xref: /openbmc/linux/kernel/events/uprobes.c (revision a90bb65a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* try_to_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include "../../mm/internal.h"	/* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30 
31 #include <linux/uprobes.h>
32 
33 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
35 
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
42 
43 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
44 
45 #define UPROBES_HASH_SZ	13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49 
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51 
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN	0
54 
55 struct uprobe {
56 	struct rb_node		rb_node;	/* node in the rb tree */
57 	refcount_t		ref;
58 	struct rw_semaphore	register_rwsem;
59 	struct rw_semaphore	consumer_rwsem;
60 	struct list_head	pending_list;
61 	struct uprobe_consumer	*consumers;
62 	struct inode		*inode;		/* Also hold a ref to inode */
63 	loff_t			offset;
64 	loff_t			ref_ctr_offset;
65 	unsigned long		flags;
66 
67 	/*
68 	 * The generic code assumes that it has two members of unknown type
69 	 * owned by the arch-specific code:
70 	 *
71 	 * 	insn -	copy_insn() saves the original instruction here for
72 	 *		arch_uprobe_analyze_insn().
73 	 *
74 	 *	ixol -	potentially modified instruction to execute out of
75 	 *		line, copied to xol_area by xol_get_insn_slot().
76 	 */
77 	struct arch_uprobe	arch;
78 };
79 
80 struct delayed_uprobe {
81 	struct list_head list;
82 	struct uprobe *uprobe;
83 	struct mm_struct *mm;
84 };
85 
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88 
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99 	wait_queue_head_t 		wq;		/* if all slots are busy */
100 	atomic_t 			slot_count;	/* number of in-use slots */
101 	unsigned long 			*bitmap;	/* 0 = free slot */
102 
103 	struct vm_special_mapping	xol_mapping;
104 	struct page 			*pages[2];
105 	/*
106 	 * We keep the vma's vm_start rather than a pointer to the vma
107 	 * itself.  The probed process or a naughty kernel module could make
108 	 * the vma go away, and we must handle that reasonably gracefully.
109 	 */
110 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
111 };
112 
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *	- is_register: indicates if we are in register context.
118  *	- Return 1 if the specified virtual address is in an
119  *	  executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124 
125 	if (is_register)
126 		flags |= VM_WRITE;
127 
128 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130 
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135 
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140 
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 				struct page *old_page, struct page *new_page)
156 {
157 	struct mm_struct *mm = vma->vm_mm;
158 	DEFINE_FOLIO_VMA_WALK(pvmw, page_folio(old_page), vma, addr, 0);
159 	int err;
160 	struct mmu_notifier_range range;
161 
162 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
163 				addr + PAGE_SIZE);
164 
165 	if (new_page) {
166 		err = mem_cgroup_charge(page_folio(new_page), vma->vm_mm,
167 					GFP_KERNEL);
168 		if (err)
169 			return err;
170 	}
171 
172 	/* For try_to_free_swap() below */
173 	lock_page(old_page);
174 
175 	mmu_notifier_invalidate_range_start(&range);
176 	err = -EAGAIN;
177 	if (!page_vma_mapped_walk(&pvmw))
178 		goto unlock;
179 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
180 
181 	if (new_page) {
182 		get_page(new_page);
183 		page_add_new_anon_rmap(new_page, vma, addr, false);
184 		lru_cache_add_inactive_or_unevictable(new_page, vma);
185 	} else
186 		/* no new page, just dec_mm_counter for old_page */
187 		dec_mm_counter(mm, MM_ANONPAGES);
188 
189 	if (!PageAnon(old_page)) {
190 		dec_mm_counter(mm, mm_counter_file(old_page));
191 		inc_mm_counter(mm, MM_ANONPAGES);
192 	}
193 
194 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
195 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
196 	if (new_page)
197 		set_pte_at_notify(mm, addr, pvmw.pte,
198 				  mk_pte(new_page, vma->vm_page_prot));
199 
200 	page_remove_rmap(old_page, vma, false);
201 	if (!page_mapped(old_page))
202 		try_to_free_swap(old_page);
203 	page_vma_mapped_walk_done(&pvmw);
204 	put_page(old_page);
205 
206 	err = 0;
207  unlock:
208 	mmu_notifier_invalidate_range_end(&range);
209 	unlock_page(old_page);
210 	return err;
211 }
212 
213 /**
214  * is_swbp_insn - check if instruction is breakpoint instruction.
215  * @insn: instruction to be checked.
216  * Default implementation of is_swbp_insn
217  * Returns true if @insn is a breakpoint instruction.
218  */
219 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
220 {
221 	return *insn == UPROBE_SWBP_INSN;
222 }
223 
224 /**
225  * is_trap_insn - check if instruction is breakpoint instruction.
226  * @insn: instruction to be checked.
227  * Default implementation of is_trap_insn
228  * Returns true if @insn is a breakpoint instruction.
229  *
230  * This function is needed for the case where an architecture has multiple
231  * trap instructions (like powerpc).
232  */
233 bool __weak is_trap_insn(uprobe_opcode_t *insn)
234 {
235 	return is_swbp_insn(insn);
236 }
237 
238 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
239 {
240 	void *kaddr = kmap_atomic(page);
241 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
242 	kunmap_atomic(kaddr);
243 }
244 
245 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
246 {
247 	void *kaddr = kmap_atomic(page);
248 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
249 	kunmap_atomic(kaddr);
250 }
251 
252 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
253 {
254 	uprobe_opcode_t old_opcode;
255 	bool is_swbp;
256 
257 	/*
258 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
259 	 * We do not check if it is any other 'trap variant' which could
260 	 * be conditional trap instruction such as the one powerpc supports.
261 	 *
262 	 * The logic is that we do not care if the underlying instruction
263 	 * is a trap variant; uprobes always wins over any other (gdb)
264 	 * breakpoint.
265 	 */
266 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
267 	is_swbp = is_swbp_insn(&old_opcode);
268 
269 	if (is_swbp_insn(new_opcode)) {
270 		if (is_swbp)		/* register: already installed? */
271 			return 0;
272 	} else {
273 		if (!is_swbp)		/* unregister: was it changed by us? */
274 			return 0;
275 	}
276 
277 	return 1;
278 }
279 
280 static struct delayed_uprobe *
281 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
282 {
283 	struct delayed_uprobe *du;
284 
285 	list_for_each_entry(du, &delayed_uprobe_list, list)
286 		if (du->uprobe == uprobe && du->mm == mm)
287 			return du;
288 	return NULL;
289 }
290 
291 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
292 {
293 	struct delayed_uprobe *du;
294 
295 	if (delayed_uprobe_check(uprobe, mm))
296 		return 0;
297 
298 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
299 	if (!du)
300 		return -ENOMEM;
301 
302 	du->uprobe = uprobe;
303 	du->mm = mm;
304 	list_add(&du->list, &delayed_uprobe_list);
305 	return 0;
306 }
307 
308 static void delayed_uprobe_delete(struct delayed_uprobe *du)
309 {
310 	if (WARN_ON(!du))
311 		return;
312 	list_del(&du->list);
313 	kfree(du);
314 }
315 
316 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
317 {
318 	struct list_head *pos, *q;
319 	struct delayed_uprobe *du;
320 
321 	if (!uprobe && !mm)
322 		return;
323 
324 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
325 		du = list_entry(pos, struct delayed_uprobe, list);
326 
327 		if (uprobe && du->uprobe != uprobe)
328 			continue;
329 		if (mm && du->mm != mm)
330 			continue;
331 
332 		delayed_uprobe_delete(du);
333 	}
334 }
335 
336 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
337 			      struct vm_area_struct *vma)
338 {
339 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
340 
341 	return uprobe->ref_ctr_offset &&
342 		vma->vm_file &&
343 		file_inode(vma->vm_file) == uprobe->inode &&
344 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
345 		vma->vm_start <= vaddr &&
346 		vma->vm_end > vaddr;
347 }
348 
349 static struct vm_area_struct *
350 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
351 {
352 	struct vm_area_struct *tmp;
353 
354 	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
355 		if (valid_ref_ctr_vma(uprobe, tmp))
356 			return tmp;
357 
358 	return NULL;
359 }
360 
361 static int
362 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
363 {
364 	void *kaddr;
365 	struct page *page;
366 	struct vm_area_struct *vma;
367 	int ret;
368 	short *ptr;
369 
370 	if (!vaddr || !d)
371 		return -EINVAL;
372 
373 	ret = get_user_pages_remote(mm, vaddr, 1,
374 			FOLL_WRITE, &page, &vma, NULL);
375 	if (unlikely(ret <= 0)) {
376 		/*
377 		 * We are asking for 1 page. If get_user_pages_remote() fails,
378 		 * it may return 0, in that case we have to return error.
379 		 */
380 		return ret == 0 ? -EBUSY : ret;
381 	}
382 
383 	kaddr = kmap_atomic(page);
384 	ptr = kaddr + (vaddr & ~PAGE_MASK);
385 
386 	if (unlikely(*ptr + d < 0)) {
387 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
388 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
389 		ret = -EINVAL;
390 		goto out;
391 	}
392 
393 	*ptr += d;
394 	ret = 0;
395 out:
396 	kunmap_atomic(kaddr);
397 	put_page(page);
398 	return ret;
399 }
400 
401 static void update_ref_ctr_warn(struct uprobe *uprobe,
402 				struct mm_struct *mm, short d)
403 {
404 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
405 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
406 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
407 		(unsigned long long) uprobe->offset,
408 		(unsigned long long) uprobe->ref_ctr_offset, mm);
409 }
410 
411 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
412 			  short d)
413 {
414 	struct vm_area_struct *rc_vma;
415 	unsigned long rc_vaddr;
416 	int ret = 0;
417 
418 	rc_vma = find_ref_ctr_vma(uprobe, mm);
419 
420 	if (rc_vma) {
421 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
422 		ret = __update_ref_ctr(mm, rc_vaddr, d);
423 		if (ret)
424 			update_ref_ctr_warn(uprobe, mm, d);
425 
426 		if (d > 0)
427 			return ret;
428 	}
429 
430 	mutex_lock(&delayed_uprobe_lock);
431 	if (d > 0)
432 		ret = delayed_uprobe_add(uprobe, mm);
433 	else
434 		delayed_uprobe_remove(uprobe, mm);
435 	mutex_unlock(&delayed_uprobe_lock);
436 
437 	return ret;
438 }
439 
440 /*
441  * NOTE:
442  * Expect the breakpoint instruction to be the smallest size instruction for
443  * the architecture. If an arch has variable length instruction and the
444  * breakpoint instruction is not of the smallest length instruction
445  * supported by that architecture then we need to modify is_trap_at_addr and
446  * uprobe_write_opcode accordingly. This would never be a problem for archs
447  * that have fixed length instructions.
448  *
449  * uprobe_write_opcode - write the opcode at a given virtual address.
450  * @auprobe: arch specific probepoint information.
451  * @mm: the probed process address space.
452  * @vaddr: the virtual address to store the opcode.
453  * @opcode: opcode to be written at @vaddr.
454  *
455  * Called with mm->mmap_lock held for write.
456  * Return 0 (success) or a negative errno.
457  */
458 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
459 			unsigned long vaddr, uprobe_opcode_t opcode)
460 {
461 	struct uprobe *uprobe;
462 	struct page *old_page, *new_page;
463 	struct vm_area_struct *vma;
464 	int ret, is_register, ref_ctr_updated = 0;
465 	bool orig_page_huge = false;
466 	unsigned int gup_flags = FOLL_FORCE;
467 
468 	is_register = is_swbp_insn(&opcode);
469 	uprobe = container_of(auprobe, struct uprobe, arch);
470 
471 retry:
472 	if (is_register)
473 		gup_flags |= FOLL_SPLIT_PMD;
474 	/* Read the page with vaddr into memory */
475 	ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
476 				    &old_page, &vma, NULL);
477 	if (ret <= 0)
478 		return ret;
479 
480 	ret = verify_opcode(old_page, vaddr, &opcode);
481 	if (ret <= 0)
482 		goto put_old;
483 
484 	if (WARN(!is_register && PageCompound(old_page),
485 		 "uprobe unregister should never work on compound page\n")) {
486 		ret = -EINVAL;
487 		goto put_old;
488 	}
489 
490 	/* We are going to replace instruction, update ref_ctr. */
491 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
492 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
493 		if (ret)
494 			goto put_old;
495 
496 		ref_ctr_updated = 1;
497 	}
498 
499 	ret = 0;
500 	if (!is_register && !PageAnon(old_page))
501 		goto put_old;
502 
503 	ret = anon_vma_prepare(vma);
504 	if (ret)
505 		goto put_old;
506 
507 	ret = -ENOMEM;
508 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
509 	if (!new_page)
510 		goto put_old;
511 
512 	__SetPageUptodate(new_page);
513 	copy_highpage(new_page, old_page);
514 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
515 
516 	if (!is_register) {
517 		struct page *orig_page;
518 		pgoff_t index;
519 
520 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
521 
522 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
523 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
524 					  index);
525 
526 		if (orig_page) {
527 			if (PageUptodate(orig_page) &&
528 			    pages_identical(new_page, orig_page)) {
529 				/* let go new_page */
530 				put_page(new_page);
531 				new_page = NULL;
532 
533 				if (PageCompound(orig_page))
534 					orig_page_huge = true;
535 			}
536 			put_page(orig_page);
537 		}
538 	}
539 
540 	ret = __replace_page(vma, vaddr, old_page, new_page);
541 	if (new_page)
542 		put_page(new_page);
543 put_old:
544 	put_page(old_page);
545 
546 	if (unlikely(ret == -EAGAIN))
547 		goto retry;
548 
549 	/* Revert back reference counter if instruction update failed. */
550 	if (ret && is_register && ref_ctr_updated)
551 		update_ref_ctr(uprobe, mm, -1);
552 
553 	/* try collapse pmd for compound page */
554 	if (!ret && orig_page_huge)
555 		collapse_pte_mapped_thp(mm, vaddr);
556 
557 	return ret;
558 }
559 
560 /**
561  * set_swbp - store breakpoint at a given address.
562  * @auprobe: arch specific probepoint information.
563  * @mm: the probed process address space.
564  * @vaddr: the virtual address to insert the opcode.
565  *
566  * For mm @mm, store the breakpoint instruction at @vaddr.
567  * Return 0 (success) or a negative errno.
568  */
569 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
570 {
571 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
572 }
573 
574 /**
575  * set_orig_insn - Restore the original instruction.
576  * @mm: the probed process address space.
577  * @auprobe: arch specific probepoint information.
578  * @vaddr: the virtual address to insert the opcode.
579  *
580  * For mm @mm, restore the original opcode (opcode) at @vaddr.
581  * Return 0 (success) or a negative errno.
582  */
583 int __weak
584 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
585 {
586 	return uprobe_write_opcode(auprobe, mm, vaddr,
587 			*(uprobe_opcode_t *)&auprobe->insn);
588 }
589 
590 static struct uprobe *get_uprobe(struct uprobe *uprobe)
591 {
592 	refcount_inc(&uprobe->ref);
593 	return uprobe;
594 }
595 
596 static void put_uprobe(struct uprobe *uprobe)
597 {
598 	if (refcount_dec_and_test(&uprobe->ref)) {
599 		/*
600 		 * If application munmap(exec_vma) before uprobe_unregister()
601 		 * gets called, we don't get a chance to remove uprobe from
602 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
603 		 */
604 		mutex_lock(&delayed_uprobe_lock);
605 		delayed_uprobe_remove(uprobe, NULL);
606 		mutex_unlock(&delayed_uprobe_lock);
607 		kfree(uprobe);
608 	}
609 }
610 
611 static __always_inline
612 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
613 	       const struct uprobe *r)
614 {
615 	if (l_inode < r->inode)
616 		return -1;
617 
618 	if (l_inode > r->inode)
619 		return 1;
620 
621 	if (l_offset < r->offset)
622 		return -1;
623 
624 	if (l_offset > r->offset)
625 		return 1;
626 
627 	return 0;
628 }
629 
630 #define __node_2_uprobe(node) \
631 	rb_entry((node), struct uprobe, rb_node)
632 
633 struct __uprobe_key {
634 	struct inode *inode;
635 	loff_t offset;
636 };
637 
638 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
639 {
640 	const struct __uprobe_key *a = key;
641 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
642 }
643 
644 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
645 {
646 	struct uprobe *u = __node_2_uprobe(a);
647 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
648 }
649 
650 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
651 {
652 	struct __uprobe_key key = {
653 		.inode = inode,
654 		.offset = offset,
655 	};
656 	struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
657 
658 	if (node)
659 		return get_uprobe(__node_2_uprobe(node));
660 
661 	return NULL;
662 }
663 
664 /*
665  * Find a uprobe corresponding to a given inode:offset
666  * Acquires uprobes_treelock
667  */
668 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
669 {
670 	struct uprobe *uprobe;
671 
672 	spin_lock(&uprobes_treelock);
673 	uprobe = __find_uprobe(inode, offset);
674 	spin_unlock(&uprobes_treelock);
675 
676 	return uprobe;
677 }
678 
679 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
680 {
681 	struct rb_node *node;
682 
683 	node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
684 	if (node)
685 		return get_uprobe(__node_2_uprobe(node));
686 
687 	/* get access + creation ref */
688 	refcount_set(&uprobe->ref, 2);
689 	return NULL;
690 }
691 
692 /*
693  * Acquire uprobes_treelock.
694  * Matching uprobe already exists in rbtree;
695  *	increment (access refcount) and return the matching uprobe.
696  *
697  * No matching uprobe; insert the uprobe in rb_tree;
698  *	get a double refcount (access + creation) and return NULL.
699  */
700 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
701 {
702 	struct uprobe *u;
703 
704 	spin_lock(&uprobes_treelock);
705 	u = __insert_uprobe(uprobe);
706 	spin_unlock(&uprobes_treelock);
707 
708 	return u;
709 }
710 
711 static void
712 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
713 {
714 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
715 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
716 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
717 		(unsigned long long) cur_uprobe->ref_ctr_offset,
718 		(unsigned long long) uprobe->ref_ctr_offset);
719 }
720 
721 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
722 				   loff_t ref_ctr_offset)
723 {
724 	struct uprobe *uprobe, *cur_uprobe;
725 
726 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
727 	if (!uprobe)
728 		return NULL;
729 
730 	uprobe->inode = inode;
731 	uprobe->offset = offset;
732 	uprobe->ref_ctr_offset = ref_ctr_offset;
733 	init_rwsem(&uprobe->register_rwsem);
734 	init_rwsem(&uprobe->consumer_rwsem);
735 
736 	/* add to uprobes_tree, sorted on inode:offset */
737 	cur_uprobe = insert_uprobe(uprobe);
738 	/* a uprobe exists for this inode:offset combination */
739 	if (cur_uprobe) {
740 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
741 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
742 			put_uprobe(cur_uprobe);
743 			kfree(uprobe);
744 			return ERR_PTR(-EINVAL);
745 		}
746 		kfree(uprobe);
747 		uprobe = cur_uprobe;
748 	}
749 
750 	return uprobe;
751 }
752 
753 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
754 {
755 	down_write(&uprobe->consumer_rwsem);
756 	uc->next = uprobe->consumers;
757 	uprobe->consumers = uc;
758 	up_write(&uprobe->consumer_rwsem);
759 }
760 
761 /*
762  * For uprobe @uprobe, delete the consumer @uc.
763  * Return true if the @uc is deleted successfully
764  * or return false.
765  */
766 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
767 {
768 	struct uprobe_consumer **con;
769 	bool ret = false;
770 
771 	down_write(&uprobe->consumer_rwsem);
772 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
773 		if (*con == uc) {
774 			*con = uc->next;
775 			ret = true;
776 			break;
777 		}
778 	}
779 	up_write(&uprobe->consumer_rwsem);
780 
781 	return ret;
782 }
783 
784 static int __copy_insn(struct address_space *mapping, struct file *filp,
785 			void *insn, int nbytes, loff_t offset)
786 {
787 	struct page *page;
788 	/*
789 	 * Ensure that the page that has the original instruction is populated
790 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
791 	 * see uprobe_register().
792 	 */
793 	if (mapping->a_ops->readpage)
794 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
795 	else
796 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
797 	if (IS_ERR(page))
798 		return PTR_ERR(page);
799 
800 	copy_from_page(page, offset, insn, nbytes);
801 	put_page(page);
802 
803 	return 0;
804 }
805 
806 static int copy_insn(struct uprobe *uprobe, struct file *filp)
807 {
808 	struct address_space *mapping = uprobe->inode->i_mapping;
809 	loff_t offs = uprobe->offset;
810 	void *insn = &uprobe->arch.insn;
811 	int size = sizeof(uprobe->arch.insn);
812 	int len, err = -EIO;
813 
814 	/* Copy only available bytes, -EIO if nothing was read */
815 	do {
816 		if (offs >= i_size_read(uprobe->inode))
817 			break;
818 
819 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
820 		err = __copy_insn(mapping, filp, insn, len, offs);
821 		if (err)
822 			break;
823 
824 		insn += len;
825 		offs += len;
826 		size -= len;
827 	} while (size);
828 
829 	return err;
830 }
831 
832 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
833 				struct mm_struct *mm, unsigned long vaddr)
834 {
835 	int ret = 0;
836 
837 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
838 		return ret;
839 
840 	/* TODO: move this into _register, until then we abuse this sem. */
841 	down_write(&uprobe->consumer_rwsem);
842 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
843 		goto out;
844 
845 	ret = copy_insn(uprobe, file);
846 	if (ret)
847 		goto out;
848 
849 	ret = -ENOTSUPP;
850 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
851 		goto out;
852 
853 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
854 	if (ret)
855 		goto out;
856 
857 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
858 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
859 
860  out:
861 	up_write(&uprobe->consumer_rwsem);
862 
863 	return ret;
864 }
865 
866 static inline bool consumer_filter(struct uprobe_consumer *uc,
867 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
868 {
869 	return !uc->filter || uc->filter(uc, ctx, mm);
870 }
871 
872 static bool filter_chain(struct uprobe *uprobe,
873 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
874 {
875 	struct uprobe_consumer *uc;
876 	bool ret = false;
877 
878 	down_read(&uprobe->consumer_rwsem);
879 	for (uc = uprobe->consumers; uc; uc = uc->next) {
880 		ret = consumer_filter(uc, ctx, mm);
881 		if (ret)
882 			break;
883 	}
884 	up_read(&uprobe->consumer_rwsem);
885 
886 	return ret;
887 }
888 
889 static int
890 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
891 			struct vm_area_struct *vma, unsigned long vaddr)
892 {
893 	bool first_uprobe;
894 	int ret;
895 
896 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
897 	if (ret)
898 		return ret;
899 
900 	/*
901 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
902 	 * the task can hit this breakpoint right after __replace_page().
903 	 */
904 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
905 	if (first_uprobe)
906 		set_bit(MMF_HAS_UPROBES, &mm->flags);
907 
908 	ret = set_swbp(&uprobe->arch, mm, vaddr);
909 	if (!ret)
910 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
911 	else if (first_uprobe)
912 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
913 
914 	return ret;
915 }
916 
917 static int
918 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
919 {
920 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
921 	return set_orig_insn(&uprobe->arch, mm, vaddr);
922 }
923 
924 static inline bool uprobe_is_active(struct uprobe *uprobe)
925 {
926 	return !RB_EMPTY_NODE(&uprobe->rb_node);
927 }
928 /*
929  * There could be threads that have already hit the breakpoint. They
930  * will recheck the current insn and restart if find_uprobe() fails.
931  * See find_active_uprobe().
932  */
933 static void delete_uprobe(struct uprobe *uprobe)
934 {
935 	if (WARN_ON(!uprobe_is_active(uprobe)))
936 		return;
937 
938 	spin_lock(&uprobes_treelock);
939 	rb_erase(&uprobe->rb_node, &uprobes_tree);
940 	spin_unlock(&uprobes_treelock);
941 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
942 	put_uprobe(uprobe);
943 }
944 
945 struct map_info {
946 	struct map_info *next;
947 	struct mm_struct *mm;
948 	unsigned long vaddr;
949 };
950 
951 static inline struct map_info *free_map_info(struct map_info *info)
952 {
953 	struct map_info *next = info->next;
954 	kfree(info);
955 	return next;
956 }
957 
958 static struct map_info *
959 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
960 {
961 	unsigned long pgoff = offset >> PAGE_SHIFT;
962 	struct vm_area_struct *vma;
963 	struct map_info *curr = NULL;
964 	struct map_info *prev = NULL;
965 	struct map_info *info;
966 	int more = 0;
967 
968  again:
969 	i_mmap_lock_read(mapping);
970 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
971 		if (!valid_vma(vma, is_register))
972 			continue;
973 
974 		if (!prev && !more) {
975 			/*
976 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
977 			 * reclaim. This is optimistic, no harm done if it fails.
978 			 */
979 			prev = kmalloc(sizeof(struct map_info),
980 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
981 			if (prev)
982 				prev->next = NULL;
983 		}
984 		if (!prev) {
985 			more++;
986 			continue;
987 		}
988 
989 		if (!mmget_not_zero(vma->vm_mm))
990 			continue;
991 
992 		info = prev;
993 		prev = prev->next;
994 		info->next = curr;
995 		curr = info;
996 
997 		info->mm = vma->vm_mm;
998 		info->vaddr = offset_to_vaddr(vma, offset);
999 	}
1000 	i_mmap_unlock_read(mapping);
1001 
1002 	if (!more)
1003 		goto out;
1004 
1005 	prev = curr;
1006 	while (curr) {
1007 		mmput(curr->mm);
1008 		curr = curr->next;
1009 	}
1010 
1011 	do {
1012 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1013 		if (!info) {
1014 			curr = ERR_PTR(-ENOMEM);
1015 			goto out;
1016 		}
1017 		info->next = prev;
1018 		prev = info;
1019 	} while (--more);
1020 
1021 	goto again;
1022  out:
1023 	while (prev)
1024 		prev = free_map_info(prev);
1025 	return curr;
1026 }
1027 
1028 static int
1029 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1030 {
1031 	bool is_register = !!new;
1032 	struct map_info *info;
1033 	int err = 0;
1034 
1035 	percpu_down_write(&dup_mmap_sem);
1036 	info = build_map_info(uprobe->inode->i_mapping,
1037 					uprobe->offset, is_register);
1038 	if (IS_ERR(info)) {
1039 		err = PTR_ERR(info);
1040 		goto out;
1041 	}
1042 
1043 	while (info) {
1044 		struct mm_struct *mm = info->mm;
1045 		struct vm_area_struct *vma;
1046 
1047 		if (err && is_register)
1048 			goto free;
1049 
1050 		mmap_write_lock(mm);
1051 		vma = find_vma(mm, info->vaddr);
1052 		if (!vma || !valid_vma(vma, is_register) ||
1053 		    file_inode(vma->vm_file) != uprobe->inode)
1054 			goto unlock;
1055 
1056 		if (vma->vm_start > info->vaddr ||
1057 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1058 			goto unlock;
1059 
1060 		if (is_register) {
1061 			/* consult only the "caller", new consumer. */
1062 			if (consumer_filter(new,
1063 					UPROBE_FILTER_REGISTER, mm))
1064 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1065 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1066 			if (!filter_chain(uprobe,
1067 					UPROBE_FILTER_UNREGISTER, mm))
1068 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1069 		}
1070 
1071  unlock:
1072 		mmap_write_unlock(mm);
1073  free:
1074 		mmput(mm);
1075 		info = free_map_info(info);
1076 	}
1077  out:
1078 	percpu_up_write(&dup_mmap_sem);
1079 	return err;
1080 }
1081 
1082 static void
1083 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1084 {
1085 	int err;
1086 
1087 	if (WARN_ON(!consumer_del(uprobe, uc)))
1088 		return;
1089 
1090 	err = register_for_each_vma(uprobe, NULL);
1091 	/* TODO : cant unregister? schedule a worker thread */
1092 	if (!uprobe->consumers && !err)
1093 		delete_uprobe(uprobe);
1094 }
1095 
1096 /*
1097  * uprobe_unregister - unregister an already registered probe.
1098  * @inode: the file in which the probe has to be removed.
1099  * @offset: offset from the start of the file.
1100  * @uc: identify which probe if multiple probes are colocated.
1101  */
1102 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1103 {
1104 	struct uprobe *uprobe;
1105 
1106 	uprobe = find_uprobe(inode, offset);
1107 	if (WARN_ON(!uprobe))
1108 		return;
1109 
1110 	down_write(&uprobe->register_rwsem);
1111 	__uprobe_unregister(uprobe, uc);
1112 	up_write(&uprobe->register_rwsem);
1113 	put_uprobe(uprobe);
1114 }
1115 EXPORT_SYMBOL_GPL(uprobe_unregister);
1116 
1117 /*
1118  * __uprobe_register - register a probe
1119  * @inode: the file in which the probe has to be placed.
1120  * @offset: offset from the start of the file.
1121  * @uc: information on howto handle the probe..
1122  *
1123  * Apart from the access refcount, __uprobe_register() takes a creation
1124  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1125  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1126  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1127  * @uprobe even before the register operation is complete. Creation
1128  * refcount is released when the last @uc for the @uprobe
1129  * unregisters. Caller of __uprobe_register() is required to keep @inode
1130  * (and the containing mount) referenced.
1131  *
1132  * Return errno if it cannot successully install probes
1133  * else return 0 (success)
1134  */
1135 static int __uprobe_register(struct inode *inode, loff_t offset,
1136 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1137 {
1138 	struct uprobe *uprobe;
1139 	int ret;
1140 
1141 	/* Uprobe must have at least one set consumer */
1142 	if (!uc->handler && !uc->ret_handler)
1143 		return -EINVAL;
1144 
1145 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1146 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1147 		return -EIO;
1148 	/* Racy, just to catch the obvious mistakes */
1149 	if (offset > i_size_read(inode))
1150 		return -EINVAL;
1151 
1152 	/*
1153 	 * This ensures that copy_from_page(), copy_to_page() and
1154 	 * __update_ref_ctr() can't cross page boundary.
1155 	 */
1156 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1157 		return -EINVAL;
1158 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1159 		return -EINVAL;
1160 
1161  retry:
1162 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1163 	if (!uprobe)
1164 		return -ENOMEM;
1165 	if (IS_ERR(uprobe))
1166 		return PTR_ERR(uprobe);
1167 
1168 	/*
1169 	 * We can race with uprobe_unregister()->delete_uprobe().
1170 	 * Check uprobe_is_active() and retry if it is false.
1171 	 */
1172 	down_write(&uprobe->register_rwsem);
1173 	ret = -EAGAIN;
1174 	if (likely(uprobe_is_active(uprobe))) {
1175 		consumer_add(uprobe, uc);
1176 		ret = register_for_each_vma(uprobe, uc);
1177 		if (ret)
1178 			__uprobe_unregister(uprobe, uc);
1179 	}
1180 	up_write(&uprobe->register_rwsem);
1181 	put_uprobe(uprobe);
1182 
1183 	if (unlikely(ret == -EAGAIN))
1184 		goto retry;
1185 	return ret;
1186 }
1187 
1188 int uprobe_register(struct inode *inode, loff_t offset,
1189 		    struct uprobe_consumer *uc)
1190 {
1191 	return __uprobe_register(inode, offset, 0, uc);
1192 }
1193 EXPORT_SYMBOL_GPL(uprobe_register);
1194 
1195 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1196 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1197 {
1198 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1199 }
1200 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1201 
1202 /*
1203  * uprobe_apply - unregister an already registered probe.
1204  * @inode: the file in which the probe has to be removed.
1205  * @offset: offset from the start of the file.
1206  * @uc: consumer which wants to add more or remove some breakpoints
1207  * @add: add or remove the breakpoints
1208  */
1209 int uprobe_apply(struct inode *inode, loff_t offset,
1210 			struct uprobe_consumer *uc, bool add)
1211 {
1212 	struct uprobe *uprobe;
1213 	struct uprobe_consumer *con;
1214 	int ret = -ENOENT;
1215 
1216 	uprobe = find_uprobe(inode, offset);
1217 	if (WARN_ON(!uprobe))
1218 		return ret;
1219 
1220 	down_write(&uprobe->register_rwsem);
1221 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1222 		;
1223 	if (con)
1224 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1225 	up_write(&uprobe->register_rwsem);
1226 	put_uprobe(uprobe);
1227 
1228 	return ret;
1229 }
1230 
1231 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1232 {
1233 	struct vm_area_struct *vma;
1234 	int err = 0;
1235 
1236 	mmap_read_lock(mm);
1237 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1238 		unsigned long vaddr;
1239 		loff_t offset;
1240 
1241 		if (!valid_vma(vma, false) ||
1242 		    file_inode(vma->vm_file) != uprobe->inode)
1243 			continue;
1244 
1245 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1246 		if (uprobe->offset <  offset ||
1247 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1248 			continue;
1249 
1250 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1251 		err |= remove_breakpoint(uprobe, mm, vaddr);
1252 	}
1253 	mmap_read_unlock(mm);
1254 
1255 	return err;
1256 }
1257 
1258 static struct rb_node *
1259 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1260 {
1261 	struct rb_node *n = uprobes_tree.rb_node;
1262 
1263 	while (n) {
1264 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1265 
1266 		if (inode < u->inode) {
1267 			n = n->rb_left;
1268 		} else if (inode > u->inode) {
1269 			n = n->rb_right;
1270 		} else {
1271 			if (max < u->offset)
1272 				n = n->rb_left;
1273 			else if (min > u->offset)
1274 				n = n->rb_right;
1275 			else
1276 				break;
1277 		}
1278 	}
1279 
1280 	return n;
1281 }
1282 
1283 /*
1284  * For a given range in vma, build a list of probes that need to be inserted.
1285  */
1286 static void build_probe_list(struct inode *inode,
1287 				struct vm_area_struct *vma,
1288 				unsigned long start, unsigned long end,
1289 				struct list_head *head)
1290 {
1291 	loff_t min, max;
1292 	struct rb_node *n, *t;
1293 	struct uprobe *u;
1294 
1295 	INIT_LIST_HEAD(head);
1296 	min = vaddr_to_offset(vma, start);
1297 	max = min + (end - start) - 1;
1298 
1299 	spin_lock(&uprobes_treelock);
1300 	n = find_node_in_range(inode, min, max);
1301 	if (n) {
1302 		for (t = n; t; t = rb_prev(t)) {
1303 			u = rb_entry(t, struct uprobe, rb_node);
1304 			if (u->inode != inode || u->offset < min)
1305 				break;
1306 			list_add(&u->pending_list, head);
1307 			get_uprobe(u);
1308 		}
1309 		for (t = n; (t = rb_next(t)); ) {
1310 			u = rb_entry(t, struct uprobe, rb_node);
1311 			if (u->inode != inode || u->offset > max)
1312 				break;
1313 			list_add(&u->pending_list, head);
1314 			get_uprobe(u);
1315 		}
1316 	}
1317 	spin_unlock(&uprobes_treelock);
1318 }
1319 
1320 /* @vma contains reference counter, not the probed instruction. */
1321 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1322 {
1323 	struct list_head *pos, *q;
1324 	struct delayed_uprobe *du;
1325 	unsigned long vaddr;
1326 	int ret = 0, err = 0;
1327 
1328 	mutex_lock(&delayed_uprobe_lock);
1329 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1330 		du = list_entry(pos, struct delayed_uprobe, list);
1331 
1332 		if (du->mm != vma->vm_mm ||
1333 		    !valid_ref_ctr_vma(du->uprobe, vma))
1334 			continue;
1335 
1336 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1337 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1338 		if (ret) {
1339 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1340 			if (!err)
1341 				err = ret;
1342 		}
1343 		delayed_uprobe_delete(du);
1344 	}
1345 	mutex_unlock(&delayed_uprobe_lock);
1346 	return err;
1347 }
1348 
1349 /*
1350  * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1351  *
1352  * Currently we ignore all errors and always return 0, the callers
1353  * can't handle the failure anyway.
1354  */
1355 int uprobe_mmap(struct vm_area_struct *vma)
1356 {
1357 	struct list_head tmp_list;
1358 	struct uprobe *uprobe, *u;
1359 	struct inode *inode;
1360 
1361 	if (no_uprobe_events())
1362 		return 0;
1363 
1364 	if (vma->vm_file &&
1365 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1366 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1367 		delayed_ref_ctr_inc(vma);
1368 
1369 	if (!valid_vma(vma, true))
1370 		return 0;
1371 
1372 	inode = file_inode(vma->vm_file);
1373 	if (!inode)
1374 		return 0;
1375 
1376 	mutex_lock(uprobes_mmap_hash(inode));
1377 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1378 	/*
1379 	 * We can race with uprobe_unregister(), this uprobe can be already
1380 	 * removed. But in this case filter_chain() must return false, all
1381 	 * consumers have gone away.
1382 	 */
1383 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1384 		if (!fatal_signal_pending(current) &&
1385 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1386 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1387 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1388 		}
1389 		put_uprobe(uprobe);
1390 	}
1391 	mutex_unlock(uprobes_mmap_hash(inode));
1392 
1393 	return 0;
1394 }
1395 
1396 static bool
1397 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1398 {
1399 	loff_t min, max;
1400 	struct inode *inode;
1401 	struct rb_node *n;
1402 
1403 	inode = file_inode(vma->vm_file);
1404 
1405 	min = vaddr_to_offset(vma, start);
1406 	max = min + (end - start) - 1;
1407 
1408 	spin_lock(&uprobes_treelock);
1409 	n = find_node_in_range(inode, min, max);
1410 	spin_unlock(&uprobes_treelock);
1411 
1412 	return !!n;
1413 }
1414 
1415 /*
1416  * Called in context of a munmap of a vma.
1417  */
1418 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1419 {
1420 	if (no_uprobe_events() || !valid_vma(vma, false))
1421 		return;
1422 
1423 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1424 		return;
1425 
1426 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1427 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1428 		return;
1429 
1430 	if (vma_has_uprobes(vma, start, end))
1431 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1432 }
1433 
1434 /* Slot allocation for XOL */
1435 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1436 {
1437 	struct vm_area_struct *vma;
1438 	int ret;
1439 
1440 	if (mmap_write_lock_killable(mm))
1441 		return -EINTR;
1442 
1443 	if (mm->uprobes_state.xol_area) {
1444 		ret = -EALREADY;
1445 		goto fail;
1446 	}
1447 
1448 	if (!area->vaddr) {
1449 		/* Try to map as high as possible, this is only a hint. */
1450 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1451 						PAGE_SIZE, 0, 0);
1452 		if (IS_ERR_VALUE(area->vaddr)) {
1453 			ret = area->vaddr;
1454 			goto fail;
1455 		}
1456 	}
1457 
1458 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1459 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1460 				&area->xol_mapping);
1461 	if (IS_ERR(vma)) {
1462 		ret = PTR_ERR(vma);
1463 		goto fail;
1464 	}
1465 
1466 	ret = 0;
1467 	/* pairs with get_xol_area() */
1468 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1469  fail:
1470 	mmap_write_unlock(mm);
1471 
1472 	return ret;
1473 }
1474 
1475 static struct xol_area *__create_xol_area(unsigned long vaddr)
1476 {
1477 	struct mm_struct *mm = current->mm;
1478 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1479 	struct xol_area *area;
1480 
1481 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1482 	if (unlikely(!area))
1483 		goto out;
1484 
1485 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1486 			       GFP_KERNEL);
1487 	if (!area->bitmap)
1488 		goto free_area;
1489 
1490 	area->xol_mapping.name = "[uprobes]";
1491 	area->xol_mapping.fault = NULL;
1492 	area->xol_mapping.pages = area->pages;
1493 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1494 	if (!area->pages[0])
1495 		goto free_bitmap;
1496 	area->pages[1] = NULL;
1497 
1498 	area->vaddr = vaddr;
1499 	init_waitqueue_head(&area->wq);
1500 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1501 	set_bit(0, area->bitmap);
1502 	atomic_set(&area->slot_count, 1);
1503 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1504 
1505 	if (!xol_add_vma(mm, area))
1506 		return area;
1507 
1508 	__free_page(area->pages[0]);
1509  free_bitmap:
1510 	kfree(area->bitmap);
1511  free_area:
1512 	kfree(area);
1513  out:
1514 	return NULL;
1515 }
1516 
1517 /*
1518  * get_xol_area - Allocate process's xol_area if necessary.
1519  * This area will be used for storing instructions for execution out of line.
1520  *
1521  * Returns the allocated area or NULL.
1522  */
1523 static struct xol_area *get_xol_area(void)
1524 {
1525 	struct mm_struct *mm = current->mm;
1526 	struct xol_area *area;
1527 
1528 	if (!mm->uprobes_state.xol_area)
1529 		__create_xol_area(0);
1530 
1531 	/* Pairs with xol_add_vma() smp_store_release() */
1532 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1533 	return area;
1534 }
1535 
1536 /*
1537  * uprobe_clear_state - Free the area allocated for slots.
1538  */
1539 void uprobe_clear_state(struct mm_struct *mm)
1540 {
1541 	struct xol_area *area = mm->uprobes_state.xol_area;
1542 
1543 	mutex_lock(&delayed_uprobe_lock);
1544 	delayed_uprobe_remove(NULL, mm);
1545 	mutex_unlock(&delayed_uprobe_lock);
1546 
1547 	if (!area)
1548 		return;
1549 
1550 	put_page(area->pages[0]);
1551 	kfree(area->bitmap);
1552 	kfree(area);
1553 }
1554 
1555 void uprobe_start_dup_mmap(void)
1556 {
1557 	percpu_down_read(&dup_mmap_sem);
1558 }
1559 
1560 void uprobe_end_dup_mmap(void)
1561 {
1562 	percpu_up_read(&dup_mmap_sem);
1563 }
1564 
1565 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1566 {
1567 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1568 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1569 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1570 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1571 	}
1572 }
1573 
1574 /*
1575  *  - search for a free slot.
1576  */
1577 static unsigned long xol_take_insn_slot(struct xol_area *area)
1578 {
1579 	unsigned long slot_addr;
1580 	int slot_nr;
1581 
1582 	do {
1583 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1584 		if (slot_nr < UINSNS_PER_PAGE) {
1585 			if (!test_and_set_bit(slot_nr, area->bitmap))
1586 				break;
1587 
1588 			slot_nr = UINSNS_PER_PAGE;
1589 			continue;
1590 		}
1591 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1592 	} while (slot_nr >= UINSNS_PER_PAGE);
1593 
1594 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1595 	atomic_inc(&area->slot_count);
1596 
1597 	return slot_addr;
1598 }
1599 
1600 /*
1601  * xol_get_insn_slot - allocate a slot for xol.
1602  * Returns the allocated slot address or 0.
1603  */
1604 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1605 {
1606 	struct xol_area *area;
1607 	unsigned long xol_vaddr;
1608 
1609 	area = get_xol_area();
1610 	if (!area)
1611 		return 0;
1612 
1613 	xol_vaddr = xol_take_insn_slot(area);
1614 	if (unlikely(!xol_vaddr))
1615 		return 0;
1616 
1617 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1618 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1619 
1620 	return xol_vaddr;
1621 }
1622 
1623 /*
1624  * xol_free_insn_slot - If slot was earlier allocated by
1625  * @xol_get_insn_slot(), make the slot available for
1626  * subsequent requests.
1627  */
1628 static void xol_free_insn_slot(struct task_struct *tsk)
1629 {
1630 	struct xol_area *area;
1631 	unsigned long vma_end;
1632 	unsigned long slot_addr;
1633 
1634 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1635 		return;
1636 
1637 	slot_addr = tsk->utask->xol_vaddr;
1638 	if (unlikely(!slot_addr))
1639 		return;
1640 
1641 	area = tsk->mm->uprobes_state.xol_area;
1642 	vma_end = area->vaddr + PAGE_SIZE;
1643 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1644 		unsigned long offset;
1645 		int slot_nr;
1646 
1647 		offset = slot_addr - area->vaddr;
1648 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1649 		if (slot_nr >= UINSNS_PER_PAGE)
1650 			return;
1651 
1652 		clear_bit(slot_nr, area->bitmap);
1653 		atomic_dec(&area->slot_count);
1654 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1655 		if (waitqueue_active(&area->wq))
1656 			wake_up(&area->wq);
1657 
1658 		tsk->utask->xol_vaddr = 0;
1659 	}
1660 }
1661 
1662 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1663 				  void *src, unsigned long len)
1664 {
1665 	/* Initialize the slot */
1666 	copy_to_page(page, vaddr, src, len);
1667 
1668 	/*
1669 	 * We probably need flush_icache_user_page() but it needs vma.
1670 	 * This should work on most of architectures by default. If
1671 	 * architecture needs to do something different it can define
1672 	 * its own version of the function.
1673 	 */
1674 	flush_dcache_page(page);
1675 }
1676 
1677 /**
1678  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1679  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1680  * instruction.
1681  * Return the address of the breakpoint instruction.
1682  */
1683 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1684 {
1685 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1686 }
1687 
1688 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1689 {
1690 	struct uprobe_task *utask = current->utask;
1691 
1692 	if (unlikely(utask && utask->active_uprobe))
1693 		return utask->vaddr;
1694 
1695 	return instruction_pointer(regs);
1696 }
1697 
1698 static struct return_instance *free_ret_instance(struct return_instance *ri)
1699 {
1700 	struct return_instance *next = ri->next;
1701 	put_uprobe(ri->uprobe);
1702 	kfree(ri);
1703 	return next;
1704 }
1705 
1706 /*
1707  * Called with no locks held.
1708  * Called in context of an exiting or an exec-ing thread.
1709  */
1710 void uprobe_free_utask(struct task_struct *t)
1711 {
1712 	struct uprobe_task *utask = t->utask;
1713 	struct return_instance *ri;
1714 
1715 	if (!utask)
1716 		return;
1717 
1718 	if (utask->active_uprobe)
1719 		put_uprobe(utask->active_uprobe);
1720 
1721 	ri = utask->return_instances;
1722 	while (ri)
1723 		ri = free_ret_instance(ri);
1724 
1725 	xol_free_insn_slot(t);
1726 	kfree(utask);
1727 	t->utask = NULL;
1728 }
1729 
1730 /*
1731  * Allocate a uprobe_task object for the task if necessary.
1732  * Called when the thread hits a breakpoint.
1733  *
1734  * Returns:
1735  * - pointer to new uprobe_task on success
1736  * - NULL otherwise
1737  */
1738 static struct uprobe_task *get_utask(void)
1739 {
1740 	if (!current->utask)
1741 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1742 	return current->utask;
1743 }
1744 
1745 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1746 {
1747 	struct uprobe_task *n_utask;
1748 	struct return_instance **p, *o, *n;
1749 
1750 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1751 	if (!n_utask)
1752 		return -ENOMEM;
1753 	t->utask = n_utask;
1754 
1755 	p = &n_utask->return_instances;
1756 	for (o = o_utask->return_instances; o; o = o->next) {
1757 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1758 		if (!n)
1759 			return -ENOMEM;
1760 
1761 		*n = *o;
1762 		get_uprobe(n->uprobe);
1763 		n->next = NULL;
1764 
1765 		*p = n;
1766 		p = &n->next;
1767 		n_utask->depth++;
1768 	}
1769 
1770 	return 0;
1771 }
1772 
1773 static void uprobe_warn(struct task_struct *t, const char *msg)
1774 {
1775 	pr_warn("uprobe: %s:%d failed to %s\n",
1776 			current->comm, current->pid, msg);
1777 }
1778 
1779 static void dup_xol_work(struct callback_head *work)
1780 {
1781 	if (current->flags & PF_EXITING)
1782 		return;
1783 
1784 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1785 			!fatal_signal_pending(current))
1786 		uprobe_warn(current, "dup xol area");
1787 }
1788 
1789 /*
1790  * Called in context of a new clone/fork from copy_process.
1791  */
1792 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1793 {
1794 	struct uprobe_task *utask = current->utask;
1795 	struct mm_struct *mm = current->mm;
1796 	struct xol_area *area;
1797 
1798 	t->utask = NULL;
1799 
1800 	if (!utask || !utask->return_instances)
1801 		return;
1802 
1803 	if (mm == t->mm && !(flags & CLONE_VFORK))
1804 		return;
1805 
1806 	if (dup_utask(t, utask))
1807 		return uprobe_warn(t, "dup ret instances");
1808 
1809 	/* The task can fork() after dup_xol_work() fails */
1810 	area = mm->uprobes_state.xol_area;
1811 	if (!area)
1812 		return uprobe_warn(t, "dup xol area");
1813 
1814 	if (mm == t->mm)
1815 		return;
1816 
1817 	t->utask->dup_xol_addr = area->vaddr;
1818 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1819 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1820 }
1821 
1822 /*
1823  * Current area->vaddr notion assume the trampoline address is always
1824  * equal area->vaddr.
1825  *
1826  * Returns -1 in case the xol_area is not allocated.
1827  */
1828 static unsigned long get_trampoline_vaddr(void)
1829 {
1830 	struct xol_area *area;
1831 	unsigned long trampoline_vaddr = -1;
1832 
1833 	/* Pairs with xol_add_vma() smp_store_release() */
1834 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1835 	if (area)
1836 		trampoline_vaddr = area->vaddr;
1837 
1838 	return trampoline_vaddr;
1839 }
1840 
1841 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1842 					struct pt_regs *regs)
1843 {
1844 	struct return_instance *ri = utask->return_instances;
1845 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1846 
1847 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1848 		ri = free_ret_instance(ri);
1849 		utask->depth--;
1850 	}
1851 	utask->return_instances = ri;
1852 }
1853 
1854 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1855 {
1856 	struct return_instance *ri;
1857 	struct uprobe_task *utask;
1858 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1859 	bool chained;
1860 
1861 	if (!get_xol_area())
1862 		return;
1863 
1864 	utask = get_utask();
1865 	if (!utask)
1866 		return;
1867 
1868 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1869 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1870 				" nestedness limit pid/tgid=%d/%d\n",
1871 				current->pid, current->tgid);
1872 		return;
1873 	}
1874 
1875 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1876 	if (!ri)
1877 		return;
1878 
1879 	trampoline_vaddr = get_trampoline_vaddr();
1880 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1881 	if (orig_ret_vaddr == -1)
1882 		goto fail;
1883 
1884 	/* drop the entries invalidated by longjmp() */
1885 	chained = (orig_ret_vaddr == trampoline_vaddr);
1886 	cleanup_return_instances(utask, chained, regs);
1887 
1888 	/*
1889 	 * We don't want to keep trampoline address in stack, rather keep the
1890 	 * original return address of first caller thru all the consequent
1891 	 * instances. This also makes breakpoint unwrapping easier.
1892 	 */
1893 	if (chained) {
1894 		if (!utask->return_instances) {
1895 			/*
1896 			 * This situation is not possible. Likely we have an
1897 			 * attack from user-space.
1898 			 */
1899 			uprobe_warn(current, "handle tail call");
1900 			goto fail;
1901 		}
1902 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1903 	}
1904 
1905 	ri->uprobe = get_uprobe(uprobe);
1906 	ri->func = instruction_pointer(regs);
1907 	ri->stack = user_stack_pointer(regs);
1908 	ri->orig_ret_vaddr = orig_ret_vaddr;
1909 	ri->chained = chained;
1910 
1911 	utask->depth++;
1912 	ri->next = utask->return_instances;
1913 	utask->return_instances = ri;
1914 
1915 	return;
1916  fail:
1917 	kfree(ri);
1918 }
1919 
1920 /* Prepare to single-step probed instruction out of line. */
1921 static int
1922 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1923 {
1924 	struct uprobe_task *utask;
1925 	unsigned long xol_vaddr;
1926 	int err;
1927 
1928 	utask = get_utask();
1929 	if (!utask)
1930 		return -ENOMEM;
1931 
1932 	xol_vaddr = xol_get_insn_slot(uprobe);
1933 	if (!xol_vaddr)
1934 		return -ENOMEM;
1935 
1936 	utask->xol_vaddr = xol_vaddr;
1937 	utask->vaddr = bp_vaddr;
1938 
1939 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1940 	if (unlikely(err)) {
1941 		xol_free_insn_slot(current);
1942 		return err;
1943 	}
1944 
1945 	utask->active_uprobe = uprobe;
1946 	utask->state = UTASK_SSTEP;
1947 	return 0;
1948 }
1949 
1950 /*
1951  * If we are singlestepping, then ensure this thread is not connected to
1952  * non-fatal signals until completion of singlestep.  When xol insn itself
1953  * triggers the signal,  restart the original insn even if the task is
1954  * already SIGKILL'ed (since coredump should report the correct ip).  This
1955  * is even more important if the task has a handler for SIGSEGV/etc, The
1956  * _same_ instruction should be repeated again after return from the signal
1957  * handler, and SSTEP can never finish in this case.
1958  */
1959 bool uprobe_deny_signal(void)
1960 {
1961 	struct task_struct *t = current;
1962 	struct uprobe_task *utask = t->utask;
1963 
1964 	if (likely(!utask || !utask->active_uprobe))
1965 		return false;
1966 
1967 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1968 
1969 	if (task_sigpending(t)) {
1970 		spin_lock_irq(&t->sighand->siglock);
1971 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1972 		spin_unlock_irq(&t->sighand->siglock);
1973 
1974 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1975 			utask->state = UTASK_SSTEP_TRAPPED;
1976 			set_tsk_thread_flag(t, TIF_UPROBE);
1977 		}
1978 	}
1979 
1980 	return true;
1981 }
1982 
1983 static void mmf_recalc_uprobes(struct mm_struct *mm)
1984 {
1985 	struct vm_area_struct *vma;
1986 
1987 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1988 		if (!valid_vma(vma, false))
1989 			continue;
1990 		/*
1991 		 * This is not strictly accurate, we can race with
1992 		 * uprobe_unregister() and see the already removed
1993 		 * uprobe if delete_uprobe() was not yet called.
1994 		 * Or this uprobe can be filtered out.
1995 		 */
1996 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1997 			return;
1998 	}
1999 
2000 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2001 }
2002 
2003 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2004 {
2005 	struct page *page;
2006 	uprobe_opcode_t opcode;
2007 	int result;
2008 
2009 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2010 		return -EINVAL;
2011 
2012 	pagefault_disable();
2013 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2014 	pagefault_enable();
2015 
2016 	if (likely(result == 0))
2017 		goto out;
2018 
2019 	/*
2020 	 * The NULL 'tsk' here ensures that any faults that occur here
2021 	 * will not be accounted to the task.  'mm' *is* current->mm,
2022 	 * but we treat this as a 'remote' access since it is
2023 	 * essentially a kernel access to the memory.
2024 	 */
2025 	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2026 			NULL, NULL);
2027 	if (result < 0)
2028 		return result;
2029 
2030 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2031 	put_page(page);
2032  out:
2033 	/* This needs to return true for any variant of the trap insn */
2034 	return is_trap_insn(&opcode);
2035 }
2036 
2037 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2038 {
2039 	struct mm_struct *mm = current->mm;
2040 	struct uprobe *uprobe = NULL;
2041 	struct vm_area_struct *vma;
2042 
2043 	mmap_read_lock(mm);
2044 	vma = vma_lookup(mm, bp_vaddr);
2045 	if (vma) {
2046 		if (valid_vma(vma, false)) {
2047 			struct inode *inode = file_inode(vma->vm_file);
2048 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2049 
2050 			uprobe = find_uprobe(inode, offset);
2051 		}
2052 
2053 		if (!uprobe)
2054 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2055 	} else {
2056 		*is_swbp = -EFAULT;
2057 	}
2058 
2059 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2060 		mmf_recalc_uprobes(mm);
2061 	mmap_read_unlock(mm);
2062 
2063 	return uprobe;
2064 }
2065 
2066 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2067 {
2068 	struct uprobe_consumer *uc;
2069 	int remove = UPROBE_HANDLER_REMOVE;
2070 	bool need_prep = false; /* prepare return uprobe, when needed */
2071 
2072 	down_read(&uprobe->register_rwsem);
2073 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2074 		int rc = 0;
2075 
2076 		if (uc->handler) {
2077 			rc = uc->handler(uc, regs);
2078 			WARN(rc & ~UPROBE_HANDLER_MASK,
2079 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2080 		}
2081 
2082 		if (uc->ret_handler)
2083 			need_prep = true;
2084 
2085 		remove &= rc;
2086 	}
2087 
2088 	if (need_prep && !remove)
2089 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2090 
2091 	if (remove && uprobe->consumers) {
2092 		WARN_ON(!uprobe_is_active(uprobe));
2093 		unapply_uprobe(uprobe, current->mm);
2094 	}
2095 	up_read(&uprobe->register_rwsem);
2096 }
2097 
2098 static void
2099 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2100 {
2101 	struct uprobe *uprobe = ri->uprobe;
2102 	struct uprobe_consumer *uc;
2103 
2104 	down_read(&uprobe->register_rwsem);
2105 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2106 		if (uc->ret_handler)
2107 			uc->ret_handler(uc, ri->func, regs);
2108 	}
2109 	up_read(&uprobe->register_rwsem);
2110 }
2111 
2112 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2113 {
2114 	bool chained;
2115 
2116 	do {
2117 		chained = ri->chained;
2118 		ri = ri->next;	/* can't be NULL if chained */
2119 	} while (chained);
2120 
2121 	return ri;
2122 }
2123 
2124 static void handle_trampoline(struct pt_regs *regs)
2125 {
2126 	struct uprobe_task *utask;
2127 	struct return_instance *ri, *next;
2128 	bool valid;
2129 
2130 	utask = current->utask;
2131 	if (!utask)
2132 		goto sigill;
2133 
2134 	ri = utask->return_instances;
2135 	if (!ri)
2136 		goto sigill;
2137 
2138 	do {
2139 		/*
2140 		 * We should throw out the frames invalidated by longjmp().
2141 		 * If this chain is valid, then the next one should be alive
2142 		 * or NULL; the latter case means that nobody but ri->func
2143 		 * could hit this trampoline on return. TODO: sigaltstack().
2144 		 */
2145 		next = find_next_ret_chain(ri);
2146 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2147 
2148 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2149 		do {
2150 			if (valid)
2151 				handle_uretprobe_chain(ri, regs);
2152 			ri = free_ret_instance(ri);
2153 			utask->depth--;
2154 		} while (ri != next);
2155 	} while (!valid);
2156 
2157 	utask->return_instances = ri;
2158 	return;
2159 
2160  sigill:
2161 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2162 	force_sig(SIGILL);
2163 
2164 }
2165 
2166 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2167 {
2168 	return false;
2169 }
2170 
2171 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2172 					struct pt_regs *regs)
2173 {
2174 	return true;
2175 }
2176 
2177 /*
2178  * Run handler and ask thread to singlestep.
2179  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2180  */
2181 static void handle_swbp(struct pt_regs *regs)
2182 {
2183 	struct uprobe *uprobe;
2184 	unsigned long bp_vaddr;
2185 	int is_swbp;
2186 
2187 	bp_vaddr = uprobe_get_swbp_addr(regs);
2188 	if (bp_vaddr == get_trampoline_vaddr())
2189 		return handle_trampoline(regs);
2190 
2191 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2192 	if (!uprobe) {
2193 		if (is_swbp > 0) {
2194 			/* No matching uprobe; signal SIGTRAP. */
2195 			force_sig(SIGTRAP);
2196 		} else {
2197 			/*
2198 			 * Either we raced with uprobe_unregister() or we can't
2199 			 * access this memory. The latter is only possible if
2200 			 * another thread plays with our ->mm. In both cases
2201 			 * we can simply restart. If this vma was unmapped we
2202 			 * can pretend this insn was not executed yet and get
2203 			 * the (correct) SIGSEGV after restart.
2204 			 */
2205 			instruction_pointer_set(regs, bp_vaddr);
2206 		}
2207 		return;
2208 	}
2209 
2210 	/* change it in advance for ->handler() and restart */
2211 	instruction_pointer_set(regs, bp_vaddr);
2212 
2213 	/*
2214 	 * TODO: move copy_insn/etc into _register and remove this hack.
2215 	 * After we hit the bp, _unregister + _register can install the
2216 	 * new and not-yet-analyzed uprobe at the same address, restart.
2217 	 */
2218 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2219 		goto out;
2220 
2221 	/*
2222 	 * Pairs with the smp_wmb() in prepare_uprobe().
2223 	 *
2224 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2225 	 * we must also see the stores to &uprobe->arch performed by the
2226 	 * prepare_uprobe() call.
2227 	 */
2228 	smp_rmb();
2229 
2230 	/* Tracing handlers use ->utask to communicate with fetch methods */
2231 	if (!get_utask())
2232 		goto out;
2233 
2234 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2235 		goto out;
2236 
2237 	handler_chain(uprobe, regs);
2238 
2239 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2240 		goto out;
2241 
2242 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2243 		return;
2244 
2245 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2246 out:
2247 	put_uprobe(uprobe);
2248 }
2249 
2250 /*
2251  * Perform required fix-ups and disable singlestep.
2252  * Allow pending signals to take effect.
2253  */
2254 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2255 {
2256 	struct uprobe *uprobe;
2257 	int err = 0;
2258 
2259 	uprobe = utask->active_uprobe;
2260 	if (utask->state == UTASK_SSTEP_ACK)
2261 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2262 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2263 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2264 	else
2265 		WARN_ON_ONCE(1);
2266 
2267 	put_uprobe(uprobe);
2268 	utask->active_uprobe = NULL;
2269 	utask->state = UTASK_RUNNING;
2270 	xol_free_insn_slot(current);
2271 
2272 	spin_lock_irq(&current->sighand->siglock);
2273 	recalc_sigpending(); /* see uprobe_deny_signal() */
2274 	spin_unlock_irq(&current->sighand->siglock);
2275 
2276 	if (unlikely(err)) {
2277 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2278 		force_sig(SIGILL);
2279 	}
2280 }
2281 
2282 /*
2283  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2284  * allows the thread to return from interrupt. After that handle_swbp()
2285  * sets utask->active_uprobe.
2286  *
2287  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2288  * and allows the thread to return from interrupt.
2289  *
2290  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2291  * uprobe_notify_resume().
2292  */
2293 void uprobe_notify_resume(struct pt_regs *regs)
2294 {
2295 	struct uprobe_task *utask;
2296 
2297 	clear_thread_flag(TIF_UPROBE);
2298 
2299 	utask = current->utask;
2300 	if (utask && utask->active_uprobe)
2301 		handle_singlestep(utask, regs);
2302 	else
2303 		handle_swbp(regs);
2304 }
2305 
2306 /*
2307  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2308  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2309  */
2310 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2311 {
2312 	if (!current->mm)
2313 		return 0;
2314 
2315 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2316 	    (!current->utask || !current->utask->return_instances))
2317 		return 0;
2318 
2319 	set_thread_flag(TIF_UPROBE);
2320 	return 1;
2321 }
2322 
2323 /*
2324  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2325  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2326  */
2327 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2328 {
2329 	struct uprobe_task *utask = current->utask;
2330 
2331 	if (!current->mm || !utask || !utask->active_uprobe)
2332 		/* task is currently not uprobed */
2333 		return 0;
2334 
2335 	utask->state = UTASK_SSTEP_ACK;
2336 	set_thread_flag(TIF_UPROBE);
2337 	return 1;
2338 }
2339 
2340 static struct notifier_block uprobe_exception_nb = {
2341 	.notifier_call		= arch_uprobe_exception_notify,
2342 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2343 };
2344 
2345 void __init uprobes_init(void)
2346 {
2347 	int i;
2348 
2349 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2350 		mutex_init(&uprobes_mmap_mutex[i]);
2351 
2352 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2353 }
2354