_insn(uprobe, file); 595 if (ret) 596 goto out; 597 598 ret = -ENOTSUPP; 599 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 600 goto out; 601 602 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 603 if (ret) 604 goto out; 605 606 /* uprobe_write_opcode() assumes we don't cross page boundary */ 607 BUG_ON((uprobe->offset & ~PAGE_MASK) + 608 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 609 610 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */ 611 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 612 613 out: 614 up_write(&uprobe->consumer_rwsem); 615 616 return ret; 617 } 618 619 static inline bool consumer_filter(struct uprobe_consumer *uc, 620 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 621 { 622 return !uc->filter || uc->filter(uc, ctx, mm); 623 } 624 625 static bool filter_chain(struct uprobe *uprobe, 626 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 627 { 628 struct uprobe_consumer *uc; 629 bool ret = false; 630 631 down_read(&uprobe->consumer_rwsem); 632 for (uc = uprobe->consumers; uc; uc = uc->next) { 633 ret = consumer_filter(uc, ctx, mm); 634 if (ret) 635 break; 636 } 637 up_read(&uprobe->consumer_rwsem); 638 639 return ret; 640 } 641 642 static int 643 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 644 struct vm_area_struct *vma, unsigned long vaddr) 645 { 646 bool first_uprobe; 647 int ret; 648 649 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 650 if (ret) 651 return ret; 652 653 /* 654 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 655 * the task can hit this breakpoint right after __replace_page(). 656 */ 657 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 658 if (first_uprobe) 659 set_bit(MMF_HAS_UPROBES, &mm->flags); 660 661 ret = set_swbp(&uprobe->arch, mm, vaddr); 662 if (!ret) 663 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 664 else if (first_uprobe) 665 clear_bit(MMF_HAS_UPROBES, &mm->flags); 666 667 return ret; 668 } 669 670 static int 671 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 672 { 673 set_bit(MMF_RECALC_UPROBES, &mm->flags); 674 return set_orig_insn(&uprobe->arch, mm, vaddr); 675 } 676 677 static inline bool uprobe_is_active(struct uprobe *uprobe) 678 { 679 return !RB_EMPTY_NODE(&uprobe->rb_node); 680 } 681 /* 682 * There could be threads that have already hit the breakpoint. They 683 * will recheck the current insn and restart if find_uprobe() fails. 684 * See find_active_uprobe(). 685 */ 686 static void delete_uprobe(struct uprobe *uprobe) 687 { 688 if (WARN_ON(!uprobe_is_active(uprobe))) 689 return; 690 691 spin_lock(&uprobes_treelock); 692 rb_erase(&uprobe->rb_node, &uprobes_tree); 693 spin_unlock(&uprobes_treelock); 694 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 695 iput(uprobe->inode); 696 put_uprobe(uprobe); 697 } 698 699 struct map_info { 700 struct map_info *next; 701 struct mm_struct *mm; 702 unsigned long vaddr; 703 }; 704 705 static inline struct map_info *free_map_info(struct map_info *info) 706 { 707 struct map_info *next = info->next; 708 kfree(info); 709 return next; 710 } 711 712 static struct map_info * 713 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 714 { 715 unsigned long pgoff = offset >> PAGE_SHIFT; 716 struct vm_area_struct *vma; 717 struct map_info *curr = NULL; 718 struct map_info *prev = NULL; 719 struct map_info *info; 720 int more = 0; 721 722 again: 723 i_mmap_lock_read(mapping); 724 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 725 if (!valid_vma(vma, is_register)) 726 continue; 727 728 if (!prev && !more) { 729 /* 730 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 731 * reclaim. This is optimistic, no harm done if it fails. 732 */ 733 prev = kmalloc(sizeof(struct map_info), 734 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 735 if (prev) 736 prev->next = NULL; 737 } 738 if (!prev) { 739 more++; 740 continue; 741 } 742 743 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 744 continue; 745 746 info = prev; 747 prev = prev->next; 748 info->next = curr; 749 curr = info; 750 751 info->mm = vma->vm_mm; 752 info->vaddr = offset_to_vaddr(vma, offset); 753 } 754 i_mmap_unlock_read(mapping); 755 756 if (!more) 757 goto out; 758 759 prev = curr; 760 while (curr) { 761 mmput(curr->mm); 762 curr = curr->next; 763 } 764 765 do { 766 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 767 if (!info) { 768 curr = ERR_PTR(-ENOMEM); 769 goto out; 770 } 771 info->next = prev; 772 prev = info; 773 } while (--more); 774 775 goto again; 776 out: 777 while (prev) 778 prev = free_map_info(prev); 779 return curr; 780 } 781 782 static int 783 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 784 { 785 bool is_register = !!new; 786 struct map_info *info; 787 int err = 0; 788 789 percpu_down_write(&dup_mmap_sem); 790 info = build_map_info(uprobe->inode->i_mapping, 791 uprobe->offset, is_register); 792 if (IS_ERR(info)) { 793 err = PTR_ERR(info); 794 goto out; 795 } 796 797 while (info) { 798 struct mm_struct *mm = info->mm; 799 struct vm_area_struct *vma; 800 801 if (err && is_register) 802 goto free; 803 804 down_write(&mm->mmap_sem); 805 vma = find_vma(mm, info->vaddr); 806 if (!vma || !valid_vma(vma, is_register) || 807 file_inode(vma->vm_file) != uprobe->inode) 808 goto unlock; 809 810 if (vma->vm_start > info->vaddr || 811 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 812 goto unlock; 813 814 if (is_register) { 815 /* consult only the "caller", new consumer. */ 816 if (consumer_filter(new, 817 UPROBE_FILTER_REGISTER, mm)) 818 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 819 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 820 if (!filter_chain(uprobe, 821 UPROBE_FILTER_UNREGISTER, mm)) 822 err |= remove_breakpoint(uprobe, mm, info->vaddr); 823 } 824 825 unlock: 826 up_write(&mm->mmap_sem); 827 free: 828 mmput(mm); 829 info = free_map_info(info); 830 } 831 out: 832 percpu_up_write(&dup_mmap_sem); 833 return err; 834 } 835 836 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc) 837 { 838 consumer_add(uprobe, uc); 839 return register_for_each_vma(uprobe, uc); 840 } 841 842 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 843 { 844 int err; 845 846 if (WARN_ON(!consumer_del(uprobe, uc))) 847 return; 848 849 err = register_for_each_vma(uprobe, NULL); 850 /* TODO : cant unregister? schedule a worker thread */ 851 if (!uprobe->consumers && !err) 852 delete_uprobe(uprobe); 853 } 854 855 /* 856 * uprobe_register - register a probe 857 * @inode: the file in which the probe has to be placed. 858 * @offset: offset from the start of the file. 859 * @uc: information on howto handle the probe.. 860 * 861 * Apart from the access refcount, uprobe_register() takes a creation 862 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 863 * inserted into the rbtree (i.e first consumer for a @inode:@offset 864 * tuple). Creation refcount stops uprobe_unregister from freeing the 865 * @uprobe even before the register operation is complete. Creation 866 * refcount is released when the last @uc for the @uprobe 867 * unregisters. 868 * 869 * Return errno if it cannot successully install probes 870 * else return 0 (success) 871 */ 872 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 873 { 874 struct uprobe *uprobe; 875 int ret; 876 877 /* Uprobe must have at least one set consumer */ 878 if (!uc->handler && !uc->ret_handler) 879 return -EINVAL; 880 881 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 882 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 883 return -EIO; 884 /* Racy, just to catch the obvious mistakes */ 885 if (offset > i_size_read(inode)) 886 return -EINVAL; 887 888 retry: 889 uprobe = alloc_uprobe(inode, offset); 890 if (!uprobe) 891 return -ENOMEM; 892 /* 893 * We can race with uprobe_unregister()->delete_uprobe(). 894 * Check uprobe_is_active() and retry if it is false. 895 */ 896 down_write(&uprobe->register_rwsem); 897 ret = -EAGAIN; 898 if (likely(uprobe_is_active(uprobe))) { 899 ret = __uprobe_register(uprobe, uc); 900 if (ret) 901 __uprobe_unregister(uprobe, uc); 902 } 903 up_write(&uprobe->register_rwsem); 904 put_uprobe(uprobe); 905 906 if (unlikely(ret == -EAGAIN)) 907 goto retry; 908 return ret; 909 } 910 EXPORT_SYMBOL_GPL(uprobe_register); 911 912 /* 913 * uprobe_apply - unregister a already registered probe. 914 * @inode: the file in which the probe has to be removed. 915 * @offset: offset from the start of the file. 916 * @uc: consumer which wants to add more or remove some breakpoints 917 * @add: add or remove the breakpoints 918 */ 919 int uprobe_apply(struct inode *inode, loff_t offset, 920 struct uprobe_consumer *uc, bool add) 921 { 922 struct uprobe *uprobe; 923 struct uprobe_consumer *con; 924 int ret = -ENOENT; 925 926 uprobe = find_uprobe(inode, offset); 927 if (WARN_ON(!uprobe)) 928 return ret; 929 930 down_write(&uprobe->register_rwsem); 931 for (con = uprobe->consumers; con && con != uc ; con = con->next) 932 ; 933 if (con) 934 ret = register_for_each_vma(uprobe, add ? uc : NULL); 935 up_write(&uprobe->register_rwsem); 936 put_uprobe(uprobe); 937 938 return ret; 939 } 940 941 /* 942 * uprobe_unregister - unregister a already registered probe. 943 * @inode: the file in which the probe has to be removed. 944 * @offset: offset from the start of the file. 945 * @uc: identify which probe if multiple probes are colocated. 946 */ 947 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 948 { 949 struct uprobe *uprobe; 950 951 uprobe = find_uprobe(inode, offset); 952 if (WARN_ON(!uprobe)) 953 return; 954 955 down_write(&uprobe->register_rwsem); 956 __uprobe_unregister(uprobe, uc); 957 up_write(&uprobe->register_rwsem); 958 put_uprobe(uprobe); 959 } 960 EXPORT_SYMBOL_GPL(uprobe_unregister); 961 962 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 963 { 964 struct vm_area_struct *vma; 965 int err = 0; 966 967 down_read(&mm->mmap_sem); 968 for (vma = mm->mmap; vma; vma = vma->vm_next) { 969 unsigned long vaddr; 970 loff_t offset; 971 972 if (!valid_vma(vma, false) || 973 file_inode(vma->vm_file) != uprobe->inode) 974 continue; 975 976 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 977 if (uprobe->offset < offset || 978 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 979 continue; 980 981 vaddr = offset_to_vaddr(vma, uprobe->offset); 982 err |= remove_breakpoint(uprobe, mm, vaddr); 983 } 984 up_read(&mm->mmap_sem); 985 986 return err; 987 } 988 989 static struct rb_node * 990 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 991 { 992 struct rb_node *n = uprobes_tree.rb_node; 993 994 while (n) { 995 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 996 997 if (inode < u->inode) { 998 n = n->rb_left; 999 } else if (inode > u->inode) { 1000 n = n->rb_right; 1001 } else { 1002 if (max < u->offset) 1003 n = n->rb_left; 1004 else if (min > u->offset) 1005 n = n->rb_right; 1006 else 1007 break; 1008 } 1009 } 1010 1011 return n; 1012 } 1013 1014 /* 1015 * For a given range in vma, build a list of probes that need to be inserted. 1016 */ 1017 static void build_probe_list(struct inode *inode, 1018 struct vm_area_struct *vma, 1019 unsigned long start, unsigned long end, 1020 struct list_head *head) 1021 { 1022 loff_t min, max; 1023 struct rb_node *n, *t; 1024 struct uprobe *u; 1025 1026 INIT_LIST_HEAD(head); 1027 min = vaddr_to_offset(vma, start); 1028 max = min + (end - start) - 1; 1029 1030 spin_lock(&uprobes_treelock); 1031 n = find_node_in_range(inode, min, max); 1032 if (n) { 1033 for (t = n; t; t = rb_prev(t)) { 1034 u = rb_entry(t, struct uprobe, rb_node); 1035 if (u->inode != inode || u->offset < min) 1036 break; 1037 list_add(&u->pending_list, head); 1038 get_uprobe(u); 1039 } 1040 for (t = n; (t = rb_next(t)); ) { 1041 u = rb_entry(t, struct uprobe, rb_node); 1042 if (u->inode != inode || u->offset > max) 1043 break; 1044 list_add(&u->pending_list, head); 1045 get_uprobe(u); 1046 } 1047 } 1048 spin_unlock(&uprobes_treelock); 1049 } 1050 1051 /* 1052 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1053 * 1054 * Currently we ignore all errors and always return 0, the callers 1055 * can't handle the failure anyway. 1056 */ 1057 int uprobe_mmap(struct vm_area_struct *vma) 1058 { 1059 struct list_head tmp_list; 1060 struct uprobe *uprobe, *u; 1061 struct inode *inode; 1062 1063 if (no_uprobe_events() || !valid_vma(vma, true)) 1064 return 0; 1065 1066 inode = file_inode(vma->vm_file); 1067 if (!inode) 1068 return 0; 1069 1070 mutex_lock(uprobes_mmap_hash(inode)); 1071 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1072 /* 1073 * We can race with uprobe_unregister(), this uprobe can be already 1074 * removed. But in this case filter_chain() must return false, all 1075 * consumers have gone away. 1076 */ 1077 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1078 if (!fatal_signal_pending(current) && 1079 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1080 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1081 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1082 } 1083 put_uprobe(uprobe); 1084 } 1085 mutex_unlock(uprobes_mmap_hash(inode)); 1086 1087 return 0; 1088 } 1089 1090 static bool 1091 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1092 { 1093 loff_t min, max; 1094 struct inode *inode; 1095 struct rb_node *n; 1096 1097 inode = file_inode(vma->vm_file); 1098 1099 min = vaddr_to_offset(vma, start); 1100 max = min + (end - start) - 1; 1101 1102 spin_lock(&uprobes_treelock); 1103 n = find_node_in_range(inode, min, max); 1104 spin_unlock(&uprobes_treelock); 1105 1106 return !!n; 1107 } 1108 1109 /* 1110 * Called in context of a munmap of a vma. 1111 */ 1112 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1113 { 1114 if (no_uprobe_events() || !valid_vma(vma, false)) 1115 return; 1116 1117 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1118 return; 1119 1120 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1121 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1122 return; 1123 1124 if (vma_has_uprobes(vma, start, end)) 1125 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1126 } 1127 1128 /* Slot allocation for XOL */ 1129 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1130 { 1131 struct vm_area_struct *vma; 1132 int ret; 1133 1134 if (down_write_killable(&mm->mmap_sem)) 1135 return -EINTR; 1136 1137 if (mm->uprobes_state.xol_area) { 1138 ret = -EALREADY; 1139 goto fail; 1140 } 1141 1142 if (!area->vaddr) { 1143 /* Try to map as high as possible, this is only a hint. */ 1144 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1145 PAGE_SIZE, 0, 0); 1146 if (area->vaddr & ~PAGE_MASK) { 1147 ret = area->vaddr; 1148 goto fail; 1149 } 1150 } 1151 1152 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1153 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1154 &area->xol_mapping); 1155 if (IS_ERR(vma)) { 1156 ret = PTR_ERR(vma); 1157 goto fail; 1158 } 1159 1160 ret = 0; 1161 smp_wmb(); /* pairs with get_xol_area() */ 1162 mm->uprobes_state.xol_area = area; 1163 fail: 1164 up_write(&mm->mmap_sem); 1165 1166 return ret; 1167 } 1168 1169 static struct xol_area *__create_xol_area(unsigned long vaddr) 1170 { 1171 struct mm_struct *mm = current->mm; 1172 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1173 struct xol_area *area; 1174 1175 area = kmalloc(sizeof(*area), GFP_KERNEL); 1176 if (unlikely(!area)) 1177 goto out; 1178 1179 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1180 if (!area->bitmap) 1181 goto free_area; 1182 1183 area->xol_mapping.name = "[uprobes]"; 1184 area->xol_mapping.fault = NULL; 1185 area->xol_mapping.pages = area->pages; 1186 area->pages[0] = alloc_page(GFP_HIGHUSER); 1187 if (!area->pages[0]) 1188 goto free_bitmap; 1189 area->pages[1] = NULL; 1190 1191 area->vaddr = vaddr; 1192 init_waitqueue_head(&area->wq); 1193 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1194 set_bit(0, area->bitmap); 1195 atomic_set(&area->slot_count, 1); 1196 copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1197 1198 if (!xol_add_vma(mm, area)) 1199 return area; 1200 1201 __free_page(area->pages[0]); 1202 free_bitmap: 1203 kfree(area->bitmap); 1204 free_area: 1205 kfree(area); 1206 out: 1207 return NULL; 1208 } 1209 1210 /* 1211 * get_xol_area - Allocate process's xol_area if necessary. 1212 * This area will be used for storing instructions for execution out of line. 1213 * 1214 * Returns the allocated area or NULL. 1215 */ 1216 static struct xol_area *get_xol_area(void) 1217 { 1218 struct mm_struct *mm = current->mm; 1219 struct xol_area *area; 1220 1221 if (!mm->uprobes_state.xol_area) 1222 __create_xol_area(0); 1223 1224 area = mm->uprobes_state.xol_area; 1225 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1226 return area; 1227 } 1228 1229 /* 1230 * uprobe_clear_state - Free the area allocated for slots. 1231 */ 1232 void uprobe_clear_state(struct mm_struct *mm) 1233 { 1234 struct xol_area *area = mm->uprobes_state.xol_area; 1235 1236 if (!area) 1237 return; 1238 1239 put_page(area->pages[0]); 1240 kfree(area->bitmap); 1241 kfree(area); 1242 } 1243 1244 void uprobe_start_dup_mmap(void) 1245 { 1246 percpu_down_read(&dup_mmap_sem); 1247 } 1248 1249 void uprobe_end_dup_mmap(void) 1250 { 1251 percpu_up_read(&dup_mmap_sem); 1252 } 1253 1254 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1255 { 1256 newmm->uprobes_state.xol_area = NULL; 1257 1258 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1259 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1260 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1261 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1262 } 1263 } 1264 1265 /* 1266 * - search for a free slot. 1267 */ 1268 static unsigned long xol_take_insn_slot(struct xol_area *area) 1269 { 1270 unsigned long slot_addr; 1271 int slot_nr; 1272 1273 do { 1274 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1275 if (slot_nr < UINSNS_PER_PAGE) { 1276 if (!test_and_set_bit(slot_nr, area->bitmap)) 1277 break; 1278 1279 slot_nr = UINSNS_PER_PAGE; 1280 continue; 1281 } 1282 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1283 } while (slot_nr >= UINSNS_PER_PAGE); 1284 1285 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1286 atomic_inc(&area->slot_count); 1287 1288 return slot_addr; 1289 } 1290 1291 /* 1292 * xol_get_insn_slot - allocate a slot for xol. 1293 * Returns the allocated slot address or 0. 1294 */ 1295 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1296 { 1297 struct xol_area *area; 1298 unsigned long xol_vaddr; 1299 1300 area = get_xol_area(); 1301 if (!area) 1302 return 0; 1303 1304 xol_vaddr = xol_take_insn_slot(area); 1305 if (unlikely(!xol_vaddr)) 1306 return 0; 1307 1308 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1309 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1310 1311 return xol_vaddr; 1312 } 1313 1314 /* 1315 * xol_free_insn_slot - If slot was earlier allocated by 1316 * @xol_get_insn_slot(), make the slot available for 1317 * subsequent requests. 1318 */ 1319 static void xol_free_insn_slot(struct task_struct *tsk) 1320 { 1321 struct xol_area *area; 1322 unsigned long vma_end; 1323 unsigned long slot_addr; 1324 1325 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1326 return; 1327 1328 slot_addr = tsk->utask->xol_vaddr; 1329 if (unlikely(!slot_addr)) 1330 return; 1331 1332 area = tsk->mm->uprobes_state.xol_area; 1333 vma_end = area->vaddr + PAGE_SIZE; 1334 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1335 unsigned long offset; 1336 int slot_nr; 1337 1338 offset = slot_addr - area->vaddr; 1339 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1340 if (slot_nr >= UINSNS_PER_PAGE) 1341 return; 1342 1343 clear_bit(slot_nr, area->bitmap); 1344 atomic_dec(&area->slot_count); 1345 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1346 if (waitqueue_active(&area->wq)) 1347 wake_up(&area->wq); 1348 1349 tsk->utask->xol_vaddr = 0; 1350 } 1351 } 1352 1353 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1354 void *src, unsigned long len) 1355 { 1356 /* Initialize the slot */ 1357 copy_to_page(page, vaddr, src, len); 1358 1359 /* 1360 * We probably need flush_icache_user_range() but it needs vma. 1361 * This should work on most of architectures by default. If 1362 * architecture needs to do something different it can define 1363 * its own version of the function. 1364 */ 1365 flush_dcache_page(page); 1366 } 1367 1368 /** 1369 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1370 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1371 * instruction. 1372 * Return the address of the breakpoint instruction. 1373 */ 1374 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1375 { 1376 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1377 } 1378 1379 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1380 { 1381 struct uprobe_task *utask = current->utask; 1382 1383 if (unlikely(utask && utask->active_uprobe)) 1384 return utask->vaddr; 1385 1386 return instruction_pointer(regs); 1387 } 1388 1389 static struct return_instance *free_ret_instance(struct return_instance *ri) 1390 { 1391 struct return_instance *next = ri->next; 1392 put_uprobe(ri->uprobe); 1393 kfree(ri); 1394 return next; 1395 } 1396 1397 /* 1398 * Called with no locks held. 1399 * Called in context of a exiting or a exec-ing thread. 1400 */ 1401 void uprobe_free_utask(struct task_struct *t) 1402 { 1403 struct uprobe_task *utask = t->utask; 1404 struct return_instance *ri; 1405 1406 if (!utask) 1407 return; 1408 1409 if (utask->active_uprobe) 1410 put_uprobe(utask->active_uprobe); 1411 1412 ri = utask->return_instances; 1413 while (ri) 1414 ri = free_ret_instance(ri); 1415 1416 xol_free_insn_slot(t); 1417 kfree(utask); 1418 t->utask = NULL; 1419 } 1420 1421 /* 1422 * Allocate a uprobe_task object for the task if if necessary. 1423 * Called when the thread hits a breakpoint. 1424 * 1425 * Returns: 1426 * - pointer to new uprobe_task on success 1427 * - NULL otherwise 1428 */ 1429 static struct uprobe_task *get_utask(void) 1430 { 1431 if (!current->utask) 1432 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1433 return current->utask; 1434 } 1435 1436 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1437 { 1438 struct uprobe_task *n_utask; 1439 struct return_instance **p, *o, *n; 1440 1441 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1442 if (!n_utask) 1443 return -ENOMEM; 1444 t->utask = n_utask; 1445 1446 p = &n_utask->return_instances; 1447 for (o = o_utask->return_instances; o; o = o->next) { 1448 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1449 if (!n) 1450 return -ENOMEM; 1451 1452 *n = *o; 1453 get_uprobe(n->uprobe); 1454 n->next = NULL; 1455 1456 *p = n; 1457 p = &n->next; 1458 n_utask->depth++; 1459 } 1460 1461 return 0; 1462 } 1463 1464 static void uprobe_warn(struct task_struct *t, const char *msg) 1465 { 1466 pr_warn("uprobe: %s:%d failed to %s\n", 1467 current->comm, current->pid, msg); 1468 } 1469 1470 static void dup_xol_work(struct callback_head *work) 1471 { 1472 if (current->flags & PF_EXITING) 1473 return; 1474 1475 if (!__create_xol_area(current->utask->dup_xol_addr) && 1476 !fatal_signal_pending(current)) 1477 uprobe_warn(current, "dup xol area"); 1478 } 1479 1480 /* 1481 * Called in context of a new clone/fork from copy_process. 1482 */ 1483 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1484 { 1485 struct uprobe_task *utask = current->utask; 1486 struct mm_struct *mm = current->mm; 1487 struct xol_area *area; 1488 1489 t->utask = NULL; 1490 1491 if (!utask || !utask->return_instances) 1492 return; 1493 1494 if (mm == t->mm && !(flags & CLONE_VFORK)) 1495 return; 1496 1497 if (dup_utask(t, utask)) 1498 return uprobe_warn(t, "dup ret instances"); 1499 1500 /* The task can fork() after dup_xol_work() fails */ 1501 area = mm->uprobes_state.xol_area; 1502 if (!area) 1503 return uprobe_warn(t, "dup xol area"); 1504 1505 if (mm == t->mm) 1506 return; 1507 1508 t->utask->dup_xol_addr = area->vaddr; 1509 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1510 task_work_add(t, &t->utask->dup_xol_work, true); 1511 } 1512 1513 /* 1514 * Current area->vaddr notion assume the trampoline address is always 1515 * equal area->vaddr. 1516 * 1517 * Returns -1 in case the xol_area is not allocated. 1518 */ 1519 static unsigned long get_trampoline_vaddr(void) 1520 { 1521 struct xol_area *area; 1522 unsigned long trampoline_vaddr = -1; 1523 1524 area = current->mm->uprobes_state.xol_area; 1525 smp_read_barrier_depends(); 1526 if (area) 1527 trampoline_vaddr = area->vaddr; 1528 1529 return trampoline_vaddr; 1530 } 1531 1532 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1533 struct pt_regs *regs) 1534 { 1535 struct return_instance *ri = utask->return_instances; 1536 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1537 1538 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1539 ri = free_ret_instance(ri); 1540 utask->depth--; 1541 } 1542 utask->return_instances = ri; 1543 } 1544 1545 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1546 { 1547 struct return_instance *ri; 1548 struct uprobe_task *utask; 1549 unsigned long orig_ret_vaddr, trampoline_vaddr; 1550 bool chained; 1551 1552 if (!get_xol_area()) 1553 return; 1554 1555 utask = get_utask(); 1556 if (!utask) 1557 return; 1558 1559 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1560 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1561 " nestedness limit pid/tgid=%d/%d\n", 1562 current->pid, current->tgid); 1563 return; 1564 } 1565 1566 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1567 if (!ri) 1568 return; 1569 1570 trampoline_vaddr = get_trampoline_vaddr(); 1571 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1572 if (orig_ret_vaddr == -1) 1573 goto fail; 1574 1575 /* drop the entries invalidated by longjmp() */ 1576 chained = (orig_ret_vaddr == trampoline_vaddr); 1577 cleanup_return_instances(utask, chained, regs); 1578 1579 /* 1580 * We don't want to keep trampoline address in stack, rather keep the 1581 * original return address of first caller thru all the consequent 1582 * instances. This also makes breakpoint unwrapping easier. 1583 */ 1584 if (chained) { 1585 if (!utask->return_instances) { 1586 /* 1587 * This situation is not possible. Likely we have an 1588 * attack from user-space. 1589 */ 1590 uprobe_warn(current, "handle tail call"); 1591 goto fail; 1592 } 1593 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1594 } 1595 1596 ri->uprobe = get_uprobe(uprobe); 1597 ri->func = instruction_pointer(regs); 1598 ri->stack = user_stack_pointer(regs); 1599 ri->orig_ret_vaddr = orig_ret_vaddr; 1600 ri->chained = chained; 1601 1602 utask->depth++; 1603 ri->next = utask->return_instances; 1604 utask->return_instances = ri; 1605 1606 return; 1607 fail: 1608 kfree(ri); 1609 } 1610 1611 /* Prepare to single-step probed instruction out of line. */ 1612 static int 1613 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1614 { 1615 struct uprobe_task *utask; 1616 unsigned long xol_vaddr; 1617 int err; 1618 1619 utask = get_utask(); 1620 if (!utask) 1621 return -ENOMEM; 1622 1623 xol_vaddr = xol_get_insn_slot(uprobe); 1624 if (!xol_vaddr) 1625 return -ENOMEM; 1626 1627 utask->xol_vaddr = xol_vaddr; 1628 utask->vaddr = bp_vaddr; 1629 1630 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1631 if (unlikely(err)) { 1632 xol_free_insn_slot(current); 1633 return err; 1634 } 1635 1636 utask->active_uprobe = uprobe; 1637 utask->state = UTASK_SSTEP; 1638 return 0; 1639 } 1640 1641 /* 1642 * If we are singlestepping, then ensure this thread is not connected to 1643 * non-fatal signals until completion of singlestep. When xol insn itself 1644 * triggers the signal, restart the original insn even if the task is 1645 * already SIGKILL'ed (since coredump should report the correct ip). This 1646 * is even more important if the task has a handler for SIGSEGV/etc, The 1647 * _same_ instruction should be repeated again after return from the signal 1648 * handler, and SSTEP can never finish in this case. 1649 */ 1650 bool uprobe_deny_signal(void) 1651 { 1652 struct task_struct *t = current; 1653 struct uprobe_task *utask = t->utask; 1654 1655 if (likely(!utask || !utask->active_uprobe)) 1656 return false; 1657 1658 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1659 1660 if (signal_pending(t)) { 1661 spin_lock_irq(&t->sighand->siglock); 1662 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1663 spin_unlock_irq(&t->sighand->siglock); 1664 1665 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1666 utask->state = UTASK_SSTEP_TRAPPED; 1667 set_tsk_thread_flag(t, TIF_UPROBE); 1668 } 1669 } 1670 1671 return true; 1672 } 1673 1674 static void mmf_recalc_uprobes(struct mm_struct *mm) 1675 { 1676 struct vm_area_struct *vma; 1677 1678 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1679 if (!valid_vma(vma, false)) 1680 continue; 1681 /* 1682 * This is not strictly accurate, we can race with 1683 * uprobe_unregister() and see the already removed 1684 * uprobe if delete_uprobe() was not yet called. 1685 * Or this uprobe can be filtered out. 1686 */ 1687 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1688 return; 1689 } 1690 1691 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1692 } 1693 1694 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 1695 { 1696 struct page *page; 1697 uprobe_opcode_t opcode; 1698 int result; 1699 1700 pagefault_disable(); 1701 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 1702 pagefault_enable(); 1703 1704 if (likely(result == 0)) 1705 goto out; 1706 1707 /* 1708 * The NULL 'tsk' here ensures that any faults that occur here 1709 * will not be accounted to the task. 'mm' *is* current->mm, 1710 * but we treat this as a 'remote' access since it is 1711 * essentially a kernel access to the memory. 1712 */ 1713 result = get_user_pages_remote(NULL, mm, vaddr, 1, 0, 1, &page, NULL); 1714 if (result < 0) 1715 return result; 1716 1717 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 1718 put_page(page); 1719 out: 1720 /* This needs to return true for any variant of the trap insn */ 1721 return is_trap_insn(&opcode); 1722 } 1723 1724 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1725 { 1726 struct mm_struct *mm = current->mm; 1727 struct uprobe *uprobe = NULL; 1728 struct vm_area_struct *vma; 1729 1730 down_read(&mm->mmap_sem); 1731 vma = find_vma(mm, bp_vaddr); 1732 if (vma && vma->vm_start <= bp_vaddr) { 1733 if (valid_vma(vma, false)) { 1734 struct inode *inode = file_inode(vma->vm_file); 1735 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1736 1737 uprobe = find_uprobe(inode, offset); 1738 } 1739 1740 if (!uprobe) 1741 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 1742 } else { 1743 *is_swbp = -EFAULT; 1744 } 1745 1746 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1747 mmf_recalc_uprobes(mm); 1748 up_read(&mm->mmap_sem); 1749 1750 return uprobe; 1751 } 1752 1753 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 1754 { 1755 struct uprobe_consumer *uc; 1756 int remove = UPROBE_HANDLER_REMOVE; 1757 bool need_prep = false; /* prepare return uprobe, when needed */ 1758 1759 down_read(&uprobe->register_rwsem); 1760 for (uc = uprobe->consumers; uc; uc = uc->next) { 1761 int rc = 0; 1762 1763 if (uc->handler) { 1764 rc = uc->handler(uc, regs); 1765 WARN(rc & ~UPROBE_HANDLER_MASK, 1766 "bad rc=0x%x from %pf()\n", rc, uc->handler); 1767 } 1768 1769 if (uc->ret_handler) 1770 need_prep = true; 1771 1772 remove &= rc; 1773 } 1774 1775 if (need_prep && !remove) 1776 prepare_uretprobe(uprobe, regs); /* put bp at return */ 1777 1778 if (remove && uprobe->consumers) { 1779 WARN_ON(!uprobe_is_active(uprobe)); 1780 unapply_uprobe(uprobe, current->mm); 1781 } 1782 up_read(&uprobe->register_rwsem); 1783 } 1784 1785 static void 1786 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 1787 { 1788 struct uprobe *uprobe = ri->uprobe; 1789 struct uprobe_consumer *uc; 1790 1791 down_read(&uprobe->register_rwsem); 1792 for (uc = uprobe->consumers; uc; uc = uc->next) { 1793 if (uc->ret_handler) 1794 uc->ret_handler(uc, ri->func, regs); 1795 } 1796 up_read(&uprobe->register_rwsem); 1797 } 1798 1799 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 1800 { 1801 bool chained; 1802 1803 do { 1804 chained = ri->chained; 1805 ri = ri->next; /* can't be NULL if chained */ 1806 } while (chained); 1807 1808 return ri; 1809 } 1810 1811 static void handle_trampoline(struct pt_regs *regs) 1812 { 1813 struct uprobe_task *utask; 1814 struct return_instance *ri, *next; 1815 bool valid; 1816 1817 utask = current->utask; 1818 if (!utask) 1819 goto sigill; 1820 1821 ri = utask->return_instances; 1822 if (!ri) 1823 goto sigill; 1824 1825 do { 1826 /* 1827 * We should throw out the frames invalidated by longjmp(). 1828 * If this chain is valid, then the next one should be alive 1829 * or NULL; the latter case means that nobody but ri->func 1830 * could hit this trampoline on return. TODO: sigaltstack(). 1831 */ 1832 next = find_next_ret_chain(ri); 1833 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 1834 1835 instruction_pointer_set(regs, ri->orig_ret_vaddr); 1836 do { 1837 if (valid) 1838 handle_uretprobe_chain(ri, regs); 1839 ri = free_ret_instance(ri); 1840 utask->depth--; 1841 } while (ri != next); 1842 } while (!valid); 1843 1844 utask->return_instances = ri; 1845 return; 1846 1847 sigill: 1848 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 1849 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1850 1851 } 1852 1853 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 1854 { 1855 return false; 1856 } 1857 1858 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 1859 struct pt_regs *regs) 1860 { 1861 return true; 1862 } 1863 1864 /* 1865 * Run handler and ask thread to singlestep. 1866 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1867 */ 1868 static void handle_swbp(struct pt_regs *regs) 1869 { 1870 struct uprobe *uprobe; 1871 unsigned long bp_vaddr; 1872 int uninitialized_var(is_swbp); 1873 1874 bp_vaddr = uprobe_get_swbp_addr(regs); 1875 if (bp_vaddr == get_trampoline_vaddr()) 1876 return handle_trampoline(regs); 1877 1878 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1879 if (!uprobe) { 1880 if (is_swbp > 0) { 1881 /* No matching uprobe; signal SIGTRAP. */ 1882 send_sig(SIGTRAP, current, 0); 1883 } else { 1884 /* 1885 * Either we raced with uprobe_unregister() or we can't 1886 * access this memory. The latter is only possible if 1887 * another thread plays with our ->mm. In both cases 1888 * we can simply restart. If this vma was unmapped we 1889 * can pretend this insn was not executed yet and get 1890 * the (correct) SIGSEGV after restart. 1891 */ 1892 instruction_pointer_set(regs, bp_vaddr); 1893 } 1894 return; 1895 } 1896 1897 /* change it in advance for ->handler() and restart */ 1898 instruction_pointer_set(regs, bp_vaddr); 1899 1900 /* 1901 * TODO: move copy_insn/etc into _register and remove this hack. 1902 * After we hit the bp, _unregister + _register can install the 1903 * new and not-yet-analyzed uprobe at the same address, restart. 1904 */ 1905 smp_rmb(); /* pairs with wmb() in install_breakpoint() */ 1906 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 1907 goto out; 1908 1909 /* Tracing handlers use ->utask to communicate with fetch methods */ 1910 if (!get_utask()) 1911 goto out; 1912 1913 if (arch_uprobe_ignore(&uprobe->arch, regs)) 1914 goto out; 1915 1916 handler_chain(uprobe, regs); 1917 1918 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1919 goto out; 1920 1921 if (!pre_ssout(uprobe, regs, bp_vaddr)) 1922 return; 1923 1924 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 1925 out: 1926 put_uprobe(uprobe); 1927 } 1928 1929 /* 1930 * Perform required fix-ups and disable singlestep. 1931 * Allow pending signals to take effect. 1932 */ 1933 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1934 { 1935 struct uprobe *uprobe; 1936 int err = 0; 1937 1938 uprobe = utask->active_uprobe; 1939 if (utask->state == UTASK_SSTEP_ACK) 1940 err = arch_uprobe_post_xol(&uprobe->arch, regs); 1941 else if (utask->state == UTASK_SSTEP_TRAPPED) 1942 arch_uprobe_abort_xol(&uprobe->arch, regs); 1943 else 1944 WARN_ON_ONCE(1); 1945 1946 put_uprobe(uprobe); 1947 utask->active_uprobe = NULL; 1948 utask->state = UTASK_RUNNING; 1949 xol_free_insn_slot(current); 1950 1951 spin_lock_irq(¤t->sighand->siglock); 1952 recalc_sigpending(); /* see uprobe_deny_signal() */ 1953 spin_unlock_irq(¤t->sighand->siglock); 1954 1955 if (unlikely(err)) { 1956 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 1957 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1958 } 1959 } 1960 1961 /* 1962 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 1963 * allows the thread to return from interrupt. After that handle_swbp() 1964 * sets utask->active_uprobe. 1965 * 1966 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 1967 * and allows the thread to return from interrupt. 1968 * 1969 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1970 * uprobe_notify_resume(). 1971 */ 1972 void uprobe_notify_resume(struct pt_regs *regs) 1973 { 1974 struct uprobe_task *utask; 1975 1976 clear_thread_flag(TIF_UPROBE); 1977 1978 utask = current->utask; 1979 if (utask && utask->active_uprobe) 1980 handle_singlestep(utask, regs); 1981 else 1982 handle_swbp(regs); 1983 } 1984 1985 /* 1986 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1987 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1988 */ 1989 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1990 { 1991 if (!current->mm) 1992 return 0; 1993 1994 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 1995 (!current->utask || !current->utask->return_instances)) 1996 return 0; 1997 1998 set_thread_flag(TIF_UPROBE); 1999 return 1; 2000 } 2001 2002 /* 2003 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2004 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2005 */ 2006 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2007 { 2008 struct uprobe_task *utask = current->utask; 2009 2010 if (!current->mm || !utask || !utask->active_uprobe) 2011 /* task is currently not uprobed */ 2012 return 0; 2013 2014 utask->state = UTASK_SSTEP_ACK; 2015 set_thread_flag(TIF_UPROBE); 2016 return 1; 2017 } 2018 2019 static struct notifier_block uprobe_exception_nb = { 2020 .notifier_call = arch_uprobe_exception_notify, 2021 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2022 }; 2023 2024 static int __init init_uprobes(void) 2025 { 2026 int i; 2027 2028 for (i = 0; i < UPROBES_HASH_SZ; i++) 2029 mutex_init(&uprobes_mmap_mutex[i]); 2030 2031 if (percpu_init_rwsem(&dup_mmap_sem)) 2032 return -ENOMEM; 2033 2034 return register_die_notifier(&uprobe_exception_nb); 2035 } 2036 __initcall(init_uprobes); 2037