1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 22 #include <linux/swap.h> /* try_to_free_swap */ 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier mechanism */ 25 #include "../../mm/internal.h" /* munlock_vma_page */ 26 #include <linux/percpu-rwsem.h> 27 #include <linux/task_work.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/khugepaged.h> 30 31 #include <linux/uprobes.h> 32 33 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 34 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 35 36 static struct rb_root uprobes_tree = RB_ROOT; 37 /* 38 * allows us to skip the uprobe_mmap if there are no uprobe events active 39 * at this time. Probably a fine grained per inode count is better? 40 */ 41 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 42 43 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 44 45 #define UPROBES_HASH_SZ 13 46 /* serialize uprobe->pending_list */ 47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 48 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 49 50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 51 52 /* Have a copy of original instruction */ 53 #define UPROBE_COPY_INSN 0 54 55 struct uprobe { 56 struct rb_node rb_node; /* node in the rb tree */ 57 refcount_t ref; 58 struct rw_semaphore register_rwsem; 59 struct rw_semaphore consumer_rwsem; 60 struct list_head pending_list; 61 struct uprobe_consumer *consumers; 62 struct inode *inode; /* Also hold a ref to inode */ 63 loff_t offset; 64 loff_t ref_ctr_offset; 65 unsigned long flags; 66 67 /* 68 * The generic code assumes that it has two members of unknown type 69 * owned by the arch-specific code: 70 * 71 * insn - copy_insn() saves the original instruction here for 72 * arch_uprobe_analyze_insn(). 73 * 74 * ixol - potentially modified instruction to execute out of 75 * line, copied to xol_area by xol_get_insn_slot(). 76 */ 77 struct arch_uprobe arch; 78 }; 79 80 struct delayed_uprobe { 81 struct list_head list; 82 struct uprobe *uprobe; 83 struct mm_struct *mm; 84 }; 85 86 static DEFINE_MUTEX(delayed_uprobe_lock); 87 static LIST_HEAD(delayed_uprobe_list); 88 89 /* 90 * Execute out of line area: anonymous executable mapping installed 91 * by the probed task to execute the copy of the original instruction 92 * mangled by set_swbp(). 93 * 94 * On a breakpoint hit, thread contests for a slot. It frees the 95 * slot after singlestep. Currently a fixed number of slots are 96 * allocated. 97 */ 98 struct xol_area { 99 wait_queue_head_t wq; /* if all slots are busy */ 100 atomic_t slot_count; /* number of in-use slots */ 101 unsigned long *bitmap; /* 0 = free slot */ 102 103 struct vm_special_mapping xol_mapping; 104 struct page *pages[2]; 105 /* 106 * We keep the vma's vm_start rather than a pointer to the vma 107 * itself. The probed process or a naughty kernel module could make 108 * the vma go away, and we must handle that reasonably gracefully. 109 */ 110 unsigned long vaddr; /* Page(s) of instruction slots */ 111 }; 112 113 /* 114 * valid_vma: Verify if the specified vma is an executable vma 115 * Relax restrictions while unregistering: vm_flags might have 116 * changed after breakpoint was inserted. 117 * - is_register: indicates if we are in register context. 118 * - Return 1 if the specified virtual address is in an 119 * executable vma. 120 */ 121 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 122 { 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 124 125 if (is_register) 126 flags |= VM_WRITE; 127 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 129 } 130 131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 132 { 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 134 } 135 136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 137 { 138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 139 } 140 141 /** 142 * __replace_page - replace page in vma by new page. 143 * based on replace_page in mm/ksm.c 144 * 145 * @vma: vma that holds the pte pointing to page 146 * @addr: address the old @page is mapped at 147 * @old_page: the page we are replacing by new_page 148 * @new_page: the modified page we replace page by 149 * 150 * If @new_page is NULL, only unmap @old_page. 151 * 152 * Returns 0 on success, negative error code otherwise. 153 */ 154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 155 struct page *old_page, struct page *new_page) 156 { 157 struct mm_struct *mm = vma->vm_mm; 158 struct page_vma_mapped_walk pvmw = { 159 .page = compound_head(old_page), 160 .vma = vma, 161 .address = addr, 162 }; 163 int err; 164 struct mmu_notifier_range range; 165 166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 167 addr + PAGE_SIZE); 168 169 if (new_page) { 170 err = mem_cgroup_charge(page_folio(new_page), vma->vm_mm, 171 GFP_KERNEL); 172 if (err) 173 return err; 174 } 175 176 /* For try_to_free_swap() and munlock_vma_page() below */ 177 lock_page(old_page); 178 179 mmu_notifier_invalidate_range_start(&range); 180 err = -EAGAIN; 181 if (!page_vma_mapped_walk(&pvmw)) 182 goto unlock; 183 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 184 185 if (new_page) { 186 get_page(new_page); 187 page_add_new_anon_rmap(new_page, vma, addr, false); 188 lru_cache_add_inactive_or_unevictable(new_page, vma); 189 } else 190 /* no new page, just dec_mm_counter for old_page */ 191 dec_mm_counter(mm, MM_ANONPAGES); 192 193 if (!PageAnon(old_page)) { 194 dec_mm_counter(mm, mm_counter_file(old_page)); 195 inc_mm_counter(mm, MM_ANONPAGES); 196 } 197 198 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 199 ptep_clear_flush_notify(vma, addr, pvmw.pte); 200 if (new_page) 201 set_pte_at_notify(mm, addr, pvmw.pte, 202 mk_pte(new_page, vma->vm_page_prot)); 203 204 page_remove_rmap(old_page, false); 205 if (!page_mapped(old_page)) 206 try_to_free_swap(old_page); 207 page_vma_mapped_walk_done(&pvmw); 208 209 if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page)) 210 munlock_vma_page(old_page); 211 put_page(old_page); 212 213 err = 0; 214 unlock: 215 mmu_notifier_invalidate_range_end(&range); 216 unlock_page(old_page); 217 return err; 218 } 219 220 /** 221 * is_swbp_insn - check if instruction is breakpoint instruction. 222 * @insn: instruction to be checked. 223 * Default implementation of is_swbp_insn 224 * Returns true if @insn is a breakpoint instruction. 225 */ 226 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 227 { 228 return *insn == UPROBE_SWBP_INSN; 229 } 230 231 /** 232 * is_trap_insn - check if instruction is breakpoint instruction. 233 * @insn: instruction to be checked. 234 * Default implementation of is_trap_insn 235 * Returns true if @insn is a breakpoint instruction. 236 * 237 * This function is needed for the case where an architecture has multiple 238 * trap instructions (like powerpc). 239 */ 240 bool __weak is_trap_insn(uprobe_opcode_t *insn) 241 { 242 return is_swbp_insn(insn); 243 } 244 245 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 246 { 247 void *kaddr = kmap_atomic(page); 248 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 249 kunmap_atomic(kaddr); 250 } 251 252 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 253 { 254 void *kaddr = kmap_atomic(page); 255 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 256 kunmap_atomic(kaddr); 257 } 258 259 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 260 { 261 uprobe_opcode_t old_opcode; 262 bool is_swbp; 263 264 /* 265 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 266 * We do not check if it is any other 'trap variant' which could 267 * be conditional trap instruction such as the one powerpc supports. 268 * 269 * The logic is that we do not care if the underlying instruction 270 * is a trap variant; uprobes always wins over any other (gdb) 271 * breakpoint. 272 */ 273 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 274 is_swbp = is_swbp_insn(&old_opcode); 275 276 if (is_swbp_insn(new_opcode)) { 277 if (is_swbp) /* register: already installed? */ 278 return 0; 279 } else { 280 if (!is_swbp) /* unregister: was it changed by us? */ 281 return 0; 282 } 283 284 return 1; 285 } 286 287 static struct delayed_uprobe * 288 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 289 { 290 struct delayed_uprobe *du; 291 292 list_for_each_entry(du, &delayed_uprobe_list, list) 293 if (du->uprobe == uprobe && du->mm == mm) 294 return du; 295 return NULL; 296 } 297 298 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 299 { 300 struct delayed_uprobe *du; 301 302 if (delayed_uprobe_check(uprobe, mm)) 303 return 0; 304 305 du = kzalloc(sizeof(*du), GFP_KERNEL); 306 if (!du) 307 return -ENOMEM; 308 309 du->uprobe = uprobe; 310 du->mm = mm; 311 list_add(&du->list, &delayed_uprobe_list); 312 return 0; 313 } 314 315 static void delayed_uprobe_delete(struct delayed_uprobe *du) 316 { 317 if (WARN_ON(!du)) 318 return; 319 list_del(&du->list); 320 kfree(du); 321 } 322 323 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 324 { 325 struct list_head *pos, *q; 326 struct delayed_uprobe *du; 327 328 if (!uprobe && !mm) 329 return; 330 331 list_for_each_safe(pos, q, &delayed_uprobe_list) { 332 du = list_entry(pos, struct delayed_uprobe, list); 333 334 if (uprobe && du->uprobe != uprobe) 335 continue; 336 if (mm && du->mm != mm) 337 continue; 338 339 delayed_uprobe_delete(du); 340 } 341 } 342 343 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 344 struct vm_area_struct *vma) 345 { 346 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 347 348 return uprobe->ref_ctr_offset && 349 vma->vm_file && 350 file_inode(vma->vm_file) == uprobe->inode && 351 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 352 vma->vm_start <= vaddr && 353 vma->vm_end > vaddr; 354 } 355 356 static struct vm_area_struct * 357 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 358 { 359 struct vm_area_struct *tmp; 360 361 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next) 362 if (valid_ref_ctr_vma(uprobe, tmp)) 363 return tmp; 364 365 return NULL; 366 } 367 368 static int 369 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 370 { 371 void *kaddr; 372 struct page *page; 373 struct vm_area_struct *vma; 374 int ret; 375 short *ptr; 376 377 if (!vaddr || !d) 378 return -EINVAL; 379 380 ret = get_user_pages_remote(mm, vaddr, 1, 381 FOLL_WRITE, &page, &vma, NULL); 382 if (unlikely(ret <= 0)) { 383 /* 384 * We are asking for 1 page. If get_user_pages_remote() fails, 385 * it may return 0, in that case we have to return error. 386 */ 387 return ret == 0 ? -EBUSY : ret; 388 } 389 390 kaddr = kmap_atomic(page); 391 ptr = kaddr + (vaddr & ~PAGE_MASK); 392 393 if (unlikely(*ptr + d < 0)) { 394 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 395 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 396 ret = -EINVAL; 397 goto out; 398 } 399 400 *ptr += d; 401 ret = 0; 402 out: 403 kunmap_atomic(kaddr); 404 put_page(page); 405 return ret; 406 } 407 408 static void update_ref_ctr_warn(struct uprobe *uprobe, 409 struct mm_struct *mm, short d) 410 { 411 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 412 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 413 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 414 (unsigned long long) uprobe->offset, 415 (unsigned long long) uprobe->ref_ctr_offset, mm); 416 } 417 418 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 419 short d) 420 { 421 struct vm_area_struct *rc_vma; 422 unsigned long rc_vaddr; 423 int ret = 0; 424 425 rc_vma = find_ref_ctr_vma(uprobe, mm); 426 427 if (rc_vma) { 428 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 429 ret = __update_ref_ctr(mm, rc_vaddr, d); 430 if (ret) 431 update_ref_ctr_warn(uprobe, mm, d); 432 433 if (d > 0) 434 return ret; 435 } 436 437 mutex_lock(&delayed_uprobe_lock); 438 if (d > 0) 439 ret = delayed_uprobe_add(uprobe, mm); 440 else 441 delayed_uprobe_remove(uprobe, mm); 442 mutex_unlock(&delayed_uprobe_lock); 443 444 return ret; 445 } 446 447 /* 448 * NOTE: 449 * Expect the breakpoint instruction to be the smallest size instruction for 450 * the architecture. If an arch has variable length instruction and the 451 * breakpoint instruction is not of the smallest length instruction 452 * supported by that architecture then we need to modify is_trap_at_addr and 453 * uprobe_write_opcode accordingly. This would never be a problem for archs 454 * that have fixed length instructions. 455 * 456 * uprobe_write_opcode - write the opcode at a given virtual address. 457 * @auprobe: arch specific probepoint information. 458 * @mm: the probed process address space. 459 * @vaddr: the virtual address to store the opcode. 460 * @opcode: opcode to be written at @vaddr. 461 * 462 * Called with mm->mmap_lock held for write. 463 * Return 0 (success) or a negative errno. 464 */ 465 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 466 unsigned long vaddr, uprobe_opcode_t opcode) 467 { 468 struct uprobe *uprobe; 469 struct page *old_page, *new_page; 470 struct vm_area_struct *vma; 471 int ret, is_register, ref_ctr_updated = 0; 472 bool orig_page_huge = false; 473 unsigned int gup_flags = FOLL_FORCE; 474 475 is_register = is_swbp_insn(&opcode); 476 uprobe = container_of(auprobe, struct uprobe, arch); 477 478 retry: 479 if (is_register) 480 gup_flags |= FOLL_SPLIT_PMD; 481 /* Read the page with vaddr into memory */ 482 ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, 483 &old_page, &vma, NULL); 484 if (ret <= 0) 485 return ret; 486 487 ret = verify_opcode(old_page, vaddr, &opcode); 488 if (ret <= 0) 489 goto put_old; 490 491 if (WARN(!is_register && PageCompound(old_page), 492 "uprobe unregister should never work on compound page\n")) { 493 ret = -EINVAL; 494 goto put_old; 495 } 496 497 /* We are going to replace instruction, update ref_ctr. */ 498 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 499 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 500 if (ret) 501 goto put_old; 502 503 ref_ctr_updated = 1; 504 } 505 506 ret = 0; 507 if (!is_register && !PageAnon(old_page)) 508 goto put_old; 509 510 ret = anon_vma_prepare(vma); 511 if (ret) 512 goto put_old; 513 514 ret = -ENOMEM; 515 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 516 if (!new_page) 517 goto put_old; 518 519 __SetPageUptodate(new_page); 520 copy_highpage(new_page, old_page); 521 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 522 523 if (!is_register) { 524 struct page *orig_page; 525 pgoff_t index; 526 527 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 528 529 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 530 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 531 index); 532 533 if (orig_page) { 534 if (PageUptodate(orig_page) && 535 pages_identical(new_page, orig_page)) { 536 /* let go new_page */ 537 put_page(new_page); 538 new_page = NULL; 539 540 if (PageCompound(orig_page)) 541 orig_page_huge = true; 542 } 543 put_page(orig_page); 544 } 545 } 546 547 ret = __replace_page(vma, vaddr, old_page, new_page); 548 if (new_page) 549 put_page(new_page); 550 put_old: 551 put_page(old_page); 552 553 if (unlikely(ret == -EAGAIN)) 554 goto retry; 555 556 /* Revert back reference counter if instruction update failed. */ 557 if (ret && is_register && ref_ctr_updated) 558 update_ref_ctr(uprobe, mm, -1); 559 560 /* try collapse pmd for compound page */ 561 if (!ret && orig_page_huge) 562 collapse_pte_mapped_thp(mm, vaddr); 563 564 return ret; 565 } 566 567 /** 568 * set_swbp - store breakpoint at a given address. 569 * @auprobe: arch specific probepoint information. 570 * @mm: the probed process address space. 571 * @vaddr: the virtual address to insert the opcode. 572 * 573 * For mm @mm, store the breakpoint instruction at @vaddr. 574 * Return 0 (success) or a negative errno. 575 */ 576 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 577 { 578 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 579 } 580 581 /** 582 * set_orig_insn - Restore the original instruction. 583 * @mm: the probed process address space. 584 * @auprobe: arch specific probepoint information. 585 * @vaddr: the virtual address to insert the opcode. 586 * 587 * For mm @mm, restore the original opcode (opcode) at @vaddr. 588 * Return 0 (success) or a negative errno. 589 */ 590 int __weak 591 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 592 { 593 return uprobe_write_opcode(auprobe, mm, vaddr, 594 *(uprobe_opcode_t *)&auprobe->insn); 595 } 596 597 static struct uprobe *get_uprobe(struct uprobe *uprobe) 598 { 599 refcount_inc(&uprobe->ref); 600 return uprobe; 601 } 602 603 static void put_uprobe(struct uprobe *uprobe) 604 { 605 if (refcount_dec_and_test(&uprobe->ref)) { 606 /* 607 * If application munmap(exec_vma) before uprobe_unregister() 608 * gets called, we don't get a chance to remove uprobe from 609 * delayed_uprobe_list from remove_breakpoint(). Do it here. 610 */ 611 mutex_lock(&delayed_uprobe_lock); 612 delayed_uprobe_remove(uprobe, NULL); 613 mutex_unlock(&delayed_uprobe_lock); 614 kfree(uprobe); 615 } 616 } 617 618 static __always_inline 619 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 620 const struct uprobe *r) 621 { 622 if (l_inode < r->inode) 623 return -1; 624 625 if (l_inode > r->inode) 626 return 1; 627 628 if (l_offset < r->offset) 629 return -1; 630 631 if (l_offset > r->offset) 632 return 1; 633 634 return 0; 635 } 636 637 #define __node_2_uprobe(node) \ 638 rb_entry((node), struct uprobe, rb_node) 639 640 struct __uprobe_key { 641 struct inode *inode; 642 loff_t offset; 643 }; 644 645 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 646 { 647 const struct __uprobe_key *a = key; 648 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 649 } 650 651 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 652 { 653 struct uprobe *u = __node_2_uprobe(a); 654 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 655 } 656 657 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 658 { 659 struct __uprobe_key key = { 660 .inode = inode, 661 .offset = offset, 662 }; 663 struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key); 664 665 if (node) 666 return get_uprobe(__node_2_uprobe(node)); 667 668 return NULL; 669 } 670 671 /* 672 * Find a uprobe corresponding to a given inode:offset 673 * Acquires uprobes_treelock 674 */ 675 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 676 { 677 struct uprobe *uprobe; 678 679 spin_lock(&uprobes_treelock); 680 uprobe = __find_uprobe(inode, offset); 681 spin_unlock(&uprobes_treelock); 682 683 return uprobe; 684 } 685 686 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 687 { 688 struct rb_node *node; 689 690 node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 691 if (node) 692 return get_uprobe(__node_2_uprobe(node)); 693 694 /* get access + creation ref */ 695 refcount_set(&uprobe->ref, 2); 696 return NULL; 697 } 698 699 /* 700 * Acquire uprobes_treelock. 701 * Matching uprobe already exists in rbtree; 702 * increment (access refcount) and return the matching uprobe. 703 * 704 * No matching uprobe; insert the uprobe in rb_tree; 705 * get a double refcount (access + creation) and return NULL. 706 */ 707 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 708 { 709 struct uprobe *u; 710 711 spin_lock(&uprobes_treelock); 712 u = __insert_uprobe(uprobe); 713 spin_unlock(&uprobes_treelock); 714 715 return u; 716 } 717 718 static void 719 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 720 { 721 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 722 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 723 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 724 (unsigned long long) cur_uprobe->ref_ctr_offset, 725 (unsigned long long) uprobe->ref_ctr_offset); 726 } 727 728 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 729 loff_t ref_ctr_offset) 730 { 731 struct uprobe *uprobe, *cur_uprobe; 732 733 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 734 if (!uprobe) 735 return NULL; 736 737 uprobe->inode = inode; 738 uprobe->offset = offset; 739 uprobe->ref_ctr_offset = ref_ctr_offset; 740 init_rwsem(&uprobe->register_rwsem); 741 init_rwsem(&uprobe->consumer_rwsem); 742 743 /* add to uprobes_tree, sorted on inode:offset */ 744 cur_uprobe = insert_uprobe(uprobe); 745 /* a uprobe exists for this inode:offset combination */ 746 if (cur_uprobe) { 747 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 748 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 749 put_uprobe(cur_uprobe); 750 kfree(uprobe); 751 return ERR_PTR(-EINVAL); 752 } 753 kfree(uprobe); 754 uprobe = cur_uprobe; 755 } 756 757 return uprobe; 758 } 759 760 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 761 { 762 down_write(&uprobe->consumer_rwsem); 763 uc->next = uprobe->consumers; 764 uprobe->consumers = uc; 765 up_write(&uprobe->consumer_rwsem); 766 } 767 768 /* 769 * For uprobe @uprobe, delete the consumer @uc. 770 * Return true if the @uc is deleted successfully 771 * or return false. 772 */ 773 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 774 { 775 struct uprobe_consumer **con; 776 bool ret = false; 777 778 down_write(&uprobe->consumer_rwsem); 779 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 780 if (*con == uc) { 781 *con = uc->next; 782 ret = true; 783 break; 784 } 785 } 786 up_write(&uprobe->consumer_rwsem); 787 788 return ret; 789 } 790 791 static int __copy_insn(struct address_space *mapping, struct file *filp, 792 void *insn, int nbytes, loff_t offset) 793 { 794 struct page *page; 795 /* 796 * Ensure that the page that has the original instruction is populated 797 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 798 * see uprobe_register(). 799 */ 800 if (mapping->a_ops->readpage) 801 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 802 else 803 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 804 if (IS_ERR(page)) 805 return PTR_ERR(page); 806 807 copy_from_page(page, offset, insn, nbytes); 808 put_page(page); 809 810 return 0; 811 } 812 813 static int copy_insn(struct uprobe *uprobe, struct file *filp) 814 { 815 struct address_space *mapping = uprobe->inode->i_mapping; 816 loff_t offs = uprobe->offset; 817 void *insn = &uprobe->arch.insn; 818 int size = sizeof(uprobe->arch.insn); 819 int len, err = -EIO; 820 821 /* Copy only available bytes, -EIO if nothing was read */ 822 do { 823 if (offs >= i_size_read(uprobe->inode)) 824 break; 825 826 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 827 err = __copy_insn(mapping, filp, insn, len, offs); 828 if (err) 829 break; 830 831 insn += len; 832 offs += len; 833 size -= len; 834 } while (size); 835 836 return err; 837 } 838 839 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 840 struct mm_struct *mm, unsigned long vaddr) 841 { 842 int ret = 0; 843 844 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 845 return ret; 846 847 /* TODO: move this into _register, until then we abuse this sem. */ 848 down_write(&uprobe->consumer_rwsem); 849 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 850 goto out; 851 852 ret = copy_insn(uprobe, file); 853 if (ret) 854 goto out; 855 856 ret = -ENOTSUPP; 857 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 858 goto out; 859 860 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 861 if (ret) 862 goto out; 863 864 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 865 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 866 867 out: 868 up_write(&uprobe->consumer_rwsem); 869 870 return ret; 871 } 872 873 static inline bool consumer_filter(struct uprobe_consumer *uc, 874 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 875 { 876 return !uc->filter || uc->filter(uc, ctx, mm); 877 } 878 879 static bool filter_chain(struct uprobe *uprobe, 880 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 881 { 882 struct uprobe_consumer *uc; 883 bool ret = false; 884 885 down_read(&uprobe->consumer_rwsem); 886 for (uc = uprobe->consumers; uc; uc = uc->next) { 887 ret = consumer_filter(uc, ctx, mm); 888 if (ret) 889 break; 890 } 891 up_read(&uprobe->consumer_rwsem); 892 893 return ret; 894 } 895 896 static int 897 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 898 struct vm_area_struct *vma, unsigned long vaddr) 899 { 900 bool first_uprobe; 901 int ret; 902 903 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 904 if (ret) 905 return ret; 906 907 /* 908 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 909 * the task can hit this breakpoint right after __replace_page(). 910 */ 911 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 912 if (first_uprobe) 913 set_bit(MMF_HAS_UPROBES, &mm->flags); 914 915 ret = set_swbp(&uprobe->arch, mm, vaddr); 916 if (!ret) 917 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 918 else if (first_uprobe) 919 clear_bit(MMF_HAS_UPROBES, &mm->flags); 920 921 return ret; 922 } 923 924 static int 925 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 926 { 927 set_bit(MMF_RECALC_UPROBES, &mm->flags); 928 return set_orig_insn(&uprobe->arch, mm, vaddr); 929 } 930 931 static inline bool uprobe_is_active(struct uprobe *uprobe) 932 { 933 return !RB_EMPTY_NODE(&uprobe->rb_node); 934 } 935 /* 936 * There could be threads that have already hit the breakpoint. They 937 * will recheck the current insn and restart if find_uprobe() fails. 938 * See find_active_uprobe(). 939 */ 940 static void delete_uprobe(struct uprobe *uprobe) 941 { 942 if (WARN_ON(!uprobe_is_active(uprobe))) 943 return; 944 945 spin_lock(&uprobes_treelock); 946 rb_erase(&uprobe->rb_node, &uprobes_tree); 947 spin_unlock(&uprobes_treelock); 948 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 949 put_uprobe(uprobe); 950 } 951 952 struct map_info { 953 struct map_info *next; 954 struct mm_struct *mm; 955 unsigned long vaddr; 956 }; 957 958 static inline struct map_info *free_map_info(struct map_info *info) 959 { 960 struct map_info *next = info->next; 961 kfree(info); 962 return next; 963 } 964 965 static struct map_info * 966 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 967 { 968 unsigned long pgoff = offset >> PAGE_SHIFT; 969 struct vm_area_struct *vma; 970 struct map_info *curr = NULL; 971 struct map_info *prev = NULL; 972 struct map_info *info; 973 int more = 0; 974 975 again: 976 i_mmap_lock_read(mapping); 977 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 978 if (!valid_vma(vma, is_register)) 979 continue; 980 981 if (!prev && !more) { 982 /* 983 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 984 * reclaim. This is optimistic, no harm done if it fails. 985 */ 986 prev = kmalloc(sizeof(struct map_info), 987 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 988 if (prev) 989 prev->next = NULL; 990 } 991 if (!prev) { 992 more++; 993 continue; 994 } 995 996 if (!mmget_not_zero(vma->vm_mm)) 997 continue; 998 999 info = prev; 1000 prev = prev->next; 1001 info->next = curr; 1002 curr = info; 1003 1004 info->mm = vma->vm_mm; 1005 info->vaddr = offset_to_vaddr(vma, offset); 1006 } 1007 i_mmap_unlock_read(mapping); 1008 1009 if (!more) 1010 goto out; 1011 1012 prev = curr; 1013 while (curr) { 1014 mmput(curr->mm); 1015 curr = curr->next; 1016 } 1017 1018 do { 1019 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1020 if (!info) { 1021 curr = ERR_PTR(-ENOMEM); 1022 goto out; 1023 } 1024 info->next = prev; 1025 prev = info; 1026 } while (--more); 1027 1028 goto again; 1029 out: 1030 while (prev) 1031 prev = free_map_info(prev); 1032 return curr; 1033 } 1034 1035 static int 1036 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1037 { 1038 bool is_register = !!new; 1039 struct map_info *info; 1040 int err = 0; 1041 1042 percpu_down_write(&dup_mmap_sem); 1043 info = build_map_info(uprobe->inode->i_mapping, 1044 uprobe->offset, is_register); 1045 if (IS_ERR(info)) { 1046 err = PTR_ERR(info); 1047 goto out; 1048 } 1049 1050 while (info) { 1051 struct mm_struct *mm = info->mm; 1052 struct vm_area_struct *vma; 1053 1054 if (err && is_register) 1055 goto free; 1056 1057 mmap_write_lock(mm); 1058 vma = find_vma(mm, info->vaddr); 1059 if (!vma || !valid_vma(vma, is_register) || 1060 file_inode(vma->vm_file) != uprobe->inode) 1061 goto unlock; 1062 1063 if (vma->vm_start > info->vaddr || 1064 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1065 goto unlock; 1066 1067 if (is_register) { 1068 /* consult only the "caller", new consumer. */ 1069 if (consumer_filter(new, 1070 UPROBE_FILTER_REGISTER, mm)) 1071 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1072 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1073 if (!filter_chain(uprobe, 1074 UPROBE_FILTER_UNREGISTER, mm)) 1075 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1076 } 1077 1078 unlock: 1079 mmap_write_unlock(mm); 1080 free: 1081 mmput(mm); 1082 info = free_map_info(info); 1083 } 1084 out: 1085 percpu_up_write(&dup_mmap_sem); 1086 return err; 1087 } 1088 1089 static void 1090 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1091 { 1092 int err; 1093 1094 if (WARN_ON(!consumer_del(uprobe, uc))) 1095 return; 1096 1097 err = register_for_each_vma(uprobe, NULL); 1098 /* TODO : cant unregister? schedule a worker thread */ 1099 if (!uprobe->consumers && !err) 1100 delete_uprobe(uprobe); 1101 } 1102 1103 /* 1104 * uprobe_unregister - unregister an already registered probe. 1105 * @inode: the file in which the probe has to be removed. 1106 * @offset: offset from the start of the file. 1107 * @uc: identify which probe if multiple probes are colocated. 1108 */ 1109 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1110 { 1111 struct uprobe *uprobe; 1112 1113 uprobe = find_uprobe(inode, offset); 1114 if (WARN_ON(!uprobe)) 1115 return; 1116 1117 down_write(&uprobe->register_rwsem); 1118 __uprobe_unregister(uprobe, uc); 1119 up_write(&uprobe->register_rwsem); 1120 put_uprobe(uprobe); 1121 } 1122 EXPORT_SYMBOL_GPL(uprobe_unregister); 1123 1124 /* 1125 * __uprobe_register - register a probe 1126 * @inode: the file in which the probe has to be placed. 1127 * @offset: offset from the start of the file. 1128 * @uc: information on howto handle the probe.. 1129 * 1130 * Apart from the access refcount, __uprobe_register() takes a creation 1131 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1132 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1133 * tuple). Creation refcount stops uprobe_unregister from freeing the 1134 * @uprobe even before the register operation is complete. Creation 1135 * refcount is released when the last @uc for the @uprobe 1136 * unregisters. Caller of __uprobe_register() is required to keep @inode 1137 * (and the containing mount) referenced. 1138 * 1139 * Return errno if it cannot successully install probes 1140 * else return 0 (success) 1141 */ 1142 static int __uprobe_register(struct inode *inode, loff_t offset, 1143 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1144 { 1145 struct uprobe *uprobe; 1146 int ret; 1147 1148 /* Uprobe must have at least one set consumer */ 1149 if (!uc->handler && !uc->ret_handler) 1150 return -EINVAL; 1151 1152 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1153 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 1154 return -EIO; 1155 /* Racy, just to catch the obvious mistakes */ 1156 if (offset > i_size_read(inode)) 1157 return -EINVAL; 1158 1159 /* 1160 * This ensures that copy_from_page(), copy_to_page() and 1161 * __update_ref_ctr() can't cross page boundary. 1162 */ 1163 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1164 return -EINVAL; 1165 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1166 return -EINVAL; 1167 1168 retry: 1169 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1170 if (!uprobe) 1171 return -ENOMEM; 1172 if (IS_ERR(uprobe)) 1173 return PTR_ERR(uprobe); 1174 1175 /* 1176 * We can race with uprobe_unregister()->delete_uprobe(). 1177 * Check uprobe_is_active() and retry if it is false. 1178 */ 1179 down_write(&uprobe->register_rwsem); 1180 ret = -EAGAIN; 1181 if (likely(uprobe_is_active(uprobe))) { 1182 consumer_add(uprobe, uc); 1183 ret = register_for_each_vma(uprobe, uc); 1184 if (ret) 1185 __uprobe_unregister(uprobe, uc); 1186 } 1187 up_write(&uprobe->register_rwsem); 1188 put_uprobe(uprobe); 1189 1190 if (unlikely(ret == -EAGAIN)) 1191 goto retry; 1192 return ret; 1193 } 1194 1195 int uprobe_register(struct inode *inode, loff_t offset, 1196 struct uprobe_consumer *uc) 1197 { 1198 return __uprobe_register(inode, offset, 0, uc); 1199 } 1200 EXPORT_SYMBOL_GPL(uprobe_register); 1201 1202 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1203 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1204 { 1205 return __uprobe_register(inode, offset, ref_ctr_offset, uc); 1206 } 1207 EXPORT_SYMBOL_GPL(uprobe_register_refctr); 1208 1209 /* 1210 * uprobe_apply - unregister an already registered probe. 1211 * @inode: the file in which the probe has to be removed. 1212 * @offset: offset from the start of the file. 1213 * @uc: consumer which wants to add more or remove some breakpoints 1214 * @add: add or remove the breakpoints 1215 */ 1216 int uprobe_apply(struct inode *inode, loff_t offset, 1217 struct uprobe_consumer *uc, bool add) 1218 { 1219 struct uprobe *uprobe; 1220 struct uprobe_consumer *con; 1221 int ret = -ENOENT; 1222 1223 uprobe = find_uprobe(inode, offset); 1224 if (WARN_ON(!uprobe)) 1225 return ret; 1226 1227 down_write(&uprobe->register_rwsem); 1228 for (con = uprobe->consumers; con && con != uc ; con = con->next) 1229 ; 1230 if (con) 1231 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1232 up_write(&uprobe->register_rwsem); 1233 put_uprobe(uprobe); 1234 1235 return ret; 1236 } 1237 1238 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1239 { 1240 struct vm_area_struct *vma; 1241 int err = 0; 1242 1243 mmap_read_lock(mm); 1244 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1245 unsigned long vaddr; 1246 loff_t offset; 1247 1248 if (!valid_vma(vma, false) || 1249 file_inode(vma->vm_file) != uprobe->inode) 1250 continue; 1251 1252 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1253 if (uprobe->offset < offset || 1254 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1255 continue; 1256 1257 vaddr = offset_to_vaddr(vma, uprobe->offset); 1258 err |= remove_breakpoint(uprobe, mm, vaddr); 1259 } 1260 mmap_read_unlock(mm); 1261 1262 return err; 1263 } 1264 1265 static struct rb_node * 1266 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1267 { 1268 struct rb_node *n = uprobes_tree.rb_node; 1269 1270 while (n) { 1271 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1272 1273 if (inode < u->inode) { 1274 n = n->rb_left; 1275 } else if (inode > u->inode) { 1276 n = n->rb_right; 1277 } else { 1278 if (max < u->offset) 1279 n = n->rb_left; 1280 else if (min > u->offset) 1281 n = n->rb_right; 1282 else 1283 break; 1284 } 1285 } 1286 1287 return n; 1288 } 1289 1290 /* 1291 * For a given range in vma, build a list of probes that need to be inserted. 1292 */ 1293 static void build_probe_list(struct inode *inode, 1294 struct vm_area_struct *vma, 1295 unsigned long start, unsigned long end, 1296 struct list_head *head) 1297 { 1298 loff_t min, max; 1299 struct rb_node *n, *t; 1300 struct uprobe *u; 1301 1302 INIT_LIST_HEAD(head); 1303 min = vaddr_to_offset(vma, start); 1304 max = min + (end - start) - 1; 1305 1306 spin_lock(&uprobes_treelock); 1307 n = find_node_in_range(inode, min, max); 1308 if (n) { 1309 for (t = n; t; t = rb_prev(t)) { 1310 u = rb_entry(t, struct uprobe, rb_node); 1311 if (u->inode != inode || u->offset < min) 1312 break; 1313 list_add(&u->pending_list, head); 1314 get_uprobe(u); 1315 } 1316 for (t = n; (t = rb_next(t)); ) { 1317 u = rb_entry(t, struct uprobe, rb_node); 1318 if (u->inode != inode || u->offset > max) 1319 break; 1320 list_add(&u->pending_list, head); 1321 get_uprobe(u); 1322 } 1323 } 1324 spin_unlock(&uprobes_treelock); 1325 } 1326 1327 /* @vma contains reference counter, not the probed instruction. */ 1328 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1329 { 1330 struct list_head *pos, *q; 1331 struct delayed_uprobe *du; 1332 unsigned long vaddr; 1333 int ret = 0, err = 0; 1334 1335 mutex_lock(&delayed_uprobe_lock); 1336 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1337 du = list_entry(pos, struct delayed_uprobe, list); 1338 1339 if (du->mm != vma->vm_mm || 1340 !valid_ref_ctr_vma(du->uprobe, vma)) 1341 continue; 1342 1343 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1344 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1345 if (ret) { 1346 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1347 if (!err) 1348 err = ret; 1349 } 1350 delayed_uprobe_delete(du); 1351 } 1352 mutex_unlock(&delayed_uprobe_lock); 1353 return err; 1354 } 1355 1356 /* 1357 * Called from mmap_region/vma_adjust with mm->mmap_lock acquired. 1358 * 1359 * Currently we ignore all errors and always return 0, the callers 1360 * can't handle the failure anyway. 1361 */ 1362 int uprobe_mmap(struct vm_area_struct *vma) 1363 { 1364 struct list_head tmp_list; 1365 struct uprobe *uprobe, *u; 1366 struct inode *inode; 1367 1368 if (no_uprobe_events()) 1369 return 0; 1370 1371 if (vma->vm_file && 1372 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1373 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1374 delayed_ref_ctr_inc(vma); 1375 1376 if (!valid_vma(vma, true)) 1377 return 0; 1378 1379 inode = file_inode(vma->vm_file); 1380 if (!inode) 1381 return 0; 1382 1383 mutex_lock(uprobes_mmap_hash(inode)); 1384 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1385 /* 1386 * We can race with uprobe_unregister(), this uprobe can be already 1387 * removed. But in this case filter_chain() must return false, all 1388 * consumers have gone away. 1389 */ 1390 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1391 if (!fatal_signal_pending(current) && 1392 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1393 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1394 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1395 } 1396 put_uprobe(uprobe); 1397 } 1398 mutex_unlock(uprobes_mmap_hash(inode)); 1399 1400 return 0; 1401 } 1402 1403 static bool 1404 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1405 { 1406 loff_t min, max; 1407 struct inode *inode; 1408 struct rb_node *n; 1409 1410 inode = file_inode(vma->vm_file); 1411 1412 min = vaddr_to_offset(vma, start); 1413 max = min + (end - start) - 1; 1414 1415 spin_lock(&uprobes_treelock); 1416 n = find_node_in_range(inode, min, max); 1417 spin_unlock(&uprobes_treelock); 1418 1419 return !!n; 1420 } 1421 1422 /* 1423 * Called in context of a munmap of a vma. 1424 */ 1425 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1426 { 1427 if (no_uprobe_events() || !valid_vma(vma, false)) 1428 return; 1429 1430 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1431 return; 1432 1433 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1434 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1435 return; 1436 1437 if (vma_has_uprobes(vma, start, end)) 1438 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1439 } 1440 1441 /* Slot allocation for XOL */ 1442 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1443 { 1444 struct vm_area_struct *vma; 1445 int ret; 1446 1447 if (mmap_write_lock_killable(mm)) 1448 return -EINTR; 1449 1450 if (mm->uprobes_state.xol_area) { 1451 ret = -EALREADY; 1452 goto fail; 1453 } 1454 1455 if (!area->vaddr) { 1456 /* Try to map as high as possible, this is only a hint. */ 1457 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1458 PAGE_SIZE, 0, 0); 1459 if (IS_ERR_VALUE(area->vaddr)) { 1460 ret = area->vaddr; 1461 goto fail; 1462 } 1463 } 1464 1465 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1466 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1467 &area->xol_mapping); 1468 if (IS_ERR(vma)) { 1469 ret = PTR_ERR(vma); 1470 goto fail; 1471 } 1472 1473 ret = 0; 1474 /* pairs with get_xol_area() */ 1475 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1476 fail: 1477 mmap_write_unlock(mm); 1478 1479 return ret; 1480 } 1481 1482 static struct xol_area *__create_xol_area(unsigned long vaddr) 1483 { 1484 struct mm_struct *mm = current->mm; 1485 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1486 struct xol_area *area; 1487 1488 area = kmalloc(sizeof(*area), GFP_KERNEL); 1489 if (unlikely(!area)) 1490 goto out; 1491 1492 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1493 GFP_KERNEL); 1494 if (!area->bitmap) 1495 goto free_area; 1496 1497 area->xol_mapping.name = "[uprobes]"; 1498 area->xol_mapping.fault = NULL; 1499 area->xol_mapping.pages = area->pages; 1500 area->pages[0] = alloc_page(GFP_HIGHUSER); 1501 if (!area->pages[0]) 1502 goto free_bitmap; 1503 area->pages[1] = NULL; 1504 1505 area->vaddr = vaddr; 1506 init_waitqueue_head(&area->wq); 1507 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1508 set_bit(0, area->bitmap); 1509 atomic_set(&area->slot_count, 1); 1510 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1511 1512 if (!xol_add_vma(mm, area)) 1513 return area; 1514 1515 __free_page(area->pages[0]); 1516 free_bitmap: 1517 kfree(area->bitmap); 1518 free_area: 1519 kfree(area); 1520 out: 1521 return NULL; 1522 } 1523 1524 /* 1525 * get_xol_area - Allocate process's xol_area if necessary. 1526 * This area will be used for storing instructions for execution out of line. 1527 * 1528 * Returns the allocated area or NULL. 1529 */ 1530 static struct xol_area *get_xol_area(void) 1531 { 1532 struct mm_struct *mm = current->mm; 1533 struct xol_area *area; 1534 1535 if (!mm->uprobes_state.xol_area) 1536 __create_xol_area(0); 1537 1538 /* Pairs with xol_add_vma() smp_store_release() */ 1539 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1540 return area; 1541 } 1542 1543 /* 1544 * uprobe_clear_state - Free the area allocated for slots. 1545 */ 1546 void uprobe_clear_state(struct mm_struct *mm) 1547 { 1548 struct xol_area *area = mm->uprobes_state.xol_area; 1549 1550 mutex_lock(&delayed_uprobe_lock); 1551 delayed_uprobe_remove(NULL, mm); 1552 mutex_unlock(&delayed_uprobe_lock); 1553 1554 if (!area) 1555 return; 1556 1557 put_page(area->pages[0]); 1558 kfree(area->bitmap); 1559 kfree(area); 1560 } 1561 1562 void uprobe_start_dup_mmap(void) 1563 { 1564 percpu_down_read(&dup_mmap_sem); 1565 } 1566 1567 void uprobe_end_dup_mmap(void) 1568 { 1569 percpu_up_read(&dup_mmap_sem); 1570 } 1571 1572 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1573 { 1574 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1575 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1576 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1577 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1578 } 1579 } 1580 1581 /* 1582 * - search for a free slot. 1583 */ 1584 static unsigned long xol_take_insn_slot(struct xol_area *area) 1585 { 1586 unsigned long slot_addr; 1587 int slot_nr; 1588 1589 do { 1590 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1591 if (slot_nr < UINSNS_PER_PAGE) { 1592 if (!test_and_set_bit(slot_nr, area->bitmap)) 1593 break; 1594 1595 slot_nr = UINSNS_PER_PAGE; 1596 continue; 1597 } 1598 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1599 } while (slot_nr >= UINSNS_PER_PAGE); 1600 1601 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1602 atomic_inc(&area->slot_count); 1603 1604 return slot_addr; 1605 } 1606 1607 /* 1608 * xol_get_insn_slot - allocate a slot for xol. 1609 * Returns the allocated slot address or 0. 1610 */ 1611 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1612 { 1613 struct xol_area *area; 1614 unsigned long xol_vaddr; 1615 1616 area = get_xol_area(); 1617 if (!area) 1618 return 0; 1619 1620 xol_vaddr = xol_take_insn_slot(area); 1621 if (unlikely(!xol_vaddr)) 1622 return 0; 1623 1624 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1625 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1626 1627 return xol_vaddr; 1628 } 1629 1630 /* 1631 * xol_free_insn_slot - If slot was earlier allocated by 1632 * @xol_get_insn_slot(), make the slot available for 1633 * subsequent requests. 1634 */ 1635 static void xol_free_insn_slot(struct task_struct *tsk) 1636 { 1637 struct xol_area *area; 1638 unsigned long vma_end; 1639 unsigned long slot_addr; 1640 1641 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1642 return; 1643 1644 slot_addr = tsk->utask->xol_vaddr; 1645 if (unlikely(!slot_addr)) 1646 return; 1647 1648 area = tsk->mm->uprobes_state.xol_area; 1649 vma_end = area->vaddr + PAGE_SIZE; 1650 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1651 unsigned long offset; 1652 int slot_nr; 1653 1654 offset = slot_addr - area->vaddr; 1655 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1656 if (slot_nr >= UINSNS_PER_PAGE) 1657 return; 1658 1659 clear_bit(slot_nr, area->bitmap); 1660 atomic_dec(&area->slot_count); 1661 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1662 if (waitqueue_active(&area->wq)) 1663 wake_up(&area->wq); 1664 1665 tsk->utask->xol_vaddr = 0; 1666 } 1667 } 1668 1669 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1670 void *src, unsigned long len) 1671 { 1672 /* Initialize the slot */ 1673 copy_to_page(page, vaddr, src, len); 1674 1675 /* 1676 * We probably need flush_icache_user_page() but it needs vma. 1677 * This should work on most of architectures by default. If 1678 * architecture needs to do something different it can define 1679 * its own version of the function. 1680 */ 1681 flush_dcache_page(page); 1682 } 1683 1684 /** 1685 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1686 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1687 * instruction. 1688 * Return the address of the breakpoint instruction. 1689 */ 1690 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1691 { 1692 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1693 } 1694 1695 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1696 { 1697 struct uprobe_task *utask = current->utask; 1698 1699 if (unlikely(utask && utask->active_uprobe)) 1700 return utask->vaddr; 1701 1702 return instruction_pointer(regs); 1703 } 1704 1705 static struct return_instance *free_ret_instance(struct return_instance *ri) 1706 { 1707 struct return_instance *next = ri->next; 1708 put_uprobe(ri->uprobe); 1709 kfree(ri); 1710 return next; 1711 } 1712 1713 /* 1714 * Called with no locks held. 1715 * Called in context of an exiting or an exec-ing thread. 1716 */ 1717 void uprobe_free_utask(struct task_struct *t) 1718 { 1719 struct uprobe_task *utask = t->utask; 1720 struct return_instance *ri; 1721 1722 if (!utask) 1723 return; 1724 1725 if (utask->active_uprobe) 1726 put_uprobe(utask->active_uprobe); 1727 1728 ri = utask->return_instances; 1729 while (ri) 1730 ri = free_ret_instance(ri); 1731 1732 xol_free_insn_slot(t); 1733 kfree(utask); 1734 t->utask = NULL; 1735 } 1736 1737 /* 1738 * Allocate a uprobe_task object for the task if necessary. 1739 * Called when the thread hits a breakpoint. 1740 * 1741 * Returns: 1742 * - pointer to new uprobe_task on success 1743 * - NULL otherwise 1744 */ 1745 static struct uprobe_task *get_utask(void) 1746 { 1747 if (!current->utask) 1748 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1749 return current->utask; 1750 } 1751 1752 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1753 { 1754 struct uprobe_task *n_utask; 1755 struct return_instance **p, *o, *n; 1756 1757 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1758 if (!n_utask) 1759 return -ENOMEM; 1760 t->utask = n_utask; 1761 1762 p = &n_utask->return_instances; 1763 for (o = o_utask->return_instances; o; o = o->next) { 1764 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1765 if (!n) 1766 return -ENOMEM; 1767 1768 *n = *o; 1769 get_uprobe(n->uprobe); 1770 n->next = NULL; 1771 1772 *p = n; 1773 p = &n->next; 1774 n_utask->depth++; 1775 } 1776 1777 return 0; 1778 } 1779 1780 static void uprobe_warn(struct task_struct *t, const char *msg) 1781 { 1782 pr_warn("uprobe: %s:%d failed to %s\n", 1783 current->comm, current->pid, msg); 1784 } 1785 1786 static void dup_xol_work(struct callback_head *work) 1787 { 1788 if (current->flags & PF_EXITING) 1789 return; 1790 1791 if (!__create_xol_area(current->utask->dup_xol_addr) && 1792 !fatal_signal_pending(current)) 1793 uprobe_warn(current, "dup xol area"); 1794 } 1795 1796 /* 1797 * Called in context of a new clone/fork from copy_process. 1798 */ 1799 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1800 { 1801 struct uprobe_task *utask = current->utask; 1802 struct mm_struct *mm = current->mm; 1803 struct xol_area *area; 1804 1805 t->utask = NULL; 1806 1807 if (!utask || !utask->return_instances) 1808 return; 1809 1810 if (mm == t->mm && !(flags & CLONE_VFORK)) 1811 return; 1812 1813 if (dup_utask(t, utask)) 1814 return uprobe_warn(t, "dup ret instances"); 1815 1816 /* The task can fork() after dup_xol_work() fails */ 1817 area = mm->uprobes_state.xol_area; 1818 if (!area) 1819 return uprobe_warn(t, "dup xol area"); 1820 1821 if (mm == t->mm) 1822 return; 1823 1824 t->utask->dup_xol_addr = area->vaddr; 1825 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1826 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 1827 } 1828 1829 /* 1830 * Current area->vaddr notion assume the trampoline address is always 1831 * equal area->vaddr. 1832 * 1833 * Returns -1 in case the xol_area is not allocated. 1834 */ 1835 static unsigned long get_trampoline_vaddr(void) 1836 { 1837 struct xol_area *area; 1838 unsigned long trampoline_vaddr = -1; 1839 1840 /* Pairs with xol_add_vma() smp_store_release() */ 1841 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1842 if (area) 1843 trampoline_vaddr = area->vaddr; 1844 1845 return trampoline_vaddr; 1846 } 1847 1848 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1849 struct pt_regs *regs) 1850 { 1851 struct return_instance *ri = utask->return_instances; 1852 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1853 1854 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1855 ri = free_ret_instance(ri); 1856 utask->depth--; 1857 } 1858 utask->return_instances = ri; 1859 } 1860 1861 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1862 { 1863 struct return_instance *ri; 1864 struct uprobe_task *utask; 1865 unsigned long orig_ret_vaddr, trampoline_vaddr; 1866 bool chained; 1867 1868 if (!get_xol_area()) 1869 return; 1870 1871 utask = get_utask(); 1872 if (!utask) 1873 return; 1874 1875 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1876 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1877 " nestedness limit pid/tgid=%d/%d\n", 1878 current->pid, current->tgid); 1879 return; 1880 } 1881 1882 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1883 if (!ri) 1884 return; 1885 1886 trampoline_vaddr = get_trampoline_vaddr(); 1887 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1888 if (orig_ret_vaddr == -1) 1889 goto fail; 1890 1891 /* drop the entries invalidated by longjmp() */ 1892 chained = (orig_ret_vaddr == trampoline_vaddr); 1893 cleanup_return_instances(utask, chained, regs); 1894 1895 /* 1896 * We don't want to keep trampoline address in stack, rather keep the 1897 * original return address of first caller thru all the consequent 1898 * instances. This also makes breakpoint unwrapping easier. 1899 */ 1900 if (chained) { 1901 if (!utask->return_instances) { 1902 /* 1903 * This situation is not possible. Likely we have an 1904 * attack from user-space. 1905 */ 1906 uprobe_warn(current, "handle tail call"); 1907 goto fail; 1908 } 1909 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1910 } 1911 1912 ri->uprobe = get_uprobe(uprobe); 1913 ri->func = instruction_pointer(regs); 1914 ri->stack = user_stack_pointer(regs); 1915 ri->orig_ret_vaddr = orig_ret_vaddr; 1916 ri->chained = chained; 1917 1918 utask->depth++; 1919 ri->next = utask->return_instances; 1920 utask->return_instances = ri; 1921 1922 return; 1923 fail: 1924 kfree(ri); 1925 } 1926 1927 /* Prepare to single-step probed instruction out of line. */ 1928 static int 1929 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1930 { 1931 struct uprobe_task *utask; 1932 unsigned long xol_vaddr; 1933 int err; 1934 1935 utask = get_utask(); 1936 if (!utask) 1937 return -ENOMEM; 1938 1939 xol_vaddr = xol_get_insn_slot(uprobe); 1940 if (!xol_vaddr) 1941 return -ENOMEM; 1942 1943 utask->xol_vaddr = xol_vaddr; 1944 utask->vaddr = bp_vaddr; 1945 1946 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1947 if (unlikely(err)) { 1948 xol_free_insn_slot(current); 1949 return err; 1950 } 1951 1952 utask->active_uprobe = uprobe; 1953 utask->state = UTASK_SSTEP; 1954 return 0; 1955 } 1956 1957 /* 1958 * If we are singlestepping, then ensure this thread is not connected to 1959 * non-fatal signals until completion of singlestep. When xol insn itself 1960 * triggers the signal, restart the original insn even if the task is 1961 * already SIGKILL'ed (since coredump should report the correct ip). This 1962 * is even more important if the task has a handler for SIGSEGV/etc, The 1963 * _same_ instruction should be repeated again after return from the signal 1964 * handler, and SSTEP can never finish in this case. 1965 */ 1966 bool uprobe_deny_signal(void) 1967 { 1968 struct task_struct *t = current; 1969 struct uprobe_task *utask = t->utask; 1970 1971 if (likely(!utask || !utask->active_uprobe)) 1972 return false; 1973 1974 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1975 1976 if (task_sigpending(t)) { 1977 spin_lock_irq(&t->sighand->siglock); 1978 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1979 spin_unlock_irq(&t->sighand->siglock); 1980 1981 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1982 utask->state = UTASK_SSTEP_TRAPPED; 1983 set_tsk_thread_flag(t, TIF_UPROBE); 1984 } 1985 } 1986 1987 return true; 1988 } 1989 1990 static void mmf_recalc_uprobes(struct mm_struct *mm) 1991 { 1992 struct vm_area_struct *vma; 1993 1994 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1995 if (!valid_vma(vma, false)) 1996 continue; 1997 /* 1998 * This is not strictly accurate, we can race with 1999 * uprobe_unregister() and see the already removed 2000 * uprobe if delete_uprobe() was not yet called. 2001 * Or this uprobe can be filtered out. 2002 */ 2003 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2004 return; 2005 } 2006 2007 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2008 } 2009 2010 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2011 { 2012 struct page *page; 2013 uprobe_opcode_t opcode; 2014 int result; 2015 2016 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2017 return -EINVAL; 2018 2019 pagefault_disable(); 2020 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2021 pagefault_enable(); 2022 2023 if (likely(result == 0)) 2024 goto out; 2025 2026 /* 2027 * The NULL 'tsk' here ensures that any faults that occur here 2028 * will not be accounted to the task. 'mm' *is* current->mm, 2029 * but we treat this as a 'remote' access since it is 2030 * essentially a kernel access to the memory. 2031 */ 2032 result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, 2033 NULL, NULL); 2034 if (result < 0) 2035 return result; 2036 2037 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2038 put_page(page); 2039 out: 2040 /* This needs to return true for any variant of the trap insn */ 2041 return is_trap_insn(&opcode); 2042 } 2043 2044 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 2045 { 2046 struct mm_struct *mm = current->mm; 2047 struct uprobe *uprobe = NULL; 2048 struct vm_area_struct *vma; 2049 2050 mmap_read_lock(mm); 2051 vma = vma_lookup(mm, bp_vaddr); 2052 if (vma) { 2053 if (valid_vma(vma, false)) { 2054 struct inode *inode = file_inode(vma->vm_file); 2055 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2056 2057 uprobe = find_uprobe(inode, offset); 2058 } 2059 2060 if (!uprobe) 2061 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2062 } else { 2063 *is_swbp = -EFAULT; 2064 } 2065 2066 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2067 mmf_recalc_uprobes(mm); 2068 mmap_read_unlock(mm); 2069 2070 return uprobe; 2071 } 2072 2073 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2074 { 2075 struct uprobe_consumer *uc; 2076 int remove = UPROBE_HANDLER_REMOVE; 2077 bool need_prep = false; /* prepare return uprobe, when needed */ 2078 2079 down_read(&uprobe->register_rwsem); 2080 for (uc = uprobe->consumers; uc; uc = uc->next) { 2081 int rc = 0; 2082 2083 if (uc->handler) { 2084 rc = uc->handler(uc, regs); 2085 WARN(rc & ~UPROBE_HANDLER_MASK, 2086 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2087 } 2088 2089 if (uc->ret_handler) 2090 need_prep = true; 2091 2092 remove &= rc; 2093 } 2094 2095 if (need_prep && !remove) 2096 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2097 2098 if (remove && uprobe->consumers) { 2099 WARN_ON(!uprobe_is_active(uprobe)); 2100 unapply_uprobe(uprobe, current->mm); 2101 } 2102 up_read(&uprobe->register_rwsem); 2103 } 2104 2105 static void 2106 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2107 { 2108 struct uprobe *uprobe = ri->uprobe; 2109 struct uprobe_consumer *uc; 2110 2111 down_read(&uprobe->register_rwsem); 2112 for (uc = uprobe->consumers; uc; uc = uc->next) { 2113 if (uc->ret_handler) 2114 uc->ret_handler(uc, ri->func, regs); 2115 } 2116 up_read(&uprobe->register_rwsem); 2117 } 2118 2119 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2120 { 2121 bool chained; 2122 2123 do { 2124 chained = ri->chained; 2125 ri = ri->next; /* can't be NULL if chained */ 2126 } while (chained); 2127 2128 return ri; 2129 } 2130 2131 static void handle_trampoline(struct pt_regs *regs) 2132 { 2133 struct uprobe_task *utask; 2134 struct return_instance *ri, *next; 2135 bool valid; 2136 2137 utask = current->utask; 2138 if (!utask) 2139 goto sigill; 2140 2141 ri = utask->return_instances; 2142 if (!ri) 2143 goto sigill; 2144 2145 do { 2146 /* 2147 * We should throw out the frames invalidated by longjmp(). 2148 * If this chain is valid, then the next one should be alive 2149 * or NULL; the latter case means that nobody but ri->func 2150 * could hit this trampoline on return. TODO: sigaltstack(). 2151 */ 2152 next = find_next_ret_chain(ri); 2153 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2154 2155 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2156 do { 2157 if (valid) 2158 handle_uretprobe_chain(ri, regs); 2159 ri = free_ret_instance(ri); 2160 utask->depth--; 2161 } while (ri != next); 2162 } while (!valid); 2163 2164 utask->return_instances = ri; 2165 return; 2166 2167 sigill: 2168 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2169 force_sig(SIGILL); 2170 2171 } 2172 2173 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2174 { 2175 return false; 2176 } 2177 2178 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2179 struct pt_regs *regs) 2180 { 2181 return true; 2182 } 2183 2184 /* 2185 * Run handler and ask thread to singlestep. 2186 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2187 */ 2188 static void handle_swbp(struct pt_regs *regs) 2189 { 2190 struct uprobe *uprobe; 2191 unsigned long bp_vaddr; 2192 int is_swbp; 2193 2194 bp_vaddr = uprobe_get_swbp_addr(regs); 2195 if (bp_vaddr == get_trampoline_vaddr()) 2196 return handle_trampoline(regs); 2197 2198 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2199 if (!uprobe) { 2200 if (is_swbp > 0) { 2201 /* No matching uprobe; signal SIGTRAP. */ 2202 force_sig(SIGTRAP); 2203 } else { 2204 /* 2205 * Either we raced with uprobe_unregister() or we can't 2206 * access this memory. The latter is only possible if 2207 * another thread plays with our ->mm. In both cases 2208 * we can simply restart. If this vma was unmapped we 2209 * can pretend this insn was not executed yet and get 2210 * the (correct) SIGSEGV after restart. 2211 */ 2212 instruction_pointer_set(regs, bp_vaddr); 2213 } 2214 return; 2215 } 2216 2217 /* change it in advance for ->handler() and restart */ 2218 instruction_pointer_set(regs, bp_vaddr); 2219 2220 /* 2221 * TODO: move copy_insn/etc into _register and remove this hack. 2222 * After we hit the bp, _unregister + _register can install the 2223 * new and not-yet-analyzed uprobe at the same address, restart. 2224 */ 2225 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2226 goto out; 2227 2228 /* 2229 * Pairs with the smp_wmb() in prepare_uprobe(). 2230 * 2231 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2232 * we must also see the stores to &uprobe->arch performed by the 2233 * prepare_uprobe() call. 2234 */ 2235 smp_rmb(); 2236 2237 /* Tracing handlers use ->utask to communicate with fetch methods */ 2238 if (!get_utask()) 2239 goto out; 2240 2241 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2242 goto out; 2243 2244 handler_chain(uprobe, regs); 2245 2246 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2247 goto out; 2248 2249 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2250 return; 2251 2252 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2253 out: 2254 put_uprobe(uprobe); 2255 } 2256 2257 /* 2258 * Perform required fix-ups and disable singlestep. 2259 * Allow pending signals to take effect. 2260 */ 2261 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2262 { 2263 struct uprobe *uprobe; 2264 int err = 0; 2265 2266 uprobe = utask->active_uprobe; 2267 if (utask->state == UTASK_SSTEP_ACK) 2268 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2269 else if (utask->state == UTASK_SSTEP_TRAPPED) 2270 arch_uprobe_abort_xol(&uprobe->arch, regs); 2271 else 2272 WARN_ON_ONCE(1); 2273 2274 put_uprobe(uprobe); 2275 utask->active_uprobe = NULL; 2276 utask->state = UTASK_RUNNING; 2277 xol_free_insn_slot(current); 2278 2279 spin_lock_irq(¤t->sighand->siglock); 2280 recalc_sigpending(); /* see uprobe_deny_signal() */ 2281 spin_unlock_irq(¤t->sighand->siglock); 2282 2283 if (unlikely(err)) { 2284 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2285 force_sig(SIGILL); 2286 } 2287 } 2288 2289 /* 2290 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2291 * allows the thread to return from interrupt. After that handle_swbp() 2292 * sets utask->active_uprobe. 2293 * 2294 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2295 * and allows the thread to return from interrupt. 2296 * 2297 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2298 * uprobe_notify_resume(). 2299 */ 2300 void uprobe_notify_resume(struct pt_regs *regs) 2301 { 2302 struct uprobe_task *utask; 2303 2304 clear_thread_flag(TIF_UPROBE); 2305 2306 utask = current->utask; 2307 if (utask && utask->active_uprobe) 2308 handle_singlestep(utask, regs); 2309 else 2310 handle_swbp(regs); 2311 } 2312 2313 /* 2314 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2315 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2316 */ 2317 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2318 { 2319 if (!current->mm) 2320 return 0; 2321 2322 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2323 (!current->utask || !current->utask->return_instances)) 2324 return 0; 2325 2326 set_thread_flag(TIF_UPROBE); 2327 return 1; 2328 } 2329 2330 /* 2331 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2332 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2333 */ 2334 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2335 { 2336 struct uprobe_task *utask = current->utask; 2337 2338 if (!current->mm || !utask || !utask->active_uprobe) 2339 /* task is currently not uprobed */ 2340 return 0; 2341 2342 utask->state = UTASK_SSTEP_ACK; 2343 set_thread_flag(TIF_UPROBE); 2344 return 1; 2345 } 2346 2347 static struct notifier_block uprobe_exception_nb = { 2348 .notifier_call = arch_uprobe_exception_notify, 2349 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2350 }; 2351 2352 void __init uprobes_init(void) 2353 { 2354 int i; 2355 2356 for (i = 0; i < UPROBES_HASH_SZ; i++) 2357 mutex_init(&uprobes_mmap_mutex[i]); 2358 2359 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2360 } 2361