xref: /openbmc/linux/kernel/events/uprobes.c (revision b34e08d5)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>		/* anon_vma_prepare */
32 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
33 #include <linux/swap.h>		/* try_to_free_swap */
34 #include <linux/ptrace.h>	/* user_enable_single_step */
35 #include <linux/kdebug.h>	/* notifier mechanism */
36 #include "../../mm/internal.h"	/* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 
40 #include <linux/uprobes.h>
41 
42 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
44 
45 static struct rb_root uprobes_tree = RB_ROOT;
46 /*
47  * allows us to skip the uprobe_mmap if there are no uprobe events active
48  * at this time.  Probably a fine grained per inode count is better?
49  */
50 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
51 
52 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
53 
54 #define UPROBES_HASH_SZ	13
55 /* serialize uprobe->pending_list */
56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58 
59 static struct percpu_rw_semaphore dup_mmap_sem;
60 
61 /* Have a copy of original instruction */
62 #define UPROBE_COPY_INSN	0
63 /* Can skip singlestep */
64 #define UPROBE_SKIP_SSTEP	1
65 
66 struct uprobe {
67 	struct rb_node		rb_node;	/* node in the rb tree */
68 	atomic_t		ref;
69 	struct rw_semaphore	register_rwsem;
70 	struct rw_semaphore	consumer_rwsem;
71 	struct list_head	pending_list;
72 	struct uprobe_consumer	*consumers;
73 	struct inode		*inode;		/* Also hold a ref to inode */
74 	loff_t			offset;
75 	unsigned long		flags;
76 
77 	/*
78 	 * The generic code assumes that it has two members of unknown type
79 	 * owned by the arch-specific code:
80 	 *
81 	 * 	insn -	copy_insn() saves the original instruction here for
82 	 *		arch_uprobe_analyze_insn().
83 	 *
84 	 *	ixol -	potentially modified instruction to execute out of
85 	 *		line, copied to xol_area by xol_get_insn_slot().
86 	 */
87 	struct arch_uprobe	arch;
88 };
89 
90 struct return_instance {
91 	struct uprobe		*uprobe;
92 	unsigned long		func;
93 	unsigned long		orig_ret_vaddr; /* original return address */
94 	bool			chained;	/* true, if instance is nested */
95 
96 	struct return_instance	*next;		/* keep as stack */
97 };
98 
99 /*
100  * Execute out of line area: anonymous executable mapping installed
101  * by the probed task to execute the copy of the original instruction
102  * mangled by set_swbp().
103  *
104  * On a breakpoint hit, thread contests for a slot.  It frees the
105  * slot after singlestep. Currently a fixed number of slots are
106  * allocated.
107  */
108 struct xol_area {
109 	wait_queue_head_t 	wq;		/* if all slots are busy */
110 	atomic_t 		slot_count;	/* number of in-use slots */
111 	unsigned long 		*bitmap;	/* 0 = free slot */
112 	struct page 		*page;
113 
114 	/*
115 	 * We keep the vma's vm_start rather than a pointer to the vma
116 	 * itself.  The probed process or a naughty kernel module could make
117 	 * the vma go away, and we must handle that reasonably gracefully.
118 	 */
119 	unsigned long 		vaddr;		/* Page(s) of instruction slots */
120 };
121 
122 /*
123  * valid_vma: Verify if the specified vma is an executable vma
124  * Relax restrictions while unregistering: vm_flags might have
125  * changed after breakpoint was inserted.
126  *	- is_register: indicates if we are in register context.
127  *	- Return 1 if the specified virtual address is in an
128  *	  executable vma.
129  */
130 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
131 {
132 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
133 
134 	if (is_register)
135 		flags |= VM_WRITE;
136 
137 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
138 }
139 
140 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
141 {
142 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
143 }
144 
145 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
146 {
147 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
148 }
149 
150 /**
151  * __replace_page - replace page in vma by new page.
152  * based on replace_page in mm/ksm.c
153  *
154  * @vma:      vma that holds the pte pointing to page
155  * @addr:     address the old @page is mapped at
156  * @page:     the cowed page we are replacing by kpage
157  * @kpage:    the modified page we replace page by
158  *
159  * Returns 0 on success, -EFAULT on failure.
160  */
161 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
162 				struct page *page, struct page *kpage)
163 {
164 	struct mm_struct *mm = vma->vm_mm;
165 	spinlock_t *ptl;
166 	pte_t *ptep;
167 	int err;
168 	/* For mmu_notifiers */
169 	const unsigned long mmun_start = addr;
170 	const unsigned long mmun_end   = addr + PAGE_SIZE;
171 
172 	/* For try_to_free_swap() and munlock_vma_page() below */
173 	lock_page(page);
174 
175 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
176 	err = -EAGAIN;
177 	ptep = page_check_address(page, mm, addr, &ptl, 0);
178 	if (!ptep)
179 		goto unlock;
180 
181 	get_page(kpage);
182 	page_add_new_anon_rmap(kpage, vma, addr);
183 
184 	if (!PageAnon(page)) {
185 		dec_mm_counter(mm, MM_FILEPAGES);
186 		inc_mm_counter(mm, MM_ANONPAGES);
187 	}
188 
189 	flush_cache_page(vma, addr, pte_pfn(*ptep));
190 	ptep_clear_flush(vma, addr, ptep);
191 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
192 
193 	page_remove_rmap(page);
194 	if (!page_mapped(page))
195 		try_to_free_swap(page);
196 	pte_unmap_unlock(ptep, ptl);
197 
198 	if (vma->vm_flags & VM_LOCKED)
199 		munlock_vma_page(page);
200 	put_page(page);
201 
202 	err = 0;
203  unlock:
204 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
205 	unlock_page(page);
206 	return err;
207 }
208 
209 /**
210  * is_swbp_insn - check if instruction is breakpoint instruction.
211  * @insn: instruction to be checked.
212  * Default implementation of is_swbp_insn
213  * Returns true if @insn is a breakpoint instruction.
214  */
215 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
216 {
217 	return *insn == UPROBE_SWBP_INSN;
218 }
219 
220 /**
221  * is_trap_insn - check if instruction is breakpoint instruction.
222  * @insn: instruction to be checked.
223  * Default implementation of is_trap_insn
224  * Returns true if @insn is a breakpoint instruction.
225  *
226  * This function is needed for the case where an architecture has multiple
227  * trap instructions (like powerpc).
228  */
229 bool __weak is_trap_insn(uprobe_opcode_t *insn)
230 {
231 	return is_swbp_insn(insn);
232 }
233 
234 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
235 {
236 	void *kaddr = kmap_atomic(page);
237 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
238 	kunmap_atomic(kaddr);
239 }
240 
241 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
242 {
243 	void *kaddr = kmap_atomic(page);
244 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
245 	kunmap_atomic(kaddr);
246 }
247 
248 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
249 {
250 	uprobe_opcode_t old_opcode;
251 	bool is_swbp;
252 
253 	/*
254 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
255 	 * We do not check if it is any other 'trap variant' which could
256 	 * be conditional trap instruction such as the one powerpc supports.
257 	 *
258 	 * The logic is that we do not care if the underlying instruction
259 	 * is a trap variant; uprobes always wins over any other (gdb)
260 	 * breakpoint.
261 	 */
262 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
263 	is_swbp = is_swbp_insn(&old_opcode);
264 
265 	if (is_swbp_insn(new_opcode)) {
266 		if (is_swbp)		/* register: already installed? */
267 			return 0;
268 	} else {
269 		if (!is_swbp)		/* unregister: was it changed by us? */
270 			return 0;
271 	}
272 
273 	return 1;
274 }
275 
276 /*
277  * NOTE:
278  * Expect the breakpoint instruction to be the smallest size instruction for
279  * the architecture. If an arch has variable length instruction and the
280  * breakpoint instruction is not of the smallest length instruction
281  * supported by that architecture then we need to modify is_trap_at_addr and
282  * uprobe_write_opcode accordingly. This would never be a problem for archs
283  * that have fixed length instructions.
284  */
285 
286 /*
287  * uprobe_write_opcode - write the opcode at a given virtual address.
288  * @mm: the probed process address space.
289  * @vaddr: the virtual address to store the opcode.
290  * @opcode: opcode to be written at @vaddr.
291  *
292  * Called with mm->mmap_sem held (for read and with a reference to
293  * mm).
294  *
295  * For mm @mm, write the opcode at @vaddr.
296  * Return 0 (success) or a negative errno.
297  */
298 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
299 			uprobe_opcode_t opcode)
300 {
301 	struct page *old_page, *new_page;
302 	struct vm_area_struct *vma;
303 	int ret;
304 
305 retry:
306 	/* Read the page with vaddr into memory */
307 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
308 	if (ret <= 0)
309 		return ret;
310 
311 	ret = verify_opcode(old_page, vaddr, &opcode);
312 	if (ret <= 0)
313 		goto put_old;
314 
315 	ret = -ENOMEM;
316 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
317 	if (!new_page)
318 		goto put_old;
319 
320 	__SetPageUptodate(new_page);
321 
322 	copy_highpage(new_page, old_page);
323 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
324 
325 	ret = anon_vma_prepare(vma);
326 	if (ret)
327 		goto put_new;
328 
329 	ret = __replace_page(vma, vaddr, old_page, new_page);
330 
331 put_new:
332 	page_cache_release(new_page);
333 put_old:
334 	put_page(old_page);
335 
336 	if (unlikely(ret == -EAGAIN))
337 		goto retry;
338 	return ret;
339 }
340 
341 /**
342  * set_swbp - store breakpoint at a given address.
343  * @auprobe: arch specific probepoint information.
344  * @mm: the probed process address space.
345  * @vaddr: the virtual address to insert the opcode.
346  *
347  * For mm @mm, store the breakpoint instruction at @vaddr.
348  * Return 0 (success) or a negative errno.
349  */
350 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
351 {
352 	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
353 }
354 
355 /**
356  * set_orig_insn - Restore the original instruction.
357  * @mm: the probed process address space.
358  * @auprobe: arch specific probepoint information.
359  * @vaddr: the virtual address to insert the opcode.
360  *
361  * For mm @mm, restore the original opcode (opcode) at @vaddr.
362  * Return 0 (success) or a negative errno.
363  */
364 int __weak
365 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
366 {
367 	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
368 }
369 
370 static int match_uprobe(struct uprobe *l, struct uprobe *r)
371 {
372 	if (l->inode < r->inode)
373 		return -1;
374 
375 	if (l->inode > r->inode)
376 		return 1;
377 
378 	if (l->offset < r->offset)
379 		return -1;
380 
381 	if (l->offset > r->offset)
382 		return 1;
383 
384 	return 0;
385 }
386 
387 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
388 {
389 	struct uprobe u = { .inode = inode, .offset = offset };
390 	struct rb_node *n = uprobes_tree.rb_node;
391 	struct uprobe *uprobe;
392 	int match;
393 
394 	while (n) {
395 		uprobe = rb_entry(n, struct uprobe, rb_node);
396 		match = match_uprobe(&u, uprobe);
397 		if (!match) {
398 			atomic_inc(&uprobe->ref);
399 			return uprobe;
400 		}
401 
402 		if (match < 0)
403 			n = n->rb_left;
404 		else
405 			n = n->rb_right;
406 	}
407 	return NULL;
408 }
409 
410 /*
411  * Find a uprobe corresponding to a given inode:offset
412  * Acquires uprobes_treelock
413  */
414 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
415 {
416 	struct uprobe *uprobe;
417 
418 	spin_lock(&uprobes_treelock);
419 	uprobe = __find_uprobe(inode, offset);
420 	spin_unlock(&uprobes_treelock);
421 
422 	return uprobe;
423 }
424 
425 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
426 {
427 	struct rb_node **p = &uprobes_tree.rb_node;
428 	struct rb_node *parent = NULL;
429 	struct uprobe *u;
430 	int match;
431 
432 	while (*p) {
433 		parent = *p;
434 		u = rb_entry(parent, struct uprobe, rb_node);
435 		match = match_uprobe(uprobe, u);
436 		if (!match) {
437 			atomic_inc(&u->ref);
438 			return u;
439 		}
440 
441 		if (match < 0)
442 			p = &parent->rb_left;
443 		else
444 			p = &parent->rb_right;
445 
446 	}
447 
448 	u = NULL;
449 	rb_link_node(&uprobe->rb_node, parent, p);
450 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
451 	/* get access + creation ref */
452 	atomic_set(&uprobe->ref, 2);
453 
454 	return u;
455 }
456 
457 /*
458  * Acquire uprobes_treelock.
459  * Matching uprobe already exists in rbtree;
460  *	increment (access refcount) and return the matching uprobe.
461  *
462  * No matching uprobe; insert the uprobe in rb_tree;
463  *	get a double refcount (access + creation) and return NULL.
464  */
465 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
466 {
467 	struct uprobe *u;
468 
469 	spin_lock(&uprobes_treelock);
470 	u = __insert_uprobe(uprobe);
471 	spin_unlock(&uprobes_treelock);
472 
473 	return u;
474 }
475 
476 static void put_uprobe(struct uprobe *uprobe)
477 {
478 	if (atomic_dec_and_test(&uprobe->ref))
479 		kfree(uprobe);
480 }
481 
482 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
483 {
484 	struct uprobe *uprobe, *cur_uprobe;
485 
486 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
487 	if (!uprobe)
488 		return NULL;
489 
490 	uprobe->inode = igrab(inode);
491 	uprobe->offset = offset;
492 	init_rwsem(&uprobe->register_rwsem);
493 	init_rwsem(&uprobe->consumer_rwsem);
494 	/* For now assume that the instruction need not be single-stepped */
495 	__set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
496 
497 	/* add to uprobes_tree, sorted on inode:offset */
498 	cur_uprobe = insert_uprobe(uprobe);
499 
500 	/* a uprobe exists for this inode:offset combination */
501 	if (cur_uprobe) {
502 		kfree(uprobe);
503 		uprobe = cur_uprobe;
504 		iput(inode);
505 	}
506 
507 	return uprobe;
508 }
509 
510 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
511 {
512 	down_write(&uprobe->consumer_rwsem);
513 	uc->next = uprobe->consumers;
514 	uprobe->consumers = uc;
515 	up_write(&uprobe->consumer_rwsem);
516 }
517 
518 /*
519  * For uprobe @uprobe, delete the consumer @uc.
520  * Return true if the @uc is deleted successfully
521  * or return false.
522  */
523 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
524 {
525 	struct uprobe_consumer **con;
526 	bool ret = false;
527 
528 	down_write(&uprobe->consumer_rwsem);
529 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
530 		if (*con == uc) {
531 			*con = uc->next;
532 			ret = true;
533 			break;
534 		}
535 	}
536 	up_write(&uprobe->consumer_rwsem);
537 
538 	return ret;
539 }
540 
541 static int __copy_insn(struct address_space *mapping, struct file *filp,
542 			void *insn, int nbytes, loff_t offset)
543 {
544 	struct page *page;
545 
546 	if (!mapping->a_ops->readpage)
547 		return -EIO;
548 	/*
549 	 * Ensure that the page that has the original instruction is
550 	 * populated and in page-cache.
551 	 */
552 	page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
553 	if (IS_ERR(page))
554 		return PTR_ERR(page);
555 
556 	copy_from_page(page, offset, insn, nbytes);
557 	page_cache_release(page);
558 
559 	return 0;
560 }
561 
562 static int copy_insn(struct uprobe *uprobe, struct file *filp)
563 {
564 	struct address_space *mapping = uprobe->inode->i_mapping;
565 	loff_t offs = uprobe->offset;
566 	void *insn = &uprobe->arch.insn;
567 	int size = sizeof(uprobe->arch.insn);
568 	int len, err = -EIO;
569 
570 	/* Copy only available bytes, -EIO if nothing was read */
571 	do {
572 		if (offs >= i_size_read(uprobe->inode))
573 			break;
574 
575 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
576 		err = __copy_insn(mapping, filp, insn, len, offs);
577 		if (err)
578 			break;
579 
580 		insn += len;
581 		offs += len;
582 		size -= len;
583 	} while (size);
584 
585 	return err;
586 }
587 
588 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
589 				struct mm_struct *mm, unsigned long vaddr)
590 {
591 	int ret = 0;
592 
593 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
594 		return ret;
595 
596 	/* TODO: move this into _register, until then we abuse this sem. */
597 	down_write(&uprobe->consumer_rwsem);
598 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
599 		goto out;
600 
601 	ret = copy_insn(uprobe, file);
602 	if (ret)
603 		goto out;
604 
605 	ret = -ENOTSUPP;
606 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
607 		goto out;
608 
609 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
610 	if (ret)
611 		goto out;
612 
613 	/* uprobe_write_opcode() assumes we don't cross page boundary */
614 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
615 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
616 
617 	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
618 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
619 
620  out:
621 	up_write(&uprobe->consumer_rwsem);
622 
623 	return ret;
624 }
625 
626 static inline bool consumer_filter(struct uprobe_consumer *uc,
627 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
628 {
629 	return !uc->filter || uc->filter(uc, ctx, mm);
630 }
631 
632 static bool filter_chain(struct uprobe *uprobe,
633 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
634 {
635 	struct uprobe_consumer *uc;
636 	bool ret = false;
637 
638 	down_read(&uprobe->consumer_rwsem);
639 	for (uc = uprobe->consumers; uc; uc = uc->next) {
640 		ret = consumer_filter(uc, ctx, mm);
641 		if (ret)
642 			break;
643 	}
644 	up_read(&uprobe->consumer_rwsem);
645 
646 	return ret;
647 }
648 
649 static int
650 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
651 			struct vm_area_struct *vma, unsigned long vaddr)
652 {
653 	bool first_uprobe;
654 	int ret;
655 
656 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
657 	if (ret)
658 		return ret;
659 
660 	/*
661 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
662 	 * the task can hit this breakpoint right after __replace_page().
663 	 */
664 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
665 	if (first_uprobe)
666 		set_bit(MMF_HAS_UPROBES, &mm->flags);
667 
668 	ret = set_swbp(&uprobe->arch, mm, vaddr);
669 	if (!ret)
670 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
671 	else if (first_uprobe)
672 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
673 
674 	return ret;
675 }
676 
677 static int
678 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
679 {
680 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
681 	return set_orig_insn(&uprobe->arch, mm, vaddr);
682 }
683 
684 static inline bool uprobe_is_active(struct uprobe *uprobe)
685 {
686 	return !RB_EMPTY_NODE(&uprobe->rb_node);
687 }
688 /*
689  * There could be threads that have already hit the breakpoint. They
690  * will recheck the current insn and restart if find_uprobe() fails.
691  * See find_active_uprobe().
692  */
693 static void delete_uprobe(struct uprobe *uprobe)
694 {
695 	if (WARN_ON(!uprobe_is_active(uprobe)))
696 		return;
697 
698 	spin_lock(&uprobes_treelock);
699 	rb_erase(&uprobe->rb_node, &uprobes_tree);
700 	spin_unlock(&uprobes_treelock);
701 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
702 	iput(uprobe->inode);
703 	put_uprobe(uprobe);
704 }
705 
706 struct map_info {
707 	struct map_info *next;
708 	struct mm_struct *mm;
709 	unsigned long vaddr;
710 };
711 
712 static inline struct map_info *free_map_info(struct map_info *info)
713 {
714 	struct map_info *next = info->next;
715 	kfree(info);
716 	return next;
717 }
718 
719 static struct map_info *
720 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
721 {
722 	unsigned long pgoff = offset >> PAGE_SHIFT;
723 	struct vm_area_struct *vma;
724 	struct map_info *curr = NULL;
725 	struct map_info *prev = NULL;
726 	struct map_info *info;
727 	int more = 0;
728 
729  again:
730 	mutex_lock(&mapping->i_mmap_mutex);
731 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
732 		if (!valid_vma(vma, is_register))
733 			continue;
734 
735 		if (!prev && !more) {
736 			/*
737 			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
738 			 * reclaim. This is optimistic, no harm done if it fails.
739 			 */
740 			prev = kmalloc(sizeof(struct map_info),
741 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
742 			if (prev)
743 				prev->next = NULL;
744 		}
745 		if (!prev) {
746 			more++;
747 			continue;
748 		}
749 
750 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
751 			continue;
752 
753 		info = prev;
754 		prev = prev->next;
755 		info->next = curr;
756 		curr = info;
757 
758 		info->mm = vma->vm_mm;
759 		info->vaddr = offset_to_vaddr(vma, offset);
760 	}
761 	mutex_unlock(&mapping->i_mmap_mutex);
762 
763 	if (!more)
764 		goto out;
765 
766 	prev = curr;
767 	while (curr) {
768 		mmput(curr->mm);
769 		curr = curr->next;
770 	}
771 
772 	do {
773 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
774 		if (!info) {
775 			curr = ERR_PTR(-ENOMEM);
776 			goto out;
777 		}
778 		info->next = prev;
779 		prev = info;
780 	} while (--more);
781 
782 	goto again;
783  out:
784 	while (prev)
785 		prev = free_map_info(prev);
786 	return curr;
787 }
788 
789 static int
790 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
791 {
792 	bool is_register = !!new;
793 	struct map_info *info;
794 	int err = 0;
795 
796 	percpu_down_write(&dup_mmap_sem);
797 	info = build_map_info(uprobe->inode->i_mapping,
798 					uprobe->offset, is_register);
799 	if (IS_ERR(info)) {
800 		err = PTR_ERR(info);
801 		goto out;
802 	}
803 
804 	while (info) {
805 		struct mm_struct *mm = info->mm;
806 		struct vm_area_struct *vma;
807 
808 		if (err && is_register)
809 			goto free;
810 
811 		down_write(&mm->mmap_sem);
812 		vma = find_vma(mm, info->vaddr);
813 		if (!vma || !valid_vma(vma, is_register) ||
814 		    file_inode(vma->vm_file) != uprobe->inode)
815 			goto unlock;
816 
817 		if (vma->vm_start > info->vaddr ||
818 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
819 			goto unlock;
820 
821 		if (is_register) {
822 			/* consult only the "caller", new consumer. */
823 			if (consumer_filter(new,
824 					UPROBE_FILTER_REGISTER, mm))
825 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
826 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
827 			if (!filter_chain(uprobe,
828 					UPROBE_FILTER_UNREGISTER, mm))
829 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
830 		}
831 
832  unlock:
833 		up_write(&mm->mmap_sem);
834  free:
835 		mmput(mm);
836 		info = free_map_info(info);
837 	}
838  out:
839 	percpu_up_write(&dup_mmap_sem);
840 	return err;
841 }
842 
843 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
844 {
845 	consumer_add(uprobe, uc);
846 	return register_for_each_vma(uprobe, uc);
847 }
848 
849 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
850 {
851 	int err;
852 
853 	if (!consumer_del(uprobe, uc))	/* WARN? */
854 		return;
855 
856 	err = register_for_each_vma(uprobe, NULL);
857 	/* TODO : cant unregister? schedule a worker thread */
858 	if (!uprobe->consumers && !err)
859 		delete_uprobe(uprobe);
860 }
861 
862 /*
863  * uprobe_register - register a probe
864  * @inode: the file in which the probe has to be placed.
865  * @offset: offset from the start of the file.
866  * @uc: information on howto handle the probe..
867  *
868  * Apart from the access refcount, uprobe_register() takes a creation
869  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
870  * inserted into the rbtree (i.e first consumer for a @inode:@offset
871  * tuple).  Creation refcount stops uprobe_unregister from freeing the
872  * @uprobe even before the register operation is complete. Creation
873  * refcount is released when the last @uc for the @uprobe
874  * unregisters.
875  *
876  * Return errno if it cannot successully install probes
877  * else return 0 (success)
878  */
879 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
880 {
881 	struct uprobe *uprobe;
882 	int ret;
883 
884 	/* Uprobe must have at least one set consumer */
885 	if (!uc->handler && !uc->ret_handler)
886 		return -EINVAL;
887 
888 	/* Racy, just to catch the obvious mistakes */
889 	if (offset > i_size_read(inode))
890 		return -EINVAL;
891 
892  retry:
893 	uprobe = alloc_uprobe(inode, offset);
894 	if (!uprobe)
895 		return -ENOMEM;
896 	/*
897 	 * We can race with uprobe_unregister()->delete_uprobe().
898 	 * Check uprobe_is_active() and retry if it is false.
899 	 */
900 	down_write(&uprobe->register_rwsem);
901 	ret = -EAGAIN;
902 	if (likely(uprobe_is_active(uprobe))) {
903 		ret = __uprobe_register(uprobe, uc);
904 		if (ret)
905 			__uprobe_unregister(uprobe, uc);
906 	}
907 	up_write(&uprobe->register_rwsem);
908 	put_uprobe(uprobe);
909 
910 	if (unlikely(ret == -EAGAIN))
911 		goto retry;
912 	return ret;
913 }
914 EXPORT_SYMBOL_GPL(uprobe_register);
915 
916 /*
917  * uprobe_apply - unregister a already registered probe.
918  * @inode: the file in which the probe has to be removed.
919  * @offset: offset from the start of the file.
920  * @uc: consumer which wants to add more or remove some breakpoints
921  * @add: add or remove the breakpoints
922  */
923 int uprobe_apply(struct inode *inode, loff_t offset,
924 			struct uprobe_consumer *uc, bool add)
925 {
926 	struct uprobe *uprobe;
927 	struct uprobe_consumer *con;
928 	int ret = -ENOENT;
929 
930 	uprobe = find_uprobe(inode, offset);
931 	if (!uprobe)
932 		return ret;
933 
934 	down_write(&uprobe->register_rwsem);
935 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
936 		;
937 	if (con)
938 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
939 	up_write(&uprobe->register_rwsem);
940 	put_uprobe(uprobe);
941 
942 	return ret;
943 }
944 
945 /*
946  * uprobe_unregister - unregister a already registered probe.
947  * @inode: the file in which the probe has to be removed.
948  * @offset: offset from the start of the file.
949  * @uc: identify which probe if multiple probes are colocated.
950  */
951 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
952 {
953 	struct uprobe *uprobe;
954 
955 	uprobe = find_uprobe(inode, offset);
956 	if (!uprobe)
957 		return;
958 
959 	down_write(&uprobe->register_rwsem);
960 	__uprobe_unregister(uprobe, uc);
961 	up_write(&uprobe->register_rwsem);
962 	put_uprobe(uprobe);
963 }
964 EXPORT_SYMBOL_GPL(uprobe_unregister);
965 
966 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
967 {
968 	struct vm_area_struct *vma;
969 	int err = 0;
970 
971 	down_read(&mm->mmap_sem);
972 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
973 		unsigned long vaddr;
974 		loff_t offset;
975 
976 		if (!valid_vma(vma, false) ||
977 		    file_inode(vma->vm_file) != uprobe->inode)
978 			continue;
979 
980 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
981 		if (uprobe->offset <  offset ||
982 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
983 			continue;
984 
985 		vaddr = offset_to_vaddr(vma, uprobe->offset);
986 		err |= remove_breakpoint(uprobe, mm, vaddr);
987 	}
988 	up_read(&mm->mmap_sem);
989 
990 	return err;
991 }
992 
993 static struct rb_node *
994 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
995 {
996 	struct rb_node *n = uprobes_tree.rb_node;
997 
998 	while (n) {
999 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1000 
1001 		if (inode < u->inode) {
1002 			n = n->rb_left;
1003 		} else if (inode > u->inode) {
1004 			n = n->rb_right;
1005 		} else {
1006 			if (max < u->offset)
1007 				n = n->rb_left;
1008 			else if (min > u->offset)
1009 				n = n->rb_right;
1010 			else
1011 				break;
1012 		}
1013 	}
1014 
1015 	return n;
1016 }
1017 
1018 /*
1019  * For a given range in vma, build a list of probes that need to be inserted.
1020  */
1021 static void build_probe_list(struct inode *inode,
1022 				struct vm_area_struct *vma,
1023 				unsigned long start, unsigned long end,
1024 				struct list_head *head)
1025 {
1026 	loff_t min, max;
1027 	struct rb_node *n, *t;
1028 	struct uprobe *u;
1029 
1030 	INIT_LIST_HEAD(head);
1031 	min = vaddr_to_offset(vma, start);
1032 	max = min + (end - start) - 1;
1033 
1034 	spin_lock(&uprobes_treelock);
1035 	n = find_node_in_range(inode, min, max);
1036 	if (n) {
1037 		for (t = n; t; t = rb_prev(t)) {
1038 			u = rb_entry(t, struct uprobe, rb_node);
1039 			if (u->inode != inode || u->offset < min)
1040 				break;
1041 			list_add(&u->pending_list, head);
1042 			atomic_inc(&u->ref);
1043 		}
1044 		for (t = n; (t = rb_next(t)); ) {
1045 			u = rb_entry(t, struct uprobe, rb_node);
1046 			if (u->inode != inode || u->offset > max)
1047 				break;
1048 			list_add(&u->pending_list, head);
1049 			atomic_inc(&u->ref);
1050 		}
1051 	}
1052 	spin_unlock(&uprobes_treelock);
1053 }
1054 
1055 /*
1056  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1057  *
1058  * Currently we ignore all errors and always return 0, the callers
1059  * can't handle the failure anyway.
1060  */
1061 int uprobe_mmap(struct vm_area_struct *vma)
1062 {
1063 	struct list_head tmp_list;
1064 	struct uprobe *uprobe, *u;
1065 	struct inode *inode;
1066 
1067 	if (no_uprobe_events() || !valid_vma(vma, true))
1068 		return 0;
1069 
1070 	inode = file_inode(vma->vm_file);
1071 	if (!inode)
1072 		return 0;
1073 
1074 	mutex_lock(uprobes_mmap_hash(inode));
1075 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1076 	/*
1077 	 * We can race with uprobe_unregister(), this uprobe can be already
1078 	 * removed. But in this case filter_chain() must return false, all
1079 	 * consumers have gone away.
1080 	 */
1081 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1082 		if (!fatal_signal_pending(current) &&
1083 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1084 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1085 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1086 		}
1087 		put_uprobe(uprobe);
1088 	}
1089 	mutex_unlock(uprobes_mmap_hash(inode));
1090 
1091 	return 0;
1092 }
1093 
1094 static bool
1095 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1096 {
1097 	loff_t min, max;
1098 	struct inode *inode;
1099 	struct rb_node *n;
1100 
1101 	inode = file_inode(vma->vm_file);
1102 
1103 	min = vaddr_to_offset(vma, start);
1104 	max = min + (end - start) - 1;
1105 
1106 	spin_lock(&uprobes_treelock);
1107 	n = find_node_in_range(inode, min, max);
1108 	spin_unlock(&uprobes_treelock);
1109 
1110 	return !!n;
1111 }
1112 
1113 /*
1114  * Called in context of a munmap of a vma.
1115  */
1116 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1117 {
1118 	if (no_uprobe_events() || !valid_vma(vma, false))
1119 		return;
1120 
1121 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1122 		return;
1123 
1124 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1125 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1126 		return;
1127 
1128 	if (vma_has_uprobes(vma, start, end))
1129 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1130 }
1131 
1132 /* Slot allocation for XOL */
1133 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1134 {
1135 	int ret = -EALREADY;
1136 
1137 	down_write(&mm->mmap_sem);
1138 	if (mm->uprobes_state.xol_area)
1139 		goto fail;
1140 
1141 	if (!area->vaddr) {
1142 		/* Try to map as high as possible, this is only a hint. */
1143 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1144 						PAGE_SIZE, 0, 0);
1145 		if (area->vaddr & ~PAGE_MASK) {
1146 			ret = area->vaddr;
1147 			goto fail;
1148 		}
1149 	}
1150 
1151 	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1152 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1153 	if (ret)
1154 		goto fail;
1155 
1156 	smp_wmb();	/* pairs with get_xol_area() */
1157 	mm->uprobes_state.xol_area = area;
1158  fail:
1159 	up_write(&mm->mmap_sem);
1160 
1161 	return ret;
1162 }
1163 
1164 static struct xol_area *__create_xol_area(unsigned long vaddr)
1165 {
1166 	struct mm_struct *mm = current->mm;
1167 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1168 	struct xol_area *area;
1169 
1170 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1171 	if (unlikely(!area))
1172 		goto out;
1173 
1174 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1175 	if (!area->bitmap)
1176 		goto free_area;
1177 
1178 	area->page = alloc_page(GFP_HIGHUSER);
1179 	if (!area->page)
1180 		goto free_bitmap;
1181 
1182 	area->vaddr = vaddr;
1183 	init_waitqueue_head(&area->wq);
1184 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1185 	set_bit(0, area->bitmap);
1186 	atomic_set(&area->slot_count, 1);
1187 	copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1188 
1189 	if (!xol_add_vma(mm, area))
1190 		return area;
1191 
1192 	__free_page(area->page);
1193  free_bitmap:
1194 	kfree(area->bitmap);
1195  free_area:
1196 	kfree(area);
1197  out:
1198 	return NULL;
1199 }
1200 
1201 /*
1202  * get_xol_area - Allocate process's xol_area if necessary.
1203  * This area will be used for storing instructions for execution out of line.
1204  *
1205  * Returns the allocated area or NULL.
1206  */
1207 static struct xol_area *get_xol_area(void)
1208 {
1209 	struct mm_struct *mm = current->mm;
1210 	struct xol_area *area;
1211 
1212 	if (!mm->uprobes_state.xol_area)
1213 		__create_xol_area(0);
1214 
1215 	area = mm->uprobes_state.xol_area;
1216 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1217 	return area;
1218 }
1219 
1220 /*
1221  * uprobe_clear_state - Free the area allocated for slots.
1222  */
1223 void uprobe_clear_state(struct mm_struct *mm)
1224 {
1225 	struct xol_area *area = mm->uprobes_state.xol_area;
1226 
1227 	if (!area)
1228 		return;
1229 
1230 	put_page(area->page);
1231 	kfree(area->bitmap);
1232 	kfree(area);
1233 }
1234 
1235 void uprobe_start_dup_mmap(void)
1236 {
1237 	percpu_down_read(&dup_mmap_sem);
1238 }
1239 
1240 void uprobe_end_dup_mmap(void)
1241 {
1242 	percpu_up_read(&dup_mmap_sem);
1243 }
1244 
1245 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1246 {
1247 	newmm->uprobes_state.xol_area = NULL;
1248 
1249 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1250 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1251 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1252 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1253 	}
1254 }
1255 
1256 /*
1257  *  - search for a free slot.
1258  */
1259 static unsigned long xol_take_insn_slot(struct xol_area *area)
1260 {
1261 	unsigned long slot_addr;
1262 	int slot_nr;
1263 
1264 	do {
1265 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1266 		if (slot_nr < UINSNS_PER_PAGE) {
1267 			if (!test_and_set_bit(slot_nr, area->bitmap))
1268 				break;
1269 
1270 			slot_nr = UINSNS_PER_PAGE;
1271 			continue;
1272 		}
1273 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1274 	} while (slot_nr >= UINSNS_PER_PAGE);
1275 
1276 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1277 	atomic_inc(&area->slot_count);
1278 
1279 	return slot_addr;
1280 }
1281 
1282 /*
1283  * xol_get_insn_slot - allocate a slot for xol.
1284  * Returns the allocated slot address or 0.
1285  */
1286 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1287 {
1288 	struct xol_area *area;
1289 	unsigned long xol_vaddr;
1290 
1291 	area = get_xol_area();
1292 	if (!area)
1293 		return 0;
1294 
1295 	xol_vaddr = xol_take_insn_slot(area);
1296 	if (unlikely(!xol_vaddr))
1297 		return 0;
1298 
1299 	/* Initialize the slot */
1300 	copy_to_page(area->page, xol_vaddr,
1301 			&uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1302 	/*
1303 	 * We probably need flush_icache_user_range() but it needs vma.
1304 	 * This should work on supported architectures too.
1305 	 */
1306 	flush_dcache_page(area->page);
1307 
1308 	return xol_vaddr;
1309 }
1310 
1311 /*
1312  * xol_free_insn_slot - If slot was earlier allocated by
1313  * @xol_get_insn_slot(), make the slot available for
1314  * subsequent requests.
1315  */
1316 static void xol_free_insn_slot(struct task_struct *tsk)
1317 {
1318 	struct xol_area *area;
1319 	unsigned long vma_end;
1320 	unsigned long slot_addr;
1321 
1322 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1323 		return;
1324 
1325 	slot_addr = tsk->utask->xol_vaddr;
1326 	if (unlikely(!slot_addr))
1327 		return;
1328 
1329 	area = tsk->mm->uprobes_state.xol_area;
1330 	vma_end = area->vaddr + PAGE_SIZE;
1331 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1332 		unsigned long offset;
1333 		int slot_nr;
1334 
1335 		offset = slot_addr - area->vaddr;
1336 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1337 		if (slot_nr >= UINSNS_PER_PAGE)
1338 			return;
1339 
1340 		clear_bit(slot_nr, area->bitmap);
1341 		atomic_dec(&area->slot_count);
1342 		if (waitqueue_active(&area->wq))
1343 			wake_up(&area->wq);
1344 
1345 		tsk->utask->xol_vaddr = 0;
1346 	}
1347 }
1348 
1349 /**
1350  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1351  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1352  * instruction.
1353  * Return the address of the breakpoint instruction.
1354  */
1355 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1356 {
1357 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1358 }
1359 
1360 /*
1361  * Called with no locks held.
1362  * Called in context of a exiting or a exec-ing thread.
1363  */
1364 void uprobe_free_utask(struct task_struct *t)
1365 {
1366 	struct uprobe_task *utask = t->utask;
1367 	struct return_instance *ri, *tmp;
1368 
1369 	if (!utask)
1370 		return;
1371 
1372 	if (utask->active_uprobe)
1373 		put_uprobe(utask->active_uprobe);
1374 
1375 	ri = utask->return_instances;
1376 	while (ri) {
1377 		tmp = ri;
1378 		ri = ri->next;
1379 
1380 		put_uprobe(tmp->uprobe);
1381 		kfree(tmp);
1382 	}
1383 
1384 	xol_free_insn_slot(t);
1385 	kfree(utask);
1386 	t->utask = NULL;
1387 }
1388 
1389 /*
1390  * Allocate a uprobe_task object for the task if if necessary.
1391  * Called when the thread hits a breakpoint.
1392  *
1393  * Returns:
1394  * - pointer to new uprobe_task on success
1395  * - NULL otherwise
1396  */
1397 static struct uprobe_task *get_utask(void)
1398 {
1399 	if (!current->utask)
1400 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1401 	return current->utask;
1402 }
1403 
1404 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1405 {
1406 	struct uprobe_task *n_utask;
1407 	struct return_instance **p, *o, *n;
1408 
1409 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1410 	if (!n_utask)
1411 		return -ENOMEM;
1412 	t->utask = n_utask;
1413 
1414 	p = &n_utask->return_instances;
1415 	for (o = o_utask->return_instances; o; o = o->next) {
1416 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1417 		if (!n)
1418 			return -ENOMEM;
1419 
1420 		*n = *o;
1421 		atomic_inc(&n->uprobe->ref);
1422 		n->next = NULL;
1423 
1424 		*p = n;
1425 		p = &n->next;
1426 		n_utask->depth++;
1427 	}
1428 
1429 	return 0;
1430 }
1431 
1432 static void uprobe_warn(struct task_struct *t, const char *msg)
1433 {
1434 	pr_warn("uprobe: %s:%d failed to %s\n",
1435 			current->comm, current->pid, msg);
1436 }
1437 
1438 static void dup_xol_work(struct callback_head *work)
1439 {
1440 	if (current->flags & PF_EXITING)
1441 		return;
1442 
1443 	if (!__create_xol_area(current->utask->dup_xol_addr))
1444 		uprobe_warn(current, "dup xol area");
1445 }
1446 
1447 /*
1448  * Called in context of a new clone/fork from copy_process.
1449  */
1450 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1451 {
1452 	struct uprobe_task *utask = current->utask;
1453 	struct mm_struct *mm = current->mm;
1454 	struct xol_area *area;
1455 
1456 	t->utask = NULL;
1457 
1458 	if (!utask || !utask->return_instances)
1459 		return;
1460 
1461 	if (mm == t->mm && !(flags & CLONE_VFORK))
1462 		return;
1463 
1464 	if (dup_utask(t, utask))
1465 		return uprobe_warn(t, "dup ret instances");
1466 
1467 	/* The task can fork() after dup_xol_work() fails */
1468 	area = mm->uprobes_state.xol_area;
1469 	if (!area)
1470 		return uprobe_warn(t, "dup xol area");
1471 
1472 	if (mm == t->mm)
1473 		return;
1474 
1475 	t->utask->dup_xol_addr = area->vaddr;
1476 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1477 	task_work_add(t, &t->utask->dup_xol_work, true);
1478 }
1479 
1480 /*
1481  * Current area->vaddr notion assume the trampoline address is always
1482  * equal area->vaddr.
1483  *
1484  * Returns -1 in case the xol_area is not allocated.
1485  */
1486 static unsigned long get_trampoline_vaddr(void)
1487 {
1488 	struct xol_area *area;
1489 	unsigned long trampoline_vaddr = -1;
1490 
1491 	area = current->mm->uprobes_state.xol_area;
1492 	smp_read_barrier_depends();
1493 	if (area)
1494 		trampoline_vaddr = area->vaddr;
1495 
1496 	return trampoline_vaddr;
1497 }
1498 
1499 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1500 {
1501 	struct return_instance *ri;
1502 	struct uprobe_task *utask;
1503 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1504 	bool chained = false;
1505 
1506 	if (!get_xol_area())
1507 		return;
1508 
1509 	utask = get_utask();
1510 	if (!utask)
1511 		return;
1512 
1513 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1514 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1515 				" nestedness limit pid/tgid=%d/%d\n",
1516 				current->pid, current->tgid);
1517 		return;
1518 	}
1519 
1520 	ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1521 	if (!ri)
1522 		goto fail;
1523 
1524 	trampoline_vaddr = get_trampoline_vaddr();
1525 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1526 	if (orig_ret_vaddr == -1)
1527 		goto fail;
1528 
1529 	/*
1530 	 * We don't want to keep trampoline address in stack, rather keep the
1531 	 * original return address of first caller thru all the consequent
1532 	 * instances. This also makes breakpoint unwrapping easier.
1533 	 */
1534 	if (orig_ret_vaddr == trampoline_vaddr) {
1535 		if (!utask->return_instances) {
1536 			/*
1537 			 * This situation is not possible. Likely we have an
1538 			 * attack from user-space.
1539 			 */
1540 			pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1541 						current->pid, current->tgid);
1542 			goto fail;
1543 		}
1544 
1545 		chained = true;
1546 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1547 	}
1548 
1549 	atomic_inc(&uprobe->ref);
1550 	ri->uprobe = uprobe;
1551 	ri->func = instruction_pointer(regs);
1552 	ri->orig_ret_vaddr = orig_ret_vaddr;
1553 	ri->chained = chained;
1554 
1555 	utask->depth++;
1556 
1557 	/* add instance to the stack */
1558 	ri->next = utask->return_instances;
1559 	utask->return_instances = ri;
1560 
1561 	return;
1562 
1563  fail:
1564 	kfree(ri);
1565 }
1566 
1567 /* Prepare to single-step probed instruction out of line. */
1568 static int
1569 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1570 {
1571 	struct uprobe_task *utask;
1572 	unsigned long xol_vaddr;
1573 	int err;
1574 
1575 	utask = get_utask();
1576 	if (!utask)
1577 		return -ENOMEM;
1578 
1579 	xol_vaddr = xol_get_insn_slot(uprobe);
1580 	if (!xol_vaddr)
1581 		return -ENOMEM;
1582 
1583 	utask->xol_vaddr = xol_vaddr;
1584 	utask->vaddr = bp_vaddr;
1585 
1586 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1587 	if (unlikely(err)) {
1588 		xol_free_insn_slot(current);
1589 		return err;
1590 	}
1591 
1592 	utask->active_uprobe = uprobe;
1593 	utask->state = UTASK_SSTEP;
1594 	return 0;
1595 }
1596 
1597 /*
1598  * If we are singlestepping, then ensure this thread is not connected to
1599  * non-fatal signals until completion of singlestep.  When xol insn itself
1600  * triggers the signal,  restart the original insn even if the task is
1601  * already SIGKILL'ed (since coredump should report the correct ip).  This
1602  * is even more important if the task has a handler for SIGSEGV/etc, The
1603  * _same_ instruction should be repeated again after return from the signal
1604  * handler, and SSTEP can never finish in this case.
1605  */
1606 bool uprobe_deny_signal(void)
1607 {
1608 	struct task_struct *t = current;
1609 	struct uprobe_task *utask = t->utask;
1610 
1611 	if (likely(!utask || !utask->active_uprobe))
1612 		return false;
1613 
1614 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1615 
1616 	if (signal_pending(t)) {
1617 		spin_lock_irq(&t->sighand->siglock);
1618 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1619 		spin_unlock_irq(&t->sighand->siglock);
1620 
1621 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1622 			utask->state = UTASK_SSTEP_TRAPPED;
1623 			set_tsk_thread_flag(t, TIF_UPROBE);
1624 			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1625 		}
1626 	}
1627 
1628 	return true;
1629 }
1630 
1631 /*
1632  * Avoid singlestepping the original instruction if the original instruction
1633  * is a NOP or can be emulated.
1634  */
1635 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1636 {
1637 	if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1638 		if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1639 			return true;
1640 		clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1641 	}
1642 	return false;
1643 }
1644 
1645 static void mmf_recalc_uprobes(struct mm_struct *mm)
1646 {
1647 	struct vm_area_struct *vma;
1648 
1649 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1650 		if (!valid_vma(vma, false))
1651 			continue;
1652 		/*
1653 		 * This is not strictly accurate, we can race with
1654 		 * uprobe_unregister() and see the already removed
1655 		 * uprobe if delete_uprobe() was not yet called.
1656 		 * Or this uprobe can be filtered out.
1657 		 */
1658 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1659 			return;
1660 	}
1661 
1662 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1663 }
1664 
1665 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1666 {
1667 	struct page *page;
1668 	uprobe_opcode_t opcode;
1669 	int result;
1670 
1671 	pagefault_disable();
1672 	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1673 							sizeof(opcode));
1674 	pagefault_enable();
1675 
1676 	if (likely(result == 0))
1677 		goto out;
1678 
1679 	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1680 	if (result < 0)
1681 		return result;
1682 
1683 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1684 	put_page(page);
1685  out:
1686 	/* This needs to return true for any variant of the trap insn */
1687 	return is_trap_insn(&opcode);
1688 }
1689 
1690 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1691 {
1692 	struct mm_struct *mm = current->mm;
1693 	struct uprobe *uprobe = NULL;
1694 	struct vm_area_struct *vma;
1695 
1696 	down_read(&mm->mmap_sem);
1697 	vma = find_vma(mm, bp_vaddr);
1698 	if (vma && vma->vm_start <= bp_vaddr) {
1699 		if (valid_vma(vma, false)) {
1700 			struct inode *inode = file_inode(vma->vm_file);
1701 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1702 
1703 			uprobe = find_uprobe(inode, offset);
1704 		}
1705 
1706 		if (!uprobe)
1707 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1708 	} else {
1709 		*is_swbp = -EFAULT;
1710 	}
1711 
1712 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1713 		mmf_recalc_uprobes(mm);
1714 	up_read(&mm->mmap_sem);
1715 
1716 	return uprobe;
1717 }
1718 
1719 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1720 {
1721 	struct uprobe_consumer *uc;
1722 	int remove = UPROBE_HANDLER_REMOVE;
1723 	bool need_prep = false; /* prepare return uprobe, when needed */
1724 
1725 	down_read(&uprobe->register_rwsem);
1726 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1727 		int rc = 0;
1728 
1729 		if (uc->handler) {
1730 			rc = uc->handler(uc, regs);
1731 			WARN(rc & ~UPROBE_HANDLER_MASK,
1732 				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1733 		}
1734 
1735 		if (uc->ret_handler)
1736 			need_prep = true;
1737 
1738 		remove &= rc;
1739 	}
1740 
1741 	if (need_prep && !remove)
1742 		prepare_uretprobe(uprobe, regs); /* put bp at return */
1743 
1744 	if (remove && uprobe->consumers) {
1745 		WARN_ON(!uprobe_is_active(uprobe));
1746 		unapply_uprobe(uprobe, current->mm);
1747 	}
1748 	up_read(&uprobe->register_rwsem);
1749 }
1750 
1751 static void
1752 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1753 {
1754 	struct uprobe *uprobe = ri->uprobe;
1755 	struct uprobe_consumer *uc;
1756 
1757 	down_read(&uprobe->register_rwsem);
1758 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1759 		if (uc->ret_handler)
1760 			uc->ret_handler(uc, ri->func, regs);
1761 	}
1762 	up_read(&uprobe->register_rwsem);
1763 }
1764 
1765 static bool handle_trampoline(struct pt_regs *regs)
1766 {
1767 	struct uprobe_task *utask;
1768 	struct return_instance *ri, *tmp;
1769 	bool chained;
1770 
1771 	utask = current->utask;
1772 	if (!utask)
1773 		return false;
1774 
1775 	ri = utask->return_instances;
1776 	if (!ri)
1777 		return false;
1778 
1779 	/*
1780 	 * TODO: we should throw out return_instance's invalidated by
1781 	 * longjmp(), currently we assume that the probed function always
1782 	 * returns.
1783 	 */
1784 	instruction_pointer_set(regs, ri->orig_ret_vaddr);
1785 
1786 	for (;;) {
1787 		handle_uretprobe_chain(ri, regs);
1788 
1789 		chained = ri->chained;
1790 		put_uprobe(ri->uprobe);
1791 
1792 		tmp = ri;
1793 		ri = ri->next;
1794 		kfree(tmp);
1795 		utask->depth--;
1796 
1797 		if (!chained)
1798 			break;
1799 		BUG_ON(!ri);
1800 	}
1801 
1802 	utask->return_instances = ri;
1803 
1804 	return true;
1805 }
1806 
1807 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1808 {
1809 	return false;
1810 }
1811 
1812 /*
1813  * Run handler and ask thread to singlestep.
1814  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1815  */
1816 static void handle_swbp(struct pt_regs *regs)
1817 {
1818 	struct uprobe *uprobe;
1819 	unsigned long bp_vaddr;
1820 	int uninitialized_var(is_swbp);
1821 
1822 	bp_vaddr = uprobe_get_swbp_addr(regs);
1823 	if (bp_vaddr == get_trampoline_vaddr()) {
1824 		if (handle_trampoline(regs))
1825 			return;
1826 
1827 		pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1828 						current->pid, current->tgid);
1829 	}
1830 
1831 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1832 	if (!uprobe) {
1833 		if (is_swbp > 0) {
1834 			/* No matching uprobe; signal SIGTRAP. */
1835 			send_sig(SIGTRAP, current, 0);
1836 		} else {
1837 			/*
1838 			 * Either we raced with uprobe_unregister() or we can't
1839 			 * access this memory. The latter is only possible if
1840 			 * another thread plays with our ->mm. In both cases
1841 			 * we can simply restart. If this vma was unmapped we
1842 			 * can pretend this insn was not executed yet and get
1843 			 * the (correct) SIGSEGV after restart.
1844 			 */
1845 			instruction_pointer_set(regs, bp_vaddr);
1846 		}
1847 		return;
1848 	}
1849 
1850 	/* change it in advance for ->handler() and restart */
1851 	instruction_pointer_set(regs, bp_vaddr);
1852 
1853 	/*
1854 	 * TODO: move copy_insn/etc into _register and remove this hack.
1855 	 * After we hit the bp, _unregister + _register can install the
1856 	 * new and not-yet-analyzed uprobe at the same address, restart.
1857 	 */
1858 	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1859 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1860 		goto out;
1861 
1862 	/* Tracing handlers use ->utask to communicate with fetch methods */
1863 	if (!get_utask())
1864 		goto out;
1865 
1866 	if (arch_uprobe_ignore(&uprobe->arch, regs))
1867 		goto out;
1868 
1869 	handler_chain(uprobe, regs);
1870 
1871 	if (can_skip_sstep(uprobe, regs))
1872 		goto out;
1873 
1874 	if (!pre_ssout(uprobe, regs, bp_vaddr))
1875 		return;
1876 
1877 	/* can_skip_sstep() succeeded, or restart if can't singlestep */
1878 out:
1879 	put_uprobe(uprobe);
1880 }
1881 
1882 /*
1883  * Perform required fix-ups and disable singlestep.
1884  * Allow pending signals to take effect.
1885  */
1886 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1887 {
1888 	struct uprobe *uprobe;
1889 
1890 	uprobe = utask->active_uprobe;
1891 	if (utask->state == UTASK_SSTEP_ACK)
1892 		arch_uprobe_post_xol(&uprobe->arch, regs);
1893 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1894 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1895 	else
1896 		WARN_ON_ONCE(1);
1897 
1898 	put_uprobe(uprobe);
1899 	utask->active_uprobe = NULL;
1900 	utask->state = UTASK_RUNNING;
1901 	xol_free_insn_slot(current);
1902 
1903 	spin_lock_irq(&current->sighand->siglock);
1904 	recalc_sigpending(); /* see uprobe_deny_signal() */
1905 	spin_unlock_irq(&current->sighand->siglock);
1906 }
1907 
1908 /*
1909  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1910  * allows the thread to return from interrupt. After that handle_swbp()
1911  * sets utask->active_uprobe.
1912  *
1913  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1914  * and allows the thread to return from interrupt.
1915  *
1916  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1917  * uprobe_notify_resume().
1918  */
1919 void uprobe_notify_resume(struct pt_regs *regs)
1920 {
1921 	struct uprobe_task *utask;
1922 
1923 	clear_thread_flag(TIF_UPROBE);
1924 
1925 	utask = current->utask;
1926 	if (utask && utask->active_uprobe)
1927 		handle_singlestep(utask, regs);
1928 	else
1929 		handle_swbp(regs);
1930 }
1931 
1932 /*
1933  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1934  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1935  */
1936 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1937 {
1938 	if (!current->mm)
1939 		return 0;
1940 
1941 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1942 	    (!current->utask || !current->utask->return_instances))
1943 		return 0;
1944 
1945 	set_thread_flag(TIF_UPROBE);
1946 	return 1;
1947 }
1948 
1949 /*
1950  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1951  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1952  */
1953 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1954 {
1955 	struct uprobe_task *utask = current->utask;
1956 
1957 	if (!current->mm || !utask || !utask->active_uprobe)
1958 		/* task is currently not uprobed */
1959 		return 0;
1960 
1961 	utask->state = UTASK_SSTEP_ACK;
1962 	set_thread_flag(TIF_UPROBE);
1963 	return 1;
1964 }
1965 
1966 static struct notifier_block uprobe_exception_nb = {
1967 	.notifier_call		= arch_uprobe_exception_notify,
1968 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1969 };
1970 
1971 static int __init init_uprobes(void)
1972 {
1973 	int i;
1974 
1975 	for (i = 0; i < UPROBES_HASH_SZ; i++)
1976 		mutex_init(&uprobes_mmap_mutex[i]);
1977 
1978 	if (percpu_init_rwsem(&dup_mmap_sem))
1979 		return -ENOMEM;
1980 
1981 	return register_die_notifier(&uprobe_exception_nb);
1982 }
1983 __initcall(init_uprobes);
1984